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Efficient Lunar Transfer: How to “Shoot the Moon”

• Our goal: Design an efficient trajectory to the Moon using less fuel
than the traditional Hohmann transfer (e.g., the Apollo missions).

• Find and classify sets of solutions to the Sun-Earth-Moon-spacecraft
4-body problem; in particular, find solutions starting from Earth
and ending in ballistic capture by the Moon.

• Approximate 4-body system as two coupled 3-body systems.

• Review results on L1 and L2 dynamical channels in the planar
circular restricted 3-body problem.

• Find intersections between dynamical channels between the two
systems to construct complete Earth-to-Moon trajectory, which
utilizes perturbation by Sun.
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� Lunar Capture: How to get to the Moon Cheaply

• In 1991, the failed Japanese mission, Muses-A (Uesugi [1986]), was
given new life with a radical new mission concept and renamed
as the Hiten Mission (Tanabe et al. [1982], Belbruno [1987],
Belbruno and Miller [1993]).

(from Belbruno and Miller [1993])
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•We present an approach to the problem of the orbital dynamics of
this interesting trajectory by implementing in a systematic
way the view that the Sun-Earth-Moon-spacecraft 4-body system
can be modeled as two coupled 3-body systems .
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• Below is a schematic of the “Shoot the Moon” trajectory, showing
the two legs of the trajectory in the Sun-Earth rotating frame:

◦ Earth backward targeting portion
◦ Lunar capture portion
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•Within each 3-body system, using our understanding of the invari-
ant manifold structures associated with the Lagrange points L1
and L2, we transfer from a 200 km altitude Earth orbit into the
region where the invariant manifold structure of the Sun-Earth La-
grange points interact with the invariant manifold structure of the
Earth-Moon Lagrange points.
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• Schematic with Lagrange point invariant manifold structures:

◦ Earth backward targeting portion
◦ Lunar capture portion

x

y

L2 orbit

Sun

Lunar Capture

Portion

Earth Targeting Portion

Using "Twisting"

Moon's

Orbit

Earth

L2

Maneuver (∆V)
at Patch Point



8

• One utilizes the sensitivity of the “twisting” near the invariant
manifold tubes to target back to a suitable Earth parking orbit.
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• This interaction permits a fuel efficient transfer from the Sun-Earth
system to the Earth-Moon system. The invariant manifold tubes
of the Earth-Moon system provide the dynamical channels in phase
space that enable ballistic captures of the spacecraft by the Moon.
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• The results are then checked by integration in the bicircular 4-body
problem. It works!
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• This technique is cheaper (about 20% less ∆V ) than the usual
Hohmann transfer (jumping onto an ellipse that reaches the Moon,
then accelerating to catch it, then circularizing). However, it also
takes longer (4 to 6 months compared to 3 days).

(from Brown [1992])
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Planar Circular Restricted Three Body Problem–PCR3BP

� General Comments

• Describes the motion of a body moving in the gravitational field of
two main bodies (the primaries) that are moving in circles.

• The two main bodies could be the Sun and Earth , or the Earth
and Moon , etc. The total mass is normalized to 1; they are
denoted mS = 1− µ and mE = µ, so 0 < µ < 1

2.

• Let µ be the ratio between the mass of the Earth and the mass of
the Sun-Earth system,

µ =
mE

mE +mS
,

◦ For the Sun-Earth system, µ = 3.03591× 10−6.
◦ For the Earth-Moon system, µ = 0.01215.
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• The two main bodies rotate in the plane in circles counterclockwise
about their common center of mass and with angular velocity ω
(also normalized to 1).

• The third body, the spacecraft , has mass zero and is free to move
in the plane.

• The planar restricted three body problem is used for simplicity.
Generalization to the three dimensional problem is of course
important, but many of the effects can be described well with the
planar model.
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� Equations of Motion

•Notation: Choose a rotating coordinate system so that

◦ the origin is at the center of mass
◦ the Sun and Earth are on the x-axis at the points (−µ, 0) and

(1 − µ, 0) respectively–i.e., the distance from the Sun to Earth
is normalized to be 1.
◦ Let (x, y) be the position of the comet in the plane relative to

the positions of the Sun and Earth
◦ distances to the Sun and Earth:

r1 =
√

(x + µ)2 + y2 and r2 =
√

(x− 1 + µ)2 + y2.
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• Equations of motion:

ẍ− 2ẏ =
∂Ω
∂x
, ÿ + 2ẋ =

∂Ω
∂y

where

Ω =
(x2 + y2)

2
+

1− µ
r1

+
µ

r2
+
µ(1− µ)

2
.

• They have a first integral, the Jacobi constant , given by

C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2Ω(x, y),

which is related to the Hamiltonian energy by C = −2H .

• Energy manifolds are 3-dimensional surfaces foliating the
4-dimensional phase space.

• For fixed energy, Poincaré sections are then 2-dimensional,
making visualization of intersections between sets in the phase
space particularly simple.
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� Five Equilibrium Points

• Three collinear (Euler, 1750) on the x-axis— L1, L2, L3

• Two equilateral points (Lagrange, 1760)— L4, L5.
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� Stability of Equilibria

• Eigenvalues of the linearized equations at L1 and L2 have one real
and one imaginary pair. The stable and unstable manifolds
of these equilibria play an important role.

• Associated periodic orbits are called the Lyapunov orbits . Their
stable and unstable manifolds are also important.

• For space mission design, the most interesting equilibria are the
unstable ones, not the stable ones!

Consider the dynamics plus the control!

Control often makes unstable objects, not attractors, of interest!1

Under proper control management they are incredibly en-
ergy efficient .

1This is related to control of chaos; see Bloch, A.M. and J.E. Marsden [1989] Controlling homoclinic orbits,
Theor. & Comp. Fluid Mech. 1, 179–190.
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� Hill’s Regions

• Our main concern is the behavior of orbits whose energy is just
above that of L2. Roughly, we refer to this small energy range as
the temporary capture energy range.

◦ Fortunately, the temporary capture energy surfaces for the Sun-
Earth and Earth-Moon systems intersect in phase space, making
a fuel efficient transfer possible.

• The Hill’s region is the projection of this energy region onto
position space.

• The region not accessible for these energies is called the forbidden
region .

• For this case, the Hill’s region contains a “neck” about L1 and
L2. This equilibrium neck region and its relation to the global
orbit structure is critical: it was studied in detail by Conley,
McGehee and the Barcelona group.
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• Orbits with energy just above that of L2 can be transit orbits,
passing through the neck region between the exterior region
(outside Earth’s orbit) and the Earth temporary capture re-
gion (bubble surrounding Earth). They can also be nontransit
orbits or asymptotic orbits.
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� Equilibrium Region near a Lagrange Point

• 4 types of orbits in the equilibrium region .

◦Black circle is the unstable periodic Lyapunov orbit.
◦ 4 cylinders of asymptotic orbits form pieces of stable and un-

stable manifolds. They intersect the bounding spheres at asymp-
totic circles, separating spherical caps , which contain tran-
sit orbits, from spherical zones , which contain nontransit
orbits.
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• Roughly speaking, the equilibrium region has the dynamics of a
saddle × harmonic oscillator .
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� Tubes Partition the Energy Surface

• Stable and unstable manifold tubes act as separatrices
for the flow in the equilibrium region.

◦ Those inside the tubes are transit orbits.
◦ Those outside the tubes are nontransit orbits.
◦ e.g., transit from outside Earth’s orbit to Earth capture region

possible only through L2 periodic orbit stable tube.
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• Stable and unstable manifold tubes effect the transport of
material to and from the capture region.
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• Tubes of transit orbits can be utilized for ballistic capture .
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• Invariant manifold tubes are global objects — extend far beyond
vicinity of Lagrange points.
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� Twisting of Orbits in the Equilibrium Region

• Recall that the equilibrium region roughly has the dynamics of a
saddle × harmonic oscillator.

◦ Orbits twist in the equilibrium region, roughly following the
Lyapunov orbit.
◦ The closer the approach to the Lyapunov orbit, the more the

orbit twists.
◦ Thus, the closer an orbit begins to the tube on its approach to

the equilibrium region, the more it will be twisted when it exits
the equilibrium region.

• This twisting near the tubes will be used in the Earth backward
targeting portion of the Earth-to-Moon trajectory.
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• Twisting in the equilibrium region can be understood in terms of
mappings between the bounding spheres.
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•We select a line of constant x-position passing through the Earth
in the Earth capture region.

• Pick a few points near the unstable tube, with the same position
but slightly different velocities.
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•With a slight change in the velocity, we can target any position on
the lower line, where the mirror image stable tube intersects.
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• Look at Poincaré section along this line of constant x-position.

•With infinitesimal changes in velocity, any point near lower tube
cross-section can be targeted.
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� Two Coupled 3-Body Systems

•We obtain the fuel efficient tranfer by taking full advantage of the
dynamics of the 4-body system (Earth, Moon, Sun, and space-
craft) by initially modeling it as two coupled planar circular
restricted 3-body systems .

• In this approach, we utilize the Lagrange point dynamics of both
the Earth-Moon-spacecraft and Sun-Earth-spacecraft systems.
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• In this simplified model, the Moon is on a circular orbit about the
Earth, the Earth (or rather the Earth-Moon center of mass) is on
a circular orbit about the Sun, and the systems are coplanar.

• In the actual solar system:

◦Moon’s eccentricity is 0.055
◦ Earth’s eccentricity is 0.017
◦Moon’s orbit is inclined to Earth’s orbit by 5◦

• These values are low, so the coupled planar circular 3-body problem
is considered a good starting model .

• An orbit which becomes a real mission is typically obtained first in
such an approximate system and then later refined through more
precise models which inlude effects such as out-of-plane motion,
eccentricity, the other planets, solar wind, etc.

• However, tremendous insight is gained by considering a simpler
model which reveals the essence of the transfer dynamics .
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• Notice that in the Sun-Earth rotating frame, patterns such as the
Sun-Earth L2 portion of the trajectory are made plain which are
not discernable in the inertial frame.
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• The construction is done mainly in the Sun-Earth rotating frame
using the Poincaré section (that passes through the x-position of
the Earth) which help to glue the Sun-Earth Lagrange point orbit
portion of the trajectory with the lunar ballistic capture portion.
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� Construction of Earth-to-Moon Transfer

• Strategy : Find an initial condition (position and velocity) for a
spacecraft on the Poincaré section such that:

◦ when integrating forward , spacecraft will be guided by Earth-
Moon manifold and get ballistically captured by the Moon;
◦ when integrating backward , spacecraft will hug Sun-Earth

manifolds and return to Earth.

•We utilize two important properties of Lagrange point dynamics:

◦ Tube of transit orbits is key in finding capture orbit for Earth-
Moon portion of the design;
◦Twisting of orbits in equilibrium region is key in finding a fuel

efficient transfer for Sun-Earth portion of the design.
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� Lunar Ballistic Capture Portion

• Recall that by targeting the region enclosed by the stable man-
ifold tube of the Earth-Moon-S/C system’s L2 Lyapunov orbit,
we can construct an orbit which will get ballistically captured by
the Moon.
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•When we transform the Poincaré section of the stable manifold
of the Lyapunov orbit about the Earth-Moon L2 point into the
Sun-Earth rotating frame, we obtain a curve. A point interior to
this curve, with the correct phasing of the Moon, will approach
the Moon when integrated forward. The phasing of the Moon is
determined by the orientation of the Poincaré section in the Earth-
Moon system.
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• Assuming the Sun is a negligible perturbation to the Earth-Moon-
S/C 3-body dynamics, any spacecraft with initial conditions within
this closed loop will be ballistically captured by the Moon.
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• “Ballistic capture by the Moon” means an orbit which under natu-
ral dynamics gets within the sphere of influence of the Moon (20,000
km) and performs at least one revolution around the Moon. In such
a state, a slight ∆V will result in a stable capture (closing off the
necks at L1 and L2).

x (rotating frame)

y 
(r

o
ta

ti
n
g
 f

ra
m

e)

Passes through
L2 Equilibrium Region

Earth L2

Ends in
Ballistic
Capture

Trajectory
Begins

Inside Tube

Moon



41

� Earth Backward Targeting Portion
• Pick an energy in the temporary capture range of the Sun-Earth

system which has L2 orbit manifolds that come near a 200 km
altitude Earth parking orbit.
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• Compute Poincaré section along line of constant x-position passing
through Earth:

◦ The red curve is the Poincaré cut of the unstable manifold
of the Lyapunov orbit around the Sun-Earth L2.
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◦ Picking an initial condition just outside this curve, we can back-
ward integrate to produce a trajectory coming back to the Earth
parking orbit.
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� Connecting the Two Portions

• Vary the phase of the Moon until Earth-Moon L2 manifold
curve intersects Sun-Earth L2 manifold curve.
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• Intersection is found!

• In the region which is in the interior of the green curve but in
the exterior of the red curves,
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◦ an orbit will get ballistically captured by the Moon when inte-
grated forward;
◦ when integrated backward, orbit will hug the unstable mani-

fold back to the Sun-Earth L2 equilibrium region with a twist,
and then hug the stable manifold back towards Earth.
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•With only a slight modification, a midcourse ∆V at the patch point
(34 m/s), this procedure produces a genuine solution integrated in
the bicircular 4-body problem.

• Since capture at Moon is natural (zero ∆V ), the amount of on-
board fuel necessary is lowered (by about 20%).
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� Why Does It Work?

• Heuristic arguments for using the coupled 3-body model:

◦When outside the Moon’s small sphere of influence (20,000 km),
which is most of pre-capture flight, we can consider the Moon’s
perturbation on the Sun-Earth-S/C 3-body system to be neg-
ligible. Thus, can utilize Sun-Earth Lagrange point invariant
manifold structures.
◦ The midcourse ∆V is performed at a point where the spacecraft

is entering the Earth’s sphere of influence (900,000 km), where
we can consider the Sun’s perturbation on the Earth-Moon-S/C
3-body system to be negligible. Thus, Earth-Moon Lagrange
point structueres can be utilized for capture sequence.
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� What Next? — Future Work

• Using differential correction and continuation, we expect this tra-
jectory can be used as an initial guess to generalize to the three-
dimensional 4-body problem as well as the full solar system model.

• Optimize trajectory (minimize total fuel consumption):

◦ Incorporate initial lunar swingby
◦ Apply optimal control (e.g., COOPT)
◦ Use continuous thrust (low-thrust)

• Develop systematic procedure for coupling multiple 3-body sys-
tems. This will aid in the design of innovative space missions and
help aid in understanding subtle non-Keplerian transport through-
out the solar system.
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� More Information and References

• Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000]
Heteroclinic connections between periodic orbits and
resonance transitions in celestial mechanics,
available from
http://www.cds.caltech.edu/ ˜marsden/

• Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000]
Shoot the Moon , available at request

• Email: shane@cds.caltech.edu


