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Chaotic phase space transport via lobe dynamics

� As our dynamical system, we consider a discrete map1

f : M−→M,

e.g., f = φt+T
t , where M is a differentiable, orientable,

two-dimensional manifold e.g., R2, S2

� To understand the transport of points under the map
f , we consider the invariant manifolds of unstable
fixed points

� Let pi, i = 1, ..., Np, denote a collection of saddle-type
hyperbolic fixed points for f .

1Following Rom-Kedar and Wiggins [1990]
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Partition phase space into regions

� Natural way to partition phase space
• Pieces of Wu(pi) and W s(pi) partition M.
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Unstable and stable manifolds in red and green, resp.
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Partition phase space into regions

• Intersection of unstable and stable manifolds define boundaries.
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Partition phase space into regions

• These boundaries divide the phase space into regions.

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1

v



Label mobile subregions: ‘atoms’ of transport

• Can label mobile subregions based on their past and future whereabouts
under one iterate of the map, e.g., (. . . , R3, R3, [R1], R1, R2, . . .)
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Primary intersection points (pips) and boundaries

� q is a primary intersection point (pip), q̄ is not a pip.
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Primary intersection points (pips) and boundaries

� Suppose W u(pi) and W s(pj) intersect in the pip q.
Define B ≡ U [pi, q]

⋃
S[pj, q] as a boundary between

“two sides,” R1 and R2.

pi
pj

q

R1

R2

B = U [pi ,q] U S [pj ,q]
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Lobes: the mobile subregions

� Let q0, q1 ∈ W u(pi)
⋂

W s(pj) be two adjacent pips,
i.e., there are no other pips on U [q0, q1] and S[q0, q1].
The region interior to U [q0, q1]

⋃
S[q0, q1] is a lobe.

pi
pj

q0

q1

S [q0,q1]

U [q0,q1]Lobe
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Lobe dynamics: transport across a boundary B

� f−1(q) is a pip. f is orientation-preserving ⇒ there’s at
least one pip on U [f−1(q), q] where the W u(pi), W

s(pj)
intersection is topologically transverse.
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Lobe dynamics: transport across a boundary B

� U [f−1(q), q]
⋃

S[f−1(q), q] forms boundary of two lobes;
one in R1, labeled L1,2(1), or equivalently ([R1], R2),
where f (([R1], R2)) = (R1, [R2]), etc. for L2,1(1)
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q
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f -1(q)

L2,1(1)

L1,2(1)
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Lobe dynamics: transport across a boundary B

� Under one iteration of f , only points in L1,2(1) can
move from R1 into R2 by crossing B, etc.

� The two lobes L1,2(1) and L2,1(1) are called a turnstile.
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Lobe dynamics: transport across a boundary B

� Essence of lobe dynamics: the dynamics associated
with crossing B is reduced to the dynamics of
the turnstile lobes associated with B.
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Identifying atoms of transport by itinerary

� In a complicated flow, can still identify manifolds ...

Unstable and stable manifolds in red and green, resp.

xiv



Identifying atoms of transport by itinerary

� ... and lobes

R1

R2

R3

Significant amount of fine, filamentary structure.
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Identifying atoms of transport by itinerary

� e.g., with three regions {R1, R2, R3},
label lobe intersections accordingly.

• Denote the intersection (R3, [R2])
⋂

([R2], R1) by (R3, [R2], R1)
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Identifying atoms of transport by itinerary

Longer itineraries...
xvii



Identifying atoms of transport by itinerary

... correspond to smaller pieces of phase space; horseshoe dynamics, etc
xviii



Aperiodic, finite-time setting

•Many systems defined from data or large-scale simulations
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Aperiodic, finite-time setting

•Many systems defined from data or large-scale simulations

• e.g., atmospheric winds are a time-chaotic flow field
— no fixed points or periodic orbits (or their manifolds)
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Aperiodic, finite-time setting

•Many systems defined from data or large-scale simulations

• e.g., atmospheric winds are a time-chaotic flow field
— no fixed points or periodic orbits (or their manifolds)

• How do we get at transport?
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Aperiodic, finite-time setting

•Many systems defined from data or large-scale simulations

• e.g., atmospheric winds are a time-chaotic flow field
— no fixed points or periodic orbits (or their manifolds)

• How do we get at transport?

• Recall the flow
x 7→ φ

t0+T
t0

(x)

x
φ
t0      

(x)
.

.

t0+T
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Aperiodic, finite-time setting

• Small initial perturbations δx(t0) grow like

δx(t0 + T ) = φ
t0+T
t0

(x + δx(t0))− φ
t0+T
t0

(x)

=
dφ

t0+T
t0

(x)

dx
δx(t0) + O(||δx(t0)||2)

x
φ
t0      

(x)
.

.

x + δx δx(t0+T)

.

.

t0+T

φ
t0      

(x + δx)t0+T

δx(t0)
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Invariant manifold analogs: FTLE-LCS approach

• The finite-time Lyapunov exponent (FTLE),

σT
t (x) =

1

|T |
log

∥∥∥∥∥dφt+T
t (x)

dx

∥∥∥∥∥
measures the maximum stretching rate over the interval T of trajectories
starting near the point x at time t

• Ridges of σT
t are candidate hyperbolic codim-1 surfaces; finite-time

analogs of stable/unstable manifolds; Lagrangian coherent structures2

pij pi+1 jpi−1 j

pi j−1

pi j+1

p
′

ij

p
′

i+1 j

p
′

i−1 j

p
′

i j−1

p
′

i j+1

2cf. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005
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Invariant manifold analogs: FTLE-LCS approach

•We can define the FTLE for Riemannian manifolds3

σT
t (x) =

1

|T |
ln
∥∥∥Dφt+T

t

∥∥∥ .
=

1

|T |
log

max
y 6=0

∥∥∥Dφt+T
t (y)

∥∥∥
‖y‖


with y a small perturbation in the tangent space at x.
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3Lekien & Ross [2010] Chaos
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Transport barriers: LCS

• Ridges correspond to dynamical barriers3 or Lagrangian coherent struc-
tures (LCS): repelling surfaces for T > 0, attracting for T < 0

cylinder Moebius strip
Each frame has a different initial time t

3Lekien & Ross [2010] Chaos
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Atmospheric flows: Antarctic polar vortex

ozone data
xxiv



Atmospheric flows: Antarctic polar vortex

ozone data + LCSs (red = repelling, blue = attracting)
xxv



Atmospheric flows: Antarctic polar vortex

air masses on either side of a repelling LCS
xxvi



Atmospheric flows: continental U.S.

LCSs: orange = repelling, blue = attracting

xxvii
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  natures	
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Atmospheric flows and lobe dynamics

orange = repelling LCSs, blue = attracting LCSs satellite

Hurricane Andrea, 2007

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010]
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Atmospheric flows and lobe dynamics

Hurricane Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)
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Atmospheric flows and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
xxx



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
xxxi



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
xxxii



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
xxxiii



Atmospheric flows and lobe dynamics

Sets behave as lobe dynamics dictates
xxxiv
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Invasive species riding the atmosphere!
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Coastal	
  flow	
  

Invasive species riding the atmosphere!

Hurricane	
  Ivan	
  (2004)	
  
brought	
  new	
  crop	
  
disease	
  (soybean	
  
rust)	
  to	
  U.S.	
  

Disease	
  extent	
  

Cost of invasive organisms is!
$137 billion per year in U.S.!

From	
  Rio	
  Cauca	
  
region	
  of	
  Colombia	
  

2004	
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Aerial sampling:!
40 m – 400 m altitude!
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Pathogen transport: filament bounded by LCS

Sampling

 location

(d) (e) (f)

(a) (b) (c)

100 km 100 km 100 km

12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007
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Pathogen transport: filament bounded by LCS

(d)

(a) (b) (c)

100 km 100 km 100 km

Time

S
p

o
re

 c
o

n
c
e
n

tr
a
ti

o
n
 (

sp
o

re
s/

m
3
)

 00:00 12:00 00:00 12:00  00:00 12:00
0

4

8

12

30 Apr 2007 1 May 2007 2 May 2007

12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007
xxxvi



Lobe dynamics: another fluid example

� Fluid example: time-periodic Stokes flow2

streamlines tracer blob

Lid-driven cavity flow

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xxxvii



Lobe dynamics: another fluid example

� Fluid example: time-periodic Stokes flow2

some invariant manifolds of saddles

Lid-driven cavity flow

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
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Lobe dynamics: another fluid example

� Fluid example: time-periodic Stokes flow2

regions and lobes labeled

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xxxix



Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2

material blob at t = 0

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xl



Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2

material blob at t = 5

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
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Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2

some invariant manifolds of saddles

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xlii



Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2

material blob at t = 10

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xliii



Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2

material blob at t = 15

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xliv



Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2

material blob and manifolds

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xlv



Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2

material blob at t = 20

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xlvi



Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2

material blob at t = 25

2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xlvii



Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2

• Saddle manifolds and lobe dynamics provide template for motion
2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)

xlviii



Stable/unstable manifolds and lobes in fluids

� Fluid example: time-periodic Stokes flow2
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• Homogenization has two exponential rates: slower one related to lobes
2Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
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Braiding of stirrers
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Thurston-Nielsen classification theorem

• Thurston (1988) Bull. Am. Math. Soc.

• A stirrer motion f is isotopic to a stirrer motion g of one of three types
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Thurston-Nielsen classification theorem

• Thurston (1988) Bull. Am. Math. Soc.

• A stirrer motion f is isotopic to a stirrer motion g of one of three types

(i) finite order (f.o.): the nth iterate of g is the identity
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Thurston-Nielsen classification theorem

• Thurston (1988) Bull. Am. Math. Soc.

• A stirrer motion f is isotopic to a stirrer motion g of one of three types

(i) finite order (f.o.): the nth iterate of g is the identity

(ii) pseudo-Anosov (pA): g has dense orbits, Markov partition with
transition matrix A, topological entropy hTN(g) = log(λPF (A)), where
λPF(A) > 1 = Perron-Frobenius eigenvalue of A
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Thurston-Nielsen classification theorem

• Thurston (1988) Bull. Am. Math. Soc.

• A stirrer motion f is isotopic to a stirrer motion g of one of three types

(i) finite order (f.o.): the nth iterate of g is the identity

(ii) pseudo-Anosov (pA): g has dense orbits, Markov partition with
transition matrix A, topological entropy hTN(g) = log(λPF (A)), where
λPF(A) > 1 = Perron-Frobenius eigenvalue of A

(iii) reducible: g contains both f.o. and pA regions
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Thurston-Nielsen classification theorem

• Thurston (1988) Bull. Am. Math. Soc.

• A stirrer motion f is isotopic to a stirrer motion g of one of three types

(i) finite order (f.o.): the nth iterate of g is the identity

(ii) pseudo-Anosov (pA): g has dense orbits, Markov partition with
transition matrix A, topological entropy hTN(g) = log(λPF (A)), where
λPF(A) > 1 = Perron-Frobenius eigenvalue of A

(iii) reducible: g contains both f.o. and pA regions

• hTN computed from ‘braid word’, e.g., σ−1σ2

• log(λPF (A)) provides a lower bound on the
true topological entropy

• i.e., non-trivial material lines grow like ` ∼ `0λ
n,

where λ ≥ λTN

li



Identifying ‘ghost rods’: periodic points

tracer blob for τf > 1

• Bifurcation parameter τf to this system

• Critical point τ∗f = 1

• For τf > 1, pairs of elliptic and saddle points

• Below τf < 1, pairs vanish

lii



Identifying ‘ghost rods’: periodic points

Poincaré section for τf > 1

• Bifurcation parameter τf to this system

• Critical point τ∗f = 1

• For τf > 1, pairs of elliptic and saddle points

• Below τf < 1, pairs vanish
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Identifying ‘ghost rods’: periodic points

Poincaré section for τf > 1

• Periodic points of period 3 ⇒ act as ‘ghost rods’

• Their braid ⇒ hTN = 0.96242

• Actual hflow ≈ 0.964

• hTN is an excellent lower bound

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b
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Identifying ‘ghost rods’: periodic points

t
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• Homogenization has two exponential rates: slower one related to lobes

• Fast rate due to braiding of ghost rods!
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Topological entropy continuity across critical point
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0.950.900.85 1.00 1.05

topological entropy as a function of τf
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Identifying ‘ghost rods’?

Poincaré section for τf < 1 ⇒ no obvious structure!

• Note the absence of any elliptical islands

• No periodic orbits of low period were found

• Is the phase space featureless?

lvii



Almost-invariant set (AIS) approach

• Partition phase space into loosely coupled regions

“Leaky” regions with a long residence time3

3-body problem phase space is divided into several invariant and almost-invariant sets.

3work of Dellnitz, Junge, Froyland, et al
lviii



Almost-invariant set (AIS) approach

• Create box partition of phase space B = {B1, . . . Bq}, with q large

• Consider a q-by-q transition (Ulam) matrix, P , for our dynamical
system, where

Pij =
µ(Bi ∩ f−1(Bj))

µ(Bi)
,

the transition probability from Bi to Bj using, e.g., f = φt+T
t

• P approximates our dynamical system via a finite state Markov chain.
lix



Almost-invariant set (AIS) approach

• A set B is called almost invariant over the interval [t, t + T ] if

ρµ(B) =
µ(B ∩ φ−1(B))

µ(B)
≈ 1.

Can maximize value of ρµ over all possible combinations of sets B ∈ B.

• In practice, AIS or relatedly, almost-cyclic sets (ACS), identified via
eigenvectors of P or graph-partitioning

• Appropriate for non-autonomous, aperiodic, finite-time settings

lx



Identifying ‘ghost rods’: almost-cyclic sets

• Return to τf > 1 case, where periodic points and manifolds exist

• Good agreement between AIS boundaries and manifolds of fixed points

• Known previously4 and applies to more general objects than fixed points,
i.e. normally hyperbolic invariant manifolds (NHIMs)

4Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,

Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos
lxi



Identifying ‘ghost rods’: almost-cyclic sets

Poincaré section for τf < 1 ⇒ no obvious structure!

• Return to τf < 1 case, where no periodic orbits of low period known

• Is the phase space featureless?
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Identifying ‘ghost rods’: almost-cyclic sets

Poincaré section for τf < 1 ⇒ no obvious structure!

• Return to τf < 1 case, where no periodic orbits of low period known

• Is the phase space featureless?

• Consider transition matrix P
t+τf
t induced by Poincaré map φ

t+τf
t

lxii



Identifying ‘ghost rods’: almost-cyclic sets

Top six eigenvalues for τf = 0.99

lxiii



Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

• The disconnected AIS is made of three almost-cyclic sets, with period 3

lxiv



Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )

lxv



Identifying ‘ghost rods’: almost-cyclic sets

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid
— Even though the theorems require exactly periodic points!
— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.
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Topological entropy vs. bifurcation parameter

1.00

0.95

0.950.900.85 1.00 1.05

topological entropy as a function of τf

• hTN shown for ACS braid on 3 strands

lxvii



Eigenvalues/eigenvectors vs. bifurcation parameter

lxviii



Bifurcation of ACSs

For example, braid on 13 strands for τf = 0.92

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )

Thurson-Nielsen for this braid provides lower bound on topological entropy
lxix



Bifurcation of ACSs

A 1
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A 3
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(a) Initial state

•
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(b) First half-period

•
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(c) Second half-period
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(d) State after 1 period
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Bifurcation of ACSs

representation of braid

lxxi



Sequence of ACS braids bounds entropy

For various braids of ACSs, the calculated entropy is given, bounding from
below the true topological entropy over the range where the braid exists

lxxii



Coherent sets and set-based definition of FTLE

• Consider, e.g., a flow φt+T
t in (x1, x2) ∈ R2.

• Treat the evolution of set B ⊂ R2 as evolution of two random variables
X1 and X2 defined by probability density function f (x1, x2), initially
uniform on B, f = 1

µ(B)
XB, with XB the characteristic function of B.

• Under the action of the flow φt+T
t , f is mapped to Pf where P is the

associated Perron-Frobenius operator.

• Let I(f ) be the covariance of f and I(Pf ) the covariance of Pf .

Deformation of a disk under the flow during [t, t + T ]

lxxiii



Coherent sets and set-based definition of FTLE

•Definition. The covariance-based FTLE of B is

σI(B, t, T ) =
1

|T |
log

(√
λmax(I(Pf ))√
λmax(I(f ))

)
.

• Reduces to usual definition of FTLE in the limit that the linearization
approximation (i.e., line-stretching method) is valid

Deformation of a disk under the flow during [t, t + T ]

lxxiv



Coherent sets and set-based definition of FTLE

• The coherence of a set B during [t, t + T ] is σI(B, t, T ).

• A set B is almost-coherent during [t, t + T ] if σI(B, t, T ) ≈ 0.
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Coherent sets and set-based definition of FTLE

• The coherence of a set B during [t, t + T ] is σI(B, t, T ).

• A set B is almost-coherent during [t, t + T ] if σI(B, t, T ) ≈ 0.

• Captures the essential feature of a coherent set: it does not mix or spread
significantly in the domain.

• This definition also can identify non-mixing translating sets.
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• A set B is almost-coherent during [t, t + T ] if σI(B, t, T ) ≈ 0.

• Captures the essential feature of a coherent set: it does not mix or spread
significantly in the domain.

• This definition also can identify non-mixing translating sets.

• Values of σI(B, t, T ) determine the family of sets of various
degrees of coherence.

• Need to set a heuristic threshold on the value of σI(B, t, T ) to determine
coherent sets.
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Coherent sets and set-based definition of FTLE

• The coherence of a set B during [t, t + T ] is σI(B, t, T ).

• A set B is almost-coherent during [t, t + T ] if σI(B, t, T ) ≈ 0.

• Captures the essential feature of a coherent set: it does not mix or spread
significantly in the domain.

• This definition also can identify non-mixing translating sets.

• Values of σI(B, t, T ) determine the family of sets of various
degrees of coherence.

• Need to set a heuristic threshold on the value of σI(B, t, T ) to determine
coherent sets.

• Notice, coherent sets will be separated by ridges of high FTLE, i.e., LCS
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Coherent sets in lid-driven cavity flow

FTLE from line-stretching (conventional) during [0, τf ]
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Coherent sets in lid-driven cavity flow

FTLE from covariance-based approach during [0, τf ]
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Coherent sets in lid-driven cavity flow

Sets of coherences σI(0, τf ) < 1.6
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Coherent sets in lid-driven cavity flow

Compare with AIS from second eigenvector of P
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Coherent sets in the atmosphere

• FTLE from covariance during 24 hours starting 09:00 1 May 2007
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Coherent sets in the atmosphere

• Coherent sets during 24 hours starting 09:00 1 May 2007
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Optimal navigation in an aperiodic setting?

• Selectively ’jumping’ between coherent air masses using control

•Moving between mobile subregions of different finite-time itineraries
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Final words on chaotic transport

� What are the robust descriptions of transport which
work in data-driven aperiodic, finite-time settings?

• Possibilities: finite-time lobe dynamics, finite-time symbolic dynamics
may work

• For these, use set-oriented approach

•Many links between invariant manifolds, FTLE, LCS, AIS/coherent
sets, and topological methods
— e.g., boundaries between coherent sets are naturally LCS; follows
from covariance-based definition of FTLE
— fixed points ⇒ AIS, so stable/unstable invariant manifolds ⇒ ???
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The End

For papers, movies, etc., visit:
www.shaneross.com
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