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Intermittency and chaotic transitions

e.g., escaping or transitioning through “bottlenecks” in phase space

Marchal [1990]



Multi-well multi-degree of freedom systems

e Examples: chemistry, vehicle dynamics, structural mechanics
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Transitions through bottlenecks via tubes
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Topper [1997]

Wells connected by phase space transition tubes ~ S x R for 2 DOF
— Conley, McGehee, 1960s
— Llibre, Martinez, Simé, Pollack, Child, 1980s

— De Leon, Mehta, Topper, Jaffé, Farrelly, Uzer, MacKay, 1990s
— Gbémez, Koon, Lo, Marsden, Masdemont, Ross, Yanao, 2000s
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Motion near index 1 saddles

In N DOF, linearized vector field eigenvalues are
+Aand fiw;, j=2,..., N
Canonical change of variables to (¢;, p;) s.t.

N
-
Hy=Xqp1+) = (p? + qz-z)

1=2

Bottleneck region is a saddle x center X - - - X center (N — 1 centers)

P
P2 N

A N o

the saddle-space projection and N — 1 center projections — the N canonical planes

)
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Motion near index 1 saddles

For excess energy AE > ( above the saddle, the bottleneck region
energy surface (given by Ho = AF) has the structure S2N=2 « R

There's a normally hyperbolic invariant manifold (NHIM) of bound orbits
(
N

Map = A Z%(p?JFCI?) =AE

=2

Map ~ S?N73 has the structure of a (2N — 3)-sphere

For N = 2, w = w», bottleneck energy surface has structure 5% x R
and

MaE = {% (p% +q%) = AE}

so Map =~ S1is just a periodic orbit of period Tho =27 /w



McGehee representation of energy surface

Cylindrical tubes of trajectories asymptotic to M ag: stable &
unstable invariant manifolds, W3 (Mag), Wi (Mag), ~ S'xR

Tubes enclose transitioning trajectories crossing the bottleneck

>

McGehee representation of energy surface of the structure S? x R






McGehee representation of energy surface

B : bounded orbits (periodic)
A : asymptotic stable and manifolds to B (tubes)

T : transitioning and N'T : non-transitioning trajectories
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Tube dynamics — global picture

Poincare Section U;

De Leon [1992]

Tube dynamics: All transitioning motion between wells
connected by bottlenecks must occur through tube

Imminent transition regions, transitioning fractions

Consider k£ Poincaré sections Uj;, various excess energies AF
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Is this geometric theory correct?

Experimental validation is needed, to enable applications

Our goal: We seek to perform experimental validation using a table
top experiment with 2 degrees of freedom (DOF)

If successful, apply theory to >2 DOF systems, combine with control:
Preferentially triggering or avoiding transitions

— ship stability / capsize, etc.

Structural mechanics
— re-configurable deformation of flexible objects
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Validation by experiment

o Simple table top experiments; e.g., ball rolling on a 3D-printed surface

e motion of ball recorded with digital camera

Virgin, Lyman, Davis [2010] Am. J. Phys.






Ball rolling on a surface — 2 DOF

e The potential energy is V(z,y) = gH (x,y),
where the surface is arbitrary, e.g., we chose

H(x,y) = \/ 2+v+\/y2+7 — &xy + Hy,.
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Ball rolling on a surface — 2 DOF

o The potential energy is V(z,y) = gH (x,y),
where the surface is arbitrary, e.g., we chose

typical experimental trial
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Analysis of experimental data
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Theory for small excess energy, AL

Area of the transitioning region, the tube cross-section (MacKay [1990])
Atrans — TpoAE

where T}, = 27 /w period of unstable periodic orbit in bottleneck

Area of energy surface

AAE:AO—FTAE

ay=2 [ \/ gl (1)) |1+ 497 ar

mm

where

and

- 5 .
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T = = =dr
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Theory for small excess energy, AL

The transitioning fraction, under well-mixed assumption,
Atrans

AnE
= AR (1 - FAE + 0<AE2))

Ptrans =

For small AE, growth in ptyans with AE is linear, with slope
OPtrans &

OANE A

1
“P0 % 0.87 x 1073 (s/cm)?
Ag

For slightly larger values of AFE, there will be a correction term leading

to a decreasing slope,

ODtrans T
— 1 —2-AF
ONE — Ay ( Ay )




Theory for small excess energy, AL
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Theory for small excess energy, AL

0.50-
0.45.
0.40- _ T | '%e/®
C _
2 0.35- R e R
= |
g 0.30-
C i
5 0.25
D 0.20-
C
© 0.15-
0.10-
0.05.

0.0M
-400 -200 0 200 400 600 800
Excess energy, AE (cm/s)?

— theory
-@- experiment




Theory for small excess energy, AL
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Theory for small excess energy, AL
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Next steps — structural mechanics

Buckling, bending, twisting, and crumpling of flexible bodies

e adaptive structures that can bend, fold, and twist to provide advanced
engineering opportunities for deployable structures, mechanical sensors
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Next steps — structural mechanics

¢Ioad

003} Snap-through

snap-through

-0.01

0.01F
-0.02

-0.03 -

non-snap-through

time —

Y (mode 2)

-0.01F

1 |
-0.03 -0.02 -0.01 0 0.01 0.02 0.03

X (mode 1)




Next steps — structural mechanics
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Ross, BozorgMagham, Naik, Virgin [2018] Phys. Rev. E 98, 052214,

2 DOF experiment for understanding geometry of transitions
— verified geometric theory of tube dynamics
— Unobserved unstable periodic orbits have observable consequences

Since geometric theory provides the routes of transition / escape,
can combine with control to trigger or avoid transitions

For example, avoidance of capsize for ships in rough seas
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Final words

Applications to 3 or more degrees of freedom?

— Yes. See talk by Guan & Virgin “Transient behavior with three
degrees of freedom’, 16:00 today

Can we identify saddle equilibria directly from experimental data?

— Yes. See abstract by Xu, Virgin, Ross ‘On locating saddle-points
on a surface using experiment data’

Why does this conservative theory work well for a dissipative system?
See talk by Zhong at
9:15 tomorrow, ‘Geometry . |
of escaping dynamics in the ' /7
presence of dissipative and -
gyroscopic forces’

For papers and videos, visit shaneross.com
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