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Outline

�Transport theory

� Time-independent Hamiltonian systems

� with 2 degrees of freedom

� with 3 (or N) degrees of freedom
•Example: restricted three-body problem
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Chaotic Dynamics
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Transport Theory

�Chaotic dynamics
→ statistical methods

�Transport theory

� Motion of ensembles of trajectories in phase space

� Asks: How long to move from one region to another?

� Determine transition probabilities,
correlation functions

� Applications:
•Atomic ionization rates
•Chemical reaction rates
•Comet transition rates
•Asteroid collision probabilities
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Partition the Phase Space
“Reactants” “Products”

Version: October 7, 2000; Typeset on April 17, 2001,12:19 5



Partition the Phase Space

�Systems with potential barriers
•Electron near a nucleus

Nucleus

"Bound" "Free"

Potential Configuration Space
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Partition the Phase Space
•Comet near the Sun and Jupiter

Ueff

JupiterSun

Potential Configuration Space
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Partition the Phase Space

�Partition is specific to problem

� We desire a way of describing dynamical boundaries
that represent the “frontier” between qualitatively
different types of behavior

�Example: motion of comet

� motion around Sun

� motion around Jupiter
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Statement of Problem
� Suppose we study the motion on a manifold M
� Suppose M is partitioned into disjoint regions

Ri, i = 1, . . . , NR,

such that

M =

NR⋃
i=1

Ri.

� To keep track of the initial condition of a point, we say
that initially (at t = 0) region Ri is uniformly covered
with species Si.

� Thus, species type of a point indicates the region in
which it was located initially.
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Statement of Problem
� Statement of the transport problem:

Describe the distribution of species
Si, i = 1, . . . , NR, throughout the regions
Rj, j = 1, . . . , NR, for any time t > 0.

R1
R2

R3

R4
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Statement of Problem
� Some quantities we would like to compute are:

• Ti,j(t) = the total amount of species Si contained
in region Rj at time t

• Fi,j(t) =
dTi,j

dt (t) = the flux of species Si into
region Rj at time t

R1
R2

R3

R4
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Hamiltonian Systems

�Time-independent Hamiltonian H(q, p)

� N degrees of freedom

� Motion constrained to a (2N − 1)-dimensional
energy surface ME corresponding to a value
H(q, p) = E = constant

� Symplectic area is conserved along the flow∮
L

p · dq =

∫
A

dp ∧ dq = constant
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Symplectic Area Conserved

N∑
i=1

σi

∫
Ai

dpidqi = constant on an energy surface
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Poincaré Section
� Suppose there is another (2N − 1)-dimensional

surface Q that is transverse (i.e., nowhere parallel)
to the flow in some local region.

� The Poincaré section S is the (2N − 2)-dimensional
intersection of ME with Q.
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Example for N = 2

�Circular restricted 3-body prob. (2D)

H =
1

2
((px + y)2 + (py − x)2) + U eff(x, y)

Sun Jupiter

y

x

CometRotating
Frame 

Ueff

Position Space Effective Potential
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3-Body Problem (2D)

�Look at fixed energy

-1 0 1
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Case 1 : E<E1 Case 2 : E1<E<E2

Case 4 : E3<E<E4=E5Case 3 : E2<E<E3

Position Space Projections
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3-Body Problem (2D)

�Partition the energy surface

S JL1 L2

Exterior
Region (X)

Interior (Sun)
 Region (S)

Jupiter
Region (J)

Forbidden
Region

Position Space Projection
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3-Body Problem (2D)

�Look at motion near “saddle points”

S JL1 L2

Exterior
Region (X)

Interior (Sun)
Region (S)

Jupiter
Region (J)

Forbidden
Region

L2

Position Space Projection
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Potential Barriers
� Hamiltonian systems with potential barriers give rise

to “saddle points” whose local form is given by

H(q, p) =
ω

2
(q2

1 + p2
1) + λq2p2, (1)

i.e., linearized vector field has eigenvalues ±iω, ±λ.

� Moser [1958] showed that the qualitative behavior of
(1) carries over to the full nonlinear equations.

� In particular, the flow of (1) has form center × saddle.
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Local Dynamics

� For fixed energy H = h, energy surface ' S2 × R.

� Other constants of motion: I1 = q2
1 +p2

1 and I2 = q2p2.

1
p

q
1

X

2
p

q
2

� Normally hyperbolic invariant manifold at q2 = p2 = 0,
i.e.,

Mh =
ω

2
(q2

1 + p2
1) = h > 0.

Note that Mh ' S1, a periodic orbit.
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Local Dynamics
� Four cylinders of asymptotic orbits: the stable and

unstable manifolds Ws
±(Mh),W

u
±(Mh).

Unstable Manifold (orbits move away from the periodic orbit)

Stable Manifold (orbits move toward the periodic orbit)
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Transit and Nontransit Orbits
� Cylinders separate transit from nontransit orbits.

� Define mappings between “bounding spheres” on either
side of the potential barrier.

Periodic
Orbit

p.o.

Transit
Orbits

Asymptotic
Orbits

Nontransit
Orbits

Spherical Cap
of Transit Orbits

Spherical Zone
of Nontransit Orbits

Asymptotic Circle

Cross-section of Equilibrium Region Equilibrium Region
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Tubes in the 3-Body Problem
� Stable and unstable manifold tubes

•Control transport through the potential barrier.
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Flux

�Tubes of transit orbits are the relevant
objects to study

� Tubes determine the flux between regions Fi,j(t).

� Note, net flux is zero for volume-preserving motion,
so we consider the one-way flux.
•Example: FJ,S(t) = volume of trajectories that
escape from the Jupiter region into the Sun re-
gion per unit time.
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Transition Probablities

�More exotic transport between regions

� Look at the intersections between the interior of sta-
ble and unstable tubes on the same energy surface.

� Could be from different potential barrier saddles.

Σ

Poincaré Section
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Transition Probablities
•Example: Comet transport between outside
and inside of Jupiter

Exterior
Region

Interior
Region

Jupiter
Region

Forbidden
Region

L1
L2

Stable
Manifold

Unstable
Manifold

Jupiter
Sun

Rapid Transition
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Transition Probablities
� Look at Poincaré section intersected by both tubes.

� Choosing surface {x = constant; px < 0}, we look at
the canonical plane (y, py).

x (rotating frame)

y 
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Position Space Canonical Plane (y, py)
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Transition Probablities
� Relative canonical area gives relative volume of orbits.

� Under certain ergodic assumptions, the relative volume
can be interpreted as the probability of transition.

Unstable
Tube Slice

Stable
Tube Slice

y

p y Comet Orbits Passing from
Exterior to Interior Region

Stable
Tube Slice

Unstable
Tube Slice

Canonical Plane (y, py)
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Mixing
� By keeping track of the intersections of the tubes, one

can describe the mixing of different regions (Ti,j(t)).

• It can get messy fast!

(from Jaffé, Farrelly and Uzer [1999])
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Some Challenges
� Computationally very challenging

� How to handle non-transversal intersections
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N = 3 or More

�Extend to N ≥ 3 degrees of freedom

� Near equilibrium point, suppose linearized
Hamiltonian vector field has eigenvalues
±iωj, j = 1, . . . , N − 1, and ±λ.

� Assume the complexification is diagonalizable.

� Hamiltonian normal form theory tranforms
Hamiltonian into a lowest order form:

H(q, p) =

N−1∑
i=1

ωi

2

(
p2

i + q2
i

)
+ λqNpN.

� Equilibrium point is of type
center× · · · × center× saddle (N − 1 centers).
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N = 3 or More

�Multidimensional “saddle point”

� For fixed energy H = h, energy surface ' S2N−2×R.

� Constants of motion:
Ij = q2

j + p2
j, j = 1, . . . , N − 1, and IN = qNpN .

1
q

1
p N-1

p

q
N-1

X X X

N
p

q
N

The N Canonical Planes
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N = 3 or More
� Normally hyperbolic invariant manifold

at qN = pN = 0,

Mh =

n−1∑
i=1

ωi

2

(
p2

i + q2
i

)
= h > 0.

Note that Mh ' S2N−3, not a single trajectory.

� Four “cylinders” of asymptotic orbits: the stable and
unstable manifolds Ws

±(Mh),W
u
±(Mh), which have

the structure S2N−3 × R.
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N = 3 or More
� Transport between regions is mediated by the

“higher dimensional tubes”

� Compute fluxes, transition probabilities, etc.

Σ
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N = 3 or More
•Example: restricted three-body problem (3D)
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Future Directions
� Future Directions

•Compute fluxes, transition probabilities
in 2 and 3 degree of freedom systems

•Determine statistical laws
◦ For one energy

◦ Over a range of energies

◦ Is ergodic assumption valid?

◦ Equilibrium distribution?

◦ Relaxation time to equilibrium?

•Apply to astronomical and chemical systems
◦ Astronomy: Compute asteroid collision probabilities,

“equilibrium” distribution of asteroids and comets

◦ Chemistry: Compute reaction rates

•Combine with control
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