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ABSTRACT

This dissertation presents innovative unified approaches to understand and predict the mo-
tion between potential wells. The theoretical-computational framework, based on the tube
dynamics, will reveal how the dissipative and gyroscopic forces change the phase space struc-
ture that governs the escape (or transition) from potential wells.

In higher degree of freedom systems, the motion between potential wells is complicated
due to the existence of multiple escape routes usually through an index-1 saddle. Thus,
this dissertation firstly studies the local behavior around the index-1 saddle to establish the
criteria of escape taking into account the dissipative and gyroscopic forces. In the analysis,
an idealized ball rolling on a surface is selected as an example to show the linearized dynamics
due to its special interests that the gyroscopic force can be easily introduced by rotating the
surface. Based on the linearized dynamics, we find that the boundary of the initial conditions
of a given energy for the trajectories that transit from one side of a saddle to the other is a
cylinder and ellipsoid in the conservative and dissipative systems, respectively.

Compared to the linear systems, it is much more challenging or sometimes impossible to get
analytical solutions in the nonlinear systems. Based on the analysis of linearized dynamics,
the second goal of this study is developing a bisection method to compute the transition
boundary in the nonlinear system using the dynamic snap-through buckling of a buckled
beam as an example. Based on the Euler-Bernoulli beam theory, a two degree of freedom
Hamiltonian system can be generated via a two mode-shape truncation. The transition
boundary on the Poincaré section at the well can be obtained by the bisection method. The
numerical results prove the efficiency of the bisection method and show that the amount of
trajectories that escape from the potential well will be smaller if the damping of the system
is increasing.

Finally, we present an alternative idea to compute the transition boundary of the nonlinear
system from the perspective of the invariant manifold. For the conservative systems, the
transition boundary of a given energy is the invariant manifold of a periodic orbit. The pro-
cess of obtaining such invariant manifold compromises two parts, including the computation
of the periodic orbit by solving a proper boundary-value problem (BVP) and the globaliza-
tion of the manifold. For the dissipative systems, however, the transition boundary of a given
energy becomes the invariant manifold of an index-1 saddle. We present a BVP approach
using the small initial sphere in the stable subspace of the linearized system at one end and
the energy at the other end as the boundary conditions. By using these algorithms, we ob-
tain the nonlinear transition tube and transition ellipsoid for the conservative and dissipative
systems, respectively, which are topologically the same as the linearized dynamics.
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GENERAL AUDIENCE ABSTRACT

Transition or escape events are very common in daily life, such as the snap-through of
plant leaves and the flipping over of umbrellas on a windy day, the capsize of ships and
boats on a rough sea. Some other engineering problems related to escape, such as the
collapse of arch bridges subjected to seismic load and moving trucks, and the escape and
recapture of the spacecraft, are also widely known. At first glance, these problems seem to be
irrelated. However, from the perspective of mechanics, they have the same physical principle
which essentially can be considered as the escape from the potential wells. A more specific
exemplary representative is a rolling ball on a multi-well surface where the potential energy
is from gravity. The purpose of this dissertation is to develop a theoretical-computational
framework to understand how a transition event can occur if a certain energy is applied to
the system.

For a multi-well system, the potential wells are usually connected by saddle points so that
the motion between the wells generally occurs around the saddle. Thus, knowing the local
behavior around the saddle plays a vital role in understanding the global motion of the
nonlinear system. The first topic aims to study the linearized dynamics around the saddle.
In this study, an idealized ball rolling on both stationary and rotating surfaces will be used
to reveal the dynamics. The effect of the gyroscopic force induced by the rotation of the
surface and the energy dissipation will be considered.

In the second work, the escape dynamics will be extended to the nonlinear system applied to
the snap-through of a buckled beam. Due to the nonlinear behavior existing in the system, it
is hard to get the analytical solutions so that numerical algorithms are needed. In this study,
a bisection method is developed to search the transition boundary. By using such method,
the transition boundary on a specific Poincaré section is obtained for both the conservative
and dissipative systems.

Finally, we revisit the escape dynamics in the snap-through buckling from the perspective
of the invariant manifold. The treatment for the conservative and dissipative systems is
different. In the conservative system, we compute the invariant manifold of a periodic orbit,
while in the dissipative system we compute the invariant manifold of a saddle point. The
computational process for the conservative system consists of the computation of the periodic
orbit and the globalization of the corresponding manifold. In the dissipative system, the
invariant manifold can be found by solving a proper boundary-value problem. Based on these
algorithms, the nonlinear transition tube and transition ellipsoid in the phase space can be
obtained for the conservative and dissipative systems, respectively, which are qualitatively
the same as the linearized dynamics.
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Chapter 1

Introduction

1.1 Escape and transition dynamics

Transition events are very common in both the natural world, daily life, and even industrial

applications. Examples of transition are the snap-through of plant leaves and engineering

structures responding to stimuli [1, 2], the flipping over of umbrellas on a windy day, reaction

rates in chemical reaction dynamics [3], the escape and recapture of comets and spacecraft

in celestial mechanics [4, 5, 6], and the capsize of ships [7, 8]. Better understanding and

prediction of transitions, or escape, have significance in both utilization and evasion of such

events, such as how to transfer spacecraft in specific space missions from one prescribed

initial orbit to a desired final orbit with lower energy, or in structural mechanics, how to

avoid the collapse of structures. From the perspective of mechanics, such behavior can be

interpreted as the escape from one local minimum of potential energy (i.e., a potential well)

to another, which has been widely studied as ‘escape dynamics’ [9, 10, 11, 12, 13]. Escape in

a one degree of freedom system, like a double-well oscillator, is unambiguous, as the phase

space is two dimensional and the hilltop equilibrium becomes a saddle point in phase space.

The only way the system state can escape from the potential energy minimum is by passing

over the hilltop to another local minimum. Therefore, all trajectories which have an energy

above that of the hilltop, as evaluated as they pass through the location of the hilltop,

transit from one side to the other. This situation has been studied by both experiments

and theory with good agreement between the two [14, 15, 16]. Higher degree of freedom

systems, however, are more complicated since there are multiple paths to transition through

1



2 Chapter 1. Introduction

an index-1 saddle equilibrium point, as the phase space is now four dimensions or more. For

such systems, it is of importance to establish systematic methods and criteria to predict the

escape from a potential well.

Generally, escape can occur only when the system has energy higher than the escape energy

which is the critical energy that allows escape, the energy of the saddle point [2, 8, 11, 12]. If

the energy is lower than the escape energy, the zero velocity curve (or surface)—which is the

boundary of the projection of the energy manifold onto position space—is closed, allowing no

open neck region around the saddle point. In this case, all of the trajectories are bounded to

only evolve within their potential wells of origin and no trajectory can escape from the well.

For initial conditions with energy higher than the escape energy, the equipotential surfaces

open around the saddle point in a neck region, and trajectories have a chance to escape

the potential well to another or even to infinity. However, the energy criterion alone is not

sufficient to guarantee escape. The dynamic boundary between transition and non-transition

of a system with energy higher than critical energy can be thoroughly understood under

the conceptual framework of transition dynamics or sometimes known as tube dynamics

[2, 8, 17, 18, 19]. In conservative two degrees of freedom systems with energy higher than

the critical energy, there is an unstable periodic orbit in the bottleneck region. Emanating

from the periodic orbit are its stable and unstable manifolds which have cylindrical or “tube”

geometry within the conserved energy manifold. The tube manifold, sometimes called a

transition tube in tube dynamics, consists of pieces of asymptotic orbits. As stated in

[10], the best systematic way to study the escape from such a system is by calculating the

asymptotic orbits of the periodic orbit. The reason is that the transition tube, acting like

a separatrix, separates two distinct types of orbits: transit orbits and non-transit orbits.

Transit orbits are those inside of the tube which can escape from one potential well to

another, while non-transit, those outside of the tube, cannot pass through the bottleneck

region, and thus return to their region of origin.

The algorithms for computing the transition tubes for the conservative system are relatively

well developed [6]. The general process is first computing the periodic orbits, and then glob-

alizing the corresponding invariant manifold. As for the computation of the periodic orbit,

there are many advanced methods. Of course, there are some other approaches which do not

compute the periodic orbit, but directly compute the invariant set and invariant manifold,

such as GAIO [20], cell mapping [21] and Lagrangian descriptor [22], et al. However, the

study about the transition boundary in the dissipative systems are still lacking. We even
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just know little about the geometry of the phase space structure that governs the transition,

not to mention the algorithm for computing such boundaries. In this dissertation, we fo-

cus on two degree of freedom systems, an intermediate situation, to develop the algorithms

for computing the transition boundary and consider the effect of dissipative and gyroscopic

forces both in isolation and in combination. We take a Hamiltonian point of view and use

canonical Hamiltonian variables, even when dissipation is included.

1.2 Research Overview

This dissertation comprises three topics, aiming to develop theoretical and computational

tools to understand and predict the escape and transition events.

In Chapter 2, we study the local dynamics near a saddle point using the idealized ball rolling

on a saddle surface as an example to study the escape dynamics in the presence of dissipative

and gyroscopic forces. The system can be either an inertial system or gyroscopic system,

depending on whether the surface is stationary or rotating. It reveals, both theoretically and

computationally, that the boundary of the initial conditions for the escape trajectories in

dissipative systems is governed by a (2N −2)-dimensional hyper-ellipsoid in 2N -dimensional

dynamical systems which is the first time such criteria have been found in the geometric

theory of transition dynamics.

In Chapter 3, we develop a bisection-based algorithm to compute the transition boundary.

The computational algorithm is applied to the snap-through of a shallow arch. Based on the

Euler-Bernoulli beam theory, the governing partial differential equations of the shallow arch

are derived which then are converted to a two-degree of freedom Hamiltonian system via

a two-mode truncation. Using the results from the linearization around the rank-1 saddle

as approximations, the transition tubes for both conservative and dissipative systems in the

nonlinear text can be obtained by the bisection method. This framework can be applied to

both conservative and dissipative systems.

In Chapter 4, we present a new idea of translating the computation of the invariant manifolds

into a two-point boundary value problem (BVP) to determine the transition boundary. For

the conservative system, we get the transition boundary by computing the invariant manifold

of a periodic orbit. For the dissipative system, we get the transition boundary by computing

the invariant manifold of a rank-1 saddle by BVP approach where the boundary conditions
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at one end lay on a hyper-sphere (or hyper-ellipsoid) with a small radius in the stable and

unstable subspaces of the linearized system about the rank-1 saddle, while the boundary

conditions at the other end are determined by the given energy and the position in the

phase space. The computation is implemented via an off-the-shelf numerical continuation

package Continuation Core and Toolboxes (COCO) [23]. The topological transition tube

and transition ellipsoid that governs the initial conditions of escape trajectories of a given

energy in the conservative and dissipative systemss are obtained which is qualitatively the

same as those in the linearized dynamics.
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Chapter 2

Linearized dynamics for escape and

transition in the presence of

dissipative and gyroscopic forces

Attribution

This chapter represents part of a collaborative work with Shane D. Ross which is published

in the Communications in Nonlinear Science and Numerical Simulation, 82 (2020), 105033.

The online version of the article can be found at https://doi.org/10.1016/j.cnsns.2019.

105033.

Abstract

Escape from a potential well can occur in different physical systems, such as capsize of

ships, resonance transitions in celestial mechanics, and dynamic snap-through of arches and

shells, as well as molecular reconfigurations in chemical reactions. The criteria and routes of

escape in one-degree of freedom systems has been well studied theoretically with reasonable

agreement with experiment. The trajectory can only transit from the hilltop of the one-

dimensional potential energy surface. The situation becomes more complicated when the

system has higher degrees of freedom since it has multiple routes to escape through an

8
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equilibrium of saddle-type, specifically, an index-1 saddle. This chapter studies the geometry

of escape across a saddle in the idealized rolling ball on a surface and establishes the criteria

of escape providing both a methodology and results under the conceptual framework known

as tube dynamics. This system can be classified into two categories based on whether the

saddle projection and focus projection in the symplectic eigenspace are coupled or not when

damping and/or gyroscopic effects are considered. For simplicity, only the linearized system

around the saddle points is analyzed, but the results generalize to the nonlinear system. We

define a transition region, Th, as the region of initial conditions of a given initial energy h

which transit from one side of a saddle to the other. We find that in conservative systems,

the boundary of the transition region, ∂Th, is a cylinder, while in dissipative systems, ∂Th is

an ellipsoid.

2.1 Introduction

We have made it clear that the phase space structure, known as a transition tube, governs

the escape in conservative systems of two degrees of freedom. The transition tube is the

stable invariant manifold emanating from a periodic orbit around an index-1 saddle. The

transition tube separates the two distinct types of orbits: transit orbits and non-transit orbits

corresponding to escape and non-escape. However, the conservative system is just an ideal

case since energy fluctuations and dissipation cannot be avoided in the real world. Thus, it is

natural to consider how the situation will change if dissipative forces are considered. In this

chapter, we continue this study and answer in more detail the concern of how the situation

changes when dissipation is present, finding that the transition tube in the conservative

system becomes a transition ellipsoid in the dissipative system.

On the other hand, when the system is rotating or magnetic forces are present, gyroscopic

forces must be considered. Gyroscopic forces, widely found in rotating systems [1, 2, 3, 4, 5] as

well as electromagnetic systems, are non-dissipative and the gyroscopic coefficients enter the

equations of motion in a skew-symmetric manner [1]. Some researchers have studied escape

in conservative gyroscopic systems (e.g., [6, 7]). There exist transition tubes controlling the

escape which are topologically the same as in an inertial system [8, 9, 10]. However, to the

best knowledge of the authors, no study has been carried out to study the escape in systems

with both dissipative and gyroscopic forces present. In fact, gyroscopic systems are interesting

due to some unexpected phenomena which have some uncommon features. In conservative
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gyroscopic systems, motion near an unstable point of the potential energy surface, such as an

index-1 saddle point, can be stabilized via gyroscopic forces, e.g., rotation with large enough

angular velocity [4, 5, 11, 12]. But small dissipation can make the system lose the stability

which is called dissipation-induced instability [3], different from the common notion that

dissipation makes a system more stable. Considering this difference in dynamical behavior,

another concern is whether the dynamical behavior of the dissipative system will be the same

if the gyroscopic forces are included. This study will also partially answer this concern.

In this chapter, we will establish criteria and present methods to estimate the transition in

two degrees of freedom. The focus of this analysis is on the local behavior near the neck region

around the saddle point, obtained via the linearized dynamics. The corresponding global

behavior is discussed in the following chapters. In such linearized systems, the equilibrium

point is of type saddle × center in the conservative system (i.e., an index-1 saddle) which

becomes a saddle × focus when dissipation is considered. In other words, the equilibrium

point changes from one with a one-dimensional stable, one-dimensional unstable, and two-

dimensional center manifold, to one with a three-dimensional stable and one-dimensional

unstable manifold. To compare the similarities and differences between the conservative and

dissipative system in each setting, we introduce the same change of variables that uses the

generalized eigenvectors of the corresponding conservative system, which we refer to as the

symplectic eigenspace.

In the symplectic eigenspace, the dynamics in the saddle and focus projections are coupled

for some dissipative systems, while for others, they remain uncoupled. Ref. [13] classified

different systems into two categories depending on the resulting linear coupling between

the saddle and focus variables of the transformed dissipative system. Those systems are:

an idealized rolling ball on both stationary and rotating saddle surfaces, the pitch and roll

dynamics of a ship near the capsize state with equal and unequal damping, the snap-through

of a shallow arch, and potential well transitions in the planar circular restricted three-body

problem (PCR3BP). The example problems considered share the same dynamic behavior

so that we only need to give the full analysis for just one as an exemplar representative.

Among the problems we discussed in [13], the idealized ball rolling on a saddle surface is

of special interest since it can be either an inertial system or gyroscopic system, depending

on whether the surface is stationary or rotating so that it can have the properties of both

types of problems. Thus, we will focus on analyzing the idealized ball rolling on a surface in

this chapter, where the rotation is about the saddle point itself. The other examples will be
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shown to be equivalent to a standard form derived for the idealized ball rolling on a surface.

The readers are referred to [13] for more details.

2.2 Transition region for the conservative case

A linear two degrees of freedom conservative system with a saddle-center type equilibrium

point (i.e., index-1 or rank-1 saddle) [8, 9, 14, 15, 16] can be transformed via a canonical

transformation to normal form coordinates (q1, q2, p1, p2) such that the quadratic Hamilto-

nian, H2, can be written in the normal form,

H2 = λq1p2 + 1
2
ωp
(
q2

2 + p2
2

)
, (2.1)

where qi and pi are the generalized coordinates and corresponding momenta. The Hamilto-

nian equations are defined as

q̇i =
∂H2

∂pi
, ṗi = −∂H2

∂qi
, (2.2)

which yields the following equations of motion,

q̇1 = λq1, ṗ1 = −λp1,

q̇2 = ωpp2, ṗ2 = −ωpq2,
(2.3)

where the dot over the variable denotes the derivative with respect to time. In the above

equations, λ is the real eigenvalue corresponding to the saddle coordinates spanned by (q1, p1)

and ωp is the frequency associated with the center coordinates (q2, p2). The solutions can be

written as,

q1 = q0
1e
λt, p1 = p0

1e
−λt,

q2 + ip2 =
(
q0

2 + ip0
2

)
e−iωpt.

(2.4)

Note that,

f1 = q1p1, f2 = q2
2 + p2

2 (2.5)

are two independent constants of motion under the Hamiltonian system (2.1) with H2 itself

trivially a constant of motion.
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2.2.1 Boundary of transit and non-transit orbits

The linearized phase space. For positive h and c, the equilibrium or bottleneck region

R (sometimes just called the neck region), which is determined by,

H2 = h, and |p1 − q1| ≤ c,

where c > 0, is homeomorphic to the product of a 2-sphere and an interval I ∈ R, S2 × I;

namely, for each fixed value of p1 − q1 in the interval I = [−c, c], we see that the equation

H2 = h determines a 2-sphere,

λ
4
(q1 + p1)2 + 1

2
ωp(q

2
2 + p2

2) = h+ λ
4
(p1 − q1)2. (2.6)

Suppose a ∈ I, then (2.6) can be re-written as,

x2
1 + q2

2 + p2
2 = r2, (2.7)

where x1 =
√

1
2
λ
ωp

(q1 + p1) and r2 = 2
ωp

(h+ λ
4
a2), which defines a 2-sphere of radius r in the

three variables x1, q2, and p2.

The bounding 2-sphere of R for which p1 − q1 = c will be called n1 (the “left” bounding

2-sphere), and where p1 − q1 = −c, n2 (the “right” bounding 2-sphere). Therefore, ∂R =

{n1, n2}. See Figure 2.1.

We call the set of points on each bounding 2-sphere where q1 + p1 = 0 the equator, and the

sets where q1 + p1 > 0 or q1 + p1 < 0 will be called the northern and southern hemispheres,

respectively.

The linear flow in R. To analyze the flow in R, consider the projections on the (q1, p1)-

plane and the (q2, p2)-plane, respectively. In the first case we see the standard picture of

a saddle point in two dimensions, and in the second, of a center consisting of harmonic

oscillator motion. Figure 2.1 schematically illustrates the flow. With regard to the first

projection we see that R itself projects to a set bounded on two sides by the hyperbolas

q1p1 = h/λ (corresponding to q2
2 + p2

2 = 0, see (2.1)) and on two other sides by the line

segments p1− q1 = ±c, which correspond to the bounding 2-spheres, n1 and n2, respectively.

Since q1p1 is an integral of the equations in R, the projections of orbits in the (q1, p1)-plane
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p 1
−
q 1
=
−
c

p 1
−
q 1
=
+
c

p 1
−
q 1
=
0

p
1 +q

1 =
0

n1

n2

p1

q1 q2

p2

Saddle Projection

q
1p1=h/λ

q
1p1=h/λ

Center Projection

NT

NT T

T

A

A

A

A

Figure 2.1: The flow in the equilibrium region for the conservative system has the form saddle × center.

On the left is shown a schematic of the projection onto the (q1, p1)-plane, the saddle projection. For the

conservative dynamics, the Hamiltonian function H2 remains constant at h > 0. Shown are the periodic

orbit (black dot at the center), the asymptotic orbits (labeled A), two transit orbits (T) and two non-transit

orbits (NT).

move on the branches of the corresponding hyperbolas q1p1 = constant, except in the case

q1p1 = 0, where q1 = 0 or p1 = 0. If q1p1 > 0, the branches connect the bounding line

segments p1 − q1 = ±c and if q1p1 < 0, they have both end points on the same segment. A

check of equation (2.4) shows that the orbits move as indicated by the arrows in Figure 2.1.

To interpret Figure 2.1 as a flow in R, notice that each point in the (q1, p1)-plane projection

corresponds to a 1-sphere, S1, or circle, in R given by,

q2
2 + p2

2 = 2
ωp

(h− λq1p1).
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Of course, for points on the bounding hyperbolic segments (q1p1 = h/λ), the 1-sphere col-

lapses to a point. Thus, the segments of the lines p1 − q1 = ±c in the projection correspond

to the 2-spheres bounding R. This is because each corresponds to a 1-sphere crossed with

an interval where the two end 1-spheres are pinched to a point.

We distinguish nine classes of orbits grouped into the following four categories:

1. The point q1 = p1 = 0 corresponds to an invariant 1-sphere S1
h, an unstable periodic

orbit in R of energy H2 = h. This 1-sphere is given by,

q2
2 + p2

2 = 2
ωp
h, q1 = p1 = 0. (2.8)

It is an example of a normally hyperbolic invariant manifold (NHIM) (see [17]). Roughly,

this means that the stretching and contraction rates under the linearized dynamics

transverse to the 1-sphere dominate those tangent to the 1-sphere. This is clear for

this example since the dynamics normal to the 1-sphere are described by the exponen-

tial contraction and expansion of the saddle point dynamics. Here the 1-sphere acts

as a “big saddle point”. See the black dot at the center of the (q1, p1)-plane on the left

side of Figure 2.1.

2. The four half open segments on the axes, q1p1 = 0, correspond to four cylinder surfaces

of orbits asymptotic to this invariant 1-sphere S1
h either as time increases (q1 = 0) or as

time decreases (p1 = 0). These are called asymptotic orbits and they are the stable

and the unstable manifolds of S1
h. The stable manifolds, W s

±(S1
h), are given by,

q2
2 + p2

2 = 2
ωp
h, q1 = 0, p1 arbitrary. (2.9)

W s
+(S1

h) (with p1 > 0) is the branch entering from n1 and W s
−(S1

h) (with p1 < 0) is the

branch entering from n2. The unstable manifolds, W u
±(S1

h), are given by,

q2
2 + p2

2 = 2
ωp
h, p1 = 0, q1 arbitrary (2.10)

W u
+(S1

h) (with q1 > 0) is the branch exiting from n2 and W u
−(S1

h) (with q1 < 0) is the

branch exiting from n1. See the four orbits labeled A of Figure 2.1.

3. The hyperbolic segments determined by q1p1 = constant > 0 correspond to two solid

cylinders of orbits which cross R from one bounding 2-sphere to the other, meeting
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both in the same hemisphere; the northern hemisphere if they go from p1− q1 = +c to

p1− q1 = −c, and the southern hemisphere in the other case. Since these orbits transit

from one realm to another, we call them transit orbits. See the two orbits labeled T

of Figure 2.1.

4. Finally the hyperbolic segments determined by q1p1 = constant < 0 correspond to two

cylinders of orbits inR each of which runs from one hemisphere to the other hemisphere

on the same bounding 2-sphere. Thus if q1 > 0, the 2-sphere is n2 (p1 − q1 = −c) and

orbits run from the southern hemisphere (q1 + p1 < 0) to the northern hemisphere

(q1 + p1 > 0) while the converse holds if q1 < 0, where the 2-sphere is n1. Since these

orbits return to the same realm, we call them non-transit orbits. See the two orbits

labeled NT of Figure 2.1.

We define the transition region, Th, as the region of initial conditions of a given initial energy

h which transit from one side of the neck region to the other. This is the set of all transit

orbits, which has the geometry of a solid cylinder. The transition region, Th, is made up of

one half which goes to the right (from n1 to n2), Th+, defined by q1p1 = constant > 0 with

both q1 > 0 and p1 > 0, and the other half which goes to the left (from n2 to n1), Th−,

defined by q1p1 = constant > 0 with both q1 < 0 and p1 < 0. The boundaries are ∂Th+ and

∂Th−, respectively. The closure of ∂Th, ∂Th, is equal to the boundaries ∂Th+ and ∂Th−, along

with the periodic orbit S1
h, i.e., ∂Th− ∪ ∂Th+ ∪ S1

h.

In summary, for the conservative case, the boundary of the transition region, ∂Th, has the

topology of a cylinder. The topology of ∂Th will be different for the dissipative case, as will

be shown in later sections. For convenience, we may refer to ∂Th and ∂Th interchangeably.

2.2.2 McGehee representation of the equilibrium region

McGehee [18], building on the work of Conley [19], proposed a representation which makes

it easier to visualize the region R. Recall that R is a 3-dimensional manifold that is home-

omorphic to S2 × I. In [18], it is represented by a spherical annulus bounded by the two

2-spheres n1, n2, as shown in Figure 2.2(c).

Figure 2.2(a) is a cross-section of R. Notice that this cross-section is qualitatively the same

as the saddle projection illustration in Figure 2.1. The full picture (Figure 2.2(c)) is obtained

by rotating this cross section, Figure 2.2(b), about the indicated axis, where the azimuthal
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(b) (c)(a)

n1

n2

p
1

q
1

NT

NT
T

T

A

A

A

A

Figure 2.2: (a) The projection onto the (q1, p1)-plane, the saddle projection, with labels consistent with the

text and (b) and (c). (b) The cross-section of the flow in the R region of the energy surface. The north and

south poles of bounding sphere ni are labeled as Ni and Si, respectively. (c) The McGehee representation

of the flow on the boundaries of the R region, highlighting the features on the bounding spheres n1 and n2

for h > 0.

angle ω roughly describes the angle in the center projection in Figure 2.1. The following

classifications of orbits correspond to the previous four categories:

1. There is an invariant 1-sphere S1
h, a periodic orbit in the region R corresponding to

the black dot in the middle of Figure 2.2(a). Notice that this 1-sphere is the equator

of the central 2-sphere given by p1 − q1 = 0.

2. Again let n1, n2 be the bounding 2-spheres of region R, and let n denote either n1

or n2. We can divide n into two hemispheres: n+, where the flow enters R, and n−,

where the flow leaves R. There are four cylinders of orbits asymptotic to the invariant

1-sphere S1
h. They form the stable and unstable manifolds which are asymptotic to the

invariant 1-sphere S1
h. Topologically, both invariant manifolds look like 2-dimensional

cylinders or “tubes” (S1 × R) inside a 3-dimensional energy manifold. The interior of
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the stable manifolds W s
±(S1

h) and unstable manifolds W u
±(S1

h) can be given as follows

int(W s
+(S1

h)) = {(q1, p1, q2, p2) ∈ R | p1 > q1 > 0},

int(W s
−(S1

h)) = {(q1, p1, q2, p2) ∈ R | p1 < q1 < 0},

int(W u
+(S1

h)) = {(q1, p1, q2, p2) ∈ R | q1 > p1 > 0},

int(W u
−(S1

h)) = {(q1, p1, q2, p2) ∈ R | q1 < p1 < 0}.

(2.11)

The exterior of these invariant manifolds can be given similarly from studying Figure

2.2(a) and (b).

3. Let a+ and a− (where q1 = 0 and p1 = 0 respectively) be the intersections of the stable

and unstable manifolds with the bounding sphere n. Then a+ appears as a 1-sphere

in n+, and a− appears as a 1-sphere in n−. Consider the two spherical caps on each

bounding 2-sphere given by

d+
1 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = +c, p1 > q1 > 0},

d−1 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = +c, q1 < p1 < 0},

d+
2 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = −c, p1 < q1 < 0},

d−2 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = −c, q1 > p1 > 0}.

Since d+
1 is the spherical cap in n+

1 bounded by a+
1 , then the transit orbits entering R

on d+
1 exit on d−2 of the other bounding sphere. Similarly, since d−1 is the spherical cap

in n−1 bounded by a−1 , the transit orbits leaving on d−1 have come from d+
2 on the other

bounding sphere. Note that all spherical caps where the transit orbits pass through

are in the interior of stable and unstable manifold tubes.

4. Let b be the intersection of n+ and n− (where q1 + p1 = 0). Then, b is a 1-sphere

of tangency points. Orbits tangent at this 1-sphere “bounce off,” i.e., do not enter R
locally. Moreover, if we let r+ be a spherical zone which is bounded by a+ and b, then

non-transit orbits entering R on r+ exit on the same bounding 2-sphere through r−

which is bounded by a− and b. It is easy to show that all the spherical zones where

non-transit orbits bounce off are in the exterior of stable and unstable manifold tubes.

The McGehee representation provides an additional, perhaps clearer, visualization of the

dynamics in the equilibrium region. In particular, the features on the two spheres, n1 and
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n2, which form ∂R for a constant h > 0, can be considered in the dissipative case as well, and

compared with the situation in the conservative case, as shown for some examples below.

The spheres n1 and n2 can be considered as spherical Poincaré sections parametrized by

their distance from the saddle point, c, which reveal the topology of the transition region

boundary, ∂Th, particularly through how the geometry of a+
i and a−i (for i = 1, 2) change as

c changes.

2.3 Uncoupled system in the dissipative case: Ball rolling

on a stationary surface

As pointed out in the introduction, when applying the symplectic change of variables con-

sisting of the generalized eigenvectors of the conservative system to the dissipative system,

the saddle projection and focus projection are coupled in some systems, while in others

systems they are not. According to the coupling conditions, the systems are classified into

two categories: uncoupled systems and coupled systems. In this section, we will discuss the

uncoupled systems first.

Among the examples of escape from potential wells, a small ball or particle moving in

an idealized fashion on a surface is an easy one from the perspective of both theory and

experiment. The tracking of the moving object is easily executed by using a high-speed

digital camera which is much easier than measurements of structural snap-through or ship

motion, not to mention the motion of spacecraft in space. It can be either an inertial system

or a gyroscopic system depending on whether the surface is stationary or rotating, due to a

turntable, for instance [20]. The easy switch between non-gyroscopic system and gyroscopic

system makes it easy to compare their similarities and differences in escape from potential

wells. The mathematical model of a rolling ball on a stationary surface was established in

[21]. Experiments [10, 22] regarding escape from the potential wells on similar surfaces were

shown to validate the theory of the phase space conduits predicted by the mathematical

model, which mediate the transitions between wells in the system. The dissipation of energy

cannot be avoided in any physical experiment, but over small enough time-scales of interest,

[10] justified that dissipation could be ignored. The good agreement between the theory and

experiment to within 1% indicates the robustness of the transition tube in the conservative

systems. However, it is still not clear how dissipation affects the transition of a rolling ball on
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Figure 2.3: The graph of the example saddle surface considered, based on (2.12). The contours of the

surface are projected on the bottom plane. The z direction is shown scaled by a factor of 2 compared to x

and y in order to highlight the saddle nature of the surface.

a surface and what the phase space structure controlling the transition in the corresponding

dissipative system is. In the current example, we will present the answers.

Here we consider a ball with unit mass rolling on a surface without slipping. Before analyzing

the dynamical behavior of the rolling ball, a Cartesian coordinate system o-xyz with z

oriented upward is established. Thus, the equations of the surface can be determined by

z = H(x, y). In the current study, a saddle surface of the following form is selected,

H(x, y) = 1
2

(
k1x

2 + k2y
2
)
, k1 = −5.91 m−1, k2 = 3.94 m−1, (2.12)

which is shown in Figure 2.3.

Before analyzing the dynamical behavior of the system, one needs to obtain the equations of

motion. To do so, one can use either the Lagrangian approach or Hamiltonian approach [1].

In the Lagrangian approach, the kinetic energy and potential energy are needed to get the

Lagrangian function which will yield the Euler-Lagrangian equations. In the Hamiltonian

approach, the generalized momenta should be defined by introducing a Legendre transfor-

mation from the Lagrangian and then the Hamiltonian function can be given which will

generate the Hamilton’s equations. In Section 2.4, we will consider a more complicated sys-
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tem where the surface is not stationary, but it is rotating with a constant angular velocity

ω where the gyroscopic force is included. Since the stationary surface is just a special case

of the rotating surface where one takes angular velocity as zero, we do not separately derive

the governing equations for the stationary surface and rotating surface. The derivation of

the equations of motion will be briefly described for the current problem and readers can

refer to Section 2.4 for more details.

From the analysis in Section 2.4, one can set the angular velocity of the rotating surface

as zero to obtain the kinetic energy (the translational plus rotational without slipping),

K = 1
2
I (ẋ2 + ẏ2 + ż2), and potential energy, U = gz, where g = 9.81m/s2 is the gravitational

acceleration and z and ż are written in terms of x, y, ẋ and ẏ via the relationship z = H(x, y).

The factor I = 7/5 is introduced by including rotational kinetic energy for a ball rolling

without slipping. See details in the supplemental material in [10]. If we consider a particle

sliding on the surface, we have I = 1. The kinetic energy K and potential energy U are,

K(x, y) = 1
2
I
[
ẋ2 + ẏ2 + (H,xẋ+H,yẏ)2] ,

U(x, y) = gH(x, y),
(2.13)

where H,x = ∂H/∂x and H,y = ∂H/∂y. Thus, one can define the Lagrangian function by,

L (x, y) = K (x, y, ẋ, ẏ)− U(x, y), (2.14)

which generates the Euler-Lagrange equations,

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Qi, (2.15)

where qi are the generalized coordinates (x, y) and Qi are the non-conservative forces. In

the current problem, a small linear viscous damping, proportional to the magnitude of the

inertial velocity, is considered, with the form given via a Rayleigh dissipation function as,

Qx = −cd
[(

1 +H2
,x

)
ẋ+H,xH,yẏ

]
,

Qy = −cd
[(

1 +H2
,y

)
ẏ +H,xH,yẋ

]
,

(2.16)
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where cd is the coefficient of damping. The equations of motion for the current problem are,

I
(
1 + k2

1x
2
)
ẍ+ Ik1k2xyÿ + Ik2

1xẋ
2 + Ik1k2xẏ

2 + gk1x+ cd
[(

1 + k2
1x

2
)
ẋ+ k1k2xyẏ

]
= 0,

Ik1k2xyẍ+ I
(
1 + k2

2y
2
)
ÿ + Ik1k2yẋ

2 + Ik2
2yẏ

2 + gk2y + cd
[(

1 + k2
2y

2
)
ẏ + k1k2xyẋ

]
= 0.

(2.17)

Once the Lagrangian system is established, one can transform it to a Hamiltonian system

by use of the Legendre transformation,

pi =
∂L
∂q̇i

, H (qi, pi) =
n∑
i=1

piq̇i − L (qi, pi) , (2.18)

where pi are called the generalized momenta conjugate to the generalized coordinates qi and

H the Hamiltonian function. In the current case, the Legendre transformation is given by,

px =
∂L
∂ẋ

= ẋ− yω +H2
,xẋ+H,xH,yẏ,

py =
∂L
∂ẏ

= ẏ + xω +H,xH,yẋ+H2
,yẏ.

(2.19)

Therefore, one obtains the Hamiltonian function,

H =

[
p2
x

(
1 +H2

,y

)
− 2pxpyH,xH,y + p2

y

(
1 +H2

,x

)]
2I
(
1 +H2

,x +H2
,y

) + gH, (2.20)

where px and py are the momenta conjugate to x and y, respectively. The comma in the

subscript means the partial derivative with respect to the following coordinate. The general

form of the Hamilton’s equations with damping [1] are given by,

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

+Qi. (2.21)

where Qi is the same non-conservative generalized force written in terms of (q, p) variables.

For simplicity, the specific form of Hamilton’s equations for the current problem is not listed

here.

For the surface adopted in (2.12), it has a saddle type equilibrium point at the origin (0, 0).

To study the transition from one side of the bottleneck to the other, the local dynamical

behavior near the equilibrium point plays a critical role. Thus, we will obtain the linearized

Hamiltonian equations around the equilibrium point to study the local properties. A short
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computation for (2.21) gives the linearized equations of motion in Hamiltonian form as,

ẋ = px/I,

ẏ = py/I,

ṗx = −gk1x− cdpx/I,

ṗy = −gk2y − cdpy/I.

(2.22)

We introduce the following re-scaled parameters,

(q̄1, q̄2) = (x, y) , (p̄1, p̄2) = (px, py) /I, (cx, cy) = −g (k1, k2) /I, ch = cd/I, (2.23)

and the equations of motion can be rewritten in the simpler re-scaled form,

˙̄q1 = p̄1,

˙̄q2 = p̄2,

˙̄p1 = cxq̄1 − chp̄1,

˙̄p2 = cy q̄2 − chp̄2.

(2.24)

Written in matrix form, with column vector z̄ = (q̄1, q̄2, p̄1, p̄2)T , we have ˙̄z = Az̄, where

A = M +D, i.e.,

˙̄z = Mz̄ +Dz̄, (2.25)

where,

M =


0 0 1 0

0 0 0 1

cx 0 0 0

0 cy 0 0

 , D = ch


0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1

 . (2.26)

The corresponding quadratic Hamiltonian for the linearized system is,

H2(q̄1, q̄2, p̄1, p̄2) = 1
2

(
p̄2

1 + p̄2
2

)
− 1

2

(
cxq̄

2
1 + cy q̄

2
2

)
. (2.27)
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2.3.1 Analysis in the conservative system

First we analyze the behavior in the conservative system which can be obtained by taking zero

damping, ch = 0. It is straightforward to obtain the eigenvalues of the conservative system

which are of the form ±λ and ±iωp as expected, since the linearization matrix A = M is an

infinitesimal symplectic matrix (also known as a Hamiltonian matrix) [23, 24] where λ and

ωp are positive constants given by λ =
√
cx and ωp =

√−cy. The corresponding eigenvectors

are defined as u±λ and uωp± ivωp , where u±λ, uωp , and vωp are real vectors with the following

form,

u+λ =
(
λ2 − cy, 0, λ3 − λcy, 0

)
,

u−λ =
(
−λ2 + cy, 0, λ

3 − λcy, 0
)
,

uωp =
(
0, ω2

p + cx, 0, 0
)
,

vωp =
(
0, 0, 0, ω3

p + ωpcx
)
.

(2.28)

Considering the change of variables defined by,

z̄ = Cz, (2.29)

where z̄ = (q̄1, q̄2, p̄1, p̄2)T and z = (q1, q2, p1, p2)T , with C =
(
uλ, uωp , u−λ, vωp

)
where uλ, etc,

are understood as column vectors, one can find,

CTJC =

(
0 D̄

−D̄ 0

)
, D̄ =

(
dλ 0

0 dωp

)
,

where,

dλ = 2λ
[
(cx − cy)λ2 − cxcy + c2

y

]
,

dωp = ωp
[
(cx − cy)ω2

p + c2
x − cxcy

]
,

and J is the 4× 4 canonical symplectic matrix,

J =

(
0 I2

−I2 0

)
, (2.30)

where I2 is the 2× 2 identity matrix.
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We can introduce two factors s1 =
√
dλ and s2 =

√
dωp to the columns in C which makes it

a symplectic matrix, i.e., satisfying CTJC = J . The final form of the symplectic matrix is,

C =


λ2−cy
s1

0 −λ2+cy
s1

0

0
ω2
p+cx

s2
0 0

λ3−λcy
s1

0 λ3−λcy
s1

0

0 0 0
ω3
p+ωpcx

s2

 . (2.31)

The equations of motion in the symplectic eigenspace (i.e., the z variables) can be ob-

tained as,

ż = Λz, (2.32)

where Λ = C−1MC is the conservative part of the dynamics,

Λ =


λ 0 0 0

0 0 0 ωp

0 0 −λ 0

0 −ωp 0 0

 . (2.33)

Thus, via the transformation (2.29), the equations of motion in the conservative system can

be rewritten in a normal form given in (2.3) with Hamiltonian (2.1) whose solutions are

given by (2.4).

Behavior in the position space Recalling the solutions in (2.4) and the symplectic

matrix C in (2.31), we obtain the general (real) solutions of the conservative system in phase

space in the form,

z̄(t) = (q̄1, q̄2, p̄1, p̄2)T

= q0
1e
λtu+λ + p0

1e
−λtu−λ + Re

[
β0e
−iωpt

(
uωp − ivωp

)]
,

(2.34)

where q0
1, p0

1, q0
2, p0

2 are real and determined by initial conditions, where β0 = q0
2 + ip0

2. In

particular, we have,

q̄1(t) =
λ2 − cy
s1

q0
1e
λt − λ2 − cy

s1

p0
1e
−λt,

q̄2(t) =
ω2
p + cx

s2

(
q0

2 cosωpt+ p0
2 sinωpt

)
.

(2.35)
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Notice that all trajectories in the configuration space in R must evolve within the energy

manifold which is bounded by the zero velocity curve (corresponding to p̄1 = p̄2 = 0)

[8, 16, 25, 26] given by solving (2.27) as,

q̄2 = ±

√
−2h− cxq̄2

1

cy
. (2.36)

By examining the general solution, we can see the solutions on the energy surface fall into

different classes depending upon the limiting behavior of q̄1 as t goes to plus or minus infinity

according to the fact that q̄1(t) is dominated by the q0
1 and p0

1 terms when t → +∞ and

t→ −∞, respectively. Thus, the nine classes of orbits determined by varying the signs of q0
1

and p0
1 are classified into four categories.

1. If q0
1 = p0

1 = 0, we obtain a periodic solution with energy h. The periodic orbit, S1
h,

projects onto the (q̄1, q̄2) plane as a segment with length
√
−2h/cy.

2. Orbits with q0
1p

0
1 = 0 are asymptotic orbits. They are asymptotic to the periodic orbit,

which is the origin, labeled S1
h in Figure 2.1. Asymptotic orbits with either q0

1 = 0 or

p0
1 = 0 project into a strip S, as shown in Figure 2.4, bounded by lines,

q̄2 = ±
ω2
p + cx

s2

√
2h

ωp
. (2.37)

3. Orbits with q0
1p

0
1 > 0 are transit orbits because they cross the equilibrium region R

from −∞ (the left-hand side) to +∞ (the right-hand side) or vice versa.

4. Orbits with q0
1p

0
1 < 0 are non-transit orbits.

Figure 2.4 gives the four categories of orbits mentioned above. In the figure, S is the strip

confining the asymptotic orbits. Outside of the strip, the situation is simple and only non-

transit orbits exist which means the signs of q0
1 and p0

1 are independent of the direction of the

velocity and we always have q0
1p

0
1 < 0. The signs in each component of the equilibrium region

R complementary to the strip can be determined by limiting behavior of q̄1 for positive and

negative infinite time. For example, in the left two components the non-transit orbits stay

on the left side for t → ±∞ which indicates q0
1 < 0 and p0

1 > 0. Similarly, in the right

two components are q0
1 > 0 and p0

1 < 0. As one can determine from the discussions in the
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Figure 2.4: The flow in the equilibrium region R projected onto position space (q̄1, q̄2) in the conservative

system with fixed positive energy, H2 = h > 0, for a ball rolling on a stationary surface. Shown are the

unstable periodic orbit (vertical segment in the center), a typical asymptotic orbit winding onto the periodic

orbit; two transit orbits (blue); and two non-transit orbits (red). At each point on the bounding lines n1

or n2 (dashed) inside the strip S, there is a wedge of velocity dividing different types of orbits, inside of

which are transit orbits, and outside of which are non-transit orbits; specifically, the trajectories with initial

conditions on the boundary are the orbits asymptotic to the unstable periodic orbit. See the text for the

explanation of the details.

phase space of the equilibrium region, the asymptotic orbits are the stable and unstable

manifolds of a periodic orbit, which acts as a separatrix, the boundary of transition orbits

and non-transit orbits. Denoting (q̄10, q̄20, p̄10, p̄20) as the initial conditions in phase space,

the Hamiltonian function for asymptotic orbits in the phase space for the conservative system

can be rewritten using the initial conditions as,

q̄2
20

bce
+
p̄2

20

c2
e

= 0, (2.38)

where be and ce can be found in (2.49). The form of (2.38) is a cylinder or tube which will

be discussed later.
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Inside the strip, the situation is more complicated because the signs of q0
1 p

0
1 are no longer

independent of the direction of velocity. At each position inside the strip, there is a wedge

of velocity, as proved in [7, 8, 16, 19, 27], separating the transit orbits and non-transit

orbits whose two boundaries are given by the angles θ± = arctan (p̄20±/p̄10) with respect to

the q̄1-axis, where,

p̄10 = −q̄10

√
cx, p̄20± = ±

√
2h+ cy q̄2

20, (2.39)

See the shaded wedges in Figure 2.4. Here, the derivations are ignored for simplicity (they

can be found in the analysis for the dissipative system in [8]). As a visualization and

example, wedges on the two vertical bounding line segments are given. For example, consider

the intersection of strip S with the left-most vertical line, n1. On this subsegment, there

exists a non-empty wedge of velocity at each position. Orbits with their velocity inside the

wedge are transit orbits (q0
1p

0
1 > 0), while orbits with velocity outside of the wedge are non-

transit (q0
1p

0
1 < 0). Orbits with their velocity on the boundary of the wedge are asymptotic

(q0
1p

0
1 = 0). The situation on the right-hand side subsegment is similar. Notice that the

magnitude of the wedge depends on the initial positions (q̄10, q̄20). On the boundary of the

strip, only one result of p̄20± exists which indicates the wedge becomes a line along the

boundary.

2.3.2 Analysis in the dissipative system

For the dissipative system, we still use the symplectic matrix C in (2.31) to perform a

transformation, via (2.29), to the symplectic eigenspace, even though this is no longer the

true eigenspace of the dissipative linearization matrix A = M +D. The equations of motion

in the symplectic eigenspace are,

ż = Λz + ∆z, (2.40)

where Λ = C−1MC is the conservative part of the dynamics, as before, and the transformed

damping matrix is,

∆ = C−1DC = −ch


1
2

0 1
2

0

0 0 0 0
1
2

0 1
2

0

0 0 0 1

 . (2.41)

To analyze the behavior in the dissipative eigenspace (as opposed to the symplectic eigenspace),
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the eigenvalues and eigenvectors, βi and uβi , respectively, (i = 1, ..., 4), are,

β1,2 = −δ ∓ 1
2

√
c2
h + 4λ2, uβ1,2 =

(
δ, 0, λ± 1

2

√
c2
h + 4λ2, 0

)
,

β3,4 = −δ ± iωd, uβ3,4 = (0, ωp, 0,−δ ± iωd) ,
(2.42)

where δ = 1
2
ch, ωd = ωp

√
1− ξ2

d and ξd = δ/ωp. Thus, the general (real) solutions are,

q1(t) = k1e
β1t + k2e

β2t, p1(t) = k3e
β1t + k4e

β2t,

q2(t) = k5e
−δt cosωdt+ k6e

−δt sinωdt,

p2(t) =
k5

ωp
e−δt (−δ cosωdt− ωd sinωdt) +

k6

ωp
e−δt (ωd cosωdt− δ sinωdt) ,

(2.43)

where,

k1 =
q0

1

(
2λ+

√
c2

1 + 4λ2
)
− c1p

0
1

2
√
c2

1 + 4λ2
, k2 =

q0
1

(
−2λ+

√
c2

1 + 4λ2
)

+ c1p
0
1

2
√
c2

1 + 4λ2
,

k3 =
p0

1

(
−2λ+

√
c2

1 + 4λ2
)
− c1q

0
1

2
√
c2

1 + 4λ2
, k4 =

p0
1

(
2λ+

√
c2

1 + 4λ2
)

+ c1q
0
1

2
√
c2

1 + 4λ2
,

k5 = q0
2, k6 =

p0
2ωp + q0

2δ

ωd
.

Taking the total derivative of the Hamiltonian with respective to time along trajectories and

using (2.40), we have,
dH2

dt
= −1

2
chλ (q1 + p1)2 − chωpp2

2 ≤ 0,

which means the Hamiltonian is generally decreasing (more precisely, non-increasing) due to

damping.

The linear flow in R. Similar to the discussions in the conservative system, we still

choose the same equilibrium region R to consider the projections on the (q1, p1)-plane and

(q2, p2)-plane, respectively. Different from the saddle × center projections in the conservative

system, here we see saddle × focus projections in the dissipative system. The stable focus is

a damped oscillator with frequency of ωd = ωp
√

1− ξ2
d. Different classes of orbits can also

be grouped into the following four categories:
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Figure 2.5: The flow in the equilibrium region for the dissipative system has the form saddle × focus.

On the left is shown the saddle projection onto the (q1, p1)-plane. The black dot at the origin represents

focus-type asymptotic orbits with only a focus projection, thus oscillatory dynamics decaying towards the

equilibrium point. The asymptotic orbits (labeled A) are the saddle-type asymptotic orbits which are tilted

clockwise compared to the conservative system. They still form the separatrix between transit orbits (T)

and non-transit orbits (NT). The hyperbolas, q1p1 = h/λ, are no longer the boundary of trajectories with

initial conditions on the bounding sphere (n1 or n2) due to the dissipation of the energy. The boundary of

the shaded region are still the fastest trajectories with initial conditions on the bounding sphere, but are not

strictly hyperbolas. Note that the saddle projection and focus projection are uncoupled in this dissipative

system.

1. The point q1 = p1 = 0 corresponds to a focus-type asymptotic orbit with motion

purely in the (q2, p2)-plane (see black dot at the origin of the (q1, p1)-plane in Figure

2.5). Such orbits are asymptotic to the equilibrium point itself, rather than a periodic

orbit of energy h as in the conservative case. Due to the effect of damping, the periodic

orbits on each energy manifold of energy h do not exist. The 1-sphere S1
h still exists,

but is no longer invariant. Instead, it corresponds to all the initial conditions of initial

energy h which are focus-type asymptotic orbits. The projection of S1
h to the config-

uration space in the dissipative system is the same as the projection of the periodic
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orbit in the conservative system.

2. The four half open segments on the lines governed by q1 = chp1/(2λ ±
√
c2

1 + 4λ2)

correspond to saddle-type asymptotic orbits. See the four orbits labeled A in Figure

2.5.

3. The segments which cross R from one boundary to the other, i.e., from p1−q1 = +c to

p1 − q1 = −c in the northern hemisphere, and vice versa in the southern hemisphere,

correspond to transit orbits. See the two orbits labeled T of Figure 2.5.

4. Finally the segments which run from one hemisphere to the other hemisphere on the

same boundary, namely which start from p1−q1 = ±c and return to the same boundary,

correspond to non-transit orbits. See the two orbits labeled NT of Figure 2.5.

As done in Section 2.2.1, we define the transition region, Th, as the region of initial conditions

of a given initial energy h which transit from one side of the neck region to the other. As

before, the transition region, Th, is made up of one half which goes to the right, Th+, and the

other half which goes to the left, Th−. The boundaries are ∂Th+ and ∂Th−, respectively. The

closure of ∂Th, ∂Th, is equal to the boundaries ∂Th+ and ∂Th−, along with the focus-type

asymptotic initial conditions S1
h, i.e., as before, ∂Th− ∪ ∂Th+ ∪ S1

h.

As shown below, for the dissipative case, the closure of the boundary of the transition region,

∂Th, has the topology of an ellipsoid, rather than a cylinder as in the conservative case. As

before, for convenience, we may refer to ∂Th and ∂Th interchangeably.

McGehee representation. Similar to the McGehee representation for the conservative

system given in Section 2.2.2 to visualize the region R, here we utilize the McGehee rep-

resentation again to illustrate the behavior in same region for the dissipative system. All

labels are consistent throughout the study.

Note that since the McGehee representation uses spheres with the same energy to show the

dynamical behavior in phase space, while the energy of any particular trajectory in the dissi-

pative system decreases gradually during evolution, Figures 2.6(b) and 2.6(c) show only the

initial conditions at a given initial energy. Therefore, in the present McGehee representation,

only the initial conditions on the two bounding spheres are shown and discussed in the next

part. In addition, the black dot near the orange dots a±i and b±i (i = 1, 2) in Figure 2.6(b)
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Figure 2.6: (a) The projection onto the (q1, p1)-plane, the saddle projection, with labels consistent with the

text and (b) and (c). (b) The cross-section of the flow in the R region of the energy surface. The north and

south poles of bounding sphere ni are labeled as Ni and Si, respectively. (c) The McGehee representation

of the flow in the region R.

are the corresponding dots in the conservative system which are used to show how damping

affects the transition.

The following classifications of orbits correspond to the previous four categories:

1. 1-sphere S1
h exists in the regionR corresponding to the black dot in the middle of Figure

2.6(b) and the equator of the central 2-sphere given by p1 − q1 = 0 in 2.6(c). The 1-

sphere gives the initial conditions of the initial energy h for all focus-type asymptotic

orbits. The same 1-sphere in the conservative system is invariant under the flow, that

is, a periodic orbit of constant energy h. However, the corresponding S1
h is not invariant

in the dissipative system, since the energy is decreasing during evolution due to the

damping.

2. There are four 1-spheres in the region R starting in the bounding 2-spheres n1 and n2

which give the initial conditions for orbits asymptotic to the equilibrium point. Two

of them in n+, labeled by a+, are stable saddle-type asymptotic orbits and the other

two in n−, labeled by a−, are unstable asymptotic orbits, where a+ and a− are given
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by,

a+
1 = {(q1, p1, q2, p2) ∈ R| (q1, p1) = (kp, 1)c/(1− kp)} ,

a−1 = {(q1, p1, q2, p2) ∈ R| (q1, p1) = (−1, kp)c/(1 + kp)} ,

a+
2 = {(q1, p1, q2, p2) ∈ R| (q1, p1) = (kp, 1)c/(kp − 1)} ,

a−2 = {(q1, p1, q2, p2) ∈ R| (q1, p1) = (1,−kp)c/(1 + kp)} ,

(2.44)

where kp = ch/(2λ+
√
c2
h + 4λ2). As shown in Figure 2.6(c), a+ appears as an orange

circle in n+, and a− appears as an orange circle in n−. The corresponding curves for

the same energy in the conservative system are shown as black curves.

3. Consider the two spherical caps on each bounding 2-sphere, n1 and n2, given by,

d+
1 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = c, q1 > ckp/(1− kp)} ,

d−1 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = c, q1 < −c/(1 + kq)} ,

d+
2 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = −c, q1 < ckp/(kp − 1)} ,

d−2 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = −c, q1 > c/(1 + kp)} .

(2.45)

The spherical cap d+
1 , bounded by the a+

1 on n+
1 , gives all initial conditions of initial

energy h for the transit orbits starting from the bounding sphere n+
1 and entering R.

Similarly, the spherical cap b−1 in n−1 , bounded by a−1 , determines all initial conditions

of initial energy h for transit orbits starting on the bounding sphere n−1 and leaving R.

The spherical caps d+
2 and d−2 on n2 have similar dynamical behavior. Note that in the

conservative system the transit orbits entering R on d+ will leave on d− in the same 2-

sphere. However, those transit orbits with the same initial conditions in the dissipative

system will not leave on the corresponding 2-sphere, but leave on another sphere with

lower energy. Moreover, the spherical caps d+ shrink and d− expand compared to that

of the conservative system. Since the area of the caps d+ and b− determines the amount

of transit orbits and non-transit orbits respectively, the shrinkage of the caps d+ and

expansion of the caps d− means the damping reduces the probability of transition and

increases the probability of non-transition, respectively.

4. Let b be the intersection of n+ and n− (where q1 + p1 = 0). Then, b is a 1-sphere

of tangency points. Orbits tangent at this 1-sphere “bounce off”, i.e., do not enter R
locally. The spherical zones r1 and r2, bounded by a+

i and a−i , give the initial conditions

for non-transit orbits zone. r+, bounded by a+
i and bi, are the initial conditions of initial
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energy h for non-transit orbits entering R and r−i are the initial conditions of initial

energy h for non-transit orbits leaving R. Note that unlike the shift of the spherical

caps in the dissipative system compared to that of the conservative system, the tangent

spheres b1 and b2 do not move when damping is taken into account. Moreover, in the

conservative system, non-transit orbits enter R on r+ and then exit on the same energy

bounding 2-sphere through r−, but the non-transit orbits in the dissipative system exit

on a different 2-sphere with different energy determined by the damping and the initial

conditions.

Trajectories in the equilibrium region. From the analysis in the eigenspace, we obtain

the general solution for the dissipative system in the original coordinates, that is,

q̄1(t) =
λ2 − cy
s1

(
k̄1e

β1t − k̄2e
β2t
)
,

q̄2(t) =
ω2
p + cx

s2

e−δt (k5 cosωdt+ k6 sinωdt) ,

(2.46)

where k̄1 = k1 − k3 and k̄2 = k4 − k2.

Analogous to the situation in the conservative system, we can still classify the orbits into

different classes depending on the limiting behavior of q̄1 as t tends to plus or minus infinity.

Four different categories of orbits can be obtained:

1. Orbits with k̄1 = k̄2 = 0 are focus-type asymptotic orbits.

2. Orbits with k̄1k̄2 = 0 are saddle-type asymptotic orbits.

3. Orbits with k̄1k̄2 > 0 are transit orbits.

4. Orbits with k̄1k̄2 < 0 are non-transit orbits.

Wedge of velocity and ellipse of transition. As discussed in Section 2.3.2, the initial

conditions of stable asymptotic orbits in the saddle projection of the phase space should be

governed by,

q1 = kpp1, (2.47)

which governs the stable asymptotic orbits which is the boundary of the transit orbits.

For the initial conditions in the position space and symplectic eigenspace, denoted by
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(q̄10, q̄20, p̄10, p̄20) and (q10, q20, p10, p20), respectively, they can be connected by the symplec-

tic matrix (2.31). By using (2.47) and the change of variables (2.29), the Hamiltonian

function for asymptotic orbits in the symplectic eigenspace can be rewritten by eliminating

q10, q20, p10, p20 and p̄10, as,
q̄2

10

a2
e

+
q̄2

20

b2
e

+
p̄2

20

c2
e

= 1, (2.48)

where,

ae =

√
h (kp − 1)2 (λ2 − cy)2

kps2
1λ

, be =

√
2h
(
ω2
p + cx

)2

s2
2ωp

, ce =

√
2hωp

(
ω2
p + cx

)2

s2
2

, (2.49)

which is geometrically an ellipsoid (topologically a 2-sphere). As (2.48) is the boundary

between transit and non-transit orbits starting at an initial energy h, we therefore refer to

the object described by (2.48) as the transition ellipsoid of energy h. The critical condition

for the existence of real solutions for p̄20 requires zero discriminant for (2.48), that is,

q̄2
10

a2
e

+
q̄2

20

b2
e

= 1, p̄20 = 0, (2.50)

which is an ellipse in the configuration space called the ellipse of transition, and is merely

the configuration space projection of the transition ellipsoid (2.48), first found in [8]. The

ellipse of the transition confines the existence of transit orbits of a given initial energy which

means the transit orbits can just exist inside the ellipse. For a specific position (q̄10, q̄20)

inside the ellipse, (q̄10/ae)
2 + (q̄20/be)

2 < 1, the solutions of (p̄10, p̄20) are written as,

p̄20 = ±ce

√
1− q̄2

10

a2
e

− q̄2
20

b2
e

, p̄10 =
kp + 1

kp − 1
λq̄10. (2.51)

Each pair of (p̄10, p̄20) determines an angle: θ = arctan(p̄20/p̄10), which together defines

the wedge of velocity. The boundary of the wedge gives the two asymptotic orbits at that

position.

Figure 2.7 gives the projection on the position space in the equilibrium region. The strip

projected onto configuration space in the conservative system which is the boundary of the

asymptotic orbits is replaced by the ellipse of transition, which restricts the existence of

transition for initial conditions of initial energy h to a locally bounded region. Outside the

ellipse, the situation is simple: only non-transit orbits exist. Inside the ellipse, the situation is
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Figure 2.7: The flow in the equilibrium region R projected onto position space (q̄1, q̄2) in the dissipative

system with fixed positive energy, H2 = h > 0, for a ball rolling on a stationary surface. Shown are different

types of orbits as discussed in the text. Notice that due to the dissipation of energy, the periodic orbit in

the conservative system does not exist, but is replaced by the initial conditions of initial energy h of the

focus-type asymptotic orbits. Moreover, the strip for the conservative system—which is the position space

projection of the tubes of transition at initial energy h—is replaced by the ellipse of transition. It means

that the existence of transit orbits are constrained by the ellipse so that the wedge of velocity, determining

the permissible direction of the transit orbits, only exists inside the ellipse. For a given fixed energy h, the

wedge of velocity for the dissipative system is a subset of the wedge for the conservative system which is

shown as a darker wedge.

more complicated since there is a wedge of velocity restricting the direction of transit orbits.

The orbits with velocity interior to the wedge are transit orbits, while orbits with velocity

outside the wedge are non-transit orbits. The boundary of the wedge gives the velocity for

the asymptotic orbits. Note that for different points in the position space, the size of the

wedge of velocity varies. The closer the wedge is to the boundary of the ellipse of transition,

the smaller it is. Clearly, on the ellipse the wedge becomes a line which means only one

asymptotic orbit exists there. Note that in the figure, the light grey shaded wedges are the

wedges for the dissipative system, while the dark grey shaded wedges partially covered by the
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light grey ones are for the conservative system of the same initial energy h. The significant

shrinking of the wedges from the conservative system to the dissipative system is caused by

damping. It means an increase in damping decreases the size of the ellipse of transition and

wedges on a specific point, which confirms our expectation.

2.3.3 Transition tube and transition ellipsoid

In the position space, we discussed how damping affects the transition. In fact, the strip

in the conservative system and ellipse in the dissipative system associated with respective

wedges of velocity can predict the transition and non-transition in the corresponding system

for a given energy in the position space.

To obtain the initial conditions for asymptotic orbits, the Hamiltonian function for asymp-

totic orbits has been rewritten in the form of a tube in (2.38) for the conservative system

and the form of an ellipsoid in (2.48) for the dissipative system, respectively. Here we refer

to them as the transition tube and transition ellipsoid, respectively. Compactly, both are

∂Th. See the tube and ellipsoid in Figure 2.8 and Figure 2.9, respectively. In the figures, the

tube and the ellipsoid give the boundaries of the initial conditions for transit orbits starting

with a given initial energy h in the conservative and the dissipative systems, respectively; all

transit orbits must have initial conditions inside the transition tube or transition ellipsoid,

respectively; non-transit orbits have initial conditions outside the boundary and asymptotic

orbits have initial conditions on the boundary; of course, the periodic orbit not only has

initial conditions on the boundary of the transition tube, but also evolves on the boundary.

Note that there is a critical surface boundary, given by S1
h, dividing the tube and ellipsoid

into two parts. The left side part is composed of transit orbits going to the right and the

right part for transit orbits going to the left.

The orbits with initial conditions on the critical surface S1
h are periodic orbits if in the

conservative system or focus-type asymptotic orbits if in the dissipative system. The periodic

orbit keeps evolving on the critical surface, while the focus-type asymptotic orbit gradually

approaches the equilibrium point and finally stops there. The critical surface also plays

another important role separating the motion of transit orbits and non-transit orbits. Transit

orbits can cross the surface, while non-transit orbits will bounce back before reaching it. Of

course, the asymptotic orbits move asymptotically towards the surface.



2.3. Uncoupled system in the dissipative case: Ball rolling on a stationary
surface 37

-0.3

-0.2

-0.1

0.1

0

0.1

0.2

0.05

0.3

0
0.1-0.05 0.050-0.1 -0.05-0.1

Periodic Orbit
Critical surface

Equilibrium point

}T S

T
A

A
NT

NT

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
-0.3

-0.2

-0.1

0

0.1

0.2

Transit

Non-Transit

NT

T

A

Wedge of velocity

Figure 2.8: Transition region boundary ∂Th which is a tube (cylinder) for the conservative system of an

idealized ball rolling on a stationary surface with initial energy h. The left figure shows the tube boundary

(the ellipse) separating the transit and non-transit orbits on the Poincaré section Σ, where the dots are

the initial conditions for the corresponding trajectories. The right figure shows the transition tube for a

given energy. The critical surface divides the transition tubes into two parts whose left part gives the

initial conditions for orbits transitioning to the right, and right part gives the initial conditions for orbits

transitioning to the left. Some trajectories are given to show how the transition tube controls the transition

whose initial conditions are shown as dots on the left Poincaré section with the same color.

Illustration of effectiveness. To illustrate the effectiveness of the transition tube and

transition ellipsoid, we choose a specific Poincaré section Σ revealing the transit region

and initial conditions (see dots) of the trajectories shown in the insets of the conservative

and dissipative case, respectively. For both the conservative and dissipative systems, the

trajectories with initial conditions inside the boundary of the transition can transit from

left to right, while trajectories with initial conditions outside of the boundary bounce back

to the region where they start; the trajectories with initial conditions on the boundary

are asymptotic to a periodic orbit or equilibrium point, for a conservative or dissipative

system, respectively. This proves the transition tube and transition ellipsoid can effectively

estimate the transition initial conditions in the conservative system and dissipative system,

respectively.

It should be noted from the Poincaré section in the dissipative system that the transit region
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Figure 2.9: Transition ellipsoid for the dissipative system of a rolling ball on a stationary surface. The

left figure shows the Poincaré section Σ, where the dots are the initial conditions for the corresponding

trajectories with the same color in the right figure and the solid ellipse is the set of initial conditions for

saddle-type asymptotic orbits. For comparison, the dashed ellipse of the tube boundary for the conservative

system with the same energy h is also given. On the right is the ellipsoid giving the initial conditions for all

transit orbits. The critical surface divides the ellipsoid into two parts. Each side of the ellipsoid gives the

initial conditions of transit orbits passing through the critical surface to the other side. In this figure, SA

and FA denote the saddle-type and focus-type asymptotic orbits, respectively.

for the dissipative system (see the area encompassed by the solid closed curve) is smaller

than the transit region for the conservative system (see the area encompassed by the dashed

closed curve) for the same initial energy h. The decrease in the area for the transition is

caused by the dissipation of the energy. In fact the transit orbit in the conservative system

and the non-transit orbit in the dissipative system plotted in the figure have the same initial

conditions which means the dissipation of energy can make a transit orbit in the conservative

system become a non-transit orbit if dissipation is added.

Up to now, we give the geometry governing the transition in both the position space and

phase space. In the position space the strip in the conservative system and the ellipse in

the dissipative system are the projections of the outline of the transition tube and transition

ellipsoid, respectively. The wedge of velocity on a specific position (q̄1, q̄2) has two boundaries.

The boundaries are the projections of the upper and lower bounds on the corresponding
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Poincaré section at q̄2.

2.4 Coupled system in the dissipative case: Ball rolling

on a rotating surface

In Section 2.3, we investigated the geometry of escape/transition in uncoupled systems (in

the symplectic eigenspace) which are generally inertial systems with equal damping in each

degree of freedom. Due to the uncoupled property, it is easy to obtain the analytical solutions

and the dynamical behavior. We have found the transition tube and transition ellipsoid gov-

erning the escape in the conservative and dissipative systems, respectively. Another category

of system is one in which the saddle and focus are coupled with each other when the system

is transformed to the corresponding eigenspace. The situation is more complicated but im-

portant and interesting. The first kind is an inertial system with unequal damping, like the

ship motion discussed in [13]. Another one is a system with both gyroscopic and dissipative

forces present. Such systems can display non-intuitive phenomena, like dissipation-induced

instabilities [3] as discussed in the introduction. In this section, we establish the mathemat-

ical models for some physical problems and reveal the geometry of escape/transition in such

systems.

In Section 2.3, the rolling ball on a stationary surface was studied and the effect of dissipative

forces was considered. We established it as a standard example to investigate the escape from

a potential well in inertial systems with equal damping and revealing the escape mechanism in

such systems. Here we further expand the framework regarding escape to a more complicated

situation where the surface is rotating such that gyroscopic forces exist. Several researchers

have investigated a ball or particle moving on a rotating surface [3, 4, 5, 28, 29], mainly due

to the unexpected dissipation-induced instabilities. The combination of the dissipative and

gyroscopic forces enriches the behavior in escape dynamics.

2.4.1 Governing equations

Consider a rotating surface with counterclockwise angular velocity ω as shown in Figure

2.10. Let X-Y -Z be an inertial frame, denoted as the N frame, with origin O, where X-Y

plane is horizontal and Z is vertical to the plane. Establish another rotating frame x-y-z,



40
Chapter 2. Linearized dynamics for escape and transition in the presence

of dissipative and gyroscopic forces

Figure 2.10: Inetial and rotating frames. The rotating coordinate system of x and y axes moves coun-

terclockwise with constant angular velocity ω relative to the inertial frame with X and Y axes. The z axis

coincides with the Z axis which is pointing out of the plane and is not shown here. We denote the unit

vectors along x, y, z by e1, e2 and e3, respectively.

denoted as the R frame, with the same origin O fixed on the rotating surface, where Oz

coincides with OZ. In this study, the geometrical parameters of the rotating surface are the

same as before given in (2.12).

The angular velocity vector of the R frame relative to the N frame is,

ωR/N = ωe3. (2.52)

A particle (or ball), denoted by P , with unit mass, moves on the rotating surface, with a

position vector described in the R frame as,

P(x, y, z, t) = x(t)e1 + y(t)e2 + z(t)e3, (2.53)

where (x, y, z) is the position of the mass in the R frame. The inertial velocity of the mass

can be written in the R frame as,

NvP = ẋe1 + ẏe2 + że3 + ωR/N ×P

= (ẋ− yω) e1 + (y + xω) e2 + że3.
(2.54)
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Considering the motion is constrained on the rotating surface, here z is not an independent

variable, but depends on x and y via z = H(x, y). Thus, the kinetic energy K and potential

energy U are,

K(x, y) = 1
2
I|NvP |2 = 1

2
I
[
(ẋ− yω)2 + (ẏ + xω)2 + (H,xẋ+H,yẏ)2] ,

U(x, y) = gH(x, y).
(2.55)

After obtaining the Lagrangian function, L = K − U , we can derive the Euler-Lagrange

equations given in (2.15). As discussed in [4], two types of damping can be considered in the

rotating surface system, i.e., internal damping and external damping. Internal damp-

ing is proportional to the relative velocity measured in the rotating frame, while external

damping is proportional to the inertial velocity. Thus, the mathematical form of two types

of the generalized damping forces are,

Qint
x = −cd

[(
1 +H2

,x

)
ẋ+H,xH,yẏ

]
,

Qint
y = −cd

[(
1 +H2

,y

)
ẏ +H,xH,yẋ

]
,

for internal damping (2.56)

and,

Qext
x = −cd

[(
1 +H2

,x

)
ẋ+H,xH,yẏ − ωy

]
,

Qext
y = −cd

[(
1 +H2

,y

)
ẏ +H,xH,yẋ+ ωx

]
,

for external damping (2.57)

where cd is the coefficient of damping. In the current problem, we only consider internal

damping, (Qx, Qy) = (Qint
x , Q

int
y ), due to the friction between the mass and the moving

surface, as the most physically relevant.

The equations of motion can be written in non-dimensional Hamiltonian form, using a Hamil-

tonian function H as given in Appendix A. Following the same procedure as for the ball

rolling on a stationary surface, we linearize the equations of motion around the saddle point

at the origin which gives the linearized non-dimensional Hamilton’s equation in matrix form,

˙̄z = Mz̄ +Dz̄, (2.58)
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where z̄ = (q̄1, q̄2, p̄1, p̄2)T is the displacement from the saddle point, and where,

M =


0 ω 1 0

−ω 0 0 1

cx 0 0 ω

0 cy −ω 0

 , D = ch


0 0 0 0

0 0 0 0

0 −ω −1 0

ω 0 0 −1

 . (2.59)

The quadratic Hamiltonian function corresponding to matrix M is,

H2(q̄1, q̄2, p̄1, p̄2) = 1
2

(
p̄2

1 + p̄2
2

)
+ ωp̄1q̄2 − ωp̄2q̄1 − 1

2

(
cxq̄

2
1 + cy q̄

2
2

)
. (2.60)

2.4.2 Analysis in the conservative system

In this section, the dynamic behavior in the conservative system will be analyzed. Here the

damping ch is set to zero which gives,

˙̄z = Mz̄. (2.61)

Curiously, we are able to use the eigenvectors of M in (2.59) and use them to construct a

symplectic linear change of variables which changes (2.61) into the simple normal form (2.3),

with the simple Hamiltonian function (2.1) and with solutions as given in (2.4). The details

are in Appendix A.

Trajectories in the equilibrium region. The flow in the equilibrium region R in the

symplectic eigenspace was performed for the normal form in Section 2.2 and will not be

repeated here. However, it is instructive to study the appearance of the orbits in the position

space for this particular problem, i.e., the (q̄1, q̄2) plane. Note that the evolution of all

trajectories must be restricted by the given energy h which forms the zero velocity curves

[7] (corresponding to v̇x = v̇y = 0) which bound the motion in the position space projection

and are determined by the following function,

q̄2 (q̄1) = ±

√
−2h− (cx + ω2) q̄2

1

cy + ω2
, (2.62)

which is obtained from (2.60).
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From the solutions in the symplectic eigenspace (2.4), we can obtain the general (real)

solutions in the position space by using the transformation matrix C in (A.16) which yields

the general (real) solutions with the form (2.34). Thus, we can obtain the solutions for q̄1

and q̄2, given the initial conditions in the eigenspace, (q0
1, q

0
2, p

0
1, p

0
2),

q̄1(t) =
λ2 − cy − ω2

s1

q0
1e
λt − λ2 − cy − ω2

s1

p0
1e
−λt − 2ωωp

s2

(
p0

2 cosωpt− q0
2 sinωpt

)
,

q̄2(t) = −2λω

s1

q0
1e
λt − 2λω

s1

p0
1e
−λt −

ω2
p + cx + ω2

s2

(
q0

2 cosωpt+ p0
2 sinωpt

)
.

(2.63)

Upon inspecting the general solution, we see that the solutions on the energy surface fall into

different classes depending upon the limiting behavior of q̄1(t) as t tends to plus or minus

infinity. As the q̄1(t) expression is dominated by the q0
1 term as t→ +∞, q̄1 tends to minus

infinity (staying on the left-hand side), is bounded (staying around the equilibrium point),

or tends to plus infinity (staying on the right-hand side) for q0
1 > 0, q0

1 = 0 and q0
1 < 0,

respectively. The statement holds if t → −∞ and −p0
1 replaces q0

1. Varying the signs of q0
1

and p0
1, and following the procedures described in [8, 19], one can also obtain the same nine

classes of orbits grouped into the same four categories as in Section 2.3.

1. If q0
1 = p0

1 = 0, we obtain a periodic solution with the following projection onto the

position space,
q̄2

1(
2ωωp

s2

√
2h
ωp

)2 +
q̄2

2(
ω2
p+cx+ω2

s2

√
2h
ωp

)2 = 1. (2.64)

Here, the initial energy is h = 1
2
ωp [(q0

2)2 + (p0
2)2]. Identical to what has been proved by

Conley [19] for the restricted three-body problem, this periodic orbit, shown in Figure

2.11, projects onto the (q̄1, q̄2) plane as an ellipse. Note that the size of the ellipse goes

to zero with h. It is different from the non-gyroscopic system where the periodic orbit

projects to a straight segment in the position space.

2. Orbits with q0
1p

0
1 = 0 are asymptotic orbits. They are asymptotic to the periodic orbits

of category 1. The asymptotic orbit with q0
1 = 0 projects into the strip S1 in the (q̄1, q̄2)

plane bounded by the lines,

q̄2 =
2λω

λ2 − cy − ω2
q̄1 ±

√(
4λωpω2

s2 (λ2 − cy − ω2)

)2

+

(
ω2
p + cx + ω2

s2

)2
√

2h

ωp
, (2.65)
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Figure 2.11: The flow in the equilibrium region R projected onto position space (q̄1, q̄2) in the conservative

system with fixed positive energy, H2 = h > 0, for a ball rolling on a rotating surface. Shown are the periodic

orbit acting as an ellipse; one asymptotic orbit gradually approaching the periodic orbit; two transit orbits;

and two non-transit orbits, one starting inside the strips and the other outside the strips. Note that the

dynamic behavior in the position space is identical to those in the circular restricted three-body problem

[15, 16].

while orbits with p0
1 = 0 project into the strip S2 bounded by the lines,

q̄2 = − 2λω

λ2 − cy − ω2
q̄1 ±

√(
4λωpω2

s2 (λ2 − cy − ω2)

)2

+

(
ω2
p + cx + ω2

s2

)2
√

2h

ωp
. (2.66)

In fact, S1 is for stable asymptotic orbits, while S2 is for unstable asymptotic orbits.

Notice the width of the strips depends on h and goes to zero as h→ 0.

3. Orbits with q0
1p

0
1 > 0 are transit orbits because they cross the equilibrium region R

from −∞ (the left-hand side) to +∞ (the right-hand side) or vice versa.

4. Orbits with q0
1p

0
1 < 0 are non-transit orbits.
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The wedge of velocity. To study the projection of the last two categories of orbits in

the restricted three-body problem, Conley [19] proved a couple of propositions to determine

whether at each position, (q̄1, q̄2), the wedge of velocity exists, in which q0
1p

0
1 > 0. See the

shaded wedges in Figure 2.11. In the current problem, the same behavior is observed. In the

next part, the derivation will be given by a more direct method than Conley’s, developed

in [8] for the more general dissipative system. Note that the orbits with velocity on the

boundary of a wedge satisfy q0
1p

0
1 = 0, making them asymptotic orbits (which will be used

in the derivation).

For initial conditions (q̄0
1, q̄

0
2, p̄

0
1, p̄

0
2) in the original phase space and (q0

1, q
0
2, p

0
1, p

0
2) in the

symplectic eigenspace, we can establish their relations by the symplectic matrix C in (A.16),

i.e., (q̄0
1, q̄

0
2, p̄

0
1, p̄

0
2)
T

= C (q0
1, q

0
2, p

0
1, p

0
2)
T

. Note that we have q0
1 = 0 and p0

1 = 0 for stable and

unstable asymptotic orbits, respectively. We can then express p0
1 (or q0

1), q0
2, p0

2 and p̄0
2 in

terms of q̄0
1, q̄0

2 and p̄0
1. After substituting q0

2 and p0
2 as a function of q̄0

1, q̄0
2 and p̄0

1 into the

Hamiltonian normal form (2.1) we can rewrite (2.1) for asymptotic orbits as,

ap
(
p̄0

1

)2
+ bpp̄

0
1 + cp = 0, (2.67)

where ap, bp, and cp are found in Appendix A and depend on i = 1, 2 for stable (q0
1 = 0)

and unstable (p0
1 = 0) asymptotic orbits, respectively. Thus, we can obtain the strips Si

(i = 1, 2) by taking the determinant, ∆̄ = b2
p − 4apcp, of the quadratic equation (2.67) to be

zero (i.e., ∆̄ = 0) which are exactly the same expressions as those in (2.65) and (2.66).

For ∆̄ > 0, we obtain two real values for p̄0
1 as,

p̄0
1 =
−bp ±

√
b2
p − 4apcp

2ap
, (2.68)

and then the expression for p̄0
2 is obtained as,

p̄0
2 =

p̄0
1λ
(
1 + cx + ω2

p

)
2 (1 + cx)

+

(
1 + cx − ω2

p

)
[q̄0

2λ+ (1 + cx) q̄
0
1]

2 (1 + cx)
. (2.69)

Therefore, the two initial velocities formed by the two asymptotic orbits can result in the

wedge of velocity with wedge angle θ = arctan (p̄0
2/p̄

0
1).

Up to now, we have obtained the strips and wedge of velocity. In Figure 2.11, S1 and S2

are the two strips mentioned above. Outside of each strip Si (i = 1, 2), the sign of q0
1 and
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p0
1 is independent of the direction of the velocity. These signs can be determined in each of

the components of the equilibrium region R complementary to both strips. For example, in

the left-most central components, q0
1 is negative and p0

1 is positive, while in the right-most

central components q0
1 is positive and p0

1 is negative. Therefore, q0
1p

0
1 < 0 in both components

and only non-transit orbits project onto these two components.

Inside the strips the situation is more complicated since the sign of q0
1p

0
1 depends on the

direction of the velocity. For simplicity we have indicated this dependence only on the two

vertical bounding line segments in Figure 2.11. For example, consider the intersection of

strip S1 with the left most vertical line. On this subsegment, there is at each point a wedge

of velocity in which q0
1 is positive. The sign of p0

1 is always positive on this segment, so orbits

with velocity interior to the wedge of velocity are transit orbits (q0
1p

0
1 > 0). Of course, orbits

with velocity on the boundary of the wedge are asymptotic (q0
1p

0
1 = 0), while orbits with

velocity outside of the wedge are non-transit (q0
1p

0
1 < 0). In Figure 2.11, only one transit

and one asymptotic orbit starting on this subsegment are illustrated. The situation on the

remaining three subsegments is similar.

2.4.3 Analysis in the dissipative system.

Recall that in the dissipative system of the rolling ball on a stationary surface the saddle pro-

jection and focus projection in the eigenspace of the conservative system (i.e., the symplectic

eigenspace) are uncoupled. The transition is only determined by the location in the saddle

projection and energy. However, when the surface is rotating, the situation is different. To

compare the behavior in the different systems, we utilize the same change of variables as in

(A.16), i.e., z̄ = Cz, and the equations of motion in the symplectic eigenspace are,

ż = Λz + ∆z, (2.70)

where Λ = C−1MC from before, (2.33), but the transformed damping matrix is now,

∆ = C−1DC = chK, (2.71)

where K is a 4× 4 matrix with many non-zero components, given in (A.18).

Notice that for the rolling ball on a stationary surface discussed in Section 2.3.2 and the

dynamical buckling of a shallow arch [8] in the dissipative system, the canonical planes



2.4. Coupled system in the dissipative case: Ball rolling on a rotating
surface 47

(q1, p1) and (q2, p2) have their dynamics uncoupled. Here, however, the dynamics on the

(q1, p1) and (q2, p2) planes are coupled due to the combination of dissipative and gyroscopic

forces. We see this coupling via several coupling terms which are no longer zero in (A.18), e.g.,

K12, K14, K21 and K23, etc. Because of the coupling between the (q1, p1) and (q2, p2) planes,

it is difficult to obtain simple analytical solutions in the symplectic eigenspace variables.

Thus, the semi-analytical method which substitutes all the parameters into the equations

will be used to analyze the linear behavior near the saddle point.

One can obtain a fourth-order characteristic polynomial for the matrix Λ + ∆ from which to

obtain eigenvalues. Here we denote the four eigenvalues as β1,−β2, β3,4 = −δ ± iwd, where

β1, β2, δ and ωd are all positive real numbers. Note that the saddle × center type equilibrium

point in the conservative system becomes a saddle × focus type equilibrium point in the

dissipative system. The four corresponding generalized eigenvectors are denoted as u1, u2

and u3 ± iu4, where ui are all real vectors. Thus, the general solutions to system (2.70) can

be expressed as,

z(t) = k0
1u1e

β1t + k0
2u2e

−β2t + e−δtRe
[
k0e
−iωdt (u3 − iu4)

]
, (2.72)

where k0
1 and k0

2 are real and k0 = k0
3 + ik0

4 is complex (k0
3 and k0

4 are real).

The flow in the equilibrium region. Analogous to the discussion for the conservative

system, we still choose the same equilibrium region R determined by H2 = h and |p1− q1| ≤
c with positive h and c. Due to the coupling between the saddle projection and focus

projection, the behavior in the eigenspace is complicated. When t → +∞ and t → −∞, z

is dominated by the k0
1 term and k0

2 term, respectively. Thus, one can categorize the orbits

into different groups based solely on the signs of k0
1 and k0

2. However, the visualization of all

the initial conditions for different types of orbits specified by a given energy is indirect. To

do so, setting the initial conditions in the symplectic eigenspace as z0 = (q0
1, q

0
2, p

0
1, p

0
2), the

following relation between the symplectic and dissipative eigenspace variables is obtained:
q0

1

q0
2

p0
1

p0
2

 =


...

...
...

...

u1 u2 u3 u4

...
...

...
...



k0

1

k0
2

k0
3

k0
4

 , (2.73)
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where the eigenvectors ui are written as column vectors.

As discussed for the conservative system, asymptotic orbits play an important role, acting as

the separatrix of transit orbits and non-transit orbits. Moreover, the size of stable asymptotic

orbits determines the amount of transit orbits. A straightforward method to obtain the stable

asymptotic orbits, analogous to what was done for the conservative case, is as follows. For

the stable asymptotic orbits, we have k0
1 = 0. Then we can use (2.73) to obtain k0

i (i = 2, 3, 4)

and p0
2 in terms of q0

1, q0
2 and p0

1. Analogous to the situation for the conservative system in

Section 2.2.1, we select the initial conditions on two sets n1 and n2 projecting to the line

segments p0
1 = q0

1 ± c. Substituting p0
2 in terms of q0

1, q0
2 and p0

1 and the relation q0
1 = p0

1 ∓ c
into the Hamiltonian normal form (2.1), we rewrite it in exactly the same form as in (2.67):

ap (p0
1)

2
+ bpp

0
1 + cp = 0. Note that here ap, bp and cp are functions of q20 which are different

to that in (2.67). To guarantee p0
1 has real solutions, ∆̄ = b2

p − 4apcp > 0 should be true.

Thus, we can obtain q
(l)
20 < q0

2 < q
(u)
20 , where q

(l)
20 and q

(u)
20 are the lower and upper bounds for

q0
2. For different q0

2 ∈
[
q

(l)
20 , q

(u)
20

]
, we can obtain p0

1 =
(
−bp ±

√
b2
p − 4apcp

)
/(2ap) and thus

obtain q0
1 and p0

2.

Null space method. Another method to obtain the stable asymptotic orbits, here called

the null space method, can also be utilized. The procedure is as follows: (1) using three

generalized eigenvectors corresponding to the eigenvalues with negative real part (i.e., u2, u3,

u4), the null space of the stable eigenspace, Es = span{u2, u3, u4}, can be obtained, denoted

as un = (un1, un2, un3, un4)T , with the relation un · ui = 0 (i = 2, 3, 4); (2) Since the initial

conditions z0 of forward asymptotic orbits (i.e., stable asymptotic orbits) should be normal

to the null space, we have un · z0 = 0, which, along with the Hamiltonian function, will give

the same quadratic equation, ap (p0
1)

2
+ bpp

0
1 + cp = 0; (3) following the same manipulation

as described in the previous paragraph, we obtain the same results.

Flow in the equilibrium region. Different combinations of the signs of k0
1 and k0

2 give

nine classes of orbits which can be grouped into the same four categories as the dissipative

system of the rolling ball on a stationary surface. All initial conditions on the bounding lines

n1 and n2 for different types of orbits can be visualized based on the analysis listed below.

1. Orbits with k0
1 = k0

2 = 0 corresponds to a focus-type asymptotic orbit with motion in

the (q2, p2) plane (see black dot at the origin of the (q1, p1) plane in Figure 2.12). Due
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to the effect of energy dissipation, the periodic orbit does not exist.

2. Orbits with k0
1k

0
2 = 0 are saddle-type asymptotic orbits. For example, the bolded

orange line on the bounding line n1 in the saddle projection associated with the closed

solid curve in the focus projection in Figure 2.12 represents all the initial conditions for

the stable asymptotic orbits with initial conditions of initial energy h on n1. Because

of the coupling between the saddle projection and focus projection, one point on the

closed solid curve in the focus projection has a corresponding point on the bolded region

in saddle projection which together give the initial condition for a specific asymptotic

orbit of initial energy h. See the orange dots for the initial condition of the stable

asymptotic orbit starting from n1 and orange curve for the evolution. Of course, the

bounding line n2 has the behavior for the stable asymptotic orbits. Since the system

just has one positive eigenvalue, the unstable asymptotic orbits just have one specific

direction along each side of the saddle point. See the orange straight lines for the

unstable asymptotic orbits. Four asymptotic orbits are shown in Figure 2.12 labeled

A.

3. The segments determined by k0
1k

0
2 < 0 which cross R from the bounding line n1 to the

bounding line n2 in the northern hemisphere, and vice versa in the southern hemisphere,

correspond to the transit orbits with initial energy h on n1 and n2, respectively. See

the two example orbits labeled T of Figure 2.12.

4. Finally the segments with k0
1k

0
2 > 0 which start from one hemisphere and bounce back

are the non-transit orbits of initial energy h. See the two orbits labeled NT in Figure

2.12.

McGehee representation. The previous section gives the topological structure of initial

conditions for different types of orbits in the dissipative system, but it still may not be

intuitive. Thus, as we did in the rolling ball on a stationary surface, we introduce the

McGehee representation to visualize the region R for easier interpretation. Since there are

many curves on the two 2-spheres, n1 and n2, of initial energy h, we show the two spheres

separately in Figure 2.13(c).

As mentioned in the ball rolling on a stationary surface with damping, the McGehee repre-

sentation gives the spheres with the same energy h so that here the McGehee representation
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NT
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T

T
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A

A

A

Saddle Projection

Focus Projection

Figure 2.12: The flow in the equilibrium region R projected onto (q1, p1) plane and (q2, p2) plane which

are coupled has form saddle × focus. Shown are the saddle-type asymptotic orbits (labeled A), transit orbits

(labeled T) and non-transit orbits (labeled NT). The dot at the origin of (q1, p1) plane is the focus-type

asymptotic orbits with projection only on (q2, p2) plane which is a damped oscillator decaying to the origin.

Due to the coupling between (q1, p2) plane and (q2, p2) plane, the initial conditions for the three-dimensional

stable asymptotic orbit are dependent on the angle in focus projection. The one dimensional unstable

asymptotic orbits are a straight line in the saddle projection.

again just shows the initial conditions on each bounding sphere. The symbols in Section 2.2.2

have the same meaning as used here. The previous four categories of orbits are interpreted

as follows.

1. There is a 1-sphere S1
h in the region R, similar to that in the rolling ball on a stationary

surface with dissipation, which is the equator of the 2-sphere given by p1 − q1 = 0.

The set S1
h gives the initial conditions for the focus-type asymptotic orbits with initial

energy h. Readers are referred to the dot in Figure 2.6(b) for interpretation.

2. There are two 1-spheres represented by the orange closed curves on each bounding

sphere, denoted by a+
i and a−i on sphere ni. They give the initial conditions for stable

asymptotic orbits. Compared to the ball rolling on a stationary surface, which has
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Outter sphere

Inner sphere

(a)

(b) (c)

Figure 2.13: The McGehee representation of the equilibrium region for dissipative system of rolling ball

on a rotating surface. (a) The projection of flow onto (q1, p1) plane. (b) The projection of the flow in the

R region of the energy surface onto a cross-section. (c) The McGehee representation of the flow on the

boundaries of the R region, highlighting the features on the bounding spheres n1 and n2, the “inner” and

“outer” spheres, respectively.

initial conditions for stable asymptotic orbits given by circles on the bounding spheres

parallel to the corresponding equators, initial conditions for stable asymptotic orbits

for the rotating surface are tilted. This is due to dissipation-induced coupling of the

saddle and focus projections of the symplectic eigenspace. Note that the unstable

asymptotic orbits are one-dimensional and have different energy from the bounding

sphere so that they cannot be given in the McGehee representation.

3. Consider the two spherical caps on each bounding 2-sphere denoted by d+
1 , d−1 and d+

2 ,

d−2 . The transit orbits with initial conditions on spherical cap d+
1 , which is in n+

1 and
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bounded by a+
1 , enter R and leave through n2 at a different (lower) energy, due to

dissipation. On the other hand, the transit orbits with initial conditions on spherical

cap d−1 in n−1 bounded by a−1 are leaving R having entered through n2 at a different

(higher) energy. An analogous situation holds on bounding sphere n2.

4. There is a 1-sphere of tangency points, denoted by b, with initial conditions on which

the orbits do not enter R locally. To obtain the tangency points, first we need to the

recognize the relation along each angle θ in the focus projection, i.e. p0
2 = q0

2 tan θ,

as well as the initial conditions on the bounding spheres n1 and n2, i.e. p0
1 = q0

1 ± c,
and the tangency conditions, i.e. ṗ0

1 = ±q̇0
1. We then substitute such relations into the

Hamiltonian normal form to yield a quadratic equation which will give two tangency

points along that angle. Note that the 1-spheres here are not the equators of the

bounding spheres, as they are in the non-rotating case, but are tilted by an angle

compared with the conservative system, again, due to the coupling via the dissipation

matrix K, from (A.18). The topological hemisphere above b1 in n1 is referred to as n+
1

and below b1 as n−1 ; similarly for n2, as illustrated in Figure 2.13(c). Similar to before,

the non-transit orbits with initial conditions of initial energy h on spherical zone r+
i , in

n+
i bounded by a+

i and bi, are entering R and non-transit orbits with initial conditions

on spherical zone r−i , in n−i bounded by a+
i and bi, are leaving R.

Trajectories in the equilibrium region. Following the standard procedure to solve

(2.58), we get the eigenvalues of the matrix M +D (denoted as as β̄1,−β̄2, β̄3,4 = −δ̄ ± iw̄d,
where β̄1, β̄2, δ̄ and ω̄d are positive real values) associated with the corresponding generalized

eigenvectors (denoted as ūi (i = 1, 2, 3, 4)). The general real solutions to (2.58) are,

z̄(t) = k̄0
1ū1e

β̄1t + k̄0
2ū2e

−β̄2t + e−δ̄tRe
[
k̄0e
−iω̄dt (ū3 − iū4)

]
, (2.74)

where k̄0
1 and k̄0

2 are real and k̄0 = k̄0
3 + ik̄0

4 is complex. By inspecting the limiting behavior

of q̄1 as t tends to plus or minus infinity, we can also obtain the following four categories of

orbits:

1. Orbits with k̄0
1 = k̄0

2 = 0 are focus-type asymptotic orbits. When dissipation is con-

sidered in the system, the periodic orbit does not exist, but these initial conditions

correspond to purely focus-like dynamics, with an amplitude decreasing proportional

to e−δ̄t.
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2. Orbits with k̄0
1 = 0 ( or k̄0

2 = 0) are stable (or unstable) saddle-type asymptotic to the

saddle equilibrium point.

3. Orbits with k̄0
1k̄

0
2 > 0 are transit orbits.

4. Orbits with k̄0
1k̄

0
2 < 0 are non-transit orbits.

Wedge of velocity and ellipse of transition. As discussed previously, for this rotating

system one also obtains an ellipse of transition which confines the existence of transit orbits.

Inside the ellipse, the transit orbits exist, while outside the ellipse transit orbits do not

exist. As before, a non-empty wedge of velocity, which divides the transit orbits from the

non-transit orbits, can only exist inside the ellipse of transition.

Taking t = 0, one obtains the relation between the initial conditions z̄0 = (q̄0
1, q̄

0
2, p̄

0
1, p̄

0
2)

and the coefficients k̄0
i with a similar form as in (2.73). For stable asymptotic orbits, i.e.,

k̄0
1 = 0, we can determine the coefficients k̄0

i (i = 2, 3, 4) and p̄20 in terms of initial conditions

q̄10, q̄20, p̄10. With the substitution of q̄0
1, q̄

0
2, p̄

0
1 and p̄0

2 into (2.60), the quadratic Hamiltonian

(2.60) restricted by energy h can be rewritten as a second order algebraic equation for p̄0
1

which has exactly the same form as (2.67), but with different ap, bp and cp in terms of q̄0
1 and

q̄0
2. On the one hand, for the critical condition, i.e., M= b2

p−4apcp = 0, we can obtain an ellipse

of transition which is different from the strips S1 in the conservative system. The ellipse limits

the location of transit orbit initial conditions. On the other hand, when the determinant

satisfies M= b2
p − 4apcp > 0, p̄0

1 has two real solutions, p̄0
1 =

(
−bp ±

√
b2
p − 4apcp

)
/ (2ap),

associated with two real solutions for p̄0
2. Thus, the two pairs of results of (p̄0

1, p̄
0
2) will

determine two bounding directions of velocity, which form the wedge of velocity.

Figure 2.14 shows the flow in the projection of the equilibrium region R to position space,

taking gyroscopic and dissipative effects into consideration. Due to energy dissipation, the

strips which are the boundaries of asymptotic orbits in the position space of the conservative

system no longer exist. In particular, the strip for the stable asymptotic orbit is replaced

by the ellipse of transition. The ellipse of transition, similar to the role in the rolling ball

on a stationary surface, confines the existence of transit orbits. That is, transit orbits of

a given initial energy h must have initial conditions inside the ellipse of transition, while

only non-transit orbit initial conditions project onto the area complementary of the ellipse.

However, even if the initial condition of an orbit projects to a position inside the ellipse

of transition, this alone does not guarantee the transition. This is a necessary but not a
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Figure 2.14: The flow in the equilibrium region R of position space. Shown are the saddle-type asymptotic

orbit; two transit orbits; three non-transit orbits. For the same given energy, the wedges of velocity for the

dissipative system (the smaller light grey shaded wedges), restricted by the ellipse of transition, partially

cover the wedges of velocity for the conservative system (the larger dark grey shaded wedges) restricted by

a strip.

sufficient condition. The additional condition is that the velocity should be along certain

directions. The wedge of velocity obtained above, which is non-empty only inside the ellipse,

is exactly the condition providing the correct range of directions for the velocity of transit

orbits. Orbits with initial conditions interior to the wedge can transit, while orbits with

velocity outside the wedge cannot transit. The orbits with velocity on the boundary of the

wedge are asymptotic to the equilibrium point.

The sizes of the wedge of velocity and ellipse of transition, which both represent the propor-

tion of transit orbits compared to non-transit orbits, are dependent on the energy, h, and the

amount of damping, ch. An increase of energy gives more transit orbits, while an increase

in damping reduces the proportion of transit orbits. Furthermore, different positions inside

the ellipse have different sizes of wedges of velocity. The closer the position is to the bound-

ary of the ellipse of transition, the smaller the size of the wedge of velocity will be. From
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initial conditions of transit orbits on the Poincaré section Σ with three initial conditions (the dots) for three

types of orbits. The right shows the transition tube for a given energy. The critical surface playing the same

role as the ball rolling on a stationary surface also exists here. Three types of orbits with initial conditions

on the left figure are given.

Figure 2.14, we find that the size of the wedge shrinks (light grey) compared with that of

the conservative system (dark grey) which qualitatively indicates how damping affects the

wedge of velocity.

2.4.4 Transition tube and transition ellipsoid

We have discussed the flow in the position space for a rolling ball on a rotating surface near

a saddle point. In this section, we will visualize the structures governing transitions in the

phase space, particularly on surfaces of constant initial energy h.

For the rolling ball on a stationary surface, we obtained the transition tube and transition

ellipsoid that give all the initial conditions, starting at a given initial energy h, of transit

orbits for the conservative system and dissipative system, respectively. In the current prob-

lem, we have similar phase space structures governing the transition which can be obtained

by the semi-analytical method mentioned before. Figure 2.15 and Figure 2.16 show the
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transition tube and transition ellipsoid, respectively. As discussed in Section 2.3.3, for a

specific energy all transit orbits in the conservative system and dissipative system must have

initial conditions inside the transition tube and transition ellipsoid, respectively; all orbits

with initial conditions outside the transition tube and transition ellipsoid are non-transit

orbits. Furthermore, the critical surface divides the transition tube and transition ellipsoid

into two parts. Orbits with initial conditions inside the left part will transit to the right

and orbits with initial conditions inside the right part will transit to the left. Orbits on

the boundary are asymptotic to the periodic orbit (respectively, equilibrium point) in the

conservative (respectively, dissipative) system. Transit orbits can cross the critical surface,

while non-transit orbits will bounce back before reaching the critical surface.

Figure 2.15 and Figure 2.16 also give different types of orbits with the initial conditions

on the same Poincaré section in the corresponding system. This illustrates the discussion

given above that transit orbits must have initial conditions inside the transition tube or

transition ellipsoid. In fact, the transit orbit (initial condition marked T in Figure 2.15) in

the conservative system and the non-transit orbit (initial condition marked NT in Figure

2.16) in the dissipative system have the same initial condition. This demonstrates that initial

conditions corresponding to a transit orbit in the conservative system may be non-transit

orbits if damping is taken into account.

It is worth noting that the topological structures in phase space controlling the transition

for both the non-rotating system and rotating system are almost the same. Nevertheless,

differences exist between these two systems. In the non-rotating system, the axes of the

transition tube and transition ellipsoid are parallel to the position space axes, while in the

rotating system, the axes of the transition tube and transition ellipsoid are not parallel to

the position space axes, but are tilted by an angle.

2.5 Conclusions and future work

We have discussed the escape (or transition) geometry of a rolling ball on a stationary and

rotating surface when dissipative and/or gyroscopic forces are both present. Since escape

occurs through a saddle point in all of these problems, we focused on the local behavior

near the equilibrium neck region around the saddle. The problems are classified into two

categories based on the coupling conditions between the saddle and focus canonical planes



2.5. Conclusions and future work 57

-0.3
0.2

-0.2

-0.1

0

0.1

0.1

0.2

0

0.3

0.1
0.05-0.1 0

-0.05-0.2 -0.1

-0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Equilibrium point

Critical Surface

FA

ICs for FA

T

T

NT

NT

SA

A
Wedge of velocity

Ellipse of transitionNon-transit

Transit

SA

T

NT

}
}

Figure 2.16: Transition ellipsoid for the dissipative system in the rolling ball on a rotating surface. The

left figure shows the Poincaré section Σ, where the dots are the initial conditions for the corresponding

trajectories and the solid ellipse is the boundary of initial conditions for the transit orbits. For comparison,

the dashed ellipse of tube boundary for the conservative system is also given. The right figure shows the

transition tube with three different types of orbits with initial conditions on the left figure.

in the symplectic eigenspace.

We define a transition region, Th, as the region of initial conditions of a given initial energy h

which transit from one side of a saddle to the other. The boundary of the transition region,

∂Th, is a co-dimension 1 boundary on each surface of initial energy. For conservative systems

∂Th is a tube (topologically, a cylinder), while for dissipative systems, ∂Th is an ellipsoid

(topologically, a 2-sphere). These topological results carry over to the nonlinear setting via

the stable manifold theorem [30] and a theorem of Moser [31, 32], for the dissipative and

conservative cases, respectively. Trajectories with initial conditions outside of ∂Th do not

escape from one side of the saddle to the other. The transition tube and transition ellipsoid

are divided into two parts by a critical surface; trajectories with initial conditions on the

left part (respectively, right part) can transit to the right part (respectively, left part). The

projection of the transition tube and transition ellipsoid onto configuration space are a strip

and ellipse of transition, respectively. An initial configuration within the strip (respectively,

ellipse) is a necessary condition for a transit orbit. The necessary velocity conditions at a

specific configuration point within the strip (respectively, ellipse) are given by a wedge of
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velocity at that point.

In this study, we investigated only the local behavior around the saddle equilibrium revealing

the phase space structure that governs the escape or transition, and did not consider the

global behavior. A continuation of the study on escape dynamics can apply this theory

to more complicated applications. However, based on the theorems given above, all the

qualitative results of our discussion carry over to the full nonlinear equations, including the

topology of ∂Th. The bisection method presented in [8] is a useful tool to find ∂Th in the

global setting. A more direct method is to determine the stable manifold of the saddle

point, as foliated by energy, which provides another way to compute ∂Th. In future work,

both methods will be carried out. Furthermore, higher degree of freedom systems will be

considered and the topological results are expected to generalize for the dynamics across

index-1 saddles; that is, the (2N − 2)-dimensional boundary of transit orbits starting at

same initial energy h in N degrees of freedom, ∂Th, which are hyper-cylinders (topology

S2N−3×R) in the conservative setting become hyper-ellipsoids in the phase space (topology

S2N−2) with the addition of dissipation.
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[15] C. Jaffé, S. D. Ross, M. W. Lo, J. Marsden, D. Farrelly, T. Uzer, Statistical theory of asteroid

escape rates, Physical Review Letters 89 (1) (2002) 011101.

[16] W. S. Koon, M. W. Lo, J. E. Marsden, S. D. Ross, Heteroclinic connections between periodic

orbits and resonance transitions in celestial mechanics, Chaos 10 (2000) 427–469.

[17] S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer-Verlag,

New York, 1994.

[18] R. McGehee, Some homoclinic orbits for the restricted three-body problem, Ph.D. thesis,

University of Wisconsin, Madison, 1969.

[19] C. C. Conley, Low energy transit orbits in the restricted three-body problem, SIAM Journal

on Applied Mathematics 16 (1968) 732–746.

[20] A. D. Lewis, R. M. Murray, Variational principles for constrained systems: theory and exper-

iment, International Journal of Non-Linear Mechanics 30 (6) (1995) 793–815.

[21] L. N. Virgin, T. C. Lyman, R. B. Davis, Nonlinear dynamics of a ball rolling on a surface,

American Journal of Physics 78 (3) (2010) 250–257.

[22] Y. Xu, L. N. Virgin, S. D. Ross, On experimentally locating saddle-points on a potential energy

surface from observed dynamics, Mechanical Systems and Signal Processing 130 (2019) 152 –

163, ISSN 0888-3270.

[23] J. E. Marsden, T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer, 2013.

[24] J. D. Meiss, Differential Dynamical Systems, SIAM, 2007.



BIBLIOGRAPHY 61

[25] E. E. Zotos, Escapes in Hamiltonian systems with multiple exit channels: Part I, Nonlinear

Dynamics 78 (2) (2014) 1389–1420.

[26] E. E. Zotos, An overview of the escape dynamics in the Hénon-Heiles Hamiltonian system,
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Abstract

The equilibrium configuration of an engineering structure, able to withstand a certain loading condi-

tion, is usually associated with a local minimum of the underlying potential energy. However, in the

nonlinear context, there may be other equilibria present, and this brings with it the possibility of a

transition to an alternative (remote) minimum. That is, given a sufficient disturbance, the structure

might buckle, perhaps suddenly, to another shape. This study considers the dynamic mechanisms

under which such transitions (typically via saddle points) occur. A two-mode Hamiltonian is de-
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veloped for a shallow arch/buckled beam. The resulting form of the potential energy—two stable

wells connected by rank-1 saddle points—shows an analogy with resonance transitions in celestial

mechanics or molecular reconfigurations in chemistry, whereas here the transition corresponds to

switching between two stable structural configurations. Then, from Hamilton’s equations, the an-

alytical equilibria are determined and linearization of the equations of motion about the saddle

is obtained. After computing the eigenvalues and eigenvectors of the coefficient matrix associated

with the linearization, a symplectic transformation is given which puts the Hamiltonian into nor-

mal form and simplifies the equations, allowing us to use the conceptual framework known as tube

dynamics. The flow in the equilibrium region of phase space as well as the invariant manifold tubes

in position space are discussed. Also, we account for the addition of damping in the tube dynamics

framework, which leads to a richer set of behaviors in transition dynamics than previously explored.

3.1 Introduction

The nonlinear behavior of slender structures under loading is often dominated by a potential en-

ergy function that possesses a number of stationary points corresponding to various equilibrium

configurations [1, 2]. Some are stable (local minima, or ‘well’), some are unstable (local maxima or

‘hill-top’), and some correspond to saddle points, i.e., a shape with opposite curvature in different

directions, but still unstable, having both stable and unstable directions. Interestingly, although

difficult to observe experimentally, it is these saddle points that can have a profound organizing

effect on global trajectories in a dynamics context. Thus, under a nominally fixed set of loads or a

given configuration we may have the situation in which a system is at rest in a position of stable

equilibrium, but, given sufficiently large perturbation (input of energy) may transition to a remote

stable equilibrium [3], or even collapse completely [4, 5]. The path taken during this transition is

associated with the least energetic route, and this will typically correspond to a passage close to a

saddle point: it is easier to take a path around a mountain than going directly over its peak.

For a single mechanical degree of freedom the transition from one potential energy minimum to

another is relatively unambiguous [6, 7]. We can think of a twin-well oscillator and how it has

no choice but to pass over an intermediate hilltop in transitioning to an adjacent minimum. For

high-order systems trajectories have many more possible paths. But a system with two mechanical

degrees of freedom (configuration space), and thus a 4 dimensional phase space, offers an inter-

mediate situation: compelling conceptual clarity (i.e., the potential energy can be thought of as a

surface or landscape), but still retaining a wider range of potential behavior over and above the

aforementioned single oscillator (i.e., multiple ways of traversing and perhaps escaping from one

potential well to another).
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For the two degree of freedom system, the analog of the hilltop is the saddle point of the potential

energy surface. The linearized dynamics near such a point yields an oscillatory mode and an

exponential mode, with both asymptotically stable and unstable directions. For energies slightly

above the saddle point, there is a bottleneck to the energy surface [8, 9]. Transitions from one side of

the bottleneck can be understood in terms of sets of trajectories which are bounded by topological

cylinders. The transition dynamics, which has in some contexts been known as tube dynamics

[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], has been developed for studying transitions between stable

states (the potential wells) in a number of disparate contexts, and here it is applied to a structural

mechanics situation in which snap-through buckling [2] is the key phenomenological transition.

Conditions are determined whereby the initial energy imparted to the system is characterized in

terms of subsequent escape from the initial potential well.

3.2 The Paradigm: Snap-through of an Arch/Buckled

Beam

A classic example of a saddle-node bifurcation in structural mechanics is the symmetric snap-

through buckling of a shallow arch, in an essentially co-dimension 1 bifurcation [7]. However, if the

arch (or equivalently a buckled beam) is not shallow then the typical mechanism of instability is an

asymmetric snap-through, requiring two modes (symmetric and asymmetric) for characterization,

and the instability corresponds to a subcritical pitchfork bifurcation. In both of these cases the

transition is sudden and associated with a fast dynamic jump, since there is no longer any locally

available stable equilibrium. This behavior is generic regardless of boundary conditions and is also

exhibited by the laterally-loaded buckled beam [20, 21]. We shall focus on this latter example,

for relative simplicity of introduction. The essential focus here is that the underlying potential

energy of this system consists of two potential energy wells (the original unloaded equilibrium

and the snapped-through equilibrium), an unstable hilltop (the intermediate, straight, unstable

equilibrium) and two saddle-points. The symmetry of this system is broken by small geometric

imperfections. The question is: how does the system escape its local potential energy well in a

dynamical systems sense?

Suppose we have a moderately buckled beam. If a central point load is applied then the beam

deflects initially in a purely symmetric mode, as shown by the red line in Figure 3.1(a), following

the α loading path. Upon a quasi-static increase in the load P , point C is reached (a subcritical

pitchfork bifurcation) and the arch quickly snaps-through (a thoroughly dynamic event) with a

significant asymmetric component in the deflection and the system settles into its inverted position
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Figure 3.1: (a) A schematic load-deflection characteristic, (b) the two dominant degrees of freedom.

D [3]. This behavior is captured by considering a two-mode analysis: sag S (symmetric) and

angle A (asymmetric), or alternatively we can use the harmonic coordinates X and Y , respectively,

corresponding to the modes in part (b). In an approximate analysis they might be the lowest two

buckling modes or free vibration modes from a standard eigen-analysis. Suppose we load the beam

to a value slightly below the snap value at PC , and fix it at that value. In this case there will be

the five equilibria mentioned earlier: three equilibria purely in sag (two stable and an unstable one

between them), and two saddles, with significant angular components but geometrically opposed

[1]. Small geometric imperfections (in A and/or S) will break the symmetry and influence which

path is more likely to be followed. In this fixed configuration we can then think of the system in

dynamic terms, and consider the range of initial conditions (including velocity, perhaps caused by

an impact force) that might push the system from a point on path α to a point on path φ.

Governing equations. In this analysis a slender buckled beam with thickness d, width b and

length L is considered. A Cartesian coordinate system o-xyz is established on the mid-plane of the

beam in which o is the origin, x, y the directions along the length and width directions and z the

downward direction normal to the mid-plane. Based on Euler-Bernoulli beam theory [1, 22], the

displacement field (u1, u3) of the beam along (x, z) directions can be written as

u1(x, z, t) = u(x, t)− z ∂w(x, t)

∂x
,

u3(x, z, t) = w(x, t),

(3.1)
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where u(x, t) and w(x, t) are the axial and transverse displacements of an arbitrary point on the

mid-plane of the beam. Considering the von Kármán-type geometrical nonlinearity, the total axial

strain can be obtained as

ε∗x =
∂u

∂x
− z ∂

2w

∂x2
+

1

2

(
∂w

∂x

)2

. (3.2)

For a moderately buckled-beam, we need to consider the initial strain ε0 produced by initial de-

flection w0 which is

ε0 = −z ∂
2w0

∂x2
+

1

2

(
∂w0

∂x

)2

. (3.3)

Then the change in strain εx can be expressed as

εx = ε∗x − ε0 =
∂u

∂x
− z

(
∂2w

∂x2
− ∂2w0

∂x2

)
+

1

2

[(
∂w

∂x

)2

−
(
∂w0

∂x

)2
]
. (3.4)

Here we just consider homogeneous isotropic materials with Young’s modulus E, and allow for the

possibility of thermal loading. The axial stress σx can be obtained according to the one dimensional

constitutive equation, as

σx = Eεx − Eαx∆T, (3.5)

where αx is the thermal expansion coefficient and ∆T is the temperature increment from the

reference temperature at which the beam is in a stress free state. Thermal loading is introduced

as a convenient way of controlling the initial equilibrium shapes (and hence the potential energy

landscape) via axial loading.

The strain energy V(x, z, t) is

V(x, z, t) =
b

2

∫ L

0

∫ d
2

− d
2

σxεxdzdx. (3.6)

Ignoring the axial inertia term, the kinetic energy T (x, z, t) of the buckled beam is

T (x, z, t) =
b

2

∫ L

0

∫ d
2

− d
2

ρẇ2dzdx, (3.7)

where ρ is the mass density. In addition, the dot over the quantity is the derivative with respective

to time.
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The governing equations can be obtained by the Lagrange-d’Alembert principle [23] which requires

that

δ

∫ t

t0

[T (x, z, t)− V(x, z, t)] dt+

∫ t

t0

δWncdt = 0, (3.8)

where δ denotes the variational operator, t0 and t the initial and current time. δWnc is the variation

of the virtual work done by non-conservative force (damping) which is expressed as

δWnc = −cdẇδw, (3.9)

where cd is the coefficient of (linear viscous) damping. In subsequent analysis, and related to typical

practical situations, the damping will be small.

After some manipulation, the governing equations in terms of axial force Nx and bending moment

Mx can be obtained as [22]

∂Nx

∂x
= 0,

∂2Mx

∂x2
+Nx

∂2w

∂x2
= ρAẅ + cdẇ,

(3.10)

where Nx and Mx are defined as

(Nx,Mx) = b

∫ d
2

− d
2

σx (1, z) dz. (3.11)

By using (3.1), (3.4) and (3.5), the force Nx and moment Mx in (3.11) can be rewritten as

Nx = EA

[
∂u

∂x
+

1

2

((
∂w

∂x

)2

−
(
∂w0

∂x

)2
)]
−NT ,

Mx = −EI
(
∂2w

∂x2
− ∂2w0

∂x2

)
,

(3.12)

where A and I denote the cross-sectional area and moment of inertia; NT = EAαx∆T , the axial

thermal loads. Thus, EA and EI are the axial stiffness and bending stiffness, respectively.

Here we just consider a clamped-clamped beam with in-plane immovable ends. The boundary

conditions are

x = 0, L : u = w =
∂w

∂x
= 0. (3.13)
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Note that from the first equation in (3.10), it is clear that the axial force Nx is constant along the

axial direction. In this case, integrating the axial force along the x axis and using the boundary

conditions u(0, t) = u(L, t) = 0, one can obtain

Nx =
EA

2L

∫ L

0

[(
∂w

∂x

)2

−
(
∂w0

∂x

)2
]

dx−NT . (3.14)

Using Mx in (3.12) and Nx in (3.14), the second equation in (3.10) can be described in terms of

the transverse displacement w as [1]

ρAẅ + cdẇ + EI

(
∂4w

∂x4
− ∂4w0

∂x4

)
+

[
NT −

EA

2L

∫ L

0

((
∂w

∂x

)2

−
(
∂w0

∂x

)2
)

dx

]
∂2w

∂x2
= 0, (3.15)

where w and w0 are the current deflection and initial geometrical imperfection, respectively; ρ is

the mass density; cd is the damping coefficient; A and I are the area and the moment of inertia of

the cross-section, respectively; E is the Young’s modulus. Given the immovable ends it is natural

to consider the effective externally applied axial force to be replaced by a thermal loading term:

this is the primary destabilizing nonlinearity in the system.

As mentioned earlier, clamped-clamped boundary conditions are considered. Thus we make use of

the vibration mode shapes

φn = ψn

[
sinh

κnx

L
− sin

κnx

L
+ δn

(
cosh

κnx

L
− cos

κnx

L

)]
,

δn =
sinhκn − sinκn
cosκn − coshκn

,

cosκn coshκn = 1,

ψ1 = −0.6186, ψ2 = −0.6631,

(3.16)

and describe the deflected shape in terms of a two-degree-of-freedom approximation

w(x, t) = X(t)φ1(x) + Y (t)φ2(x),

w0(x) = γ1φ1(x) + γ2φ2(x),
(3.17)

where the initial imperfections are given by w0. To obtain the ordinary differential equations,

we multiply the equation of motion in (3.15) by φi and integrate over the length of the beam.
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Considering the clamped-clamped boundary conditions, applying integration by parts yields

ρA

∫ L

0
φiẅdx+ cd

∫ L

0
φiẇdx+ EI

∫ L

0

∂2φi
∂x2

(
∂2w

∂x2
− ∂2w0

∂x2

)
dx

−

[
NT −

EA

2L

∫ L

0

((
∂w

∂x

)2

−
(
∂w0

∂x

)2
)

dx

]∫ L

0

∂φi
∂x

∂w

∂x
dx = 0.

(3.18)

Substituting the approximations for w and w0 in (3.17) with specific mode shapes φi in (3.16) and

noticing the mode shapes are mutually orthogonal, the nonlinear equations can be obtained as

M1Ẍ + C1Ẋ +K1 (X − γ1)−NTG1X −
EA

2L
G2

1

(
γ2

1X −X3
)
− EA

2L
G1G2

(
γ2

2X −XY 2
)

= 0,

M2Ÿ + C2Ẏ +K2 (Y − γ2)−NTG2Y −
EA

2L
G2

2

(
γ2

2Y − Y 3
)
− EA

2L
G1G2

(
γ2

1Y −X2Y
)

= 0,

(3.19)

where

(Mi, Ci) = (ρA, cd)

∫ L

0
φ2
i dx, Ki = EI

∫ L

0

(
∂2φi
∂x2

)2

dx, Gi =

∫ L

0

(
∂φi
∂x

)2

dx. (3.20)

The kinetic energy and potential energy, respectively, can be represented as

T (Ẋ, Ẏ ) =
1

2
M1Ẋ

2 +
1

2
M2Ẏ

2,

V(X,Y ) =−K1γ1X −K2γ2Y +
1

2
K1X

2 +
1

2
K2Y

2 − 1

2
NT

(
G1X

2 +G2Y
2
)

− EA

2L
G2

1

(
1

2
γ2

1X
2 − 1

4
X4

)
− EA

2L
G2

2

(
1

2
γ2

2Y
2 − 1

4
Y 4

)
− EA

2L

G1G2

2

(
γ2

2X
2 + γ2

1Y
2 −X2Y 2

)
.

(3.21)

For physically reasonable coefficients we have a number of equilibrium possibilities. For small

values of NT we have an essentially linear system, dominated by the trivial (straight) equilibrium

configuration, and thus an isolated center (minimum of the potential energy). This relates back

to the situation in Figure 3.1 for a small value of P . But for larger values of P , for example a

little below Pc, the system typically possesses a number of equilibria, some of which are stable and

some of which are not. Some typical forms are shown in Figure 3.2(a) in which the five dots are

the equilibrium points where W1 and W2 are within the two stable wells; S1 and S2 two unstable

saddle points; H the unstable hilltop. Thus, we might have the system sitting (in equilibrium) at

point W1. If it is then subject to a disturbance with the right size and direction (in the dynamical

context), we might expect the system to transition to the remote equilibrium at W2. This might
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Figure 3.2: Contours of potential energy: (a) the symmetric system, γ1 = γ2 = 0, (b) with small initial
imperfections in both modes, i.e., γ1 and γ2 are nonzero.

occur when the system is subject to a large impact force, for example [21]. It is anticipated (and

will later be shown) that the typically easiest transition will be associated with (an asymmetric)

passage close to S1 or S2, and generally avoiding H. In Figure 3.2(b) is shown the same system but

now with a small geometric imperfection in both modes (i.e., γ1 6= 0 and γ2 6= 0). In this case the

symmetry of the system is broken, and given the relative energy associated with the saddle points

it is anticipated (and will also be shown later) that optimal escape will tend to occur via S1.

Note that eqs. (3.19) can also be obtained from Lagrange’s equations,

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= −Ciq̇i i = 1, 2, (3.22)

when q1 = X and q2 = Y , and the Lagrangian is

L(X,Y, Ẋ, Ẏ ) = T (Ẋ, Ẏ )− V(X,Y ). (3.23)

To transform this to a Hamiltonian system, one defines the generalized momenta,

pi =
∂L
∂q̇i

= Miq̇i, (3.24)



3.2. The Paradigm: Snap-through of an Arch/Buckled Beam 71

so pX = M1Ẋ and pY = M2Ẏ , in which case, the kinetic energy is

T (X,Y, pX , pY ) =
1

2M1
p2
X +

1

2M2
p2
Y , (3.25)

and the Hamiltonian is

H(X,Y, pX , pY ) = T + V, (3.26)

and Hamilton’s equations (with damping) [24] are

Ẋ =
∂H
∂pX

=
pX
M1

, Ẏ =
∂H
∂pY

=
py
M2

,

ṗX = −∂H
∂X
− CHpX = − ∂V

∂X
− CHpX ,

ṗY = −∂H
∂Y
− CHpY = − ∂V

∂Y
− CHpY ,

(3.27)

where

∂V
∂X

=K1 (X − γ1)−NTG1X −
EA

2L
G2

1

(
γ2

1X −X3
)
− EA

2L
G1G2

(
γ2

2X −XY 2
)
,

∂V
∂Y

=K2 (Y − γ2)−NTG2Y −
EA

2L
G2

2

(
γ2

2Y − Y 3
)
− EA

2L
G1G2

(
γ2

1Y −X2Y
)
,

(3.28)

and CH = C1/M1 = C2/M2 is the damping coefficient in the Hamiltonian system which can be

easily found by comparing (3.19) and (3.27), and using the relations of Mi and Ci in (3.20).

Linearization around S1. We assume the lower saddle point S1 has the smaller potential

energy compared to S2, thus the energy of S1 is the critical energy for snap-though, and we initially

focus attention on the dynamic behavior around the region of S1. The linearized equations of (3.27)

about S1 with position (Xe, Ye) can be written as

ẋ =
px
M1

, ẏ =
py
M2

,

ṗx = A31x+A32y − CHpx,

ṗy = A32x+A42y − CHpy,

(3.29)



72
Chapter 3. A tube dynamics perspective governing stability transitions:

An example based on snap-through buckling

where (x, y, px, py) = (X,Y, pX , pY )− (Xe, Ye, 0, 0) and

A31 = −K1 +NTG1 +
EAG2

1

(
γ2

1 − 3X2
e

)
2L

+
EAG1G2

(
γ2

2 − Y 2
e

)
2L

,

A32 = −EAG1G2XeYe
L

,

A42 = −K2 +NTG2 +
EAG2

2

(
γ2

2 − 3Y 2
e

)
2L

+
EAG1G2

(
γ2

1 −X2
e

)
2L

.

(3.30)

If we replace the position of S1 by the position of W1, we can still use the linearized equations in

(3.29) to obtain the natural frequencies of the shallow arch near W1 as

ω
(d)
1,2 = w

(c)
1,2

√
1− ξ2

1,2, (3.31)

where ω
(c)
1,2 are the first two natural frequencies for the conservative system and ξ1,2 are the viscous

damping factors with the forms

ω
(c)
1,2 =

(bω ∓
√
b2ω − 4cω)

2
, ξ1,2 =

CH

2ω
(c)
1,2

, (3.32)

and

bω = −A31

M1
− A42

M2
, cω =

A31A42 −A2
32

M1M2
.

Non-dimensional equations of motion In order to reduce the parameters, some non-

dimensional quantities are introduced,

(Lx, Ly) = L

(
1,

√
M1

M2

)
, ω0 =

√
−A32

(M1M2)
1
4

, τ = ω0t, (q̄1, q̄2) =

(
x

Lx
,
y

Ly

)
,

(p̄1, p̄2) =
1

ω0

(
px

LxM1
,

py
LyM2

)
, (cx, cy) =

1

ω2
0

(
A31

M1
,
A42

M2

)
, c1 =

CH
ω0

.

(3.33)

Using the non-dimensional parameters in (3.33), the non-dimensional linearized equations are writ-

ten as
˙̄q1 = p̄1, ˙̄q2 = p̄2,

˙̄p1 = cxq̄1 − q̄2 − c1p̄1,

˙̄p2 = −q̄1 + cy q̄2 − c1p̄2.

(3.34)
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Written in matrix form, with column vector z̄ = (q̄1, q̄2, p̄1, p̄2), we have

˙̄z = Az̄ +Dz̄,

where

A =


0 0 1 0

0 0 0 1

cx −1 0 0

−1 cy 0 0

 , D =


0 0 0 0

0 0 0 0

0 0 −c1 0

0 0 0 −c1

 (3.35)

are the Hamiltonian part and damping part of the linear equations, respectively.

Linearized dynamics around S1 Chapter 2 has discussed the linearized dynamics around the

index-1 saddle for an idealized ball rolling on both stationary and rotating surfaces. The linearized

dynamics about the local behavior around the S1 in both conservative and dissipative systems of

a shallow arch is topologically the same as the rolling ball on a stationary surface, except the flow

in position space of current problem is slightly tilted. The solution derivations of the linearized

dynamics can be obtained following the rolling ball on a stationary surface in Chapter 2. For

simplicity, the derivation and analysis are ignored for current problem. Readers are also referred to

[25] for more details. Since in the algorithms of computing the transition tube in the full nonlinear

system will use the solutions of the linearized system, here we give the symplectic matrix

C =


1
s1

1
s2

− 1
s1

0

cx−λ2
s1

ω2
p+cx
s2

λ2−cx
s1

0
λ
s1

0 λ
s1

ωp

s2
cxλ−λ3
s1

0 cxλ−λ3
s1

cxωp+ω3
p

s2

 . (3.36)

where s1 =
√
dλ and s2 =

√
dωp , and,

dλ = λ[4− 2(cx − cy)(λ2 − cx)], dωp =
ωp
2

[4 + 2(cx − cy)(ω2
p + cx)],

λ =

√(
cx + cy +

√
(cx − cy)2 + 4

)
/2, ωp =

√
−
(
cx + cy −

√
(cx − cy)2 + 4

)
/2.

(3.37)

The generalized eigenvectors for the conservative systems are given by

uωp =
(
1, cx + ω2

p, 0, 0
)
, vωp =

(
0, 0, ωp, cxωp + ω3

p

)
,

u+λ =
(
1, cx − λ2, λ, cxλ− λ3

)
, u−λ = −

(
1, cx − λ2,−λ, λ3 − cxλ

)
.
. (3.38)
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3.3 Transition Tubes

In this section, we go step by step through the numerical construction of the boundary between

transit and non-transit orbits in the nonlinear system (3.27). We combine the geometric insight

of linearized system with numerical methods to demonstrate the existence of ‘transition tubes’ for

both the conservative and damped systems. Particular attention is paid to the modification of

phase space transport as damping is increased, as this has not been considered previously.

Tube dynamics The dynamic snap-through of the shallow arch can be understood as trajecto-

ries escaping from a potential well with energy above a critical level: the energy of the saddle point

S1. However, even if the energy of the system is higher than critical, the snap-through may not

occur. The dynamical boundary between snap-through and non-snap-through behavior can be sys-

tematically understood by tube dynamics. Tube dynamics [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

supplies a large-scale picture of transport; transport between the largest features of the phase

space—the potential wells. In the conservative system, the stable and unstable manifolds with

a S1 × R geometry act as tubes emanating from the periodic orbits. While found above for

the linearized system near S1, these structures persist in the full nonlinear system The manifold

tubes (usually called transition tubes in tube dynamics), formed by pieces of asymptotic orbits,

separate two distinct types of orbits: transit orbits and non-transit orbits, corresponding to snap-

through and non-snap-through in the present problem. The transit orbits, passing from one region

to another through the bottleneck, are those inside the transition tubes. The non-transit orbits,

bouncing back to their region of origin, are those outside the transition tubes. Thus, the transition

tubes can mediate the global transport of states between snap-through and non-snap-through. In

the dissipative system, similar transition tubes also exist. Even in systems where stochastic effects

are present, the influence of these structures remains [8].

3.3.1 Algorithm for computing transition tubes

For the conservative system, Ref. [19] gives a general numerical method to obtain the transition

tubes. The key steps are (1) to find the periodic orbits restricted to a specified energy using

differential correction and numerical continuation based on the initial conditions obtained from

the linearized system at first, then (2) to compute the manifold tubes of the periodic orbits in

the nonlinear system (i.e., ‘globalizing’ the manifolds), and finally (3) to obtain the intersection

of the Poincaré surface of section and global manifolds. See details in Ref. [19]. The method is

effective in the conservative system, but not applicable to the dissipative system, since due to loss
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Figure 3.3: For a representative energy above the saddle point S1, we show the unstable periodic orbit in

the neck region around S1. It projects to a single line going between the upper and lower energy boundary

curves, and arrows are shown for convenience. We show the Poincaré sections Σ1 and Σ2 which are defined

by X values equal to that of the two stable equilibria in the center of the left and right side wells, W1 and

W2, respectively. The arrows on the vertical lines indicate that these Poincaré sections are also defined by

positive X momentum.

of conservation of energy, no periodic orbit exists. Thus, we provide another method as follows.

Step 1: Select an appropriate energy. We first need to set the energy to an appropriate value

such that the snap-though behavior exists. Once the energy is given, it remains constant in the

conservative system. In our example, the critical energy for snap-through is the energy of S1. Thus,

we can choose an energy which is between that of S1 and S2. In this case, all transit orbits can

just escape from W1 to W2 through S1. Notice that the potential energy determines the width of

the bottleneck and the size of the transition tubes which hence determines the relative fraction of

transit orbits in the phase space. A representative energy case is shown in Figure 3.3, which also

establishes our location for Poincaré sections Σ1 and Σ2 which are at X =constant lines passing

through W1 and W2 respectively, and with pX > 0.

Step 2: Compute the approximate transition tube and its intersection on a Poincaré

section. We have analyzed the flow of linearized system in both phase space and position space

which classifies orbits into four classes in Chapter 2. It shows that in the conservative system the

stable manifolds correspond to the boundary between transit orbits and non-transit orbits. Thus,

we can choose this manifold as the starting point. We start by considering the approximation of

transition tubes for the conservative system.
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Determine the initial condition. The stable manifold divides the transit orbits and non-transit

orbits for all trajectories headed toward a bottleneck. Thus, we can use the stable manifold to

obtain the initial condition. Considering the general solutions (2.34) of the linearized equations,

we can let p0
1 = c, q0

1 = 0, q0
2 = Aq and p0

2 = Ap. Notice that

A2
q +A2

p = 2h/ωp, (3.39)

which forms a circle in the center projection, so in the next computational procedure we should

pick up N points on the circle with a constant arc length interval. Each Aq and Ap determined by

these sampling points along with p0
1 = c and q0

1 = 0 can be used as initial conditions. When first

transformed back to the position space and then transformed to dimensional quantities, this yields

an initial condition 
X0

Y0

pX0

pY 0

 =


xe

ye

0

0

+


Lx

Ly

ω0LxM1

ω0LyM2


T

C


c

0

Aq

Ap

 . (3.40)

Integrate backward and obtain Poincaré section. Using the N initial conditions (3.40) yielded

by varying Aq and Ap governed by (3.39) and integrating the nonlinear equations of motions in

(3.27) in the backward direction, we obtain a tube, formed by the N trajectories, which is a linear

approximation for the transition tube. Choosing the Poincaré surface-of-section Σ1 is shown in

Figure 3.3, corresponding to X = XW1 and pX > 0.

Step 3: Compute the real transition tube by the bisection method. We have obtained a

Poincaré section which is the intersection of the approximate transition tube and the surface Σ1.

First pick a point (noted as pi) which is almost the center of the closed curve. The line from pi to

each of the N points on the Poincaré map will form a ray. The point pi inside the curve in general is

a transit orbit. Then choose another point on each radius which is a non-transit orbit, noted as po.

With the approach described above, we can use the bisection method to obtain the boundary of the

transition tube on a specific radius (cf. [26]). Picking the midpoint (marked by pm) as the initial

condition and carrying out forward integration for the nonlinear equation of motion in (3.27), we

can estimate if this trajectory can transit or not. If it is a transit orbit, note it as pi, otherwise note

it as po. Continuing this procedure again until the distance between pi and po reaches a specified

tolerance, the boundary of the tube on this ray is estimated. Thus, the real transition tube for the

conservative system can be obtained if the same procedure is carried out for all angles. A related

method is described in [27], adapting an approach of [28].

For the dissipative system, the size of the transition tubes for a given energy on Σ1 will shrink. Using
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the bisection method and following the same procedure as for conservative system, the transition

tube for the dissipative system will be obtained.

3.3.2 Numerical results and discussion

To visualize the tube dynamics for the arch, several examples will be given. According to the

steps mentioned above, we can obtain the transition tubes for both the conservative system and

dissipative system. For all results, the geometries of the arch are selected as b = 12.7 mm d = 0.787

mm, L = 228.6 mm. The Young’s modulus and the mass density are E = 153.4 GPa and ρ =

7567 kg m−3. The selected thermal load corresponds to 184.1 N, while the initial imperfections are

γ1 = 0.082 mm and γ2 = −0.077 mm. These values match the parameters given in the experimental

study [1]. For all the numerical results given in this section, the initial energy of the system is set

at 3.68×10−4 J - above the energy of saddle point S1, so that the equilibrium point W1 is inside

the configuration space projection. This choice of initial energy will make it possible to compare

the numerical results with the experimental results which are planned for future work.

Transition tubes for conservative system For conservative system, the Hamiltonian is a

constant of motion. In Figure 3.4, we show the configuration space projection of the transition

tube and the Poincaré sections on Σ1 and Σ2 which are closed curves. In Figure 3.4 are shown all

the trajectories which form the transition tube boundary starting from Σ1 and ending up at Σ2,

flowing from left to right through the neck region.

Due to the the conservation of energy, the size of the transition tube is constant during evolution,

which corresponds to the cross-sectional area of the transition tube. It should be noted that the

areas of the tube Poincaré sections on Σ1 and Σ2 in Figure 3.4 are equal, due to the integral

invariants of Poincaré for a system obeying Hamilton’s canonical equations (with no damping).

Moreover, note that the size of the transition tube, the boundary of the transit orbits, is determined

by the energy. For a lower energy, the size of the transition tube is smaller or vice versa. In other

words, the area of the Poincaré sections on Σ1 and Σ2 is determined by the energy. In fact, the

cross-sectional area of the transition tube is proportional to the energy above the saddle point S1

[29]. As mentioned before, the transition tube separates the transit orbits and non-transit orbits,

which correspond to snap-through and non-snap-through. The orbit inside the transition tube can

transit, while the orbit outside the transition tube cannot transit.

Transition tubes for the dissipative system Unlike the conservation of energy in the

conservative system, the energy in the dissipative system is decreasing with time. Figure 3.5 shows
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Figure 3.4: A transition tube from the left well to the right well, obtained using the method described in

the text. The upper figure shows the configuration space projection. The lower left shows the tube boundary

(closed curve) on Poincaré section Σ1, which separates transit and non-transit trajectories. The lower right

shows the corresponding tube boundary (closed curve) on Poincaré section Σ2.

the configuration space projection of the transition tube and the Poincaré sections on Σ1 and Σ2.

In Figure 3.5 the transition tube starts from Σ1 and ends up with Σ2 flowing from left to right

through the neck region, as shown previously for the conservative system. From the figure, we can

observe the distinct reduction in the size of the transition tube, especially near the neck region. To

show this, the scale of the Poincaré section projections is the same as in Figure 3.4. During the

evolution, the energy of the system is decreasing due to damping. The trajectories spend a great

amount of time crossing the neck region, resulting in the total energy decreasing dramatically (and
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Figure 3.5: A transition tube from the left well to the right well, obtained using the method described

in the text, for the case of damping. The upper figure shows the configuration space projection. The lower

left shows the tube boundary (closed curve) on Poincaré section Σ1 which separates transit and non-transit

trajectories for initial conditions all with a given fixed initial energy. The lower right shows the corresponding

image under the flow on Poincaré section Σ2. Due to the damping, and a range of times spent in the neck

region, spiraling is visible in this 2D projection since trajectories which spend longer in the neck will be at

lower total energies. Compare with Figure 3.4.

influencing the size of the transition tubes to the right of the neck region). Thus, the transition tube

is spiraling in the neck region so that Poincaré Σ2 is not a closed curve, nor are the trajectories at

a constant energy. The Σ2 plot is merely a projection onto the (Y, pY )-plane to give an idea of the

actual co-dimension 1 tube boundary in the 4-dimensional phase space. Note the clear differences
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Figure 3.6: A transition tube from the left side boundary (n1) to the right side boundary (n2) of the

equilibrium region around saddle point S1, obtained for the linear damped system. Notice that the shrinking

of the tube is observed as in the nonlinear system, Figure 3.5, here seen in terms of the width of the projected

strip onto configuration space.

between Figure 3.4 and Figure 3.5. The dramatic shrinking of tubes near the neck region is due

almost entirely to the linearized dynamics near the saddle point. To confirm this, we present the

linear transition tube obtained by the analytical solutions for the linearized dissipative system in

Figure 3.6. See the analytical solutions for the linearized dissipative system in [25].

Effect of damping on the transition tubes In order to further quantify how damping

affects the size of transition tubes, we present the tube Poincaré section on Σ1 with different

damping in Figure 3.7. In Figure 3.7(a), we can see the canonical area (
∫
A pY dY ) decreases with

increasing damping. Thus, the proportion of transition trajectories will be fewer if the damping

increases. Note that when the damping changes, different transition tubes almost share the same

center which corresponds to the fastest trajectories. Figure 3.7(b) shows the relation between

the damping and the projected canonical area (
∫
A pY dY ), which is related to the relative number

of transit compared to non-transit orbits. It shows that an increase in damping decreases the

projected area. When the damping is small, the relation between the damping and the area

is linear, while when the damping is large, the relation becomes slightly nonlinear. Note that

generally in mechanical/structural experiments the non-dimensional damping factor ξd is less than
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Figure 3.7: The effect of the damping coefficient CH on the area of the transition tube on Poincaré section

Σ1 is shown. For a fixed initial energy above the saddle, the projection on the canonical plane (Y, pY ) is

shown in (a) and the area is plotted in (b). In (b), the shaded region indicates the experimentally observed

range of damping coefficients, which correspond to non-dimensional damping factor ξd less than 5%.

5% which corresponds to a damping coefficient CH less than 107.3 s−1 (see the shaded region in

Figure 3.7(b)). Furthermore, note that for the initial energy depicted in Figure 3.7, there are no

transit orbits starting on Σ1 for CH greater than about 185 s−1.

Demonstration of trajectories inside and outside the transition tube To illustrate

the effectiveness of the transition tubes, we choose three points on Σ1 (see A, B and C in Figure

3.8(a)) as the initial conditions and integrate forward to see their evolution. Note that all the

trajectories corresponding to these three points have the same initial energy and start from a

configuration identical to the equilibrium point W1, but with different initial velocity directions.

Figure 3.8(b) shows the trajectories A and B in the conservative system where A is outside the

tube boundary and B is inside the tube boundary. In the figure, trajectory B transits through

the neck region and trajectory A bounces back. Figure 3.8(c) shows trajectories B and C in the

dissipative system. Like the situation in the conservative system, trajectory C which is inside the

tube can transit, while trajectory B which is outside the tube cannot. Figure 3.8(d) shows the effect

of damping on the transit condition for the trajectories B and B′ with the same initial condition.

Trajectory B is simulated using the conservative system and trajectory B′ is simulated using the

dissipative system. It shows that the damping changes the transit condition that a transit orbit B in

the conservative system becomes non-transit orbit B′ in the dissipative system, both starting from
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Figure 3.8: Several example trajectories are shown, starting from the stable well point W1. The initial

conditions from Poincaré section Σ1 are shown in (a) for a fixed initial energy, along with the transition tube

boundaries for the conservative case and a damped case. In (b), we show the trajectories for points A and

B, for the conservative case where A is just outside the tube boundary and B is just inside. In (c), we show

the trajectories for points B and C, for the damped case where B is just outside the tube boundary and C is

just inside. In (d), we illustrate the effect of damping by starting the same initial condition, B, but showing

the trajectory in the conservative case as trajectory B and the damped case as trajectory B′.

the same initial condition. From Figure 3.8, we can conclude the transition tube can effectively

estimate the snap-through transitions both in the conservative systems and dissipative systems.

Finally, we point out that the transition tubes are the boundary for transit orbits that transition

the first time. For example, trajectory A in Figure 3.8(b) stays outside of the transition tube so
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that it returns near the neck region at first, but, unless it happens to be on a KAM torus or a

stable manifold of such a torus, it will ultimately transit as long as it does not form a periodic

orbit near the potential well W1, since the energy is above the critical energy for transition and is

conservative.

3.4 Conclusions

Tube dynamics is a conceptual dynamical systems framework initially used to study the isomeriza-

tion reactions in chemistry [12, 13, 14, 15, 30] as well as other fields, like resonance transitions in

celestial mechanics [9, 11, 17, 18, 31] and capsize in ship dynamics [8]. Here we extend the applica-

tion of tube dynamics to structural mechanics: the snap-through of a shallow arch, or buckled-beam.

In general, slender elastic structures are capable of exhibiting a variety of (co-existing) equilibrium

shapes, and thus, given a disturbance, tube dynamics sheds light on how such a system might

be caused to transition between available, stable equilibrium configurations. Moreover, it is the

first time, to the best of our knowledge, that tube dynamics has been worked out for a dissipative

system, which increases the generality of the approach.

The snap-through transition of an arch was studied via a two-mode truncation of the govern-

ing partial differential equations based on Euler-Bernoulli beam theory. Via analysis of the lin-

earized Hamiltonian equations around the saddle, the analytical solutions for both the conservative

and dissipative systems were determined and the corresponding flows in the equilibrium region of

eigenspace and configuration space were discussed. The results show that all transit orbits, corre-

sponding to snap-through, must evolve from a wedge of velocities which are restricted to a strip in

configuration space in the conservative system, and by an ellipse in the corresponding dissipative

system when damping is included. Using the results from the linearization as an approximation,

the transition tubes based on the full nonlinear equations for both the conservative and dissipative

system were obtained by the bisection method. The orbits inside the transition tubes can transit,

while the orbits outside the tubes cannot. Results also show that the damping makes the size of

the transition tubes smaller, which corresponds to the degree, or amount, of orbits that transit.

When the damping is small, it has a nearly linear effect on the size of the transition tubes.

Further study of the dynamic behaviors of the arch can lead to more immediate application struc-

tural mechanics. For example, many structural systems possess multiple equilibria, and the manner

in which the governing potential energy changes with a control parameter is, of course, the essence

of bifurcation theory. However, under nominally fixed conditions, the present study directly as-

sesses the energy required to (dynamically) perturb a structural system beyond the confines of its
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immediate potential energy well. In future work, a three-mode truncation may be introduced to

study such systems. High order approximations will present higher index saddles which will modify

the tube dynamics framework presented here (cf. [32, 33, 34]). Furthermore, experiments will be

carried out to show the effectiveness of the present approach to prescribe initial conditions which

lead to dynamic buckling.
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Chapter 4

On the invariant manifold governing

transition in snap-through buckling

Attribution

This chapter represents a collaborative work with Shane D. Ross. This work has not been published

yet.

Abstract

Invariant manifold plays an essential rule in organizing local and global dynamical behaviors. For

example, we notice that in multi-well conservative systems where the potential wells are usually

connected by an index-1 saddle, the motion between potential wells is governed by the invariant

manifold of a periodic orbit around the saddle. In this chapter, we use the concept of the invariant

manifold to study the transition boundary of a given energy using the snap-through of a shallow

arch as an example. Since the computation of the invariant manifold of a periodic orbit in the

conservative systems is well developed, our focus will be on the invariant manifold of a saddle

point in a dissipative system. We present a boundary-value problem (BVP) approach to compute

such manifold. The boundary conditions on one end are selected on a hyper-sphere in the stable

subspace of the linearized system about the saddle and the boundary conditions on the other end

are determined by the energy. The algorithms are implemented in a MATLAB-based continuation

package COCO. We find that the results obtained by the current method match well with the

88
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results predicted by the bisection method in the previous chapter.

4.1 Introduction

From the study of the linearized dynamics in Chapter 2, we found the transition boundary of a

specific given initial energy goes from a cylindrical tube in the conservative system to an ellipsoid

in the dissipative system, named as transition tube and transition ellipsoid, respectively. The

transition tube and transition ellipsoid are the invariant manifold of the periodic orbit and the

index-1 saddle in the conservative and dissipative systems, respectively. In Chapter 3, a bisection

method was proposed to compute the transition boundary on a specific Poincaré section for both

conservative and dissipative systems. It is regretful that the structure of the transition boundary in

the full phase space that governs the transition was not discussed, although it can be obtained by

selecting a bunch of Poincaré sections. This method is versatile but sometimes is time-consuming if

too many Poincaré sections are considered. It will even fail if the shape of the transition boundary

on a Poincaré section is irregular and distorted. In this chapter, we aim to present a boundary-value

problem (BVP) approach to compute the transition boundary in a full nonlinear sense from the

perspective of the invariant manifold.

In dynamical systems, the invariant manifold is critical to know the global dynamical structure. In

general, the global invariant manifold in a nonlinear system can not be obtained analytically. Thus,

numerical computational algorithms are necessary. Suppose we have a dynamical system written

as
dx

dt
= f(x), (4.1)

where x ∈ Rn and the vector field f : Rn 7→ Rn is sufficiently smooth. Here the dot over the quantity

is the derivative with respect to time. The system is assumed to have a hyperbolic equilibrium point

at x = xe that satisfies f(xe) = 0. Its Jacobian matrix Df(xe) has k eigenvalues with negative

real part and n − k eigenvalues with positive real part. The eigenvectors corresponding to the

eigenvalues with negative and positive real parts are denoted by u and v, respectively. Thus, the

spaces spanned by u and v are referred to as the stable and unstable subspaces of the linearized

system, denoted by Es and Eu, which are defined as

Es = span{u1, u2, · · · , uk},

Eu = span{v1, v2, · · · , vn−k}.
(4.2)

From the Theorem of Local Stable and Unstable Manifold [1, 2, 3], there exists a k-dimensional

invariant local stable manifold and a (n− k)-dimensional invariant unstable manifold, denoted by
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W s
loc(xe) and W u

loc(xe), which are tangent to Es and Eu at xe, respectively. After the local stable

and unstable invariant manifolds are established, the global stable and unstable invariant manifold

can be grown from the corresponding local invariant manifold [1, 2, 3, 4] which are defined by

W s(xe) =
{
x ∈ Rn| lim

t→∞
φt(x) = xe

}
=
⋃
t>0

φt(W
s
loc(xe)),

W u(xe) =

{
x ∈ Rn| lim

t→−∞
φt(x) = xe

}
=
⋃
t60

φt(W
s
loc(xe)),

(4.3)

where φt is the flow of the nonlinear system given in (4.1). From the definitions of the invariant

manifolds in (4.3), it is intuitive to compute the global invariant manifold by numerical integration

using a batch of initial conditions on a (k − 1)-dimensional hyper-sphere with a small radius δ

centered at xe in the corresponding subspace. This idea works well for the one dimensional invariant

manifold of the equilibrium point embedded in any dimensional space [5]. However, some challenges

[6] may appear when computing the higher dimensional invariant manifold, like the large aspect

ratios of the manifold surface due to the significant difference in real part of the eigenvalues and the

trajectories on the manifold will be attracted to the most stable direction [7]. In this case, growing

the invariant manifold directly from the local initial sphere is impractical. Other methods can be

found in a review paper [4] about computing the global invariant mathods and interested readers

are referred to it for more details.

[6] presents an idea of solving a suitable two-point boundary-value problem to compute the global

invariant manifold as a family of orbit segments. It has been applied to some examples to compute

the two dimensional manifold formed by a family of geodesic level sets. Starting from another

perspective similar to the well known cell-mapping method, a special box covering technique [8, 9]

was developed to compute the invariant manifolds. A subdivision algorithm is used to produce the

local invariant manifold first and then a box-oriented continuation technique is applied to extend it

to the global manifold with larger parts. Theoretically, this technique is applicable to compute the

invariant manifold of arbitrary dimension. However, due to the large number of boxes used in high

dimensional systems that will slow down the computation, only moderate dimensional problems are

considered to be practical. The Lagrangian descriptor (LD) [10, 11] is a trajectory-based diagnostic

method, initially developed in the context of transport in fluid mechanics, to detect the invariant

manifold [12, 13]. It measures the geometrical properties of particle trajectories, such as the arc-

length, within a fixed forward and backward time starting at given initial conditions. Since it is an

integration method, its computational expenses still need to be examined.

In this chapter, we present an idea of computing the transition boundary of initial conditions

subjected to a given energy by computing the invariant manifold by solving two-point boundary
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value problems applied to the snap-through of a shallow arch (or buckled beam) with energy

dissipation. The algorithm is implemented in a MATLAB-based package COCO [14]. From our

results, it is found that the boundary of initial conditions for the transit orbits of a fixed initial

energy is the transition tube and transition ellipsoid in the conservative and dissipative systems,

respectively, which is an extension of the linearized dynamics around the saddle in Chapter 2.

4.2 Algorithms for computing the invariant manifolds

4.2.1 Invariant manifold of a periodic orbit

In this part, we aim to discuss the invariant manifold of a periodic orbit. It has two separate parts,

the first part about the algorithm to compute a periodic orbit, and the second part about the

computation of stable and unstable manifolds of the periodic orbit.

Periodic orbits. A solution of the dynamical system (4.1) is a periodic orbit [15] if there exists

a least time interval T > 0 which satisfies x(t + T ) = x(t) for all t. Multiple methods have been

developed to compute the periodic orbits, such as the method of multiple scales [16, 17], incremental

harmonic balance method [18, 19], differential correction (or shooting method) [5, 20, 21], to name

but a few. In the following, we will introduce another efficient BVP approach which can compute the

periodic orbits very accurately. Before discussing this approach, we rescale the time by introducing

the linear transformation, τ = t/T , so that the period T appears explicitly in the equations of

motion. Thus, the equations in (4.1) can be rewritten as

dx

dτ
= Tf(x), 0 6 τ 6 1, (4.4)

where T is the unknown period. For the periodic orbits, we have the periodicity condition,

x(0) = x(1). (4.5)

However, (4.4) and (4.5) do not uniquely determine the periodic solution, since if x(t) is a periodic

solution, so is x(t+ δ). To avoid the arbitrary phase shift δ, the following integral phase condition

[14, 15, 22] is widely used,∫ T

0
[x(t)− x∗(t)]T f(x(t))dt =

∫ 1

0
[x(τ)− x∗(τ)]T f(x(τ))dτ = 0, (4.6)
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where x∗(t) is a known nearby solution. Now the boundary value problem is ready to be solved.

For the complexity of the nonlinearity in the system, some numerical methods are needed. For such

numerical process, there exists several software tools, such as AUTO [23], MATCONT [24], and

COCO [14]. COCO is a MATLAB continuation package that embeds the algorithm described here

for computing the periodic orbits to a po toolbox which uses the collocation method and pseudo-

arclength method for numerical continuation. In this chapter, we will apply COCO to compute the

periodic orbits.

Invariant manifold of the periodic orbits. As mentioned in the Introduction, the general

way of computing the global invariant manifold is to globalize the local invariant manifold of the

corresponding linearized system. Thus, here we can first find the local approximations of the

manifold of the periodic orbit from the eigenvectors of the monodromy matrix and then grow the

linear approximations by integrating the nonlinear equations of motion (4.1). The procedure is

known as globalization of the manifolds. Before growing the invariant manifold of the periodic

orbit, we need to compute the state transition matrix Φ(t) along the periodic orbit which can be

obtained by numerically solving the following variational equations from time 0 to T ,

Φ̇(t, t0) = Df(x̄(t))Φ(t, t0), Φ(t0, t0) = In (4.7)

Once the monodromy matrix M = Φ(T ) is obtained, its eigenvalues can be computed numerically.

For the two-mode Hamiltonian system for the shallow arch discussed in the previous chapter, we

can conclude from [20] that the four eigenvalues of M include one real pair and one pair equal to

unity,

λ1 > 1, λ2 =
1

λ1
, λ3 = λ4 = 1. (4.8)

From [20], we know the eigenvector associated with λ1 is in the unstable direction, while the

eigenvector associated with eigenvalue λ2 is in the stable direction. Denote the stable and unstable

eigenvectors by Y s(X0) and Y u(X0), respectively, normalized to unity. In this setting, we can

obtain the initial guesses for the stable and unstable manifolds, denoted by Xs(X0) and Xu(X0),

at X0 along the periodic orbit written in the following form

Xs(X0) = X0 + εY s(X0),

Xu(X0) = X0 + εY u(X0),
(4.9)

where ε is a small displacement amplitude from X0. The magnitude of ε should be small enough so

that the linear estimate can satisfy the accuracy, yet not so small that the time to obtain the global

manifold becomes large due to the asymptotic behavior of the stable and unstable manifolds.
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Once we obtain the initial guess for the stable and unstable manifolds at X0, it is straightforward

to globalize the manifold. By numerically integrating the unstable vector forwards in time, using

both ε and −ε, we generate the trajectories shadowing the two branches, W u+ and W u−, of the

unstable manifold of the periodic orbit. Similarly, by integrating the stable vector backwards, we

generate a trajecory shadowing the stable manifold, W s±. For the manifold at X(t), we can simply

use the state transition matrix to transport the eigenvectors from X0 to X(t):

Y s(X(t)) = Φ(t, 0)Y s(X0). (4.10)

Since the state transition matrix does not preserve the norm, the resulting vector must be renor-

malized.

4.2.2 Invariant manifold of an equilibrium point

In the previous section, we discussed the approach to compute a periodic orbit and its stable and

unstable invariant manifold in the conservative system. The invariant manifold is the boundary of

the initial conditions for those trajectories that will soon escape. After clarifying this, it is intuitive

to think about what the phase space structure will be that governs the transition in the dissipative

system. In this part, we address this concern by computing the invariant manifold of an equilibrium

point in a dissipative system.

We use the same general form of a dynamical system in (4.1) to define the dissipative system with

equilibrium point denoted by xe. The Jacobian Df(xe) of the equilibrium point has k eigenvalues

with negative real part. The real parts of the k eigenvalues and the corresponding generalized

eigenvectors are written as λsi and ui (i = 1, · · · , k), respectively. Thus, the saddle has a k-

dimensional local, stable invariant manifold, denoted by W s
loc(xe), which is tangent to the respective

invariant stable subspaces, Es, of the linearized system about the saddle spanned by the stable

eigenvectors ui.

After we determine the local stable manifold, it can be globalized to obtain the global k-dimensional

stable manifold W s(xe) [4]. The direct way to obtain the manifold is to select an initial condition

in the stable subspace with a small distance from the equilibrium point and integrate backward in

time so that one orbit segment on the stable manifold can be obtained. The continuation by using

the orbit as a starting solution might give the global manifold. However, some challenges [6] may

appear, such as the large aspect ratios of the manifold surface due to the tremendous difference in

the real part of the eigenvalues and the great distortion of the initial conditions after a long period

of integration due to the nonlinearity of the system. To solve these problems, new mesh points on
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the hyper manifold surface is needed which is also challenging.

Another way of obtaining the stable manifolds is solving a proper two-point boundary-value problem

(BVP) [22] which can control the endpoints of the trajectories on the manifold. Before describing

the process, we need to rescale the time by t = Tτ which puts (4.1) into the same form as (4.4)

where τ varies from 0 to 1. It should be mentioned that, compared to the period T of a periodic

orbit in the conservative system, T here in the dissipative case is the time length of a trajectory on

the invariant manifold of the saddle. We can consider T as either a parameter or a function whose

derivative with respective to τ is zero, i.e., dT/dτ = 0. Here we will use the latter one. To form a

complete BVP set-up, we still need some boundary conditions. The boundary conditions at τ = 0

can be selected on the initial hyper-sphere on the stable subspace given by

x(0) = xe + r0

k∑
i=1

aiui, (4.11)

where ai are parameters controlling the direction of the velocity; r0 is the radius of the initial sphere

centered at the equilibrium point. The value of r0 is should be appropriately selected, neither too

small nor too large.

In the following, we will take the snap-through of a shallow arch with damping as an example. The

equations for the boundary-value problem to compute the invariant manifold of the rank-1 saddle

are,

Ẋ =
pX
M1

, Ẏ =
py
M2

,

ṗX = − ∂V
∂X
− CHpX , ṗY = − ∂V

∂Y
− CHpY , Ṫ = 0.

(4.12)

where ∂V/∂X and ∂V/∂Y are given in (3.27).

In the dissipative system, the rank-1 saddle has a three-dimensional stable invariant manifold.

Thus, the boundary conditions at the initial points can be selected on the 2-sphere with radius r0

given by

x(0) = xe + r0 (sin θ sinφu1 + sin θ cosφu2 + cos θu3) (4.13)

where θ and φ are the two parameters. Notice that there are 4 boundary conditions in (4.13).

We still need one more boundary condition at τ = 1. We can have several choices, such as the

energy, arclength or time of the trajectories. In current problem we want to find out the transition

boundary of the dissipative system subjected to a specific energy, h. Thus, the best way is to assign

the given energy to the endpoint at τ = 1. The boundary condition there is given by,

E [x(1)] = H [X(1), Y (1), pX(1), pY (1)] = h, (4.14)
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After we set up the boundary-value problem, we can apply numerical continuation to obtain the

invariant manifold of the system. Before solving the bounary-value problem, we need to specify

r0 and h, so we have 5 variables (X, Y , pX , pY , and T ) and 2 parameters (θ and φ). On the

other hand, we have 5 boundary conditions in (4.13) and (4.14). Thus, the BVP set-up is a two-

parameter continuation. To simplify the continuation process, we want to reduce the system to a

one-parameter continuation.

For the three stable eigenvectors u1, u2, and u3, we assume the eigenvalue associated with u1 has

the largest absolute value. Thus, u1 is in the most stable direction. In fact, u1 is a stable direction

without any focus component. It has the largest possibility to escape from the potential well. If

we take θ = φ = π/2 in (4.13) and use it as an initial condition to numerically integrate (4.12)

backward in time until the trajectory reaching the specific energy h, we can reach the end of the

nonlinear transition ellipsoid. Since this trajectory is approaching the saddle in forward time along

the most stable direction, it is the fastest stable asymptotic orbit to the saddle. We refer it to as

the fastest trajectory. In the following, we will use it as a reference trajectory to determine the

Poincaré section.

Let r denote the position vector of an arbitrary point on the fastest trajectory in X-Y -pY space.

We can obtain the tangent vector τ of that point along the fastest trajectory,

τ =
∂r

∂s
=
∂X

∂s
eX +

∂Y

∂s
eY +

∂pY
∂s

epY =
Ẋ

ṡ
eX +

Ẏ

ṡ
eY +

ṗY
ṡ

epY , (4.15)

where eX , eY , and epY are the corresponding basis vectors. Here s is the arclength of the reference

trajectory in X-Y -pY space defined by

s(τ) =

∫ τ

0

√
Ẋ2 + Ẏ 2 + ṗ2

Y dτ. (4.16)

For a specific point (X0, Y0, pY 0) on the fastest trajectory, we can choose a plane at that point

vertical to τ as the Poincaré section. The mathematical expression of such plane is given by

τx(X(1)−X0) + τy(Y (1)− y0) + τpy(pY (1)− pY0) = 0, (4.17)

where τX , τY , and τpY are the components of the tangent vector τ along X, Y , and pY axes,

respectively. In this case, we have one more algebraic equation which reduces the problem to a

one-parameter continuation. Figure 4.1 shows the process of selecting proper Poincaré sections and

the way to do the continuation on such Poincaré sections. The whole process of solving the BVP

continuation will be implemented in COCO again to compute the invariant manifold of the saddle.

In this way we can obtain the transition boundary in the dissipative system.
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Figure 4.1: Illustration of selecting an extra Poincaré section to reduce the two-parameter
continuation to a one-parameter continuation: (a) Select the initial condition of the fastest
trajectory on the initial sphere (with radius r0) in the stable subspace of the linearized
system and numerically integrate the nonlinear equations until the trajectory reaches the
given energy h. For the selection of the points, the easiest way is meshing by arc-length.
Of course, for the area with large curvature, more points can be selected; (2) Select some
points on the fastest trajectory and compute the tangent vector at each point along the
fastest trajectory; (3) Finally the plane normal to the tangent vector at each point can
be selected as the Poincaré section; (4) After we determine the Poincaré sections, we can
obtain the intersection of the fastest trajectory on one Poincaré section, labeled by A. In
general point A has lower energy than the given energy h. We can fix pY and commit the
continuation along Y direction until the Hamiltonian reaches h so that we can obain point
B on the transition boundary. Then we can use Point B as the starting solution and do the
continuation by fixing the Hamiltonian as h by which we can obtain the transition boundary
on the Poincaré section.

4.3 Numerical results

In this section, we will give the geometry of escape dynamics in the nonlinear snap-through of a

shallow arch in both the conservative and dissipative systems. As discussed in Section 4.2, the

periodic orbit and the invariant manifold of a saddle are obtained by BVP approaches. Such BVP
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Figure 4.2: A transition tube from the left well to the right well in the conservative system
obtained by the BVP approach: (a) shows the transition tube projected onto configuration
space. (b) and (c) give the transition boundaries on the Poincaré sections Σ1 and Σ2 in
the conservative systems. In order to compare the efficiency of the current method, we also
present the transition boundary obtained by the bisection method.

approaches are implemented in COCO [14]. In the corresponding examples, the geometrical and

material parameters are selected as the same as Chapter 3: the geometries of the beam are selected

as b = 12.7 mm d = 0.787 mm, L = 228.6 mm; the Young’s modulus and the mass density are

E = 153.4 GPa and ρ = 7567 kg m−3; moreover, the selected thermal load corresponds to 184.1 N,

while the initial imperfections are γ1 = 0.082 mm and γ2 = −0.077 mm.
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4.3.1 Conservative systems

In this part, we give some examples about the nonlinear dynamics in the conservative system. For

the convenience of discussing the energy, we will use the excess energy ∆E [12] rather than the total

energy E, where the excess energy is the difference of the total energy Et and the critical energy

Ec of the saddle point S1 defnied by ∆E = Et − Ec. For positive excess energy, the bottleneck

region around the saddle is open, and the trajectories have a chance to escape from the potential

well. Otherwise, it is closed and no transition is allowed.

Figure 4.2 gives a transition tube of excess energy ∆E = 3.68× 10−4 J in the conservative system

obtained by the BVP approach. As already pointed out in Chapter 3, due to the conservation of the

energy, the cross-sectional area of the transition tube keeps constant along the invariant manifold.

Moreover, the size of the cross-sectional area of the transition tube is decided by the initial energy

applied to the system. Larger energy input will give a larger transition tube. From the transition

boundaries on the Poincaré sections Σ1 and Σ2 obtained by the BVP approach and the bisection

method given in Figure 4.2(b) and Figure 4.2(c), we notice the two approaches predict very close

results. It implies that two methods are both accurate. However, the BVP approach is much faster

than the bisection method.

4.3.2 Dissipative systems

In this section, we focus on presenting the results of the transition boundary in the dissipative

system of the snap-through of a shallow arch. In the conservative system, the energy keeps constant

for all motions. However, in the dissipative system the energy is keeping decreasing. The topology

of the phase space structure that governs the transition in the dissipative system will be different

from that in the conservative system. For the numerical results in the dissipative system, if there

is not specific mention, the damping is taken as CH = 80 s−1. Moreover, around the saddle, we

also give the periodic orbit.

Figure 4.3 shows the two transition ellipsoids with initial excess energy ∆E = 1.0 × 10−4 J and

∆E = 1.0 × 10−4 J, respectively. The corresponding configuration space projections are given on

the right. It shows that the transition ellipsoid becomes bigger when the initial energy given to the

system increases. Due to the presence of nonlinear effect in the system, the transition ellipsoids

do not appear in a standard form as in the linearized system. However, their topologies are the

same as those in linearized systems. In Figure 4.3, we also give the periodic orbits with the same

energy. We notice that the periodic orbits are exactly on the boundary of the transition ellipsoids.

In fact, the points on the periodic orbits are the initial conditions of the focus-type asymptotic
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Figure 4.3: Transition ellipsoids in dissipative system obtained by the BVP approach: (a)
and (c) show the three-dimensional transition ellipsoids with excess energy ∆E = 1.0×10−4

J and ∆E = 2.0 × 10−4 J, respectively; (b) and (d) show the corresponding configuration
space projections.

orbits discussed in Chapter 2. Each periodic orbit divides the corresponding transition ellipsoid

into two parts. The left part of the transition ellipsoid gives the initial conditions for the transit

orbits moving from the left well to the right well, while the right part gives the initial conditions

for the transit orbits moving from the right well to the left well.

Demonstration of transit and non-transit trajectories. In this part, we illustrate the

effectiveness of the transition ellipsoid. We select two initial conditions on the Poincaré section Σ1,

one inside and the other outside of the Poincaré section Σ1. After integrating the initial conditions
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Figure 4.4: A transition ellipsoid in the dissipative system obtained by the BVP approach:
the right figure shows the transition ellipsoid; the lower left shows the configuration space
projection; the upper left shows the transition boundary, a closed curve, on the Poincaré
section Σ1 which separates the initial conditions with a given fixed energy for the transit
and non-transit trajectories. A transit orbit and a non-transit trajectory starting with initial
conditions labeled by A and B are shown, which are inside and outside of the transition
boundary on the Poincaré section Σ1, respectively.

forward in time, we can obtain two trajectories. Figure 4.4 shows the transition ellipsoid and two

trajectories with excess energy ∆E = 3.68 × 10−4 J. From the figure, we find that trajectory B

with the initial condition inside of the transition boundary escapes from the potential well W1 and

moves to the other potential well W2, while trajectory A with the initial condition outside of the

transition boundary bounces back to the region of origin before crossing the bottleneck around

the saddle. From Figure 4.4, we can conclude that the transition ellipsoid obtained by the BVP

approach can accurately predict the snap-through transition with energy dissipation.
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4.4 Conclusion

In this chapter, we seek to compute the transition boundaries in both the conservative and dissipa-

tive systems from the perspective of the invariant manifold of a periodic orbit and an index-1 saddle,

respectively. Such invariant manifolds can be found numerically by solving proper boundary-value

problems.

In the conservative system, the computational process about the invariant manifold has two steps,

including the computation of the periodic orbit by solving a proper boundary-value problem and

the globalization of the manifold. In the dissipative system, we compute the invariant manifold

of a rank-1 saddle by another BVP continuation. First, we compute the stable subspace of the

linearized system about the saddle. Then the points on an initial sphere selected in the subspace

centered at the saddle and the energy at the other endpoint are used as the boundary conditions so

that the invariant manifold of the saddle can be numerically obtained. The initial BVP set-up for

the dissipative system is a two-parameter continuation. To reduce the difficulty of committing such

continuation, extra Poincaré sections are introduced so that the problem becomes a one-parameter

continuation. By using such approaches, we obtain the transition tube and transition ellipsoid for

both the conservative and dissipative systems, respectively, which are topologically the same as

those we obtained in Chapter 2 for the linearized dynamics. We conclude that the boundary-value

problem approaches to compute the transition boundary in the nonlinear systems are effective.
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Chapter 5

Conclusion and future work

5.1 Summary

The research in this dissertation aims to study the escape dynamics in two degree of freedom

systems in the presence of dissipative and gyroscopic forces. This dissertation presents a complete

theoretical-computational framework that can deal with the motion between potential wells in both

the conservative and dissipative systems.

In Chapter 2, we study the linearized dynamics of the escape in the system of an idealized ball rolling

on both stationary and rotating surfaces. The analytical solutions of the transition boundary are

obtained for both the conservative and dissipative systems. The results reveal that the transition

tube and transition ellipsoid, which are the stable invariant manifold of a periodic orbit and a

rank-1 saddle, govern the boundary of the initial conditions of a given energy for the trajectories

that can escape from potential wells in the conservative and dissipative systems: the trajectories

with initial conditions inside the boundary can escape, while the trajectories with initial conditions

outside the boundary can not escape.

In Chapter 3, we extend the linearized dynamics of escape to the nonlinear case. We develop a

bisection method applied to the snap-through buckling of a shallow arch. A two-mode Hamiltonian

is developed for the shallow arch. Following the analysis in the rolling ball system, the analytical

solutions for the systems can be obtained which will be used as approximations in the bisection

method. By applying the bisection method, we can compute the transition boundary on a specific

Poincaré section for both the conservative and dissipative systems. From the results, we find that

an increase of the damping will reduce the transition boundary which corresponds to the amount

104
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of the trajectories that can escape from the potential wells.

In Chapter 4, the boundary-value problem approaches are developed to study the transition bound-

ary in the nonlinear system from the perspective of the invariant manifold of a periodic orbit and

an equilibrium point in the conservative and dissipative systems, respectively. The results validate

the transition tube and transition ellipsoid obtained from linear dynamics for the conservative and

dissipative systems, respectively, in Chapter 2. The results show that the transition tube and

transition ellipsoid in the nonlinear system do exist. Due to the nonlinearity considered in the

system, the corresponding phase space structures do not appear as the standard forms obtained in

the linear dynamics, but they are qualitatively the same.

5.2 Future work

Although this dissertation addressed some concerns in transition and escape dynamics, other con-

cerns are still remaining. Based on the study in this dissertation, the following research directions

are valuable to study.

In Chapter 4, we present a boundary-value problem approach to compute the transition boundary

in the dissipative systems from the perspective of the invariant manifold. Initially, the problem is a

two-parameter continuation. To simplify the computation, one Poincaré section should be consid-

ered to give an extra boundary condition, so that the problem can be reduced to a one-parameter

continuation. However, if the input of the energy to the system is large, the transition ellipsoid

will be distorted, special attention is needed to give proper Poincaré sections. To better capture

the nonlinear transition ellipsoid, we might consider developing better two-parameter continuation

strategies. Some set-oriented path following algorithms [1, 2, 3] can also be applied to compute the

invariant manifold.

The theoretical-computational framework developed in this dissertation just works for the predic-

tion of escape dynamics in two degree of freedom systems. Some studies [4, 5, 6] were carried

out to compute the transition boundary in higher degree of freedom systems and algorithms were

developed to study the escape dynamics in the conservative systems. However, the computational

approaches dealing with dissipative systems are still lacking, not to mention what the phase space

structures that govern the transition in the dissipative systems. Thus, the next future work can be

focused on developing computational tools for computing the transition boundary in higher degree

of freedom systems and establish the corresponding transition criteria in such systems.

Finally, this dissertation mainly focuses on the theoretical and computational aspects of the escape
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dynamics. No experiments are implemented to prove the numerical results. Recently, an experiment

[7] about a rolling ball on a four-well surface was carried out in which good agreement between

the experiments and theory was observed. However, this experiment merely considers short-time

dynamics, and the conservation of energy is considered. We still do not know what the situation is

in long-time transition in the dissipative systems. Moreover, the experiment should be extended to

structural mechanics, such as the snap-through of a shallow arch, to present experimental validation

of the algorithms developed in this dissertation.
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Appendix A

Derivations and coefficients for the

rolling ball on a rotating surface

Substituting the surface function H(x, y) defined in (2.12), one can obtain the Lagrangian equations

from (2.15) as,

I
(
1 + k2

1x
2
)
ẍ+ Ik1k2xyÿ + Ik2

1xẋ
2 − 2Iωẏ + Ik1k2xẏ

2 − Iω2x+ gk1x

+ cd
[(

1 + k2
1x

2
)
ẋ+ k1k2xyẏ

]
= 0,

Ik1k2xyẍ+ I
(
1 + k2

2y
2
)
ÿ + 2Iωẋ+ Ik1k2yẋ

2 + Ik2
2yẏ

2 − Iω2y + gk2y

+ cd
[(

1 + k2
2y

2
)
ẏ + k1k2xyẋ

]
= 0.

(A.1)

Once the Lagrangian system is obtained, one can transform it to the Hamiltonian system by use

of the Legendre transformation defined in (2.18) which gives the generalized momenta,

px =
∂L
∂ẋ

= ẋ− yω +H2
,xẋ+H,xH,yẏ, py =

∂L
∂y

= ẏ + xω +H,xH,yẋ+H2
,yẏ, (A.2)

and the Hamiltonian function,

H =
1

2
(
1 +H2

,x +H2
,y

) [p2
x

(
1 +H2

,y

)
− 2pxpyH,xH,y + p2

y

(
1 +H2

,x

)
+ 2pxω

(
y + xH,xH,y + yH2

,y

)
− 2pyω

(
x+ yH,xH,y + xH2

,x

)
− (yH,x − xH,y)

2 ω2
]

+ gH,

(A.3)

where px and py are the momenta conjugate to x and y, respectively, and the dependence of H on
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x and y is understood.

The general form of Hamiltonian equations with damping is given by (2.21). For simplicity, the

specific form of the Hamiltonian equations are not listed here. Following the same procedure as for

the ball rolling on a stationary surface, we linearize the equations of motion around the equilibrium

point at the origin which gives the linearized Hamiltonian equation as,

ẋ = ωy + px/I, ẏ = −ωx+ py/I,

ṗx = −gk1x+ ωpy − cd (ωy + px/I) ,

ṗy = −gk2y − ωpx − cd (−ωx+ py/I) ,

(A.4)

written in matrix form, 
ẋ

ẏ

ṗx

ṗy

 = M̃


x

y

px

py

+ D̃


x

y

px

py

 , (A.5)

where,

M̃ =


0 ω 1/I 0

−ω 0 0 1/I

−gk1 0 0 ω

0 −gk2 −ω 0

 , D̃ = cd


0 0 0 0

0 0 0 0

0 −ω −1/I 0

ω 0 0 −1/I

 . (A.6)

The corresponding quadratic Hamiltonian is,

H2(x, y, px, py) =
1

2I

(
p2
x + p2

y

)
+ ωpxy − ωpyx+

g

2

(
k1x

2 + k2y
2
)
. (A.7)

Using the same re-scaled parameters as in (2.23), the equations of motion can be rewritten in a

re-scaled form as,
˙̄q1 = ωq̄2 + p̄1, ˙̄q2 = −ωq̄1 + p̄2,

˙̄p1 = cxq̄1 + ωp̄2 − chωq̄2 − chp̄1,

˙̄p2 = cy q̄2 − ωp̄1 + chωq̄1 − chp̄2,

(A.8)

which can be written in matrix form (2.58).

The characteristic polynomial of the matrix M , the conservative part of the dynamics, from (2.59),

which appears in the linear ODE, (2.61), is,

p(β) = β4 +
(
2ω2 − cx − cy

)
β2 + ω4 + ω2cx + ω2cy + cxcy. (A.9)
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Let α = β2, then the roots of p(α) = 0 are as follows,

α1,2 = 1
2

(
cx + cy − 2ω2 ±

√
(cx − cy)2 − 8 (cx + cy)ω2

)
. (A.10)

For the parameters listed in (2.12), one can conclude that α1 > 0 and α2 < 0. Here we define

λ =
√
α1 and ωp =

√
−α2. Now, we want to find the eigenvectors of M in (2.59) and use them to

construct a symplectic linear change of variables which changes (2.61) into its simpler form (2.3).

Denote the matrix M − βI4 by Mβ, then,

Mβ =

(
M̄β I2

B M̄β

)
, M̄β =

(
−β ω

−ω −β

)
, B =

(
cx 0

0 cy

)
, (A.11)

where Ik is the k × k identity matrix.

Substituting the complex eigenvalues ±iωp as β into (A.11), one obtains a pair of complex eigen-

vectors with the form uωp ± ivωp . Separating the real and imaginary parts, it gives two generalized

eigenvectors,

uωp =
(
0, ω2

p + cx + ω2, ωω2
p − ωcx − ω3, 0

)
,

vωp =
(
−2ωωp, 0, 0, ω

3
p + ωpcx − ω2ωp

)
.

(A.12)

Moreover, the remaining eigenvectors associated with eigenvalues ±λ can also be obtained similarly,

u+λ =
(
λ2 − cy − ω2,−2λω, λ3 − λcy + λω2,−ωλ2 − ωcy − ω3

)
,

u−λ =
(
−λ2 + cy + ω2,−2λω, λ3 − λcy + λω2, ωλ2 + ωcy + ω3

)
.

(A.13)

Initially, we consider the change of variables defined in (2.29). To find out whether the matrix C

is symplectic or not, we check CTJC = J . After some algebra, we can find that,

CTJC =

(
0 D̄

−D̄ 0

)
, D̄ =

(
dλ 0

0 dωp

)
, (A.14)

where,

dλ = 2λ
[
(cx − cy − 4ω2)λ2 − cxcy + c2

y − cxω2 − 3cyω
2 − 4ω4

]
,

dωp = ωp
[
(cx − cy + 4ω2)ω2

p + c2
x − cxcy − 3cxω

2 − cyω2 − 4ω4
]
.

(A.15)

This implies that we need to apply some scaling on the columns of C in order to have a symplectic

change. Since it can be shown that dλ > 0 and dωp > 0, the scaling is given by the factors s1 =
√
dλ



112
Chapter A. Derivations and coefficients for the rolling ball on a

rotating surface

and s2 =
√
dωp . Thus, the final change is given by the symplectic matrix,

C =


λ2−cy−ω2

s1
0

−λ2+cy+ω2

s1

−2ωωp

s2
−2λω
s1

ω2
p+cx+ω2

s2
−2λω
s1

0
λ3−λcy+λω2

s1

ωω2
p−ωcx−ω3

s2

λ3−λcy+λω2

s1
0

−ωλ2−ωcy−ω3

s1
0

ωλ2+ωcy+ω3

s1

ω3
p+ωpcx−ω2ωp

s2

 . (A.16)

By using the change of variables with the symplectic matrix in (A.16), one obtains the Hamiltonian

equations written in the simple standard form (2.3) with the Hamiltonian function in a normal form

(2.1) whose solutions are given in (2.4). The corresponding results and discussion can be found in

Section 2.2 which will not be repeated here.

Some coefficients. The parameters in equation (2.67) are,

ap =
s2

2

[
(1 + cx)2 + λ2ω2

p

]
8ωp (1 + cx)2 (λ2 + ω2

p

) ,
bp =

s2
2

[
(1 + cx)2

(
q̄0

2 − (−1)i q̄0
1λ
)
− (−1)i λω2

p

(
q̄0

1 + q̄0
1cx + (−1)i q̄0

2λ
)]

4ωp (1 + cx)2 (λ2 + ω2
p

) ,

cp =

s2
2

[
(1 + cx)2

(
q̄0

2 − (−1)i q̄0
1λ
)2

+ ω2
p

(
q̄0

1 + q̄0
1cx + (−1)i q̄0

2λ
)2
]

8ωp (1 + cx)2 (λ2 + ω2
p

) − h.

(A.17)

Here i = 1, 2 are for stable (q0
1 = 0) and unstable (p0

1 = 0) asymptotic orbits, respectively.

The matrix K from (2.71) has components given as follows,

K11 =
2

S
− 1

2
, K12 = −1 + cy

Sλ

√
2(1 + cx)

λωp
, K13 =

cy − cx
2S

,

K14 =

√
2ωp(1 + cx)

S2λ
, K21 =

λ

S

√
2ωpλ

1 + cx
, K22 = −1

2
+
cx − cy − 4

2S
,

K23 = K21, K24 = 0, K31 = K13, K32 = K12, K33 = K11, K34 = −K14,

K41 = − 1

S

√
2λ(1 + cx)

ωp
, K42 = 0, K43 = −K41, K44 = −1

2
− cx − cy + 4

2S
,

(A.18)

where,

S =

√
(cx − cy)2 − 8 (cx + cy).
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