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Motivation: complex fluid mixingModeling the atmosphere

Hurricane Andrew
4
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Stirring fluids with solid rods
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Topological chaos through braiding of stirrers

� Topological chaos is ‘built in’ the flow due to
the topology of boundary motions
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Thurston-Nielsen classification theorem

• Thurston (1988) Bull. Am. Math. Soc.

• A stirrer motion f is isotopic to a stirrer motion g of one of three
types (i) finite order (f.o.): the nth iterate of g is the identity (ii)
pseudo-Anosov (pA): g has dense orbits, Markov partition with tran-
sition matrix A, topological entropy hTN(g) = log(λPF (A)), where
λPF(A) > 1 = Perron-Frobenius eigenvalue of A (iii) reducible: g
contains both f.o. and pA regions

• hTN computed from ‘braid word’, e.g., σ−1
1 σ2

• log(λPF (A)) provides a lower bound on the
true topological entropy
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Topological chaos in a viscous fluid experiment
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Topological chaos in a viscous fluid experiment
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‘Stirring’ with fluid particles
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Designing for ghost rods

� Lid-driven cavity flow (Stokes flow)
• design a flow with ghost rods that appear when and where we want

e.g., for an optimal micro-scale mixer

2009 SIAM Conference on Applications of Dynamical Systems 

Lid-driven Stokes flow in a periodic 2D cavity
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• design a flow with ghost rods that appear 
when and where we want them
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Solving for the streamfunction ψ

2009 SIAM Conference on Applications of Dynamical Systems 

∇4ψn = 0 ⇒ f ′′′′
n (y)− 2 (n/2)2 f ′′

n (y) + (n/2)4 f(y) = 0Stokes flow:

fn (±b) = 0 Cn f ′
n (±b) = ±1Boundary conditions:

ψ(x, y)

=
N∑
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Un Cn fn(y) sin(nx/2)

Assume a streamfunction

=
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n=1 Un ψn(x, y)

fn(y) = y cosh(nb/2) sinh(ny/2)− b sinh(nb/2) cosh(ny/2)

Cn = 2 [sinh(nb) + nb]−1 (exact solution)
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Solving for the streamfunction ψ

2009 SIAM Conference on Applications of Dynamical Systems 

ψ = U1 C1 f1(y) sin(x/2) + U2 C2 f2(y) sin(x)

= U
[√

1− β ψ1 +
√

β ψ2

]
Assume:

ψ1 = C1 f1(y) sin(x/2)

ψ2 = C2 f2(y) sin(x)

uwall

x
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Pick parameters to get desired stirring protocol

� Alternate boundary motions to generate braid

streamlines tracer blob

•When nτf ≤ t < (n + 1)τf/2, right two exchange clockwise

•When (n+1)τf/2 ≤ t < (n+1)τf , left two exchange counter-clockwise
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Stirring protocol ⇒ braid ⇒ topological entropy

• Periodic points of period 3 ⇒ act as ‘ghost rods’

• Their braid ⇒ hTN = 0.96242 from TNCT

• Actual hflow ≈ 0.964

• ⇒ hTN is an excellent lower bound
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(b)

(c)

(d)
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• System parameter τf can be treated as a bifurcation parameter
critical point is τ∗f = 1; next few slides show τf > 1
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Identifying ‘ghost rods’: periodic points

Poincaré section for τf > 1

• At τf = 1, parabolic points

• τf > 1, groups of elliptic and saddle points
of period 3
— streamlines around groups resemble fluid mo-
tion around a solid rod ⇒

• τf < 1, periodic points vanish
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Transport, mixing, and homogenization

� Consider τf > 1

� Structure associated with saddles of Poincaré map

some invariant manifolds of saddles
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Transport, mixing, and homogenization

� Can consider transport via lobe dynamics

pips, regions and lobes labeled
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Stable/unstable manifolds and lobes in fluids

material blob at t = 0
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Stable/unstable manifolds and lobes in fluids

material blob at t = 5
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Stable/unstable manifolds and lobes in fluids

some invariant manifolds of saddles
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Stable/unstable manifolds and lobes in fluids

material blob at t = 10
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Stable/unstable manifolds and lobes in fluids

material blob at t = 15
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Stable/unstable manifolds and lobes in fluids

material blob and manifolds
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Stable/unstable manifolds and lobes in fluids

material blob at t = 20

xxiii



Stable/unstable manifolds and lobes in fluids

material blob at t = 25
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Stable/unstable manifolds and lobes in fluids

• Saddle manifolds and lobe dynamics provide template for motion
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Stable/unstable manifolds and lobes in fluids

� Concentration variance; a measure of homogenization
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• Homogenization has two exponential rates: slower one related to lobes

• Fast rate due to braiding of ‘ghost rods’
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Topological entropy continuity across critical point

� Consider τf < 1

1.00

0.95

0.950.900.85 1.00 1.05

topological entropy as a function of τf

xxvii



Identifying ‘ghost rods’?

Poincaré section for τf < 1 ⇒ no obvious structure!

• Note the absence of any elliptical islands

• No periodic orbits of low period were found

• Is the phase space featureless?
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Almost-cyclic set approach

• Take probabilistic point of view

• Partition phase space into loosely coupled regions

Almost-invariant sets ≈ “Leaky” regions with a long residence time1

3-body problem phase space is divided into several invariant and almost-invariant sets.

1work of Dellnitz, Junge, Deuflhard, Froyland, Schütte, et al
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Almost-cyclic set approach

• Create box partition of phase space B = {B1, . . . Bq}, with q large

• Consider a q-by-q transition (Ulam) matrix, P , for our dynamical
system, where

Pij =
m(Bi ∩ f−1(Bj))

m(Bi)
,

the transition probability from Bi to Bj using, e.g., f = φt+Tt

• P approximates our dynamical system via a finite state Markov chain.
xxx



Almost-cyclic set approach

• A set B is called almost invariant over the interval [t, t + T ] if

ρ(B) =
m(B ∩ φ−1(B))

m(B)
≈ 1.

• Can maximize value of ρ over all possible combinations of sets B ∈ B.

• In practice, AISs or relatedly, almost-cyclic sets (ACSs), identified via
eigenvectors (of eigenvalues with |λ| ≈ 1) of P or graph-partitioning
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Identifying ‘ghost rods’: almost-cyclic sets

• Return to τf > 1 case, where periodic points and manifolds exist

• Agreement between AIS boundaries and manifolds of periodic points

• Known previously2 and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

2Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,

Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos
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Identifying ‘ghost rods’: almost-cyclic sets

Poincaré section for τf < 1 ⇒ no obvious structure!

• Return to τf < 1 case, where no periodic orbits of low period known

• Is the phase space featureless?

• Consider transition matrix P
t+τf
t induced by Poincaré map φ

t+τf
t
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Identifying ‘ghost rods’: almost-cyclic sets

Top eigenvectors for τf = 0.99 reveal hierarchy of phase space structures

ν2

ν3 ν4

ν5 ν6
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Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

• Three-component AIS made of 3 almost-cyclic sets (ACSs) of period 3

• ACS effectively replace compact region bounded by saddle manifolds

• Also: we see a dynamical remnant of the global ‘stable and un-
stable manifolds’ of the saddle points, even there are no more
saddle points
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Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )
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Identifying ‘ghost rods’: almost-cyclic sets

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid
— Even though the theorems require exactly periodic points!
— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.
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Topological entropy vs. bifurcation parameter

1.00
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topological entropy as a function of τf

• hTN shown for ACS braid on 3 strands
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Eigenvalues/eigenvectors vs. bifurcation parameter

Movie shows change in eigenvector along

branch marked with ‘−�−’ above (from a

to f), as τf decreases ⇒
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Bifurcation of ACSs

For example, braid on 13 strands for τf = 0.92

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )

Thurson-Nielsen for this braid provides lower bound on topological entropy
xl



Bifurcation of ACSs
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(b) First half-period
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(d) State after 1 period
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Bifurcation of ACSs

representation of braid
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Sequence of ACS braids bounds entropy

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 10.88

0.9

0.92

0.94

0.96

0.98

1

10 strands

13 strands
16 strands 3 strands

8 strands

For various braids of ACSs, the calculated entropy is given, bounding from
below the true topological entropy over the range where the braid exists
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Aperiodic, finite-time setting

• Data-driven, finite-time, aperiodic setting

• How do we get at transport?

• Are there, e.g., braids in realistic fluid flows?
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Atmospheric flows

orange = repelling LCSs, blue = attracting LCSs satellite

Andrea, first storm of 2007 hurricane season

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Tallapragada & Ross [2011]
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Atmospheric flows

Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)
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Atmospheric flows: lobe dynamics to find braids

orange = repelling (stable manifold), blue = attracting (unstable manifold)
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Atmospheric flows: lobe dynamics to find braids

orange = repelling (stable manifold), blue = attracting (unstable manifold)
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Atmospheric flows: lobe dynamics to find braids

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
xlix



Atmospheric flows: lobe dynamics to find braids

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
l



Atmospheric flows: lobe dynamics to find braids

Sets behave as lobe dynamics dictates ⇒ form braid, but no periodicity
li



Can you find the ghost rods stirring the Earth?Modeling the atmosphere

Hurricane Andrew
4
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Final words on stirring by braiding of coherent sets

� For engineering systems, it makes sense to design for
mixing with ghost rods in mind

� For natural systems, ghost rod paradigm may aid inter-
pretation

� What qualifies as a ghost rod?
•We can apply Thurston-Nielsen classification theorem not only to

solid rods and periodic orbits, but also almost-cyclic coherent regions

•Where might this break down?

� Probabilistic approach provides extension of useful
dynamical systems notions
• periodic points ⇒ almost-cyclic sets

• their ‘stable/unstable invariant manifolds’ ⇒ ???
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The End

For papers, movies, etc., visit:
www.shaneross.com
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