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Low Energy Trajectory Design

�Motivation: future missions

�What is the design problem?

�Solution space of 3-body problem

�Patching two 3-body trajectories:

Mission to orbit multiple Jupiter moons

�Current and Ongoing Work
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Motivation: Future Missions
� Classical approaches to spacecraft trajectory design have

been successful in the past: Hohmann transfers for Apollo,
swingbys of planets for Voyager

� Costly in terms of fuel, e.g., large burns for orbit entry

Swingbys: Voyager Tour
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Motivation: Future Missions
� Low energy trajectories → large savings in fuel cost

(as compared to classical approaches)

� Achieved using natural dynamics arising from the pres-
ence of a third body (or more)
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Motivation: Future Missions
� Low energy trajectories → large savings in fuel cost

(as compared to classical approaches)

� Achieved using natural dynamics arising from the pres-
ence of a third body (or more)

� New possibilities→ long duration observations and/or
constellations of spacecraft using little fuel
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Motivation: Future Missions
� Approach: Apply dynamical systems techniques

to space mission trajectory design

� Find dynamical channels in phase space

Dynamical channels exist throughout the Solar System
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Motivation: Future Missions

�Current research importance

� development of some NASA mission trajectories, such
as lunar missions and Jupiter Icy Moon Orbiter

� Low thrust missions must consider multi-body effects
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Motivation: Future Missions

�Current research importance

� development of some NASA mission trajectories, such
as lunar missions and Jupiter Icy Moon Orbiter

� Low thrust missions must consider multi-body effects

� Spin-off: results also apply to mathematically similar
problems in chemistry, astrophysics, and fluid dynamics.
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Motivation: Future Missions

�Current research importance

� development of some NASA mission trajectories, such
as lunar missions and Jupiter Icy Moon Orbiter

� Low thrust missions must consider multi-body effects

� Spin-off: results also apply to mathematically similar
problems in chemistry, astrophysics, and fluid dynamics.

� Let’s consider some missions...
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Solar System Metro Map
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Source: Gary L. Martin, NASA Space Architect
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Genesis Discovery Mission
� Genesis has collected solar wind samples at the Sun-

Earth L1 and will return them to Earth this September.

� First mission designed using dynamical systems theory.

Genesis Spacecraft Genesis Trajectory
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New Mission Architectures
� Lunar L1 Gateway Station

• transportation hub, servicing, commercial uses

Lunar L1 Gateway
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Multi-Moon Orbiter
� Multi-Moon Orbiter

• Jovian, Saturnian, Uranian systems by Ross et al. [1999-2003]

• e.g., orbit Europa, Ganymede, and Callisto in one mission
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Jupiter Icy Moons Orbiter
� NASA is considering a Jupiter Icy Moons Orbiter,

inspired by this work on multi-moon orbiters

• Earliest launch: 2011

Jupiter Icy Moons Orbiter
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Design Problem Description
� Spacecraft P in gravity field of N massive bodies

� N massive bodies move in prescribed orbits

M0

M1

M2

P
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Design Problem Description
� Goal: initial orbit −→ final orbit

� Controls: impulsive or low thrust

P
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Design Problem Description
� Impulsive controls: instantaneous changes in space-

craft velocity, with norm ∆vi at time ti

P

t1,∆v1

ti,∆vi
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Design Problem Description
� corresponds to high-thrust engine burn maneuvers

� proportional to fuel consumption via rocket equation

P

t1,∆v1

ti,∆vi
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Design Problem Description
� Minimize Fuel/Energy: find the maneuver times ti

and sizes ∆vi to minimize
∑

i ∆vi = total ∆V

P

t1,∆v1

ti,∆vi
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Tools Used in Solution
� Hint: Use natural dynamics as much as possible i.e.,

lanes of fast travel
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Tools Used in Solution
� Hint: Use natural dynamics as much as possible i.e.,

lanes of fast travel

� Hierarchy of models

– simple model → initial guess for complex model
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Tools Used in Solution
� Patched 3-body approximation

N+1 body system decomposed into 3-body subsystems:

spacecraft P + two massive bodies Mi & Mj
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Tools Used in Solution
� Patched 3-body approximation

N+1 body system decomposed into 3-body subsystems:

spacecraft P + two massive bodies Mi & Mj

� 3-body problem nonlinear dynamics

• phase space → tubes, resonance structures, ballistic capture

• patched solutions → first guess solution in realistic model

• Numerical continuation yields fast convergence to real sol’n
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Tools Used in Solution
� Patched 3-body approximation

N+1 body system decomposed into 3-body subsystems:

spacecraft P + two massive bodies Mi & Mj

� 3-body problem nonlinear dynamics

• phase space → tubes, resonance structures, ballistic capture

• patched solutions → first guess solution in realistic model

• Numerical continuation yields fast convergence to real sol’n

� Further refinements

– optimal control and parametric trade studies

– trajectory correction: work with natural dynamics

• e.g., trajectory correction maneuvers for Genesis
(Ross et al. [2002])
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Patched 3-Body Approx.
� Consider spacecraft P in field of 3 massive bodies,

M0, M1, M2 e.g., Jupiter and two moons

d1
d2

M0

M2

M1

Central mass M0 and two massive orbiting bodies, M1 and M2
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Patched 3-Body Approx.
� Consider spacecraft P in field of 3 massive bodies,

M0, M1, M2 e.g., Jupiter and two moons

d1
d2

M0

M2

M1

Central mass M0 and two massive orbiting bodies, M1 and M2

� Assumption: Only one 3-body interaction dominates at
a time (found to hold quite well)
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Patched 3-Body Approx.
� Initial approximation

4-body system approximated as two 3-body subsystems

� for t < 0, model as P -M0-M1

for t ≥ 0, model as P -M0-M2

i.e., we “patch” two 3-body solutions
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Patched 3-Body Approx.
� Initial approximation

4-body system approximated as two 3-body subsystems

� for t < 0, model as P -M0-M1

for t ≥ 0, model as P -M0-M2

i.e., we “patch” two 3-body solutions

� 3-body solutions are now known quite well

(Ross [2004]; Koon, Lo, Marsden, Ross [2004], ...)

Consider the 3-body problem...
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3-Body Problem
� Planar, circular, restricted 3-body problem

– P in field of two bodies, m1 and m2

– x-y frame rotates w.r.t. X-Y inertial frame

Y

X

xy

t

P

m2

m1
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3-Body Problem
� Equations of motion describe P moving in an effective

potential plus a coriolis force

xm
1  

m
2

P

(−µ,0) (1−µ,0)

(x,y)

y U(x,y)
_

L4

L5

L3

L1

L2

Position Space Effective Potential
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Hamiltonian System
� Hamiltonian function

H(x, y, px, py) =
1

2
((px + y)2 + (py − x)2) + Ū(x, y),

where px and py are the conjugate momenta, and

Ū(x, y) = −1

2
(x2 + y2)− 1− µ

r1
− µ

r2

where r1 and r2 are the distances of P from m1 and m2

and

µ =
m2

m1 + m2
∈ (0, 0.5].

� Eqs. of motion in 4D phase space.
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Motion within Energy Surface
� For fixed µ, an energy surface of energy ε is

Mµ(ε) = {(x, y, px, py) | H(x, y, px, py) = ε}.
In the 2 d.o.f. problem, these are 3D surfaces foliating
the 4D phase space.

� In 3 d.o.f., 5D energy surfaces.
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Realms of Possible Motion
�Mµ(ε) partitioned into three realms

e.g., Earth realm = phase space around Earth

� ε determines their connectivity

"No Fly Zone"

Particle/Spacecraft

L1

Earth
Realm

Moon

Moon
Realm
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Multi-Scale Dynamics
� n ≥ 2 d.o.f. Hamiltonian systems

– Phase space has structures mediating transport

– Controls can take use of these for efficiency
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Multi-Scale Dynamics
� n ≥ 2 d.o.f. Hamiltonian systems

– Phase space has structures mediating transport

– Controls can take use of these for efficiency

� Multi-scale approach

– Tube dynamics : motion between realms

– Lobe dynamics : motion between regions in a realm

26



Multi-Scale Dynamics
� Realms connected by tubes in the phase space

y

x

py

Earth Realm Moon Realm

L1

Phase Space (Position + Velocity)
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Multi-Scale Dynamics
� Tubes associated with periodic orbits about L1, L2

– Control ballistic capture and escape

Moon

L2
Ballistic 

Capture Into 
Elliptical Orbit

Earth
L2 

orbit

Moon

P

Tube leading to ballistic capture around the Moon (seen in rotating frame)
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Multi-Scale Dynamics
� Poincaré section Ui in Realm i, i = 1, . . . , k

� Lobe dynamics: evolution on Ui

� Tube dynamics: evolution between Ui

L1
Earth

U1 U2

L1

Poincare Section

U2

Position Space Phase Space
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Tube Dynamics
◦Motion between Poincaré section on Mµ(ε):

Ui = {(x, px)|y = const ∈ Realm i, py = g(x, px, y; µ, ε) > 0}.
System reduced to area-preserving k-map dynamics between the k Ui.

U1 U2

Earth Realm Moon Realm

Tubes

Poincaré surfaces-of-section U1 & U2 linked by tubes
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Tube Dynamics: Theorem

�Theorem of global orbit structure

� says we can construct an orbit with any itinerary,
eg (. . . , M, X,M,E,M,E, . . .), where X, M and E
denote the different realms (symbolic dynamics)

◦Main theorem of Ross et al. [2000]

E M

L1 L2

X
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Construction of Trajectories
� Systematic construction of trajectories with desired

itineraries – trajectories which use little or no fuel.

• by linking tubes in the right order → tube hopping

� Itineraries for multiple 3-body systems possible too.

Tube hopping
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Resonant Flybys
� Tubes do not give the full picture...

� Considerable fuel savings can be achieved by using
resonant flybys

P

m1

m2

Underlying mechanism:
overlap of resonance regions, under-
stood using lobe dynamics.

Goal: an optimal sequence of flybys.
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Resonance Structure
� Poincaré section reveals “chaotic zone”

– unstable periodic points govern chaotic motion

Identify

Argument of Periapse (radians)
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Resonance Structure & Lobes
� Their stable & unstable manifolds bound

resonance regions

– Lobes associated with motion around it

– Orbit changes for zero fuel cost

Movement among resonances
◦ This is confirmed by numerical computation.

◦ Shaded region bounded by stable and unstable invariant manifolds of an
unstable resonant (periodic) orbit.

13
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Resonance Structure & Lobes
◦ Trajectory construction:

Large orbit changes with little or no fuel via resonant flybys.

P

m1

m2

Surface-of-section Large orbit changes
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Patching Two 3-Body Sol’ns

�Multi-Moon Orbiter (e.g., JIMO)

� Orbit multiple moons with a single spacecraft

� Advantage: Longer observations

� Disadvantage: Standard “patched-conics” won’t work

– yields prohibitively high ∆V

� But: Patched three-body approx. works

– yields lower, technically feasible ∆V
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Multi-Moon Orbiters
� Example 1: Europa → Io → Jupiter
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Multi-Moon Orbiters
� Example 2: Ganymede-Europa Orbiter

◦ ∆V of 1400 m/s was half the Hohmann transfer

◦ Ross et al. [2001]
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JIMO Prototype
� Example 3: Callisto-Ganymede-Europa Orbiter

◦ Visit all icy moons: ∆V ∼ 0, flight time ∼ 30 months

◦ Uses resonant flybys, tubes for capture/escape

◦ Ross [2001], Ross et al. [2003]

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame

Jupiter

Callisto
   Ganymede
              Europa 

Injection into
high inclination

orbit around Europa
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Current and Ongoing Work
� Fully automated algorithm for trajectory generation

� Consider model uncertainty, unmodeled dynamics, noise

� Trajectory correction when errors occur

– Re-targeting of original (nominal) trajectory vs.
re-generation of nominal trajectory

– Trajectory correction work for Genesis is a first step
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Current and Ongoing Work
� Getting Genesis onto the destination orbit at the right

time, while minimizing fuel consumption

from Serban, Koon, Lo, Marsden, Petzold, Ross, and Wilson [2002]
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Current and Ongoing Work

Parametric Studies of

Optimal Correction Solutions:

 - A mixture of dynamical systems 

    theory and optimal control
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Current and Ongoing Work
� Incorporation of low thrust

� Design to take best advantage of natural dynamics

Spiral out from Europa Europa to Io transfer
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Current and Ongoing Work
� Meet goals/constraints of real missions

e.g., desired orbit/duration at each moon, radiation dose

� Decrease flight time: evidence suggests large decrease
in time for small increase in ∆V
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Current and Ongoing Work
� Spin-off: Results also apply to mathematically similar

problems in astrodynamics, chemistry, fluids, ...

– phase space transport

– networks of full body problems

� Applications

– asteroid collision prediction (Ross [2003])

– underwater vehicle navigation (Lekien, Ross [2003])

– atmospheric mixing (Bhat, Fung, Ross [2003])

– biomolecular design (Gabern, Marsden, Ross [2004])
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The End
Some References
• Ross, S.D. [2004] Cylindrical manifolds and tube dynamics in the restricted three-body

problem. PhD thesis, California Institute of Technology.
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Extra Slides
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Other Trajectory Studies

� Many other trajectories can be designed using
similar procedures

� One system of particular interest is the Earth-Moon
vicinity, with the Sun’s perturbation

d1

d2

M0

M1

M2

M2 in orbit around M1;
both in orbit about M0
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Sun-Earth-Moon Trajectories
� Fuel efficient paths to the Moon
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Sun-Earth-Moon Trajectories
� 20% more fuel efficient than Apollo-like transfer

�
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Earth
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Capture

∆V

�
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Sun-Earth-Moon Trajectories

shootthemoon-rotating.qt
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Sun-Earth-Moon Trajectories
� Below is a fuel-optimal transfer between the Lunar L1

Gateway station and a Sun-Earth L2 orbit
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Sun-Earth-Moon Trajectories

Sun-Earth frame movie
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Inter-Moon Transfer
� The transfer between three-body systems occurs when

energy surfaces intersect; can be seen on semimajor axis
vs. eccentricity diagram (similar to Tisserand curves of Longuski et al.)
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Inter-Moon Transfer
� The transfer between three-body systems occurs when

energy surfaces intersect; can be seen on semimajor axis
vs. eccentricity diagram (similar to Tisserand curves of Longuski et al.)
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Lobe Dynamics: Partition Σ
� Let Σ = Ui, then our Poincaré map is a diffeomorphism

f : Σ −→ Σ,

� f is orientation-preserving and area-preserving

� Let pi, i = 1, ..., Np, denote a collection of saddle-type
hyperbolic periodic points for f .
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Lobe Dynamics: Partition Σ
These are the unstable resonances reduced to Σ.

Poincaré surface of section
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Lobe Dynamics: Partition Σ
◦ Pieces of Wu(pi) and W s(pi) partition Σ

p2
p3

p1

Unstable and stable manifolds in red and green, resp.

58



Lobe Dynamics: Partition Σ
◦ Intersection of unstable and stable manifolds define boundaries.

q2

q1
q4

q5

q6

q3

p2
p3

p1
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Lobe Dynamics: Partition Σ
◦ These boundaries divide phase space into regions, Ri, i = 1, . . . , NR

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1
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Lobe Dynamics: Turnstile
� L1,2(1) and L2,1(1) are called a turnstile

R1

R2

q

pi
pj

f -1(q)

L2,1(1)

L1,2(1)
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Lobe Dynamics: Turnstile
� They map from entirely in one region to another under

one iteration of f

R1

R2

q

pi
pj

f -1(q)

L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))
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Move Amongst Resonances
◦ Numerics: regions and lobes can be efficiently computed (MANGEN).
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Unstable and stable manifolds in red and green, resp.
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Inter-Moon Transfer
� Resonant gravity assists with outer moon M1

� When periapse close to inner moon M2’s orbit is reached,
J-M2 system dynamics “take over”

Leaving moon M1 Approaching moon M2

Apoapse A fixed Periapse P fixed
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Ballistic Capture
� Final phase of inter-moon transfer → enter tube leading

to ballistic capture

Jovian Moon

L2
Ballistic 

Capture Into 
Elliptical Orbit

Jupiter
L2 

orbit

Jovian

Moon

P

Tube leading to ballistic capture around a moon (seen in rotating frame)
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Resulting Trajectory
� Σi∆vi = 22 m/s (!!!), but flight time ≈ 3 years

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame

Jupiter

Callisto
   Ganymede
              Europa 
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