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Food supply concerns,

bioterrorism

Wheat scientists seek to slow crop fungus
in Africa, Asia
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OSLO, Aug 31 (Reuters) - Wheat experts are stepping up monitoring of a
crop disease first found in Africa in 1898 to minimise the spread of a & Print
deadly fungus that is also a threat in Asia, experts said on Friday.

. . I Related News
A "Rust-Tracker", using data supplied by farmers and scientists, could
Australia says signs

now monitor the fungus in 27 developing nations across 42 million .

- ) El Nino weather
hectares (103 million acres) of wheat - an area the size of Iraq or pattern forming
California. ‘

"It's the most serious wheat disease," Ronnie Coffman, vice-chair of the
Borlaug Global Rust Initiative (BGRI), told Reuters ahead of a meeting of

wheat experts in Beijing from Sept. 1-4. Non-Cyclical
Consumer Goods »
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"If it gets started...it's like a biological firestorm," he said. Experts will
review progress in combating the disease, with fungicides and 20 new resistant varieties
developed in recent years.
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Bl Abstract The U.S. National Research Council (NRC) concluded in 2002 that
U.S. agriculture is vulnerable to attack and that the country has inadequate plans for
dealing with agricultural bioterrorism. This article addresses the vulnerability of U.S.
crops to attack from biological weapons by reviewing the costs and impact of plant
diseases on crops, pointing out the difficulty in preventing deliberate introduction of
pathogens and discovering new disease outbreaks quickly, and discussing why a plant
pathogen might be chosen as a biological weapon. To put the threat into context, a brief
historical review of anti-crop biological weapons programs is given. The argument is
made that the country can become much better prepared to counter bioterrorism by
developing a list of likely anti-crop threat agents, or categories of agents, that is based
on a formal risk analysis; making structural changes to the plant protection system,
such as expanding diagnostic laboratories, networking the laboratories in a national
system, and educating first responders; and by increasing our understanding of the
molecular biology and epidemiology of threat agents, which could lead to improved
disease control, faster and more sensitive diagnostic methods, and predictions of disease
invasion, persistence, and spread following pathogen introduction.

INTRODUCTION

Using [biological weapons] to attack livestock, crops, or ecosystems offers
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Plant pathogens linked to water cycle

Horizontal dissemination

P. syringae in clouds
and precpltauon of P. syringae with clouds
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and mountain waters

P. syringae in
aerosols from wild
and cultivated plants

Enrichment and diversification
in agro-ecosystems



Atmospheric transport of microorganisms
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Crop debris (wheat, maize, rice, etc.) [F/ AR )
bearing perithecia and sporodochia provide /7 WA Infected spike,
74 leaf sheath,

‘ : . primary inoculum y " 2l
e.g., Fusarium fungal spores \/ ;
e Spore production, release, escape from surface
e Long-range transport (time-scale hours to days)

e Deposition, infection efficiency, host susceptibility
Schmale & Bergstrom [2003], Trail et al. [2005]



Atmospheric transport of microorganisms

Large scale eddies transport
spores out of the canopy

e Spore production, release, escape from surface
e Long-range transport (time-scale hours to days)

e Deposition, infection efficiency, host susceptibility
Aylor [1999]



Atmospheric transport of microorganisms

Free atmosphere

Horizontal transport distance: 1 km- 5000 km

PBL|~50 m - 3km

T T,

Deposition
of spores

Source - Infested habitat Target habitat

scent of spores

e Spore production, release, escape from surface
e Long-range transport (time-scale hours to days)

e Deposition, infection efficiency, host susceptibility
Isard & Gage [2001], Tallapragada, Ross, Schmale [2011]



Atmospheric transport of microorganisms
Removal by rain Mortality by UVB

Spore plume

] Downwind distance (x) ——

Source

e Spore production, release, escape from surface
e Long-range transport (time-scale hours to days)

e Deposition, infection efficiency, host susceptibility
Aylor [1999]; Prussin et al [2013]



Atmospheric transport of microorganisms

Field 3
100 — 1,000 km

Field 2
0.1 —100 km

Field 1
0.1-100 m

Deposition patterns can be patchy

e Spore production, release, escape from surface
e Long-range transport (time-scale hours to days)

e Deposition, infection efficiency, host susceptibility
Aylor [1999]
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Count spores, identify down to level of species

- ]

\ / PCR, sequencing, and BLAST searches
against FUSARIUM-ID and GenBank

— —
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Fluctuations in fungal spore concentration
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A time series at a single sampling location
} total spore concentration (all species)
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Concentration of Fusarium spores (number/m?) for samples from 100 flights conducted
between August 2006 and March 2010.



Sources are unknown

If sources were known, could model plume

Image © 2006 TeiraMetrics
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Sources are unknown

Plume changes directions
with the wind
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Sources are unknown

We are sampling from many sources

We are sampling a
superposition of plumes from
various distant sources (e.g.,

diseased fields)
N

e.g., can imagine ‘invisible’
smoke plumes



Sources are unknown

We are sampling from many sources

We are sampling a
superposition of plumes from
various distant sources (e.g.,
diseased fields)

Pop. 11:00 am 12:00 pm 1:30 pm
structure ' :

e.g., can imagine ‘invisible’
smoke plumes




Fluctuations in fungal spore concentration

F. lateritium
I F. equiseti-like
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can break down by species later ->
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Fluctuations in fungal spore concentration
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Spore impact on Petri dishes is an inhomogenous
} Poisson process with slowly varying intensity
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by Poisson statistics |
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Concentration of Fusarium spores (number/m?) for samples from 100 flights conducted
between August 2006 and March 2010.

Lin et al. [2012]



Punctuated changes in fungal spore concentration
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A classic punctuated change

Define punctuated change as low
- probability events (assuming
Poisson process), e.g., changes
- which have probability < 1%
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Punctuated changes:
How to understand cloud edges?

Detected concentration
of Fusarium at sampling
location

time



Punctuated changes:
How to understand cloud edges?
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Punctuated changes:
How to understand cloud edges?
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Atmospheric transport network

LCS, repelling (orange) and
attracting (blue)

Atmospheric Superhighway,
a skeleton of large-scale
horizontal transport

Relevant for large-scale
spatiotemporal patterns
of pollution but also
biological agents

orange = repelling LCSs, blue = attracting LCSs



Curtain-like partitions moving over landscape
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Mesoscale to synoptic scale motion

e Consider first 2D motion, then fully 3D

e Quasi-2D motion (isobaric) over timescales of
interest, < 12-24 hrs, given by fungal spore viability

Using wind fields from
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Identify ‘atoms’ of transport bounded by LCS

Coherent atmospheric filaments or vortices which mix
little with surroundings, analogous to ocean eddies

e Temporarily isolated
sub-systems

33.0 hrs

Day=5 ?j




Volumes of differing spore composition
partitioned by LCS

Tl Ty

Our unmanned aerial vehicles (UAVs) are
usually sampling one side or the other



Filament with high pathogen values
‘sandwiched’ by LCS
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Filament with high pathogen values
‘sandwiched’ by LCS
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Filament with high pathogen values
‘sandwiched’ by LCS
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Microbe fluctuations associated with LCS

e Punctuated change was associated with a LCS passage
>70% of the time

e Airborne biological agent concentrations can provide a
proxy for measuring Lagrangian transport structure

Tallapragada, Ross, Schmale [2011] Chaos



Sampling biological tracers at a fixed location

Backward trajectory of particles, time delay = 1h
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e Sampling point: Virginia Tech campus
* Sampling times: 8AM — 8AM, Sep 29 & 30, 2010
* Integration time: - 24 h.
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Sampling biological tracers at a fixed location

FTLE field
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Sampling on either side of a LCS

5s(to +T) ~ AL/2

max
300} - »
O. ; : ;

-300¢
-600¢
-900¢
-1200} e
L |
N,
-1500*— . Q’ .
-500 0 500
km

Red: sample time: 1315 UTC
Blue: sample time: 1415 UTC

km

0

300

0

-300¢

-600}

-900¢

-1200}

-1500

Red: sample time: 1315 UTC
Blue: sample time: 1415 UTC
Green: sample time 1515 UTC

[0§0+T(XO)} w(xo, to)ot

=0
Q.
500

km

-500 0

Back-trajectories shown

-1000

Back trajectories with
attracting LCS

400
200 J ’

-200

-400

-600

-800

o ——

-1200 & = N\

-400 200 0 200 400  6OO

Movie is showing time
backwards



Effect of turbulence
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FTLE including sub-grid scale turbulence
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BozorgMagham, Ross [2013]
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FTLE including sub-grid scale turbulence
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Forecasting atmospheric LCS

Wind field errors are not small or localized in time
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-1500
-2000

Forecasting atmospheric LCS

Using an ensemble forecasting approach
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BozorgMagham, Ross [2013]



Forecasting atmospheric LCS

Forecasting an LCS passage time

0.40(

0 ! L ! !
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29 Sep 2010, UTC time

Can correctly forecast within 2 hours 60% of the time

BozorgMagham, Ross [2013]



Practical application: early warning systems

LCS or other transport methods could help inform farmers
regarding possible zones of disease spread

State: | United States BF| |Helpy |
Zawosg_anodd —
Wheat % Winter

Susceptibility: Moderately Susceptible ‘
Link to Spring Wheat Variety information

3. Weather Forecast Mode |

Forecast (hrs): m 24 | 481 72| |

Assessment Date: 703/l3/20| 3 i [3 2 k1

Ellght Risk Weather Stations

B High (@)
Medium (@) >
Low (© Inactive (for model)
No Data

Risk Map Opacity (I}>  Query |’




Lagrangian transport structure and ecology

e Could provide insight to spatiotemporal data
and models in ecology

e Role of rare transport events

e Bifurcations changing the global t
structure (e.g., due to climate cha

e Universal principles for fluid
regimes: oceans, rivers, lakes, ...




In aeroecology, concerns about likely

pathways or persistent barriers
Peronospora

Puccinia Pathway

Pathway




Aeroecology and the global transport of desert dust
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Kellogg, Griffin [2006]




Connectivity between vastly separated ecosystems

Chlorophyll transport in the Gulf of Mexico
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Chlorophyll as a tracer of biological advection and connectivity

Toner, Kirwan, Poje, Kantha, Muller-Karger, Jones [2003]



Connectivity and mixing in Southern California Bight

Relevant for marine ecosystem,
larval transport, nutrient mixing
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Forecasting sudden ecosystem changes

Application of, e.g., the LCS-core analysis of Olascoaga & Haller [2012]
to predict rare biological incursions, drastic changes in connectivity?

D(z,) D(t)

W (p) W*(p)

Provide early warning of rapid long-distance dispersal events
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