Experimental validation of phase space conduits of transition between potential wells

Shane Ross
Engineering Science and Mechanics, Virginia Tech
shaneross.com
Shibabrat Naik (Bristol), Lawrie Virgin (Duke), Amir BozorgMagham \& Jun Zhong (Virginia Tech)

NODYCON 2019 (Rome, February 18, 2019)

VIRGINIA
TECH

Intermittency and chaotic transitions

e.g., escaping or transitioning through "bottlenecks" in phase space

Multi-well multi-degree of freedom systems

- Examples: chemistry, vehicle dynamics, structural mechanics

Transitions through bottlenecks via tubes

Topper [1997]

- Wells connected by phase space transition tubes $\simeq S^{1} \times \mathbb{R}$ for 2 DOF
- Conley, McGehee, 1960s
— Llibre, Martínez, Simó, Pollack, Child, 1980s
- De Leon, Mehta, Topper, Jaffé, Farrelly, Uzer, MacKay, 1990s
- Gómez, Koon, Lo, Marsden, Masdemont, Ross, Yanao, 2000s

Motion near index 1 saddles

- In N DOF, linearized vector field eigenvalues are

$$
\pm \lambda \text { and } \pm i \omega_{j}, j=2, \ldots, N
$$

Motion near index 1 saddles

- In N DOF, linearized vector field eigenvalues are

$$
\pm \lambda \text { and } \pm i \omega_{j}, j=2, \ldots, N
$$

- Canonical change of variables to $\left(q_{i}, p_{i}\right)$ s.t.

$$
H_{2}=\lambda q_{1} p_{1}+\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)
$$

Motion near index 1 saddles

- In N DOF, linearized vector field eigenvalues are

$$
\pm \lambda \text { and } \pm i \omega_{j}, j=2, \ldots, N
$$

- Canonical change of variables to $\left(q_{i}, p_{i}\right)$ s.t.

$$
H_{2}=\lambda q_{1} p_{1}+\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)
$$

- Bottleneck region is a saddle \times center $\times \cdots \times$ center ($N-1$ centers)

the saddle-space projection and $N-1$ center projections - the N canonical planes

Motion near index 1 saddles

- For excess energy $\Delta E>0$ above the saddle, the bottleneck region energy surface (given by $H_{2}=\Delta E$) has the structure $S^{2 N-2} \times \mathbb{R}$

Motion near index 1 saddles

- For excess energy $\Delta E>0$ above the saddle, the bottleneck region energy surface (given by $H_{2}=\Delta E$) has the structure $S^{2 N-2} \times \mathbb{R}$
- There's a normally hyperbolic invariant manifold (NHIM) of bound orbits

$$
\mathcal{M}_{\Delta E}=\left\{\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)=\Delta E\right\}
$$

Motion near index 1 saddles

- For excess energy $\Delta E>0$ above the saddle, the bottleneck region energy surface (given by $H_{2}=\Delta E$) has the structure $S^{2 N-2} \times \mathbb{R}$
- There's a normally hyperbolic invariant manifold (NHIM) of bound orbits

$$
\mathcal{M}_{\Delta E}=\left\{\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)=\Delta E\right\}
$$

- $\mathcal{M}_{\Delta E} \simeq S^{2 N-3}$ has the structure of a $(2 N-3)$-sphere

Motion near index 1 saddles

- For excess energy $\Delta E>0$ above the saddle, the bottleneck region energy surface (given by $H_{2}=\Delta E$) has the structure $S^{2 N-2} \times \mathbb{R}$
- There's a normally hyperbolic invariant manifold (NHIM) of bound orbits

$$
\mathcal{M}_{\Delta E}=\left\{\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)=\Delta E\right\}
$$

- $\mathcal{M}_{\Delta E} \simeq S^{2 N-3}$ has the structure of a $(2 N-3)$-sphere
- For $N=2, \omega=\omega_{2}$, bottleneck energy surface has structure $S^{2} \times \mathbb{R}$ and

$$
\mathcal{M}_{\Delta E}=\left\{\frac{\omega}{2}\left(p_{2}^{2}+q_{2}^{2}\right)=\Delta E\right\}
$$

Motion near index 1 saddles

- For excess energy $\Delta E>0$ above the saddle, the bottleneck region energy surface (given by $H_{2}=\Delta E$) has the structure $S^{2 N-2} \times \mathbb{R}$
- There's a normally hyperbolic invariant manifold (NHIM) of bound orbits

$$
\mathcal{M}_{\Delta E}=\left\{\sum_{i=2}^{N} \frac{\omega_{i}}{2}\left(p_{i}^{2}+q_{i}^{2}\right)=\Delta E\right\}
$$

- $\mathcal{M}_{\Delta E} \simeq S^{2 N-3}$ has the structure of a $(2 N-3)$-sphere
- For $N=2, \omega=\omega_{2}$, bottleneck energy surface has structure $S^{2} \times \mathbb{R}$ and

$$
\mathcal{M}_{\Delta E}=\left\{\frac{\omega}{2}\left(p_{2}^{2}+q_{2}^{2}\right)=\Delta E\right\}
$$

so $\mathcal{M}_{\Delta E} \simeq S^{1}$ is just a periodic orbit of period $T_{\mathrm{po}}=2 \pi / \omega$

McGehee representation of energy surface

- Cylindrical tubes of trajectories asymptotic to $\mathcal{M}_{\Delta E}$: stable \& unstable invariant manifolds, $W_{ \pm}^{s}\left(\mathcal{M}_{\Delta E}\right), W_{ \pm}^{u}\left(\mathcal{M}_{\Delta E}\right), \simeq S^{1} \times \mathbb{R}$
- Tubes enclose transitioning trajectories crossing the bottleneck

D

McGehee representation of energy surface of the structure $S^{2} \times \mathbb{R}$

McGehee representation of energy surface

- B : bounded orbits (periodic)
- A : asymptotic stable and unstable manifolds to B (tubes)
- T : transitioning and NT : non-transitioning trajectories

Tube dynamics - global picture

Poincare Section U_{i}

De Leon [1992]
\square Tube dynamics: All transitioning motion between wells connected by bottlenecks must occur through tube

- Imminent transition regions, transitioning fractions
- Consider k Poincaré sections U_{i}, various excess energies ΔE

Is this geometric theory correct?

Is this geometric theory correct?

- Good agreement with direct numerical simulation

Is this geometric theory correct?

- Good agreement with direct numerical simulation
- molecular reactions, 'reaction island theory' e.g., De Leon [1992]

Is this geometric theory correct?

- Good agreement with direct numerical simulation
- molecular reactions, 'reaction island theory' e.g., De Leon [1992]

- celestial mechanics, asteroid escape rates e.f., Jaffe, Ross, Lo, Marsden, Farrell, Uzer [2002]

Is this geometric theory correct?

Is this geometric theory correct?

- Experimental validation is needed, to enable applications

Is this geometric theory correct?

- Experimental validation is needed, to enable applications
- Our goal: We seek to perform experimental validation using a table top experiment with 2 degrees of freedom (DOF)

Is this geometric theory correct?

- Experimental validation is needed, to enable applications
- Our goal: We seek to perform experimental validation using a table top experiment with 2 degrees of freedom (DOF)
- If successful, apply theory to ≥ 2 DOF systems, combine with control:

Is this geometric theory correct?

- Experimental validation is needed, to enable applications
- Our goal: We seek to perform experimental validation using a table top experiment with 2 degrees of freedom (DOF)
- If successful, apply theory to ≥ 2 DOF systems, combine with control:
- Preferentially triggering or avoiding transitions — ship stability / capsize, etc.

Is this geometric theory correct?

- Experimental validation is needed, to enable applications
- Our goal: We seek to perform experimental validation using a table top experiment with 2 degrees of freedom (DOF)
- If successful, apply theory to ≥ 2 DOF systems, combine with control:
- Preferentially triggering or avoiding transitions — ship stability / capsize, etc.
- Structural mechanics
- re-configurable deformation of flexible objects

Validation by experiment

Validation by experiment

- Simple table top experiments; e.g., ball rolling on a 3D-printed surface
- motion of ball recorded with digital camera

Validation by experiment

- Simple table top experiments; e.g., ball rolling on a 3D-printed surface
- motion of ball recorded with digital camera

Virgin, Lyman, Davis [2010] Am. J. Phys.

Ball rolling on a surface - 2 DOF

- The potential energy is $V(x, y)=g H(x, y)$, where the surface is arbitrary, e.g., we chose

$$
H(x, y)=\alpha\left(x^{2}+y^{2}\right)-\beta\left(\sqrt{x^{2}+\gamma}+\sqrt{y^{2}+\gamma}\right)-\xi x y+H_{0}
$$

Ball rolling on a surface - 2 DOF

- The potential energy is $V(x, y)=g H(x, y)$, where the surface is arbitrary, e.g., we chose

$$
H(x, y)=\alpha\left(x^{2}+y^{2}\right)-\beta\left(\sqrt{x^{2}+\gamma}+\sqrt{y^{2}+\gamma}\right)-\xi x y+H_{0}
$$

typical experimental trial

Transition tubes in the rolling ball system

Transition tubes in the rolling ball system

transition tube from quadrant 1 to 2

Transition tubes in the rolling ball system

Analysis of experimental data

- 120 experimental trials of about 10 seconds each, recorded at 50 Hz

Analysis of experimental data

- 120 experimental trials of about 10 seconds each, recorded at 50 Hz
- 3500 intersections of Poincaré sections, sorted by energy

Analysis of experimental data

- 120 experimental trials of about 10 seconds each, recorded at 50 Hz
- 3500 intersections of Poincaré sections, sorted by energy
- 400 transitions detected

Analysis of experimental data

- 120 experimental trials of about 10 seconds each, recorded at 50 Hz
- 3500 intersections of Poincaré sections, sorted by energy
- 400 transitions detected

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Poincaré sections at various energy ranges

Experimental confirmation of transition tubes

- Theory predicts 99% of transitions (p value of correlation <0.0001)

Experimental confirmation of transition tubes

- Theory predicts 99% of transitions (p value of correlation <0.0001)
- Consider overall trend in transition fraction as excess energy grows

Experimental confirmation of transition tubes

- Theory predicts 99% of transitions (p value of correlation <0.0001)
- Consider overall trend in transition fraction as excess energy grows

Theory for small excess energy, ΔE

- Area of the transitioning region, the tube cross-section (MacKay [1990])

$$
A_{\text {trans }}=T_{\mathrm{po}} \Delta E
$$

where $T_{\mathrm{po}}=2 \pi / \omega$ period of unstable periodic orbit in bottleneck

Theory for small excess energy, ΔE

- Area of the transitioning region, the tube cross-section (MacKay [1990])

$$
A_{\text {trans }}=T_{\mathrm{po}} \Delta E
$$

where $T_{\mathrm{po}}=2 \pi / \omega$ period of unstable periodic orbit in bottleneck

- Area of energy surface

$$
A_{\Delta E}=A_{0}+\tau \Delta E
$$

Theory for small excess energy, ΔE

- Area of the transitioning region, the tube cross-section (MacKay [1990])

$$
A_{\text {trans }}=T_{\mathrm{po}} \Delta E
$$

where $T_{\mathrm{po}}=2 \pi / \omega$ period of unstable periodic orbit in bottleneck

- Area of energy surface

$$
A_{\Delta E}=A_{0}+\tau \Delta E
$$

where

$$
A_{0}=2 \int_{r_{\min }}^{r_{\max }} \sqrt{-\frac{14}{5}\left[E_{e}-g H(r)\right]\left[1+4{\frac{\partial H^{2}}{}}^{2}(r)\right]} d r
$$

Theory for small excess energy, ΔE

- Area of the transitioning region, the tube cross-section (MacKay [1990])

$$
A_{\text {trans }}=T_{\mathrm{po}} \Delta E
$$

where $T_{\mathrm{po}}=2 \pi / \omega$ period of unstable periodic orbit in bottleneck

- Area of energy surface

$$
A_{\Delta E}=A_{0}+\tau \Delta E
$$

where

$$
A_{0}=2 \int_{r_{\min }}^{r_{\max }} \sqrt{-\frac{14}{5}\left[E_{e}-g H(r)\right]\left[1+4{\frac{\partial H^{2}}{\partial r}}^{2}(r)\right]} d r
$$

and

$$
\tau=\int_{r_{\min }}^{r_{\max }} \sqrt{\frac{14}{5} \frac{\left[1+4 \frac{\partial H^{2}}{\partial r}(r)\right]}{\left[E_{e}-g H(r)\right]}} d r
$$

Theory for small excess energy, ΔE

- The transitioning fraction, under well-mixed assumption,

$$
\begin{aligned}
p_{\text {trans }} & =\frac{A_{\text {trans }}}{A_{\Delta E}} \\
& =\frac{T_{\mathrm{po}}}{A_{0}} \Delta E\left(1-\frac{\tau}{A_{0}} \Delta E+\mathcal{O}\left(\Delta E^{2}\right)\right)
\end{aligned}
$$

Theory for small excess energy, ΔE

- The transitioning fraction, under well-mixed assumption,

$$
\begin{aligned}
p_{\text {trans }} & =\frac{A_{\text {trans }}}{A_{\Delta E}} \\
& =\frac{T_{\mathrm{po}}}{A_{0}} \Delta E\left(1-\frac{\tau}{A_{0}} \Delta E+\mathcal{O}\left(\Delta E^{2}\right)\right)
\end{aligned}
$$

- For small ΔE, growth in $p_{\text {trans }}$ with ΔE is linear, with slope

$$
\frac{\partial p_{\text {trans }}}{\partial \Delta E}=\frac{T_{\mathrm{po}}}{A_{0}}
$$

Theory for small excess energy, ΔE

- The transitioning fraction, under well-mixed assumption,

$$
\begin{aligned}
p_{\text {trans }} & =\frac{A_{\text {trans }}}{A_{\Delta E}} \\
& =\frac{T_{\mathrm{p}}}{A_{0}} \Delta E\left(1-\frac{\tau}{A_{0}} \Delta E+\mathcal{O}\left(\Delta E^{2}\right)\right)
\end{aligned}
$$

- For small ΔE, growth in $p_{\text {trans }}$ with ΔE is linear, with slope

$$
\begin{gathered}
\frac{\partial p_{\text {trans }}}{\partial \Delta E}=\frac{T_{\mathrm{po}}}{A_{0}} \\
\frac{T_{\mathrm{po}}}{A_{0}} \approx 0.87 \times 10^{-3}(\mathrm{~s} / \mathrm{cm})^{2}
\end{gathered}
$$

Theory for small excess energy, ΔE

- The transitioning fraction, under well-mixed assumption,

$$
\begin{aligned}
p_{\text {trans }} & =\frac{A_{\text {trans }}}{A_{\Delta E}} \\
& =\frac{T_{\mathrm{p}}}{A_{0}} \Delta E\left(1-\frac{\tau}{A_{0}} \Delta E+\mathcal{O}\left(\Delta E^{2}\right)\right)
\end{aligned}
$$

- For small ΔE, growth in $p_{\text {trans }}$ with ΔE is linear, with slope

$$
\begin{gathered}
\frac{\partial p_{\text {trans }}}{\partial \Delta E}=\frac{T_{\mathrm{po}}}{A_{0}} \\
\frac{T_{\mathrm{po}}}{A_{0}} \approx 0.87 \times 10^{-3}(\mathrm{~s} / \mathrm{cm})^{2}
\end{gathered}
$$

- For slightly larger values of ΔE, there will be a correction term leading to a decreasing slope,

$$
\frac{\partial p_{\text {trans }}}{\partial \Delta E}=\frac{T_{\mathrm{po}}}{A_{0}}\left(1-2 \frac{\tau}{A_{0}} \Delta E\right)
$$

Theory for small excess energy, ΔE

Theory for small excess energy, ΔE

Theory for small excess energy, ΔE

Theory for small excess energy, ΔE

Theory for small excess energy, ΔE

Next steps - structural mechanics

Buckling, bending, twisting, and crumpling of flexible bodies

- adaptive structures that can bend, fold, and twist to provide advanced engineering opportunities for deployable structures, mechanical sensors

Next steps - structural mechanics

Final words

Final words

- Ross, BozorgMagham, Naik, Virgin [2018] Phys. Rev. E 98, 052214.

Final words

- Ross, BozorgMagham, Naik, Virgin [2018] Phys. Rev. E 98, 052214.
- 2 DOF experiment for understanding geometry of transitions

Final words

- Ross, BozorgMagham, Naik, Virgin [2018] Phys. Rev. E 98, 052214.
- 2 DOF experiment for understanding geometry of transitions - verified geometric theory of tube dynamics

Final words

- Ross, BozorgMagham, Naik, Virgin [2018] Phys. Rev. E 98, 052214.
- 2 DOF experiment for understanding geometry of transitions - verified geometric theory of tube dynamics
- Unobserved unstable periodic orbits have observable consequences

Final words

- Ross, BozorgMagham, Naik, Virgin [2018] Phys. Rev. E 98, 052214.
- 2 DOF experiment for understanding geometry of transitions - verified geometric theory of tube dynamics
- Unobserved unstable periodic orbits have observable consequences
- Since geometric theory provides the routes of transition / escape, can combine with control to trigger or avoid transitions

Final words

- Ross, BozorgMagham, Naik, Virgin [2018] Phys. Rev. E 98, 052214.
- 2 DOF experiment for understanding geometry of transitions - verified geometric theory of tube dynamics
- Unobserved unstable periodic orbits have observable consequences
- Since geometric theory provides the routes of transition / escape, can combine with control to trigger or avoid transitions
- For example, avoidance of capsize for ships in rough seas

Final words

- Ross, BozorgMagham, Naik, Virgin [2018] Phys. Rev. E 98, 052214.
- 2 DOF experiment for understanding geometry of transitions
- verified geometric theory of tube dynamics
- Unobserved unstable periodic orbits have observable consequences
- Since geometric theory provides the routes of transition / escape, can combine with control to trigger or avoid transitions
- For example, avoidance of capsize for ships in rough seas

Final words

- Applications to 3 or more degrees of freedom?

Final words

- Applications to 3 or more degrees of freedom?
- Yes. See talk by Guan \& Virgin 'Transient behavior with three degrees of freedom', 16:00 today

Final words

- Applications to 3 or more degrees of freedom?
- Yes. See talk by Guan \& Virgin 'Transient behavior with three degrees of freedom', 16:00 today
- Can we identify saddle equilibria directly from experimental data?

Final words

- Applications to 3 or more degrees of freedom?
- Yes. See talk by Guan \& Virgin 'Transient behavior with three degrees of freedom', 16:00 today
- Can we identify saddle equilibria directly from experimental data?
- Yes. See abstract by Xu, Virgin, Ross 'On locating saddle-points on a surface using experiment data'

Final words

- Applications to 3 or more degrees of freedom?
- Yes. See talk by Guan \& Virgin 'Transient behavior with three degrees of freedom', 16:00 today
- Can we identify saddle equilibria directly from experimental data?
- Yes. See abstract by Xu, Virgin, Ross 'On locating saddle-points on a surface using experiment data'
- Why does this conservative theory work well for a dissipative system?

Final words

- Applications to 3 or more degrees of freedom?
- Yes. See talk by Guan \& Virgin 'Transient behavior with three degrees of freedom', 16:00 today
- Can we identify saddle equilibria directly from experimental data?
- Yes. See abstract by Xu, Virgin, Ross 'On locating saddle-points on a surface using experiment data'
- Why does this conservative theory work well for a dissipative system?
- See talk by Zhong at 9:15 tomorrow, 'Geometry of escaping dynamics in the presence of dissipative and gyroscopic forces'

Final words

- Applications to 3 or more degrees of freedom?
- Yes. See talk by Guan \& Virgin 'Transient behavior with three degrees of freedom', 16:00 today
- Can we identify saddle equilibria directly from experimental data?
- Yes. See abstract by Xu, Virgin, Ross 'On locating saddle-points on a surface using experiment data'
- Why does this conservative theory work well for a dissipative system?
- See talk by Zhong at 9:15 tomorrow, 'Geometry of escaping dynamics in the presence of dissipative and gyroscopic forces'

Final words

- Applications to 3 or more degrees of freedom?
- Yes. See talk by Guan \& Virgin 'Transient behavior with three degrees of freedom', 16:00 today
- Can we identify saddle equilibria directly from experimental data?
- Yes. See abstract by Xu, Virgin, Ross 'On locating saddle-points on a surface using experiment data'
- Why does this conservative theory work well for a dissipative system?
- See talk by Zhong at 9:15 tomorrow, 'Geometry of escaping dynamics in the presence of dissipative and gyroscopic forces'

For papers and videos, visit shaneross.com

