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Intermittency and chaotic transitions

e.g., escaping or transitioning through “bottlenecks” in phase space

Marchal [1990]
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Multi-well multi-degree of freedom systems

• Examples: chemistry, vehicle dynamics, structural mechanics
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Transitions through bottlenecks via tubes

Topper [1997]

•Wells connected by phase space transition tubes ' S1×R for 2 DOF
— Conley, McGehee, 1960s
— Llibre, Mart́ınez, Simó, Pollack, Child, 1980s
— De Leon, Mehta, Topper, Jaffé, Farrelly, Uzer, MacKay, 1990s
— Gómez, Koon, Lo, Marsden, Masdemont, Ross, Yanao, 2000s
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• In N DOF, linearized vector field eigenvalues are

±λ and ±iωj, j = 2, . . . , N

• Canonical change of variables to (qi, pi) s.t.

H2 = λq1p1 +

N∑
i=2

ωi
2

(
p2
i + q2

i

)
• Bottleneck region is a saddle× center×· · ·× center (N −1 centers)
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the saddle-space projection and N − 1 center projections — the N canonical planes
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Motion near index 1 saddles

• For excess energy ∆E > 0 above the saddle, the bottleneck region
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Motion near index 1 saddles

• For excess energy ∆E > 0 above the saddle, the bottleneck region
energy surface (given by H2 = ∆E) has the structure S2N−2 × R
• There’s a normally hyperbolic invariant manifold (NHIM) of bound orbits

M∆E =


N∑
i=2

ωi
2

(
p2
i + q2

i

)
= ∆E


•M∆E ' S2N−3 has the structure of a (2N − 3)-sphere

• For N = 2, ω = ω2, bottleneck energy surface has structure S2 × R
and

M∆E =
{
ω
2

(
p2

2 + q2
2

)
= ∆E

}
so M∆E ' S1 is just a periodic orbit of period Tpo = 2π/ω
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McGehee representation of energy surface

• Cylindrical tubes of trajectories asymptotic toM∆E: stable &
unstable invariant manifolds, W s

±(M∆E),W u
±(M∆E),' S1×R

• Tubes enclose transitioning trajectories crossing the bottleneck

McGehee representation of energy surface of the structure S2 × R
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McGehee representation of energy surface

•B : bounded orbits (periodic)

•A : asymptotic stable and unstable manifolds to B (tubes)

•T : transitioning and NT : non-transitioning trajectories
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Tube dynamics — global picture

Poincare Section Ui

De Leon [1992]

�Tube dynamics: All transitioning motion between wells
connected by bottlenecks must occur through tube
• Imminent transition regions, transitioning fractions

• Consider k Poincaré sections Ui, various excess energies ∆E
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— celestial mechanics, asteroid escape rates e.g., Jaffé, Ross, Lo, Marsden, Farrelly, Uzer [2002]
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Is this geometric theory correct?

• Experimental validation is needed, to enable applications

•Our goal: We seek to perform experimental validation using a table
top experiment with 2 degrees of freedom (DOF)

• If successful, apply theory to ≥2 DOF systems, combine with control:

• Preferentially triggering or avoiding transitions
— ship stability / capsize, etc.

• Structural mechanics
— re-configurable deformation of flexible objects
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Validation by experiment
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Validation by experiment
• Simple table top experiments; e.g., ball rolling on a 3D-printed surface

• motion of ball recorded with digital camera
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Validation by experiment
• Simple table top experiments; e.g., ball rolling on a 3D-printed surface

• motion of ball recorded with digital camera

Virgin, Lyman, Davis [2010] Am. J. Phys.
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Ball rolling on a surface — 2 DOF

• The potential energy is V (x, y) = gH(x, y),
where the surface is arbitrary, e.g., we chose

H(x, y) = α(x2 + y2)− β(

√
x2 + γ +

√
y2 + γ)− ξxy + H0.
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Ball rolling on a surface — 2 DOF

• The potential energy is V (x, y) = gH(x, y),
where the surface is arbitrary, e.g., we chose

H(x, y) = α(x2 + y2)− β(

√
x2 + γ +

√
y2 + γ)− ξxy + H0.

typical experimental trial
xiv



Transition tubes in the rolling ball system
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Analysis of experimental data

12
-600

-400

-200

0

200

400

600

800

1000

1200

1400

108640 2

time

• 120 experimental trials of about 10 seconds each, recorded at 50 Hz

xxix



Analysis of experimental data

12
-600

-400

-200

0

200

400

600

800

1000

1200

1400

108640 2

time

• 120 experimental trials of about 10 seconds each, recorded at 50 Hz

• 3500 intersections of Poincaré sections, sorted by energy
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• 400 transitions detected

xxxii



Poincaré sections at various energy ranges
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Theory for small excess energy, ∆E

• The transitioning fraction, under well-mixed assumption,

ptrans =
Atrans

A∆E

=
Tpo
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1− τ
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∂ptrans

∂∆E
=
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≈ 0.87× 10−3 (s/cm)2

• For slightly larger values of ∆E, there will be a correction term leading
to a decreasing slope,
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Theory for small excess energy, ∆E

Slope is 

lii



Next steps — structural mechanics

Buckling, bending, twisting, and crumpling of flexible bodies

• adaptive structures that can bend, fold, and twist to provide advanced
engineering opportunities for deployable structures, mechanical sensors
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Next steps — structural mechanics
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