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Motivation
� Apply geometric mechanics and transport calculations

to asteroid pairs to calculate, e.g., escape rates.
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� Apply geometric mechanics and transport calculations

to asteroid pairs to calculate, e.g., escape rates.

Dactyl in orbit about Ida, discovered in 1994 during the Galileo mission.
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Motivation
� Motivating goal: accurate estimation of binary asteroid

formation, collision, and ejection rates, accounting for
full coupling between the rotational and translational
states.
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Motivation
� Motivating goal: accurate estimation of binary asteroid

formation, collision, and ejection rates, accounting for
full coupling between the rotational and translational
states.

Time history of the orbit radius (a) and rotation period (b) for a gravitationally

interacting sphere and tri-axial ellipsoid of equal mass.
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Full Body Problem

�Full Body Problem (N Bodies)

�begin with Full Two Body Problem
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Full Body Problem

�Relevant to

� asteroid and Kuiper belt binary evolution

� variation of planetary obliquities

� comet nucleus evolution due to outgassing

� close approaches of galaxies
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Full Body Problem

galaxy collision
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Full Body Problem

�Furthermore

� The mathematical description of the FBP and phase
space transport phenomena applies to a wide range of
physical systems across many scales (chemistry, biol-
ogy, fluid dynamics, ...)
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Important Tools
� Geometric mechanics: Mechanical systems with sym-

metry; conserved quantities and reduction.
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Important Tools
� Geometric mechanics: Mechanical systems with sym-

metry; conserved quantities and reduction.

� Asynchronous variational integrators: Symplectic
integrators allowing different time steps at different spa-
tial points.

� Phase space transport: For chaotic regimes of mo-
tion, the phase space has structures mediating transport
(tube and lobe dynamics, ...).

� Approximate statistical models may be appropriate un-
der certain conditions, e.g., mixing assumptions in chem-
ical and celestial mechanics, etc.
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F2BP: Models To Use
� Consider two masses, m1 and m2.

� A widely used model: m1 is a sphere.

� The normalized and symmetry reduced equations are

r̈ + 2ω × ṙ + ω̇ × r + ω × (ω × r) =
∂U
∂r

I · ω̇ + ω × I · ω = −µr× ∂U
∂r

,

where
ω = rotational velocity vector in the body-fixed frame,
r = relative position vector in the body-fixed frame,
A = attitude tensor of the non-spherical body,
I = specific inertia tensor of the non-spherical body,
U = gravitational potential of the non-spherical body.
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F2BP: Models To Use
� free parameter: µ = m1

m1+m2
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F2BP: Models To Use
� free parameter: µ = m1

m1+m2

� µ → 0
Particle around asteroid

restricted F2BP (RF2BP)

m2m1
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F2BP: Models To Use
� free parameter: µ = m1

m1+m2

� µ → 0
Particle around asteroid

restricted F2BP (RF2BP)

m2m1

� µ → 1
Spacecraft around planet

m2m1
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F2BP: Geometric Mechanics
� The full 2-body problem has a SE(3) symmetry and

corresponding conserved quantities
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F2BP: Geometric Mechanics
� The full 2-body problem has a SE(3) symmetry and

corresponding conserved quantities

� Phase space: Q = SE(3)× SE(3)

� Reduce: shape space Q/G gives the system shape.

� All the power of geometric mechanics can be brought
to bear: symmetry reduction, relative equilibria, energy-
momentum method (and its converse), phases (transla-
tional and rotational drift and coupling),...
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Reduction for the FB2P
� For the F2BP, Q = SE(3)× SE(3).

� Material points in a reference configuration Xi,

� Points in the current configuration xi.

� Given ((A1, r1), (A2, r2)) ∈ SE(3)× SE(3), related by
x1 = A1X1 + r1 and x2 = A2X2 + r2

� Lagrangian equals kinetic minus potential energy:

L(A1, r1, A2, r2) =
1

2

∫
B1

‖ẋ1‖2dµ1(X1) +
1

2

∫
B2

‖ẋ2‖2dµ2(X2) +

∫
B1

∫
B2

Gdµ1(X1)dµ2(X2)

‖x1 − x2‖

=
m1

2
‖ṙ1‖2 +

1

2
〈Ω1, I1Ω1〉 +

m2

2
‖ṙ2‖2 +

1

2
〈Ω2, I2Ω2〉 +

∫
B1

∫
B2

Gdµ1(X1)dµ2(X2)

‖A1X1 − A2X2 + r1 − r2‖
.
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Reduction for the FB2P
� Reduce by overall translations and rotations.

� SE(3) acts by the diagonal left action on Q:
(A, r) · (A1, r1, A2, r2) = (AA1, Ar1 + r, AA2, Ar2 + r).

� Momentum map is the total linear momentum and
the total angular momentum.
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Reduction for the FB2P
� Reduce by overall translations and rotations.

� SE(3) acts by the diagonal left action on Q:
(A, r) · (A1, r1, A2, r2) = (AA1, Ar1 + r, AA2, Ar2 + r).

� Momentum map is the total linear momentum and
the total angular momentum.

� Shape space Q/G: one copy of SE(3); coordinatized
by the relative attitude AT

2 A1 = AT and relative
position AT

2 (r1 − r2) = R.

� General reduction theory says that the reducted equa-
tions of motion are in T (Q/G) × g (for velocities) or
(T ∗Q)/G× g∗ (for momenta).

13



Reduction for the FB2P
� Equations of motion in T (Q/G) (resp. T ∗(Q/G))

involve A, R, and their velocities (resp. conjugate mo-
menta Γ, P ).

� Coupled to equations in se(3)∗, identified with equations
for the body angular and linear momenta of the second
rigid body, Γ2, P2.

14



Reduction for the FB2P
� Equations of motion in T (Q/G) (resp. T ∗(Q/G))

involve A, R, and their velocities (resp. conjugate mo-
menta Γ, P ).

� Coupled to equations in se(3)∗, identified with equations
for the body angular and linear momenta of the second
rigid body, Γ2, P2.

� Shape space: key to geometric phases that are
important for rotational and translational drifts.

� Reduced Lagrangian: rewrite L in variables:

A = AT
2 A1, R = AT

2 (r1 − r2),

Ω̂ = AT
2 Ȧ1, V = AT

2 (ṙ1 − ṙ2),
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Reduction for the FB2P
which are coordinates on T (Q/G), as well as

Ω̂2 = AT
2 Ȧ2, V2 = AT

2 ṙ2,

which are coordinates on se(3).

� Hamilton’s variational principle on T (SE(3)×SE(3))
is equivalent to the reduced variational principle,

δ

∫ b

a

l(A, R, Ω̂, V, Ω̂2, V2)dt = 0,

on R18 where the variations are of the form,

δA = −Σ̂2A + Σ̂, δR = −Σ̂2R + S, δ̂Ω =
˙̂
Σ− Σ̂2Ω̂ + Ω̂2Σ̂,

δV = Ṡ − Σ̂2V + Ω̂2S, δΩ2 = Σ̇2 + Ω2 × Σ2, δV2 = Ṡ − Σ̂2V2 + Ω̂2S2.
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Systematic Structures
� For numerics as well as analysis of stability of relative

equilibria (analog of the libration points), the variational
and Hamiltonian structures are useful.

� Previous works guessed these structures and missed
the variational structure altogether. Using reduction,
one derives them in a simple and natural way, one gets
the Jacobi integrals naturally, etc.

� Extra symmetries give extra conserved quantities and
further reductions (e.g., cylindrical symmetry of one of
the bodies).

� Special cases (such as an ellipsoid and a sphere).
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Restricted Simpler Case

�Let’s look at an example problem

� Restricted (as in restricted 3-body problem) simple case
exhibits the basic capture, ejection, collision dynamics.
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Restricted Simpler Case
� Point mass P moving in the x-y plane under the grav-

itational field of a uniformly rotating elliptical body m,
without affecting its uniform rotation.

Y

X

xy

t

P

m

Force

The rotating (x-y) and inertial (X-Y ) frames.
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Restricted Simpler Case
� Equations of motion relative to a rotating Cartesian

coordinate frame and appropriately normalized:

ẍ− 2ẏ =
∂U

∂x
and ÿ + 2ẋ =

∂U

∂y
,

where

U(x, y) = −1

r
− 1

2
r2 −

3C22

(
x2 − y2

)
r5

,

and

r =
√

x2 + y2.

� Gravity field coefficient C22, the ellipticity, typically
varies between 0 and 0.05.

� Jacobi integral: E = 1
2

(
ẋ2 + ẏ2

)
− U(x, y).
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Restricted Simpler Case
� Moving systems approach gives the Lagrangian and

Hamiltonian structure and Jacobi integral.

� Lagrangian (kinetic minus potential energy) written in
the rotating system and with angular velocity normalized
to unity, is

L =
1

2
[(ẋ− y)2 + (x + ẏ)2]− V (x, y).

where

V (x, y) = −1

r
−

3C22

(
x2 − y2

)
r5

.

� Euler–Lagrange equations produce the previous equa-
tions and the Legendre transformation gives the Hamil-
tonian structure, the Jacobi integral, etc.
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F2BP: Phase Space Structure
� The Jacobi integral (energy) is an indicator of the type

of global dynamics possible.

� For energies above a threshold, E > ES, correspond-
ing to symmetric saddle points, movement between the
realm near the asteroid (interior realm) and away
from the asteroid (exterior realm) is possible. For
energies E ≤ ES, no such movement is possible.
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F2BP: Phase Space Structure
� Multi-scale dynamics : for chaotic regimes of mo-

tion, the phase space has structures mediating trans-
port.
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F2BP: Phase Space Structure
� Multi-scale dynamics : for chaotic regimes of mo-

tion, the phase space has structures mediating trans-
port.

� tube dynamics : On the largest scale, phase space is
organized into realms, connected via tubes

� lobe dynamics : In each realm, phase space is orga-
nized further into different resonance regions, con-
nected via lobes.
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F2BP: Phase Space Structure
� Slices of energy surface: Poincaré sections Ui

� Lobe dynamics: evolution on Ui

� Tube dynamics: evolution between Ui

x

Exterior Realm

Interior

Realm

U
2

U
1

y

f1

f2

f12

f2

f1
z0

z1
z2

z3z4

z5 U2

U1

Exit

Entrance
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Poincaré Surface of Section
◦ Study Poincaré surface of section on energy surface:

Ui = Σ(µ,E) = {(x, ẋ)|y = 0, ẏ = g(x, ẋ; µ, E) > 0}
reducing the system to an area preserving map on the plane,

fi : Ui −→ Ui,
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Transport in Poincaré Section
• Phase space divided into regions Ri, i = 1, ..., NR

bounded by segments of stable and unstable manifolds of un-
stable fixed points.

R1

B12 = U [p2 ,q2] U S [p1 ,q2]

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1
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Lobe Dynamics
Transport between regions is computed via lobe dynamics.

R1

R2

q0

pi
pj

f -1(q0)
q1

L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))
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Movement Between Resonances

We can compute manifolds which naturally divide the phase space
into resonance regions.

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1

Unstable and stable manifolds in red and green, resp.
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Movement Between Resonances

Transport and mixing between regions can be computed.

Identify

Argument of Periapse
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Four sequences of color coded lobes are shown.
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Exterior Poincaré Sections
� A Poincaré section with C22 = 0.05 & fixed energy,

illustrates the relevance of tube and lobe dynamics.

� Choose the section in the exterior region along the pos-
itive x-axis.

� Choose E = −1.62, slightly above energy of saddle
points along the x-axis, such that particles beginning in
the exterior region may be ejected from the system or
collide with the asteroid.
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Exterior Poincaré Sections
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(a) Poincaré section for the exterior realm
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Exterior Poincaré Sections
� Particles in the exterior region get captured by the aster-

oid if they lie within the phase space tubes associated
with the unstable periodic orbits about either the left
or right saddle points. Consider a captured particle to
have “collided” with the asteroid if it enters the circle
of radius 1 around the origin.
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Exterior Poincaré Sections
� Particles in the exterior region get captured by the aster-

oid if they lie within the phase space tubes associated
with the unstable periodic orbits about either the left
or right saddle points. Consider a captured particle to
have “collided” with the asteroid if it enters the circle
of radius 1 around the origin.

� Tube slices on this section: tube slices of collision.
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Exterior Poincaré Sections
� Particles in the exterior region get captured by the aster-

oid if they lie within the phase space tubes associated
with the unstable periodic orbits about either the left
or right saddle points. Consider a captured particle to
have “collided” with the asteroid if it enters the circle
of radius 1 around the origin.

� Tube slices on this section: tube slices of collision.

� Particles are ejected if they lie within lobes enclosed by
the stable and unstable manifolds of a hyperbolic fixed
point at (+∞, 0)—lobes of ejection.
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Exterior Poincaré Sections
� Transform to Delaunay variables.

(b) Poincaré section in Delaunay variables
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Exterior Poincaré Sections
� The semimajor axis is shown versus the argument of

periapse with respect to the rotating asteroid (the body-
fixed frame).

� Alternate fates of collision and ejection are intimately
intermingled.

� The number of particles remaining in the fourth quad-
rant is smaller than that in the other three quadrants,
in agreement with observations in Scheere’s work.
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Exterior Poincaré Sections
� Escape and re-capture.

(c)
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