
Periodic Orbits and Transport:
From the Three-Body Problem to

Atomic Physics
Shane Ross

Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech)

CDS 280, November 13, 2000

shane@cds.caltech.edu
http://www.cds.caltech.edu/˜shane/

Control and Dynamical Systems



2

Outline

•Context : Three-body problem (Hamiltonian)

• Equilibria : Collinear libration points have saddle × center
structure

•Periodic orbits : Stable and unstable invariant manifolds divide
the energy surface, channeling the flow in phase space

•Classification : Interesting orbits can be classified and con-
structed using Poincaré sections and symbolic dynamics

•Atomic physics : Similar behavior noticed in ionization of
hydrogen atom (Jaffé, Farrelly & Uzer, 1999)



3

Motivation: Comet Transitions

� Jupiter Comets–such as Oterma

• Comets moving in the vicinity of Jupiter do so mainly under the
influence of Jupiter and the Sun–i.e., in a three body problem.

• These comets sometimes make a rapid transition from out-
side to inside Jupiter’s orbit.

•Captured temporarily by Jupiter during transition.

• Exterior (2:3 resonance)→ Interior (3:2 resonance).

• The next figure shows the orbit of Oterma (AD 1915–1980) in an
inertial frame
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• Next figure shows Oterma’s orbit in a rotating frame (so Jupiter
looks like it is standing still) and with some invariant manifolds in
the three body problem superimposed.
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• Now lets look at two movies of the trajectory of comet
Oterma , first in an inertial frame and then in a frame ro-
tating with the Sun and Jupiter .
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Movie: Oterma in inertial
frame
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Movie: Oterma in a
rotating frame
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Planar Circular Restricted 3-Body Problem–PCR3BP

� General Comments

• The two main bodies could be the Sun and Jupiter , or the
Sun and Earth , etc. The total mass is normalized to 1; they
are denoted mS = 1− µ and mJ = µ, so 0 < µ ≤ 1

2.

◦ The two main bodies rotate in the plane in circles counterclock-
wise about their common center of mass and with angular ve-
locity normalized to 1.
◦ The third body, the comet or the spacecraft , has mass zero

and is free to move in the plane.

• The planar restricted three-body problem is used for simplicity.
Generalization to the three-dimensional problem is of course
important, but many of the effects can be described well with the
planar model.
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� Equations of Motion

•Notation: Choose a rotating coordinate system so that

◦ the origin is at the center of mass
◦ the Sun and Jupiter are on the x-axis at the points (−µ, 0) and

(1−µ, 0) respectively–i.e., the distance from the Sun to Jupiter
is normalized to be 1.
◦ Let (x, y) be the position of the comet in the plane relative to

the positions of the Sun and Jupiter.
◦ distances to the Sun and Jupiter:

r1 =
√

(x + µ)2 + y2 and r2 =
√

(x− 1 + µ)2 + y2.
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• Lagrangian approach–rotating frame: In the rotating frame,
the Lagrangian L is given by

L(x, y, ẋ, ẏ) =
1
2

((ẋ− y)2 + (x + ẏ)2)− U(x, y)

where the gravitational potential in rotating coordinates is

U = −1− µ
r1
− µ

r2
.

Reason:

Ẋ = (ẋ− y) cos t− (x + ẏ) sin t,
Ẏ = (x + ẏ) cos t− (ẋ− y) sin t

which yields kinetic energy (wrt inertial frame)
Ẋ2 + Ẏ 2 = (ẋ− y)2 + (x + ẏ)2.
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Also, since both the distances r1 and r2 are invariant under rota-
tion, we have

r2
1 = (x + µ)2 + y2,

r2
2 = (x− (1− µ))2 + y2.

• The theory of moving systems says that one can simply write
down the Euler-Lagrange equations in the rotating frame and one
will get the correct equations. It is a very efficient general method
for computing equations for either moving systems or for systems
seen from rotating frames (see Marsden & Ratiu, 1999).
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• In the present case, the Euler-Lagrange equations are given by
d

dt
(ẋ− y) = x + ẏ − Ux,

d

dt
(x + ẏ) = −ẋ+ y − Uy.

After simplification, we have

ẍ− 2ẏ = −Ueff
x ,

ÿ + 2ẋ = −U eff
y

where

U eff = −1
2

(x2 + y2) + U(x, y)

is the augmented or effective potential and the subscripts de-
note its partial derivatives.
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• Legendre transform to get Hamiltonian form .

• The Hamiltonian (6= K.E. + P.E.) is

H =
1
2

((px + y)2 + (py − x)2) + U eff(x, y),

• Relationship between momenta and velocities :

ẋ =
∂H

∂px
= px + y; ẏ =

∂H

∂py
= py − x.

•Remaining dynamical equations:

ṗx = −∂H
∂x

= py − x−
∂Ueff

∂x
,

ṗy = −∂H
∂y

= −px − y −
∂Ueff

∂y
.

• Since equations of motion of PCR3BP are Hamiltonian and au-
tonomous, they have an energy integral of motion, denoted E.
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Five Equilibrium Points

• Three collinear (Euler, 1767) on the x-axis— L1, L2, L3

• Two equilateral points (Lagrange, 1772)— L4, L5.
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Energy Manifold

• The energy E is given by

E(x, y, ẋ, ẏ) =
1
2

(ẋ2 + ẏ2) + Ueff(x, y)

=
1
2

(ẋ2 + ẏ2)− 1
2

(x2 + y2)− 1− µ
r1
− µ

r2
.

This energy integral will help us determine the region of possible
motion , i.e., the region in which the comet can possibly move
along and the region which it is forbidden to move. The first step
is to look at the surface of the effective potential U eff.

• Note that the energy manifold is 3-dimensional.
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Ueff
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◦ Near either the Sun or Jupiter, we have a potential well.
◦ Far away from the Sun-Jupiter system, the term that corre-

sponds to the centrifugal force dominates, we have another po-
tential well.
◦Moreover, by applying multivariable calculus, one finds that

there are 3 saddle points at L1, L2, L3 and 2 maxima at L4
and L5.
◦ Let Ei be the energy at Li, then E5 = E4 > E3 > E2 > E1.
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• LetM be the energy surface given by setting the energy inte-
gral equal to a constant, i.e.,

M(µ, e) = {(x, y, ẋ, ẏ) | E(x, y, ẋ, ẏ) = e} (1)

where e is a constant.

• The projection of this surface onto position space is called a Hill’s
region

M(µ, e) = {(x, y) | U eff(x, y) ≤ e}. (2)

The boundary of M(µ, e) is the zero velocity curve . The
comet can move only within this region in the (x, y)-plane. For a
given µ there are five basic configurations for the Hill’s region, the
first four of which are shown in the following figure.
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• [Conley] Orbits with energy just above that of L2 can be transit
orbits, passing through the neck region between the exterior
region (outside Jupiter’s orbit) and the temporary capture
region (bubble surrounding Jupiter). They can also be non-
transit orbits or asymptotic orbits.

S JL1 L2

Exterior
Region (X)
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The Flow near L1 and L2: Linearization

• [Moser] All the qualitative results of the linearized equations carry
over to the full nonlinear equations.

• Recall equations of PCR3BP:

ẋ = vx, v̇x = 2vy − U eff
x ,

ẏ = vy, v̇y = −2vx − U eff
y .

• After linearization,

ẋ = vx, v̇x = 2vy + ax,

ẏ = vy, v̇y = −2vx − by.
◦ Eigenvalues have the form ±λ and ±iν.
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◦ Corresponding eigenvectors are

u1 = (1,−σ, λ,−λσ),
u2 = (1, σ,−λ,−λσ),
w1 = (1,−iτ, iν, ντ ),
w2 = (1, iτ,−iν, ντ ).
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• After linearization and making the eigenvectors the new co-
ordinate axes, the equations of motion assume the simple form

ξ̇ = λξ, η̇ = −λη, ζ̇1 = νζ2, ζ̇2 = −νζ1,

with energy function El = ληξ + ν
2(ζ2

1 + ζ2
2).

• The flow near L1, L2 has the form of a saddle×center .

η−
ξ=

−c

η−
ξ=

+c

η−
ξ=

0

η+ξ=0

|ζ|2 =0

ξ η

|ζ|
2 =ρ∗

|ζ| 2=ρ ∗|ζ|2 =0
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• For each fixed value of η−ξ (vertical lines in figure below), El = E
describes a 2-sphere .

• The equilibrium region R on the 3D energy manifold is home-
omorphic to S2 × I.
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• [McGehee] Can visualize 4 types of orbits in R ' S2 × I.

◦Black circle is the unstable periodic Lyapunov orbit.
◦ 4 cylinders of asymptotic orbits form pieces of stable and un-

stable manifolds. They intersect the bounding spheres at asymp-
totic circles, separating spherical polar caps , which contain
transit orbits, from spherical equatorial zones , which
contain nontransit orbits.
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• Roughly speaking, for fixed energy, the equilibrium region has the
dynamics of a saddle × harmonic oscillator .
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• 4 cylinders of asymptotic orbits: stable and unstable mani-
folds .

Unstable Manifold (orbits move away from the periodic orbit)

Stable Manifold (orbits move toward the periodic orbit)
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Invariant Manifold Tubes Partition the Energy Surface

• Stable and unstable manifold tubes act as separatrices
for the flow in the equilibrium region.

◦ Those inside the tubes are transit orbits.
◦ Those outside the tubes are nontransit orbits.
◦ e.g., transit from outside Jupiter’s orbit to Jupiter capture region

possible only through L2 periodic orbit stable tube.
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• Stable and unstable manifold tubes control the transport of
material to and from the capture region.
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• Tubes of transit orbits contain ballistic capture orbits.
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• Invariant manifold tubes are global objects — extend far beyond
vicinity of libration points.
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• Transport between all three regions (interior, Jupiter, exterior) is
controlled by the intersection of stable and unstable manifold tubes.
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• In particular, rapid transport between outside and inside of Jupiter’s
orbit is possible.
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• This can be seen by recalling the bounding spheres for the equilib-
rium regions.

•We will look at the images and pre-images of the spherical caps
of transit orbits on a suitable Poincaré section.

◦ The images and pre-images of the spherical caps form the tubes
that partition the energy surface.
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• For instance, on a Poincaré section between L1 and L2,

◦We look at the image of the cap on the left bounding sphere
of the L2 equilibrium regionR2 containing orbits leaving R2.
◦We also look at the pre-image of the cap on the right bound-

ing sphere of R1 containing orbits entering R1.
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• The Poincaré cut of the unstable manifold of the L2 periodic
orbit forms the boundary of the image of the cap containing
transit orbits leaving R2.

◦ All of these orbits came from the exterior region and are now in
the Jupiter region, so we label this region (X; J). Etc.
◦ The dynamics of the invariant manifold tubes naturally suggest

the itinerary representation.
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• Integrating an initial condition in the intersection region would give
us an orbit with the desired itinerary (X,J,S).
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Lunar Capture: How to get to the Moon Cheaply

• Using the invariant manifold tubes as the building blocks, we can
construct interesting, fuel saving space mission trajectories.

◦ For instance, an Earth-to-Moon ballistic capture orbit.
◦ Uses Sun’s perturbation.
◦ Jump from Sun-Earth-S/C system to Earth-Moon-S/C system.
◦ Saves about 20% of onboard fuel compared to Apollo-like trans-

fer.



44

x

y

L2 orbit

Sun

Lunar Capture

Portion

Earth Targeting Portion

Using "Twisting"

Moon's

Orbit

Earth

L2

Maneuver (∆V)
at Patch Point



45

Movie: Shoot the Moon in
rotating frame
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Movie: Shoot the Moon in
inertial frame
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Future Work and Directions

• For a single 3-body system:

◦When is 3-body effect more important than 2-body?
◦ Find “sweet spot” within tubes where transport is most

efficient/fastest?
◦ Consider continuous low-thrust control, optimal control.

• For coupling multiple 3-body systems:

◦Where to jump from one 3-body system to another?
◦ Optimal control: trade off between travel time and fuel.

• Planetary science/astronomy applications:

◦ Statistics: transport rates, capture probabilities, etc.

• How general is this method?

◦ Is similar behavior seen in other systems?
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Ionization of Rydberg Atoms in External Fields

• Similar behavior seen in the motion of loosely bound electrons in
the presence of external fields (Jaffé, Farrelly & Uzer, 1999).

•Rydberg electrons are very weakly bound, residing an immense
distance from the atomic core. They live in the poorly charted
territory where quantum physics transforms into classical physics.

• Experiments reveal that the planar motion of the electron in
the presence of crossed magnetic and electric fields is the most
important.

• Crossed field situations exist in diverse areas of physics ranging
from excitonic systems to plasmas and neutron stars.

•When the electric field is comparable to the atomic Coulomb field
sensed by the Rydberg electron, interesting dynamical properties
can be studied.
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• The dynamics are similar to that of comets which are weakly bound
to Jupiter, i.e., the dynamics of the planar 3-body problem where
the invariant manifold tubes control the transport.

• An amazing 20 orders of magnitude separate the length
scales of these two similar phenomena! (atomic radius compared
with solar system)
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Chemical Physics Approach: Transition State Theory

• Once an electron is “activated” into an initial excitation state, en-
ergy flows into the ionization channel and the electron is detached.

• A central question concerns the rate at which energy migrates into
the ionizing mode.

• The key to describing this or any chemical reaction is the recogni-
tion of the importance of phase space structures (bottle-
necks, turnstiles, etc.) that govern the progress of the reaction.

• Chemists think in terms of the “transition state” – a minimal set of
states that all reactive trajectories must pass through and which is
never encountered by any nonreactive trajectories (Marcelin, 1915).
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• The transition state has been viewed as a saddle between two
valleys, one associated with the products, the other with the reac-
tants (Eyring and Polanyi, 1931).

• It was shown that the transition state must be an unstable periodic
orbit whose projection connects two branches of the equipotential
– a periodic orbit dividing surface or PODS (Pechukas, 1976).

• The partitioning of phase space can be accomplished using the
manifolds of the PODS (Davis et al., 1980s).

• Jaffé, Farrelly & Uzer, 1999 found the first actual example of a
PODS occurring in phase space, which is not a dividing surface
when projected into configuration space – Rydberg atoms in the
presence of crossed fields.



52

• The Hamiltonian (in nondimensional form) for the planar hydro-
gen atom in crossed magnetic and electric fields in Cartesion coor-
dinates is

H =
1
2

(p2
x + p2

y)−
1
r

+
1
2

(xpy − ypx) +
1
8

(x2 + y2)− εx

where r =
√
x2 + y2 is the distance of the electron from the atomic

core and ε is the electric field strength.
Note: compare the above with Hamiltonian for PCR3BP,

H =
1
2

(p2
x + p2

y)−
1− µ
r1
− µ

r2
− (xpy − ypx).

• The Hamiltonian has a single critical point, the Stark saddle
point , above which ionization becomes possible. Unstable peri-
odic orbits exist around this point.
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• The Hamiltonian gives rise to equations of motion which are not
symmetric with respect to time-reversal , but under the canon-
ical transformation

y → pv
py → −v.

the equations of motion do become time-reversal symmetric. Any
trajectory which encounters the zero velocity surface in the
new coordinates will retrace its path in configuration space.

• One desires time-reversal symmetry in order to define the transition
state. The basic idea is that any trajectory that goes from the
bound region to the unbound region must cross this orbit – the
PODS.
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Celestial Mechanics vs. Chemical/Atomic Physics

• Astronomers and space mission designers have traditionally been
interested in individual trajectories of particles.

◦ For mission designers, parameters which describe the system
(e.g., the masses of the major bodies) are fixed, control is per-
formed on-board via changes in velocity, and control must be
precise (e.g., capture instead of crash). Only short time dynam-
ics is important.

• Chemists are more interested in ensembles of trajectories ,
from which statistical information may be obtained (e.g., reaction
rates, ionization probability).

◦ Chemical engineers have control as to how system is prepaired
(e.g., the kinds and numbers of reactants, temperature, applied
electric field), but little or no control over individual trajectories.
Long time asymptotic behavior is important.
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• It’s possible to merge the two approaches. Astronomers/planetary
scientists are increasingly more interested in the statistical prop-
erties of the solar system (and extra-solar systems), such as mass
accretion rates, comet capture probablity, likely planetary distri-
butions around extra-solar stars, etc.

•Main Point: For a class of Hamiltonian systems which have
phase space bottlenecks containing unstable periodic orbits, the
unstable and stable manifolds of those periodic orbits partition the
part of the energy surface where transport is possible. The mani-
folds not only provide a picture of the global behavior of the system,
but are the starting point for obtaining the statistical properties of
the system.
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