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Interplanetary Mission Design

�Use natural dynamics for fuel efficiency

� Dynamical channels connect planets and moons.

� Trajectory generation using invariant manifolds in the
3-body problem suggests new numerical algorithms for
interplanetary missions

�Current research importance

� Design fuel efficient interplanetary trajectories

� (1) Multi-Moon Orbiter to multiple Jovian moons

� (2) Earth orbit to lunar orbit
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Mission to Europa

�Motivation:
Oceans and life on Europa?

� There is international interest in sending a scientific
spacecraft to orbit and study Europa.
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Multi-Moon Orbiter

�Orbit each moon in a single mission

� Other Jovian moons are also worthy of study
• All may have oceans, evidence from Galileo suggests
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Multi-Moon Orbiter
� We propose a trajectory design procedure which uses lit-

tle fuel and allows a single spacecraft to orbit mul-
tiple moons

� Orbit each moon for much longer than the quick flybys
of previous missions

� Using a standard “patched-conics” approach, the ∆V
necessary would be prohibitively high

� By decomposing the N -body problem into 3-body prob-
lems and using the natural dynamics of the 3-body prob-
lem, the ∆V can be lowered significantly
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Multi-Moon Orbiter

�First attempt:

� A Ganymede-Europa Orbiter was constructed
•∆V of 1400 m/s was half the Hohmann transfer
• Gómez, Koon, Lo, Marsden, Masdemont, and Ross [2001]
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Multi-Moon Orbiter—Refinement

• Preceding ∆V of 1400 m/s for the Ganymede-Europa or-
biter was half the Hohmann transfer (that is, using patched
conics, as in manned moon missions)

• Desirable to decrease ∆V further—one now does not di-
rectly “tube-hop”, but rather makes more refined use of
the phase space structure

• New things: resonant gravity assists with the moons

• Interesting: still fits well with the tube-hopping method
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Multi-Moon Orbiter

�Second attempt:

� Desirable to decrease ∆V further

� One can consider using resonant gravity assists
with the moons, leading to ballistic captures

� Consider the following tour of Jupiter’s moons
• Begin in an eccentric orbit with perijove at Callisto’s orbit,

achievable using a patched-conics trajectory from the Earth
to Jupiter

• Orbit Callisto, Ganymede, and Europa
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Multi-Moon Orbiter
� ∆V = 22 m/s, but flight time is a few years

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame
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Multi-Moon Orbiter

�Results are promising

� This result is preliminary
•Model is a restricted bicircular 5-body problem

• A user-assisted algorithm was necessary to produce it

• An automated algorithm is a future goal

� Future challenges
• The flight time is too long; should be reduced below 18

months

• Evidence to be presented later in this talk suggests that a
significant decrease in flight time can be gained for a modest
increase in ∆V

• Radiation dose is not accounted for; will be included in
future models
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Construction Procedure

�Building blocks

� Patched three-body model: linking two adjacent
three-body systems

� Inter-moon transfer: decreasing Jovian energy via
resonant gravity assists

� Orbiting each moon: ballistic capture and escape

� Small impulsive manuevers: to steer spacecraft
in sensitive phase space

�We will give some background on these
issues
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Inter-Moon Transfer
� Spacecraft gets a gravity assist from outer moon M1

when it passes through apoapse if near a resonance

� When periapse close to inner moon M2’s orbit is reached,
it takes “control”; this occurs for ellipse E

Leaving moon M1 Approaching moon M2

Apoapse A fixed Periapse P fixed
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Inter-Moon Transfer
� Small impulsive maneuvers are performed at opposition
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Inter-Moon Transfer
� The transfer between three-body systems occurs when

energy surfaces intersect; can be seen on semimajor axis
vs. eccentricity diagram (similar to Tisserand curves of Longuski et al.)
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Ballistic Capture
� An L2 orbit manifold tube leading to ballistic capture

around a moon is shown schematically

� Escape is the time reverse of ballistic capture
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Why Does It Work?
� Recall the planar circular restricted three-body

problem: motion of a spacecraft in the gravitational
field of two larger bodies in circular motion.

• View in rotating frame =⇒ constant energy E

L1 L2

Exterior Realm

Interior (Jupiter)
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(at a particular energy level)

spacecraft

Poincare section
L1 L2

Rotating frame: different realms of motion at energy E.
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Poincaré Surface of Section
Study Poincaré surface of section at fixed energy E,
reducing system to a 2-dimensional area preserving map.
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Poincaré surface of section

20



Poincaré Surface of Section
Poincaré section reveals mixed phase space structure:
KAM tori and a “chaotic sea” are visible.
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Transport in Poincaré Section
Phase space divided into regions Ri, i = 1, ..., NR

bounded by segments of stable and unstable manifolds
of unstable fixed points.
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Lobe Dynamics
Transport btwn regions computed via lobe dynamics.
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Movement btwn Resonances
We can compute manifolds which naturally divide the
phase space into resonance regions.
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Movement btwn Resonances
Transport and mixing between regions can be computed.
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Movement btwn Resonances
Navigation from one resonance to another, essential for
the Multi-Moon Orbiter, can be performed.
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Resonances and Tubes

�Resonances and tubes are linked

� It has been observed that the tubes of capture (resp.,
escape) orbits are coming from (resp., going to) cer-
tain resonances.

� Resonances are a function of energy E and the mass
parameter µ

� Koon, Lo, Marsden, Ross [2001]
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Earth to Moon Trajectories
� Similar methods can be applied to near-Earth

space to study the ∆V verses time trade-off

68



Earth to Moon Trajectories
� Results: much shorter transfer times than previous

authors for only slightly more ∆V
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Earth to Moon Trajectories
� Compare with Bollt and Meiss [1995]

• A tenth of the time for only 100 m/s more

Current Result Bollt and Meiss [1995]

65 days, ∆V = 860 m/s 748 days, ∆V = 750 m/s

TOF = 65 days
∆V = 860 m/s
1 Day Tick Marks

Earth Moon
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e.g., GEO to Lunar Orbit

GEO to Moon Orbit Transfer
Seen in Geocentric Inertial Frame

TOF = 63 days
∆V = 1211 m/s
1 Day Tick Marks

EarthMoon’s
Orbit
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