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Intermittency and chaotic transitions

e.g., transitioning across “bottlenecks” in phase space; ‘metastability’

Marchal [1990]



Multi-well multi-degree of freedom systems

e Examples: chemistry, vehicle dynamics, structural mechanics
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Transitions through bottlenecks via tubes

Topper [1997]

Wells connected by phase space transition tubes ~ S x R for 2 DOF
— Conley, McGehee, 1960s

— Llibre, Martinez, Simd, Pollack, Child, 1980s

— De Leon, Mehta, Topper, Jaffé, Farrelly, Uzer, MacKay, 1990s

— Gomez, Koon, Lo, Marsden, Masdemont, Ross, Yanao, 2000s



Motion near saddles

Near rank 1 saddles in N DOF, linearized vector field

eigenvalues are
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Motion near saddles

Near in NV DOF, linearized vector field

eigenvalues are

+ A\ and ::z'wj, j — 2,...,N

Equilibrium point is of type
saddle x center X - -+ X center (N — 1 centers).
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the saddle-space projection and N — 1 center projections — the N canonical planes




Motion near saddles

For excess energy AE > () above the saddle, there's a
normally hyperbolic invariant manifold (NHIM) of bound
orbits
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Motion near saddles

For excess energy AE > () above the saddle, there's a
normally hyperbolic invariant manifold (NHIM) of bound

orbits
N

Mg = Z% (p; +q’) = AE
i—2

So, Mag ~ S*N73 topologically, a (2N — 3)-sphere
N =2, w= ws,

Map = {5 (2 + @) = AE}
Mg =~ S, a periodic orbit of period T}, = 27 /w



Motion near saddles: 2 DOF

Cylindrical tubes of orbits asymptotic to Mapg: stable and
unstable invariant manifolds, W3 (Mag), Wi (Mag), ~ S'xR

Enclose transitioning trajectories




Motion near saddles: 2 DOF

» B : bounded orbits (periodic): S
e A : asymptotic orbits to 1-sphere: S!' x R (tubes)

o T : transitioning and NT : non-transitioning orbits.




Tube dynamics — global picture

Poincare Section U;

De Leon [1992]

Tube dynamics: All transitioning motion between wells
connected by bottlenecks must occur through tube

Imminent transition regions, transitioning fractions

Consider k£ Poincaré sections Uj;, various excess energies AF
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Good agreement with direct numerical simulation

— molecular reactions, ‘reaction island theory’ «. e Leon [1092]
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Is this geometric theory correct?

Experimental verification is needed, to enable applications

Our goal: We seek to perform experimental verification using a table
top experiment with 2 degrees of freedom (DOF)

If successful, apply theory to >2 DOF systems, combine with control:
Preferentially triggering or avoiding transitions

— ship stability / capsize, etc.

Structural mechanics
— re-configurable deformation of flexible objects



Verification by experiment



Verification by experiment

Simple table top experiments; e.g., ball rolling on a 3D-printed surface

motion of ball recorded with digital camera



Verification by experiment

o Simple table top experiments; e.g., ball rolling on a 3D-printed surface

e motion of ball recorded with digital camera

Virgin, Lyman, Davis [2010] Am. J. Phys.






Ball rolling on a surface — 2 DOF

e The potential energy is V(z,y) = gH (x,y),
where the surface is arbitrary, e.g., we chose

H(z,y) = a(z® +y°) — B(\/ 2> + 7+ \/y> +7) — Ezy + Hy.
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Ball rolling on a surface — 2 DOF

The potential energy is V(x,y) = gH (z,y),
where the surface is arbitrary, e.g., we chose

H(x,y) = B\ 22 + v+ y* + ) — Exy + Hy,.

220

typical experimental trial



Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Transition tubes in the rolling ball system
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Analysis of experimental data
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges
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Poincaré sections at various energy ranges

80

A E=[500,600]

60

40

20

(s

. (cm/s)

S, 201

-40 |

-60 |

-80




Poincaré sections at various energy ranges
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Theory for small excess energy, AL
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Area of the transitioning region, the tube cross-section (MacKay [1990])
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Theory for small excess energy, AL

Area of the transitioning region, the tube cross-section (MacKay [1990])
Atrans — TpoAE

where T}, = 27 /w period of unstable periodic orbit in bottleneck

Area of energy surface
AAE = Ag+TAE

where

Ag =2 / Y H ) (1 O )
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Theory for small excess energy, AL

The transitioning fraction, under well-mixed assumption,
Atrans
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Theory for small excess energy, AL

The transitioning fraction, under well-mixed assumption,
Atrans

AnE
= AR (1 - JAE + 0<AE2))

Ptrans =

For small AE, growth in ptyans with AE is linear, with slope
OPtrans &

OANE A

For slightly larger values of AFE, there will be a correction term leading
to a decreasing slope,

aptrams T (
_ | — 927 AE)
OANE ~— Ay Ay




Theory for small excess energy, AL

0'7 I I I I I I I I

0.6 -

- EXperiment

0.5 -

0.4 |

0.3 +

0.2 -

Transition fraction

0.1 -

-300 -200 -100 0 100 200 300 400 500

AFE (cm/s)?



Theory for small excess energy, AL
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Theory for small excess energy, AL
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Combine with control

Since geometric theory provides the routes of transition / escape, can
combine with control to trigger or avoid transitions

We'll consider partial control
Sabuco, Sanjuan, Yorke [2012]; Coccolo, Seoane, Zambrano, Sanjuan [2013]

— avoid a transition in the presence of a disturbance which is larger
than the control



Partial control - safe set S
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Partial control - safe set S

Region to be avoided in white - could include holes
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Partial control - safe set S

ug| < |

Control smaller than disturbance



Ship motion and capsize






Ship motion and capsize



Ship motion and capsize

Model built around Hamiltonian,
H =p3/2+ Rp, /4+ V(2,y),

where x = roll and y = pitch are
coupled



Ship motion and capsize

Model built around Hamiltonian,
H =p3/2+ Rp, /4+ V(2,y),

where x = roll and y = pitch are
coupled

0.8r
0.6
0.4
0.2F

Y of
-0.2
04}

-0.6

-0.81

15 1 ~05 0 0.5 1 15

E < FE.

i y of

0.8

0.6

0.4

0.2F

_02 L

_04 L

-0.6

-0.8 |

-1
-15

-0.5

E > FE.

0.5

1.5



Tubes leading to capsize
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Partial control to avoid capsize
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Partial control to avoid capsize

initial set () safe set S

Safe set shown when disturbance (red) is random ocean waves and
smaller control (green) is via steering or control moment gyroscope

Could inform control schemes to avoid capsize in rough seas



Next steps — structural mechanics

Buckling, bending, twisting, and crumpling of flexible bodies

adaptive structures that can bend, fold, and twist to provide advanced
engineering opportunities for deployable structures, mechanical sensors



Next steps — structural mechanics
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Next steps — structural mechanics
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Next steps — structural mechanics
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Final words

2 DOF experiment for understanding geometry of transitions
— verified geometric theory of tube dynamics

Unobserved unstable periodic orbits have observable consequences

Future work:

— analysis and control of transitions in other multi-DOF systems

e.g., triggering and avoidance of buckling in flexible structures, capsize
avoidance for ships in rough seas and floating structures

Thanks to: Lawrie Virgin, Amir BozorgMagham, Shibabrat Naik

Papers in preparation; check status at:
shaneross.com
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