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Intermittency and chaotic transitions

e.g., transitioning across “bottlenecks” in phase space

Marchal [1990]



Multi-well multi-degree of freedom systems

e Examples: chemistry, vehicle dynamics, structural mechanics
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Transitions through bottlenecks via tubes
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Topper [1997]

Wells connected by phase space transition tubes ~ S x R for 2 DOF
— Conley, McGehee, 1960s
— Llibre, Martinez, Simé, Pollack, Child, 1980s

— De Leon, Mehta, Topper, Jaffé, Farrelly, Uzer, MacKay, 1990s
— Gbémez, Koon, Lo, Marsden, Masdemont, Ross, Yanao, 2000s



Is this geometric theory correct?

Good agreement with direct numerical simulation — molecular re-
actions, ‘reaction island theory’ . be Leon 1092
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Is this geometric theory correct?

but experimental verification has been lacking

Our goal: We seek to perform experimental verification using a table
top experiment with 2 degrees of freedom (DOF)

If successful, apply theory to >2 DOF systems, combine with control:

structural mechanics

— re-configurable deformation of flexible objects

— adaptive structures that can bend, fold, and twist to provide advanced
engineering opportunities for deployable structures, mechanical sensors

vehicle stability
— capsize problem, etc.



Motion near saddles

Near in NV DOF, linearized vector field

eigenvalues are

+ A and ::z'wj, j — 2,...,N

Equilibrium point is of type
saddle x center X - -+ X center (N — 1 centers).
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the saddle-space projection and N — 1 center projections — the N canonical planes




Motion near saddles

For excess energy AE > ( above the saddle, there's a
normally hyperbolic invariant manifold (NHIM) of bound

orbits
N

Mg = Z% (p; +q’) = AE
i—2

So, Mag ~ S*N73 topologically, a (2N — 3)-sphere
N =2,

Map = {5 (2 +¢) = AE}
Mg =~ S, a periodic orbit of period T}, = %ﬂ



Motion near saddles: 2 DOF

Cylindrical tubes of orbits asymptotic to Mapg: stable and
unstable invariant manifolds, W3 (Mag), Wi (Mag), =~ STxR

Enclose transitioning trajectories




Motion near saddles: 2 DOF

» B : bounded orbits (periodic): S!
e A : asymptotic orbits to 1-sphere: S!' x R (tubes)

o T : transitioning and NT : non-transitioning orbits.




Tube dynamics

Poincare Section U;

De Leon [1992]

Tube dynamics: All transitioning motion between wells
connected by bottlenecks must occur through tube

Imminent transition regions, transitioning fractions

Consider k£ Poincaré sections Uj;, various excess energies AF



Verification by simulation

Structured transition statistics in chemistry, etc 3+ DOF
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Verification by experiment

o Simple table top experiments; e.g., ball rolling on a 3D-printed surface

Virgin, Lyman, Davis [2010] Am. J. Phys.






Ball rolling on a surface — 2 DOF

e The potential energy is V(x,y) = gH(x,y) — V),
where the surface is arbitrary, e.g., we chose

H(x,y) = B(y/x 2+”y+\/y2+7 — Exy + Hp.
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Ball rolling on a surface — 2 DOF

» The potential energy is V(z,y) = gH (x,y) — V),
where the surface is arbitrary, e.g., we chose

typical experimental trial



Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system

transition tube from quadrant 1 to 2
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Transition tubes in the rolling ball system

transition tube from quadrant 1 to 2
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Transition tubes in the rolling ball system

transition tube from quadrant 1 to 2
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Transition tubes in the rolling ball system

transition tube from quadrant 1 to 2
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Transition tubes in the rolling ball system

transition tube from quadrant 1 to 2
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Transition tubes in the rolling ball system

transition tube from quadrant 1 to 2
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Analysis of experimental data
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Analysis of experimental data
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Poincaré sections at various energy ranges

. AE=[-600.-500]
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Experimental confirmation of transition tubes

Theory predicts > 95% of transitions

Consider overall trend in transition fraction as excess energy grows
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Theory for small excess energy, AL

Area of the transitioning region, the tube cross-section (MacKay [1990])
Atrans — TpoAE

where T}, = 27 /w period of unstable periodic orbit in bottleneck

Area of energy surface

AAE:AO—FTAE

do=2 [\ Koy + G
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Theory for small excess energy, AL

The transitioning fraction, under well-mixed assumption,
Atrans

AnE
= AR (1 - FAE + 0<AE2))

Ptrans =

For small AE, growth in ptyans with AE is linear, with slope
OPtrans &

OANE A

For slightly larger values of AFE, there will be a correction term leading
to a decreasing slope,

aptrams T (
_ | — 92T AE)
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Theory for small excess energy, AL
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Theory for small excess energy, AL
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Theory for small excess energy, AL
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Next steps — structural mechanics

Buckling, bending, twisting, and crumpling of flexible bodies



Next steps — structural mechanics
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Final words

2 DOF experiment for understanding geometry of transitions — verified
geometric theory of tube dynamics

Unobserved unstable periodic orbits have observable consequences

Future work: control of transitions in multi-DOF systems
e.g., triggering and avoidance of buckling in flexible structures, capsize
avoidance for ships in rough seas and floating structures

For more, see Lawrie Virgin’s talk tomorrow, 3:45pm, in
‘CP25 Topics in Classical and Fluid Dynamical Systems’

also Isaac Yeaton’s talk tomorrow, 4:45pm (CP25)
Snakes on An Invariant Plane: Dynamics of Flying Snakes

Paper in preparation; check status at:
shaneross.com
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