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Motivation

�Low energy spacecraft trajectories

� Genesis has collected solar wind samples at the Sun-
Earth L1 and will return them to Earth this September.

� First mission designed using dynamical systems theory.

Genesis Spacecraft Where Genesis Is Today
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Motivation
� Low energy transfer to the Moon
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Outline of Talk

� Introduction and Background

� Planar circular restricted three-body problem

� Motion near the collinear equilibria

�My Contribution

� Construction of trajectories with prescribed itineraries

� Trajectories in the four-body problem

– patching two three-body trajectories

– e.g., low energy transfer to the Moon

� Current and Ongoing Work

� Summary and Conclusions
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Three-Body Problem
� Planar circular restricted three-body problem

– P in field of two bodies, m1 and m2

– x-y frame rotates w.r.t. X-Y inertial frame
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Three-Body Problem
� Equations of motion describe P moving in an effective

potential plus a coriolis force
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Hamiltonian System
� Hamiltonian function

H(x, y, px, py) =
1

2
((px + y)2 + (py − x)2) + Ū(x, y),

where px and py are the conjugate momenta,

px = ẋ− y = vx − y,

py = ẏ + x = vy + x,

and

Ū(x, y) = −1

2
(x2 + y2)− 1− µ

r1
− µ

r2

where r1 and r2 are the distances of P from m1 and m2

and

µ =
m2

m1 + m2
∈ (0, 0.5].
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Equations of Motion

� Point in phase space: q = (x, y, vx, vy) ∈ R4

� Equations of motion, q̇ = f (q), can be written as

ẋ = vx,

ẏ = vy,

v̇x = 2vy −
∂Ū

∂x
,

v̇y = −2vx −
∂Ū

∂y
,

conserving an energy integral,

E(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + Ū(x, y).
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Motion in Energy Surface
� Fix parameter µ

� Energy surface for energy e is

M(µ, e) = {(x, y, ẋ, ẏ) | E(x, y, ẋ, ẏ) = e}.
For a fixed µ and energy e, one can consider the surface
M(µ, e) as a three-dimensional surface embedded in the
four-dimensional phase space.

� Projection of M(µ, e) onto position space,

M(µ, e) = {(x, y) | Ū(x, y; µ) ≤ e},
is the region of possible motion (Hill’s region).

� Boundary of M(µ, e) places bounds on particle motion.
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Realms of Possible Motion
� For fixed µ, e gives the connectivity of three realms

    Case 1 : E<E
1

    Case 2 : E
1
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      Case 4 : E
3
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Realms of Possible Motion
� Neck regions related to collinear unstable equilibria, x’s
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The location of all the equilibria for µ = 0.3
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Realms of Possible Motion
� Energy Case 3: For m1 = Sun, m2 = Jupiter, we divide

the Hill’s region into five sets; three realms, S, J,X ,
and two equilibrium neck regions, R1, R2

S J
R
1

R
2

X
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Equilibrium Points

� Find q̄ = (x̄, ȳ, v̄x, v̄y) s.t. ˙̄q = f (q̄) = 0

� Have form (x̄, ȳ, 0, 0) where (x̄, ȳ) are critical points of
Ū(x, y), i.e., Ūx = Ūy = 0, where Ūa ≡ ∂Ū

∂a

U(x,y)
_

L4

L5

L3

L1

L2

Critical Points of Ū(x, y)
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Equilibrium Points
� Consider x-axis solutions; the collinear equilibria

� Ūx = Ūy = 0 ⇒ polynomial in x

� depends on parameter µ
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Equilibrium Regions

�Phase space near equilibrium points

� Consider the equilibrium q̄ = L (either L1 or L2)

� Eigenvalues of linearized equations about L are ±λ and
±iν with corresponding eigenvectors u1, u2, w1, w2

� Equilibrium region has a saddle × center geometry
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Equilibrium Regions

�Eigenvectors Define Coordinate Frame

� Let the eigenvectors u1, u2, w1, w2 be the coordinate
axes with corresponding new coordinates (ξ, η, ζ1, ζ2).
The differential equations assume the simple form

ξ̇ = λξ, η̇ = −λη,

ζ̇1 = νζ2, ζ̇2 = −νζ1,

and the energy function becomes

El = λξη +
ν

2

(
ζ2

1 + ζ2
2

)
.

� Two additional integrals: ξη and ρ ≡ |ζ|2 = ζ2
1 + ζ2

2 ,
where ζ = ζ1 + iζ2
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Equilibrium Regions
� For positive ε and c, the region R (either R1 or R2), is

determined by

El = ε, and |η − ξ| ≤ c,

is homeomorphic to S2×I ; namely, for each fixed value
of (η − ξ) on the interval I = [−c, c], the equation
El = ε determines the two-sphere

λ

4
(η + ξ)2 +

ν

2

(
ζ2

1 + ζ2
2

)
= ε +

λ

4
(η − ξ)2,

in the variables ((η + ξ), ζ1, ζ2).
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Bounding Spheres of R
� n1, the left side (η − ξ = −c)

n2, the right side (η − ξ = c)

η
−
ξ=
−
c

η
−
ξ=
+
c

η
−
ξ=
0

η+ξ=0

|ζ|
2=0

ξ η

|ζ|
2 =ρ
∗

|ζ| 2=ρ∗|ζ|
2=0

n1 n2

The projection of the flow onto the η-ξ plane
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Transit & Non-transit Orbits
� There are transit orbits, T12, T21 and non-transit or-

bits, T11, T22, separated by asymptotic sets to a p.o.

ξ η

n1 n2

T
21

T
22

T
11

T
12

Transit, non-transit, and asymptotic orbits projected onto the η-ξ plane
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Twisting of Orbits
� We compute that

d

dt
arg ζ = −ν,

i.e., orbits “twist” while in R in proportion to the time
T spent in R, where

T =
1

λ

(
ln

2λ(η0)2

ν
− ln(ρ∗ − ρ)

)
,

where η0 is the initial condition on the bounding sphere
and ρ = ρ∗ = 2ε/ν only for the asymptotic orbits.

� Amount of twisting depends sensitively on how close an
orbit comes to the cylinders of asymptotic orbits, i.e.,
depends on (ρ∗ − ρ) > 0.
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Orbits in Position Space

�Appearance of orbits in position space

� The general (real) solution has the form

u(t) = (x(t), y(t), vx(t), vy(t)),

= α1e
λtu1 + α2e

−λtu2 + 2Re(βeiνtw1),

where α1, α2 are real and β = β1 + iβ2 is complex.

� Four categories of orbits, depending on the signs of α1

and α2.

� By a theorem of Moser [1958], all the qualitative results
carry over to the nonlinear system.

22



Orbits in Position Space
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Equilibrium Region: Summary

�The Flow in the Equilibrium Region

� In summary, the phase space in the equilibrium region
can be partitioned into four categories of distinctly dif-
ferent kinds of motion:

(1) periodic orbits, a.k.a., Lyapunov orbits

(2) asymptotic orbits, i.e., invariant stable and unstable
cylindrical manifolds (henceforth called tubes)

(3) transit orbits, moving from one realm to another

(4) non-transit orbits, returning to their original realm

� These categories help us understand the connectivity of
the global phase space
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Tube Dynamics
� All motion between realms connected by equilibrium

neck regions R must occur through the interior of the
cylindrical stable and unstable manifold tubes

R
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Tube Dynamics: Itineraries
� We can find/construct an orbit with any itinerary,

e.g., (. . . , J,X, J, S, J, . . .), where X, J and S
denote the different realms (symbolic dynamics)

S Realm

X Realm

J Realm

Forbidden

Realm

R1 R2
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Construction of Trajectories
� Systematic construction of trajectories with desired

itineraries – trajectories which use no fuel.

– by linking tubes in the right order → tube hopping
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Construction of Trajectories

�Ex. Trajectory with Itinerary (X, J, S)

� search for an initial condition with this itinerary

Forbidden
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y 

S Realm

X Realm

J Realm
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Construction of Trajectories
� seek area on 2D Poincaré section corresponding to

(X, J, S) itinerary region; an “itinerarea”

U3

U2

U1
U4

S Realm

X Realm

J Realm

Forbidden

Realm

R1 R2

The location of four Poincaré sections Ui
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Construction of Trajectories
� T[X ],J is the solid tube of trajectories currently in the X

realm and heading toward the J realm

– Let’s seek itinerarea (X, [J ], S)

U
3

U
2

U
1

U
4

U
3

U
2

T[X],J

TJ,[X]

T[S],J

TJ,[S]

T[J],X

TX,[J]T[J],S

TS,[J]

L1 p.o. L2 p.o.

How the tubes connect the Ui
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Construction of Trajectories

J realm
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Construction of Trajectories

�An itinerarea with label (X,[J],S)

� Denote the intersection (X, [J ])
⋂

([J ], S) by (X, [J ], S)
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Construction of Trajectories
� Forward and backward numerical integration of any ini-

tial condition within the itinerarea yields a trajectory
with the desired itinerary
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Construction of Trajectories
� Trajectories with longer itineraries can be produced

– e.g., (X, J, S, J, X)
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Restricted 4-Body Problem
� Solutions to the restricted 4-body problem can be built

up from solutions to the rest. 3-body problem

� One system of particular interest is a spacecraft in the
Earth-Moon vicinity, with the Sun’s perturbation

� Example mission: low energy transfer to the Moon
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Low Energy to the Moon
� Motivation: systematic construction of trajectories like

the 1991 Hiten trajectory. This trajectory uses signif-
icantly less on-board fuel than an Apollo-like transfer
using third body effects.

� The key is ballistic, or unpropelled, capture by the Moon

� Originally found via a trial-and-error approach, before
tube dynamics in the system was known (Belbruno and
Miller [1993])
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Low Energy to the Moon
� Patched three-body approximation: we assume the S/C’s

trajectory can be divided into two portions of rest. 3-
body problem solutions
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Low Energy to the Moon
(1) Sun-Earth-S/C

(2) Earth-Moon-S/C
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ySun
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Moon Earth

L2

Maneuver (∆V)
at Patch Point

Sun-Earth-S/C
System
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Low Energy to the Moon
� Consider the intersection of tubes in these two systems

(if any exists) on a Poincaré section
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Low Energy to the Moon

�Earth-Moon-S/C – Ballistic capture

� Find boundary of tube of lunar capture orbits
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Low Energy to the Moon

�Sun-Earth-S/C – Twisting of orbits

� Amount of twist depends sensitively on distance from
tube boundary; use this to target Earth parking orbit
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Low Energy to the Moon
� Integrate initial conditions forward and backward to gen-

erate desired trajectory, allowing for velocity discontinu-
ity (maneuver of size ∆V to “tube hop”)
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Low Energy to the Moon
� Verification: use these initial conditions as an initial

guess in restricted 4-body model, the bicircular model

� Small velocity discontinuity at patch point:

∆V = 34 m/s

� Uses 20% less on-board fuel than an Apollo-like transfer

– the trade-off is a longer flight time
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Low Energy to the Moon
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Current and Ongoing Work
� Multi-moon orbiter, ∆V = 22 m/s (!!!) ⇒ JIMO

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame

Jupiter

Callisto
   Ganymede
              Europa 
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Current and Ongoing Work

�Ongoing challenges

� Make an automated algorithm for trajectory generation

� Consider model uncertainty, unmodeled dynamics, noise

� Trajectory correction when errors occur

– Re-targeting of original (nominal) trajectory vs. re-
generation of nominal trajectory

– Trajectory correction work for Genesis is a first step
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Current and Ongoing Work
� Getting Genesis onto the destination orbit at the right

time, while minimizing fuel consumption

from Serban, Koon, Lo, Marsden, Petzold, Ross, and Wilson [2002]
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Current and Ongoing Work
� Incorporation of low-thrust

Spiral out from Europa Europa to Io transfer
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Current and Ongoing Work
� Coordination with goals/constraints of real missions

e.g., time at each moon, radiation dose, max. flight time

� Decrease flight time: evidence suggests large decrease
in time for small increase in ∆V
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Current and Ongoing Work
� Spin-off: Results also apply to mathematically similar

problems in chemistry and astrophysics

– phase space transport

� Applications

– chemical reaction rates

– asteroid collision prediction
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Summary and Conclusions
� For certain energies of the planar circular rest. 3-body

problem, the phase space can be divided into sets; three
large realms and equilibrium regions connecting them

� We consider stable and unstable manifolds of p.o.’s in
the equil. regions

� The manifolds have a cylindrical geometry and the phys-
ical property that all motion from one realm to another
must pass through their interior

� The study of the cylindrical manifolds, tube dynamics,
can be used to design spacecraft trajectories

� Tube dynamics applicable in other physical problems too
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