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Motivation
� Apply dynamical systems theory to determine the trans-

port of minor bodies throughout the solar system.

Insert movie of asteriods
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Important Tools
� Mechanical systems with symmetry; conserved quanti-

ties and reduction.

� For chaotic regimes of motion, the phase space has
structures mediating transport.

� Theory of tube dynamics developed to study the mo-
tion of certain Jupiter-family comets (Koon, Lo, Mars-
den, SDR).

� Use the theory (Rom-Kedar, Wiggins, Haller,...) as well
as the mangen software for lobe dynamics compu-
tations developed by Francois Lekien.

� Transport calculations for Mars’ impact ejecta, comets,
Kuiper-belt objects, etc.
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Transport Theory

�Chaotic dynamics
=⇒ statistical methods
e.g., transport through “bottlenecks” in phase space; intermittency
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Transport Theory

�Ensembles of phase space trajectories

� Divide phase space into regions appropriately.

� How long to move from one region to another?

� Determine average transition rates.

R1

R2

R3

R4

Boundaries between regions are “partial barriers” to transport.
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Transport Theory

�Applications:

� Geophysical fluid dynamics

� Chemical reaction rates
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Transport Theory
� Comet and asteroid transport rates between appropri-

ately defined regions; rates/probabilities of collision with
a planet.

Insert movie of moon formation collision

7



Transport Theory

�Transport in the solar system

� For minor bodies of interest

• e.g., comets, Kuiper-belt objects, asteroids

� Identify phase space objects governing transport

� Model N -body system as restricted 3-body systems

� Assumption: Only one 3-body interaction dominates at
a time

� e.g., comet-sun-P1-P2 system modeled as comet-sun-P1

and comet-sun-P2
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Transport Theory

Insert pages from Marsden pres.
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Transport Theory

Insert pages from Marsden pres.
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Motion within Energy Shell
� For fixed µ, an energy shell (or energy manifold) of

energy ε is

M(µ, ε) = {(x, y, ẋ, ẏ) | E(x, y, ẋ, ẏ) = ε}.
The M(µ, ε) are 3-dimensional surfaces foliating the
4-dimensional phase space.
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Poincaré Surface-of-Section
◦ Study Poincaré surface of section at fixed energy ε:

Σ(µ,ε) = {(x, ẋ)|y = 0, ẏ = f (x, ẋ; µ, ε) > 0}
reducing the system to an area preserving map on the plane.

Exterior Realm

Particle

Poincare Section

Planetary
Realm

Interior
Realm

Forbidden Realm

z

P(z)

Poincaré surface-of-section and map P
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Chaotic Sea
◦ The energy shell has regular (KAM tori) and irregular components.

Large connected irregular component, the “chaotic sea.”
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Transport in 3-Body Problem
◦ Unstable resonances: Periodic orbits form a dynamical “back-bone,”

via their unstable and stable manifolds.

◦ Physically, these manifolds correspond to orbits undergoing repeated
close encounters with the smaller primary, e.g., Jupiter.
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Unstable resonances and their manifolds.
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Transport in 3-Body Problem
◦ On a Poincaré section, consider the unstable and stable manifolds

of unstable periodic orbits

p2
p3

p1

Unstable and stable manifolds in red and green, resp.
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Transport in 3-Body Problem
◦ Intersection of unstable and stable manifolds define boundaries.

q2
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Transport in 3-Body Problem
◦ These boundaries divide the phase space into regions.
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Lobe Dynamics
◦ Transport between regions is computed via lobe dynamics.
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Dynamical Astronomy
� Compute transport between regions, e.g., transport be-

tween mean motion resonances, rates of ejecta escape
from a planet, etc.

� Some questions of interest

◦ How probable is a Shoemaker-Levy 9-type collision with Jupiter?
Or an asteroid collision with Earth (e.g., KT impact 65 Ma)?

◦ How likely is a transition from outside a planet’s orbit to inside
(e.g., the dance of comet Oterma with Jupiter)?

� Harder questions

◦ How does impact ejecta get from Mars to Earth?

◦ How does an SKBO become a comet or an Oort Cloud comet?

◦ Find features common to all exo-solar planetary systems?
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Movement btwn Resonances
◦We can compute manifolds which naturally divide the phase space into

resonance regions.
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Unstable and stable manifolds in red and green, resp.
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Movement btwn Resonances
◦ Transport and mixing between regions can be computed.
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Four sequences of color coded lobes are shown.
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Movement btwn Resonances
◦ Transport and mixing between several resonances can be computed.
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Oceanic Interlude
� The software used to compute transport by lobe dynam-

ics, namely MANGEN, comes from a study of ocean
dynamics.

� Interesting: there are analogs of navigating by in-
variant manifolds in the ocean.

� Adaptive Ocean Sampling Network (AOSN-II)
◦ Princeton: Naomi Leonard, Clancy Rowley, Eddie Forelli, Ralf Bach-

mayer, ...

◦ Caltech: Chad Couliette, Francois Lekien, Jerry Marsden, Shawn
Shadden

◦MIT: George Haller
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Oceanic Interlude

Insert movie of parcels

24



Oceanic Interlude

Insert movie of parcels w/ mfds
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Tube Dynamics

�Back to the 3-body problem...

�Must also consider tube dynamics!

� Tubes in the energy surface lead toward and away
from bottlenecks.
• Conley, McGehee (1960s)

• Koon, Lo, Marsden, SDR (2000s)
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Tube Dynamics
� For example, points reach the exit in U1 and are

transported via a tube to the entrance of U2.
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Tube dynamics: going from one Poincaré section to another.
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Tube Dynamics
� Poincaré sections in different realms (U1 through U4)

are linked by phase space tubes. The projection of the
tubes on the configuration space appear as strips.
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Resonances and Tubes

�Resonances and tubes are linked

� It has been observed that the tubes of capture orbits
are coming from certain resonances.
• Koon, Lo, Marsden, SDR [2001]

29



Jupiter Family Comets

�Jupiter Family Comets

� A physical example of the link between resonances
and tubes

� We consider the historical record of the comet Oterma
from 1910 to 1980
• first in an inertial frame

• then in a rotating frame

• a special case of pattern evocation

� similar pictures exist for many other comets
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Jupiter Family Comets
• Rapid transition: outside to inside Jupiter’s orbit.

◦ Captured temporarily by Jupiter during transition.

◦ Exterior (2:3 resonance) to interior (3:2 resonance).
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Viewed in Rotating Frame
◦ Oterma’s orbit in rotating frame with some invariant manifolds of the

3-body problem superimposed.

oterma-rot.qt
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Viewed in Inertial Frame

oterma-iner.qt
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Resonances and Tubes
� Poincaré section: tube cross-sections are closed curves

Particles inside curves move toward or away from Jupiter
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Resonances and Tubes
� Same Poincaré section: a resonance region is plotted

2:3 exterior resonance region
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Resonances and Tubes
� Regions of overlap occur −→ complex dynamics!

Regions of overlap occur
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Escape Rates

�Applications to dynamical astronomy

� One can compute the rate of escape of particles tem-
porarily captured by Mars, e.g. asteroids or impact
ejecta liberated from the Martian surface.
• Jaffé, SDR, Lo, Marsden, Farrelly, and Uzer [2002]

Mars with temporarily captured asteroids.
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Escape Rates
� Consider a particle at an energy such that it can escape

sunward. Using a statistical approach used in tran-
sition state theory (developed by chemists), the rate of
escape can be estimated.

Sun

    Case 2 : E
1
<E<E

2

MarsMars
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Escape Rates
� Mixing assumption: all asteroids in the chaotic sea

surrounding Mars are equally likely to escape.
Escape rate = −log(1− p), where

p =
Area of exit sunward

Area of chaotic sea

Exit to Interior Realm
with Area F

Chaotic Sea
with Area A

Tori Bounding
the Chaotic Sea
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Escape Rates
� This is a particularly simple situation (“Markovian”)

� Compare this rate with one obtained from a Monte Carlo
simulations of 107,000 particles at randomly selected
initial conditions at the same energy.
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Escape Rates
� Theory and numerical simulations agree well

◦Monte Carlo simulation (dashed) and theory (solid)
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Scattered Kuiper Belt Objects
◦ Some scattered Kuiper Belt Objects (SKBOs) in inertial space.
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Scattered Kuiper Belt Objects
◦ Current SKBO locations in black, with some approximate curves of con-

stant energy in the Sun-Neptune-SKBO in red.

Scattered Kuiper Belt Objects
◦ Kuiper Belt objects in green, SKBOs near T = 3

◦ Neptune L2 stable and unstable manifolds in black (around T = 3)
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Steady State Distribution
� If the planar, circular restricted three-body problem is

approximately ergodic, then a statistical mechanics can
be built (cf. ZhiGang [1999]).

� Recent work suggests there may be regions of the energy
shell for which the motion is nearly ergodic, in particular
the “chaotic sea” (Jaffé et al. [2002]).

� This suggests we compute the steady state distribu-
tion of some observable for particles in the chaotic sea;
a simple method for obtaining the likely locations of any
particles within it.
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Steady State Distribution
� Assuming ergodicity,

lim
t→∞

1

t

∫ t

0

A(x, y, px, py)dτ =∫
A(x, y, px, py)

C
|∂H
∂py
|dpxdxdy,

where A(x, y, px, py) is any physical observable (e.g.,
semimajor axis), one can finds that the density function,
ρ(x, px), on the surface-of-section, Σ(µ,ε), is constant.

� We can determine the steady state distribution of semi-
major axes; define N(a)da as the number of particles
falling into a → a+da on the surface-of-section, Σ(µ,ε).
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Steady State Distribution
� SKBOs should be in regions of high density.

Steady state distribution
� SKBOs should be in regions of high density.
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For papers, movies, etc., visit the websites:
http://www.cds.caltech.edu/∼shane/

http://transport.caltech.edu/
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