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Chaotic phase space transport via lobe dynamics

As our dynamical system, we consider a discrete map'
f M — M,

eg., [ = gbi*T, where M is a differentiable, orientable,
two-dimensional manifold e.g., R?, S°

To understand the transport of points under the map
f, we consider the invariant manifolds of unstable
fixed points

Let p;,2 = 1, ..., N, denote a collection of saddle-type
hyperbolic fixed points for f.

IFollowing Rom-Kedar and Wiggins [1990]




Partition phase space into regions

Natural way to partition phase space
Pieces of W"(p;) and W?*(p;) partition M.
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Unstable and stable manifolds in red and green, resp.



Partition phase space into regions

e Intersection of unstable and stable manifolds define boundaries.




Partition phase space into regions

e These boundaries divide the phase space into regions.




Label mobile subregions: ‘atoms’ of transport

Can label mobile subregions based on their past and future whereabouts
under one iterate of the map, e.g., (..., R3, R3, [R1], R, Ro, .. .)




Primary intersection points (pips) and boundaries

q is a primary intersection point (pip), ¢ is not a pip.




Primary intersection points (pips) and boundaries

Suppose W"(p;) and W?*(p;) intersect in the pip q.
Define B = Ul|p;, q] U S|pj;, q| as a boundary between
“two sides,” R; and R».

\B = Ulpi.q] US[pj,q]j

R



Lobes: the mobile subregions

Let qo,q1 € W*p;) [ YW?(p;) be two adjacent pips,
i.e., there are no other pips on Ulqy, ¢1] and S|q, ¢1].
The region interior to U|qy, ¢1] | S|qo, 1] is a lobe.

Lobe Ulg0.491]




Lobe dynamics: transport across a boundary B

f~q) is a pip. [ is orientation-preserving = there's at
least one pip on U[f'(q), q] where the W*(p;), W*(p;)
intersection is topologically transverse.

Pi



Lobe dynamics: transport across a boundary B

Ulf~Yq),qlJS[f q), q| forms boundary of two lobes;
one in Iy, labeled L (1), or equivalently (|Ry], R>),
where f((|R1], Ro)) = (Ry,|Ro]), etc. for Ly (1)

Ly (1) Ry




Lobe dynamics: transport across a boundary B

Under one iteration of f, only points in L;s(1) can
move from R; into Ry by crossing B, etc.

['he two lobes L 5(1) and Lo (1) are called a turnstile.

Ly (1) Ry
I q

P Lo F(Lai(1)) p;

J (L 2(1))

/g



Lobe dynamics: transport across a boundary B

Essence of lobe dynamics: the dynamics associated
with crossing B is reduced to the dynamics of
the turnstile lobes associated with 5.

Ly (1) Ry
S (L1(1))

d

J (Lo (D) bj
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Unstable and stable manifolds in red and green, resp.



Identifying atoms of transport by itinerary

. and lobes

Significant amount of fine, filamentary structure.



Identifying atoms of transport by itinerary

e.g., with three regions { R, Ry, R3},
label lobe intersections accordingly.
Denote the intersection (R3, |Ro]) ()([R2], R1) by (R3, |Ral, R;)

([R2], R1)

/

(Rs, [Ra], R1) =

(Rs3, [R2] )ﬂ [R2], R1)

(Rs, [R2])




Identifying atoms of transport by itinerary

Longer itineraries...



Identifying atoms of transport by itinerary

([R2], R1, R5)

(R2, R3, [R2])

... correspond to smaller pieces of phase space; horseshoe dynamics, etc



Aperiodic, finite-time setting

Many systems defined from data or large-scale simulations



Aperiodic, finite-time setting

Many systems defined from data or large-scale simulations

e.g., atmospheric winds are a time-chaotic flow field
— no fixed points or periodic orbits (or their manifolds)
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e.g., atmospheric winds are a time-chaotic flow field
— no fixed points or periodic orbits (or their manifolds)

How do we get at transport?



Aperiodic, finite-time setting

Many systems defined from data or large-scale simulations

e.g., atmospheric winds are a time-chaotic flow field
— no fixed points or periodic orbits (or their manifolds)

How do we get at transport?

Recall the flow

B (o)



Aperiodic, finite-time setting

Small initial perturbations dx () grow like
Su(ty +T) = ¢ (x+ 8alty) — o) (=)
d¢tO+T( )

= — ——ox(to) + O([|8(to)|I°)

¢§0+T(x + Ox)

X+ 0x Ox(ty+T)

0x(f)

x \/\/\/ ¢2+ T(x)



Invariant manifold analogs: FTLE-LCS approach

The finite-time Lyapunov exponent (FTLE),

- 1 dgbt—i_T( )
oF ( ) |T| 1Og A

measures the maximum stretching rate over the interval T’ of trajectories
starting near the point x at time ¢

Ridges of a? are candidate hyperbolic codim-1 surfaces; finite-time
analogs of stable/unstable manifolds; Lagrangian coherent structures?

2cf. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005



Invariant manifold analogs: FTLE-LCS approach

We can define the FTLE for Riemannian manifolds®

| t+T H
1
log | max

[T | y0 HYH

1
aér(:lz) = —1In

|

ngt—l—TH .

with y a small perturbation in the tangent space at x.

A

p3
Lekien & Ross [2010] Chaos

P;




Transport barriers: LCS

Ridges correspond to dynamical barriers® or Lagrangian coherent struc-

tures (LCS): repelling surfaces for T' > 0, attracting for T' < 0

cylinder Moebius strip

Each frame has a different initial time ¢

Lekien & Ross [2010] Chaos



Atmospheric flows: Antarctic polar vortex

ozone data



Atmospheric flows: Antarctic polar vortex

ozone data + LCSs (red = repelling, blue = attracting)



Atmospheric flows: Antarctic polar vortex

air masses on either side of a repelling LCS



Atmospheric flows: continental U.S.

LCSs: orange = repelling, blue = attracting



Classification of motifs

e Regions bounded by attracting and repelling curves
e Atmosphere is naturally parsed into discrete ‘cells’



Motion of ‘cells’
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e Packets have their own dynamics as consequence of
repelling and attracting natures of boundaries



Atmospheric flows and lobe dynamics

The GOES satellite image taken at 1515 UTC shows an early-season
Subtropical Storm, Andrea forming off the southeast US coast.

o,
-

I This is a gebgraphical reference

orange = repelling LCSs, blue = attracting LCSs satellite

Hurricane Andrea, 2007

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010]



Atmospheric flows and lobe dynamics

Hurricane Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold),  blue = attracting (unstable manifold)



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold),  blue = attracting (unstable manifold)



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out



Atmospheric flows and lobe dynamics

Sets behave as lobe dynamics dictates



Invasive species riding the atmosphere
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Invasive species riding the atmosphere
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Pathogen transport: filament bounded by LCS

Sampling
location

(d) (e) ®
12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007



Pathogen transport: filament bounded by LCS

oo
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Lobe dynamics: another fluid example

Fluid example: time-periodic Stokes flow?

(b)

streamlines tracer blob

Lid-driven cavity flow

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Lobe dynamics: another fluid example

Fluid example: time-periodic Stokes flow?

some invariant manifolds of saddles

Lid-driven cavity flow

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Lobe dynamics:

Fluid example:

another fluid example

time-periodic Stokes flow?

Py

regions and lobes labeled

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Stable/unstable manifolds and lobes in fluids

Fluid example: time-periodic Stokes flow?

material blob at t = 0

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Stable/unstable manifolds and lobes in fluids

Fluid example: time-periodic Stokes flow?

e

_J

material blob at t =5

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)




Stable/unstable manifolds and lobes in fluids

Fluid example: time-periodic Stokes flow?

some invariant manifolds of saddles

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Stable/unstable manifolds and lobes in fluids

Fluid example: time-periodic Stokes flow?

material blob at ¢t = 10

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Stable/unstable manifolds and lobes in fluids

Fluid example: time-periodic Stokes flow?

material blob at t = 15

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Stable/unstable manifolds and lobes in fluids

Fluid example: time-periodic Stokes flow

material blob and manifolds

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Stable/unstable manifolds and lobes in fluids

2

Fluid example: time-periodic Stokes flow

material blob at ¢t = 20

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Stable/unstable manifolds and lobes in fluids

2

Fluid example: time-periodic Stokes flow

material blob at t = 25

2Computations of Mohsen Gheisaricha and Mark Stremler (Virginia Tech



Stable/unstable manifolds and lobes in fluids

Fluid example: time-periodic Stokes flow?
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e Saddle manifolds and lobe dynamics provide template for motion

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Stable/unstable manifolds and lobes in fluids

Fluid example: time-periodic Stokes flow?
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t

Homogenization has two exponential rates: slower one related to lobes

?Computations of Mohsen Gheisarieha and Mark Stremler (Virginia Tech)



Braiding of stirrers

A

P g

¢

)

Ry : 2D fluid region with N stirring ‘rods’

t

* stirrers move on periodic orbits
* stirrers = solid objects or fluid particles

* stirrer motions generate diffeomorphism

f:Rn — Rn

* stirrer trajectories generate braids
in 2+ 1 dimensional space-time



Thurston-Nielsen classification theorem

Thurston (1988) Bull. Am. Math. Soc.

A stirrer motion f is isotopic to a stirrer motion g of one of three types
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A stirrer motion f is isotopic to a stirrer motion g of one of three types
(i) finite order (f.0.):  the nth iterate of g is the identity



Thurston-Nielsen classification theorem

Thurston (1988) Bull. Am. Math. Soc.

A stirrer motion f is isotopic to a stirrer motion g of one of three types
(i) finite order (f.0.):  the nth iterate of g is the identity

(i) pseudo-Anosov (pA): ¢ has dense orbits, Markov partition with
transition matrix A, topological entropy hrn(g) = log(App(A)), where
App(A) > 1 = Perron-Frobenius eigenvalue of A
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App(A) > 1 = Perron-Frobenius eigenvalue of A

(iii) reducible: ¢ contains both f.o. and pA regions



Thurston-Nielsen classification theorem

Thurston (1988) Bull. Am. Math. Soc.

A stirrer motion f is isotopic to a stirrer motion g of one of three types
(i) finite order (f.0.):  the nth iterate of g is the identity

(i) pseudo-Anosov (pA): ¢ has dense orbits, Markov partition with
transition matrix A, topological entropy hrn(g) = log(App(A)), where
App(A) > 1 = Perron-Frobenius eigenvalue of A

(iii) reducible: ¢ contains both f.o. and pA regions
hN computed from ‘braid word’, e.g., 0_109

true topological entropy

I.e., non-trivial material lines grow like £ ~ {y\",
where A > Ay




Identifying ‘ghost rods’: periodic points

tracer blob for 74 > 1

Bifurcation parameter 7¢ to this system
Critical point 77 =1
For 7¢ > 1, pairs of elliptic and saddle points

Below 7¢ < 1, pairs vanish




Identifying ‘ghost rods’: periodic points
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Poincaré section for 7y > 1

Bifurcation parameter 7¢ to this system

Critical point T}k =1
S . D)
For 7¢ > 1, pairs of elliptic and saddle points

Below 7¢ < 1, pairs vanish




ic points

d

perio

Identifying ‘ghost rods’

PO

oy
i‘:u"..‘

XA

i of e uﬁn‘.

(A

v._m . *
«

.
i gl
2 s

e
KL

Al

tion for 7y > 1

incaré sec

Po

=
Tv
RS
N N
/Iy
aﬂf %_f o
“n
3
@)
| -
i)
)
@)
c
,.g
7))
©
4
& 2
N
Tt & o
aN @)
N®) o)
39 w
3 < =
.A_nb__A_lhV
D.N%M
r—lT.e
o< o
mézw
= _—
o T Oe
D..mﬂn
Crha
= 0O _ .,
.w.wwi
O £ O H
O - << <




Identifying ‘ghost rods’: periodic points

_7 E I ! ! ! ! I ! ! ! ! I ! ! ! ! I ! ! ! ! I
0 25 50 75 100

Homogenization has two exponential rates: slower one related to lobes

Fast rate due to braiding of ghost rods!



Topological entropy continuity across critical point
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topological entropy as a function of 7



Identifying ‘ghost rods’?
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Poincaré section for 7r < 1 = no obvious structure!

o Note the absence of any elliptical islands
e No periodic orbits of low period were found

e Is the phase space featureless?



Almost-invariant set (AlS) approach

e Partition phase space into loosely coupled regions

“Leaky” regions with a long residence time>

-2.8 -2.6 -2.4 -2.2 -18 -16 -14 -12

3-body problem phase space is divided into several invariant and almost-invariant sets.

Swork of Dellnitz, Junge, Froyland, et al



Almost-invariant set (AlS) approach

Create box partition of phase space B = { By, ... B}, with ¢ large

Consider a ¢-by-q transition (Ulam) matrix, P, for our dynamical
system, where

uw(B;N f~YBy))
Fij = :
p(B;)
the transition probability from B; to B; using, e.g., | = ¢§+T

fl(\j)\

P approximates our dynamical system via a finite state Markov chain.



Almost-invariant set (AlS) approach

A set B is called almost invariant over the interval [t,t + T if

w(BN¢1(B))
pulB) = u(B)

Can maximize value of p,, over all possible combinations of sets B € 5.

~ 1.

In practice, AlIS or relatedly, almost-cyclic sets (ACS), identified via
of P or graph-partitioning

Appropriate for non-autonomous, aperiodic, finite-time settings



Identifying ‘ghost rods’: almost-cyclic sets

Ag/ 4 X
< w2 8
~ . N

Return to 77 > 1 case, where periodic points and manifolds exist
Good agreement between AlS boundaries and manifolds of fixed points

Known previously* and applies to more general objects than fixed points,
i.e. normally hyperbolic invariant manifolds (NHIMs)

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,
Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos



Identifying ‘ghost rods’: almost-cyclic sets
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Poincaré section for 7r<1=no obvious structure!

® Return to 7y <1 case, where no periodic orbits of low period known

e Is the phase space featureless?



Identifying ‘ghost rods’: almost-cyclic sets
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Poincaré section for 7r < 1 = no obvious structure!

® Return to 7y <1 case, where no periodic orbits of low period known

e Is the phase space featureless?
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o Consider transition matrix P, induced by Poincaré map ¢,



Identifying ‘ghost rods’: almost-cyclic sets

Top six eigenvalues for 7 = 0.99



Identifying ‘ghost rods’: almost-cyclic sets

!0.04

m0.02

I

The zero contour (black) is the boundary between the two almost-invariant sets.

0 1 2 3 4 D 6

The disconnected AlS is made of three almost-cyclic sets, with period 3



Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

. . . t+
Movie shown is second eigenvector for P, Tfort € 0,7¢)



Identifying ‘ghost rods’: almost-cyclic sets

RS

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid

— Even though the theorems require exactly periodic points!

— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.




Topological entropy vs. bifurcation parameter
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topological entropy as a function of 7

hN shown for ACS braid on 3 strands



Eigenvalues/eigenvectors vs. bifurcation parameter
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Bifurcation of ACSs

For example, braid on 13 strands for 7p = (.92
_ _ _ LTy
Movie shown is second eigenvector for P, fort € [0,7¢)

Thurson-Nielsen for this braid provides lower bound on topological entropy



Bifurcation of ACSs
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Bifurcation of ACSs

representation of braid



Sequence of ACS braids bounds entropy

T S0y
0.98T i
0.961- 16 strands 3 strands |
13 strands
0.94- .
L
/ 10 strands
0.92- |
—— 5 -
—— h
0.9+ |
8 strands T hb'ra,z'd
0 \ \ \ \ \ \ \
'808.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Tf

For various braids of ACSs, the calculated entropy is given, bounding from
below the true topological entropy over the range where the braid exists



Coherent sets and set-based definition of FTLE

Consider, e.g., a flow gb?T in (z1,19) € R?.

Treat the evolution of set B C R? as evolution of two random variables
X1 and X9 defined by probability density function f(xzy,x9), initially

uniform on B, [ = ﬁ)ﬁg, with X'p the characteristic function of B.

Under the action of the flow gb?T, f is mapped to Pf where P is the
associated Perron-Frobenius operator.

Let I(f) be the covariance of f and I(Pf) the covariance of Pf.

i
o~ o(B)

B
Deformation of a disk under the flow during [t, ¢ + T'|




Coherent sets and set-based definition of FTLE

Definition. The covariance-based FTLE of B is

\/)\maaj
o1(B.T) =l <¢AW )

Reduces to usual definition of FTLE in the limit that the linearization
approximation (i.e., line-stretching method) is valid

il
o~ o(B)

B
Deformation of a disk under the flow during [t, ¢ + T'|




Coherent sets and set-based definition of FTLE

The coherence of a set B during [t,t + T]is o7(B,t,T).
A set B is almost-coherent during [t,t + T if 07(B,t,T) ~ 0.
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The coherence of a set B during [t,t + T]is o7(B,t,T).
A set B is almost-coherent during [t,t + T if 07(B,t,T) ~ 0.

Captures the essential feature of a coherent set: it does not mix or spread
significantly in the domain.

This definition also can identify non-mixing translating sets.
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Captures the essential feature of a coherent set: it does not mix or spread
significantly in the domain.

This definition also can identify non-mixing translating sets.

Values of o;(B,t,T) determine the family of sets of various
degrees of coherence.

Need to set a heuristic threshold on the value of o7(B, t, T) to determine
coherent sets.



Coherent sets and set-based definition of FTLE

The coherence of a set B during [t,t + T]is o7(B,t,T).
A set B is almost-coherent during [t,t + T if 07(B,t,T) ~ 0.

Captures the essential feature of a coherent set: it does not mix or spread
significantly in the domain.

This definition also can identify non-mixing translating sets.

Values of o;(B,t,T) determine the family of sets of various
degrees of coherence.

Need to set a heuristic threshold on the value of o7(B, t, T) to determine
coherent sets.

Notice, coherent sets will be separated by ridges of high FTLE, i.e., LCS



Coherent sets in lid-driven cavity flow
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Coherent sets in lid-driven cavity flow
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Coherent sets in lid-driven cavity flow

= | |
0 7 4

Sets of coherences o7(0,7¢) < 1.6



Coherent sets in lid-driven cavity flow
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Coherent sets in the atmosphere

600

300 |
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Optimal navigation in an aperiodic setting?

Selectively 'jumping’ between coherent air masses using control

Moving between mobile subregions of different finite-time itineraries



Final words on chaotic transport

What are the robust descriptions of transport which
work in data-driven aperiodic, finite-time settings?

Possibilities: finite-time lobe dynamics, finite-time symbolic dynamics
may work

For these, use set-oriented approach

Many links between invariant manifolds, FTLE, LCS, AlS/coherent
sets, and topological methods

— e.g., boundaries between coherent sets are naturally LCS; follows
from covariance-based definition of FTLE

— fixed points = AlS, so stable/unstable invariant manifolds = 777



The End

For papers, movies, etc., visit:
www.shaneross.com
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