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1. Introduction

Animal gliders move horizontally through the air by 
exchanging potential energy for kinetic energy and 
by producing and controlling aerodynamic forces 
[1, 2]. To meet ecologically relevant goals, including 
predator escape, moving to new foraging locations, 
searching for mates, or avoiding the forest floor, the 
glider must control lift and drag forces to dynamically 
change the glide path and landing location. Glide 
dynamics have generally been studied using the limited 
theoretical framework of equilibrium, in which the 
glide path is straight and performance only depends 
on a constant lift-to-drag ratio. However, real glide 
paths are not straight, and lift-to-drag ratio can vary 
continuously with angle of attack. How animal gliders 
use their unique morphologies to achieve ecological 
goals cannot be answered from the equilibrium 
framework, as it neglects transient dynamics and angle 

of attack-dependent force coefficients. Furthermore, 
the evolution of lift-producing wing-like structures, 
which has occurred over thirty times in arboreal 
vertebrates [2], suggests that producing and controlling 
aerodynamic forces is selectively advantageous. To 
truly understand the gliding behavior of animals, then, 
suggests that a non-equilibrium framework is required. 
Here, we conceptualize glide dynamics using lift and 
drag coefficients that depend on angle of attack and 
control, which allows the angle of attack to actively vary. 
These refinements to previous modeling enables a more 
realistic view of gliding.

The equilibrium gliding assumption states that the 
resultant aerodynamic force balances the gravitational 
force. In this condition, the velocity is constant, the glide 
path is straight and angled down from the horizontal 
at a constant glide angle, and the glide angle and the 
lift-to-drag ratio are related by /γ = F Fcot L D [3]. This 
assumption has been used to compare gliders and make 
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Abstract
Gliding flight—moving horizontally downward through the air without power—has evolved in 
a broad diversity of taxa and serves numerous ecologically relevant functions such as predator 
escape, expanding foraging locations, and finding mates, and has been suggested as an evolutionary 
pathway to powered flight. Historically, gliding has been conceptualized using the idealized 
conditions of equilibrium, in which the net aerodynamic force on the glider balances its weight. 
While this assumption is appealing for its simplicity, recent studies of glide trajectories have 
shown that equilibrium gliding is not the norm for most species. Furthermore, equilibrium theory 
neglects the aerodynamic differences between species, as well as how a glider can modify its glide 
path using control. To investigate non-equilibrium glide behavior, we developed a reduced-order 
model of gliding that accounts for self-similarity in the equations of motion, such that the lift and 
drag characteristics alone determine the glide trajectory. From analysis of velocity polar diagrams 
of horizontal and vertical velocity from several gliding species, we find that pitch angle, the angle 
between the horizontal and chord line, is a control parameter that can be exploited to modulate glide 
angle and glide speed. Varying pitch results in changing locations of equilibrium glide configurations 
in the velocity polar diagram that govern passive glide dynamics. Such analyses provide a new 
mechanism of interspecies comparison and tools to understand experimentally-measured 
kinematics data and theory. In addition, this analysis suggests that the lift and drag characteristics 
of aerial and aquatic autonomous gliders can be engineered to passively alter glide trajectories with 
minimal control effort.
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predictions of performance. For example, heavier indi-
viduals with higher wing loading should glide faster 
than lighter individuals, but both should have the same 
equilibrium glide angle [3]. Equilibrium theory also 
predicts that glide range and energy conversion effi-
ciency will be maximized when the lift-to-drag ratio is 
maximized [4]. These predictions should be valid for 
any glider, even though species vary greatly in their size, 
morphology, and diversity of aerodynamic structures. 
Examples of this diversity include the dorsoventrally 
flattened body of gliding snakes [5–9], the inter-limb 
patagial membrane of gliding mammals [10, 11], the 
rib-wings of gliding lizards [12, 13], the webbed feet of 
gliding frogs [14], and body/limbs in wingless hexapods 
[15, 16] and arachnids [17].

However, there is limited evidence of equilibrium 
gliding in experimental studies. In one study, 52% of 
Draco glides did not reach equilibrium [13]. In experi-
ments with the flying snake Chrysopelea paradisi, only 
one of 14 glide trials originating from a height of 9.6 m 
appeared to reach equilibrium [18], and no equilibrium 
glides were found in eight glide trials beginning from 
a height of 15 m [5]. Two studies of gliders recorded 
in the wild found similar results. Body-mounted accel-
erometers attached to gliding colugos generally indi-
cated greater vertical forces than required for equi-
librium [11], and no equilibrium glides were found 
in long horizontal distance (18 m) glides of northern 
flying squirrels, Glaucomys sabrinus. Simulated glides 
of G. sabrinus required time-varying force coefficients 
to reproduce the observed trajectories in this species 
[10]. These studies show that non-equilibrium gliding 
is dominant in real trajectories.

Observations of non-equilibrium gliding are not 
unexpected given the coupled effects of animal behav-
ior and aerodynamic force production on glide trajec-
tories. All gliders must accelerate to sufficient velocities 
to produce appreciable aerodynamic forces, so there is 
always some non-equilibrium portion at the start of any 
glide. Similarly, slowing the glide before landing and 
controlling contact with the substrate requires aerody-
namic and postural changes [19]. An animal can also 
modify force production by changing the wing itself, 
by varying the camber or aspect ratio with relative limb 
position [20, 21]. Furthermore, gliders can maneuver 
volitionally, or make small adjustments to the trajectory 
to achieve a goal such as landing on a targeted tree [22].

The other source of complexity that can affect glide 
dynamics is the local airflow interaction with the body. 
During the ballistic and shallowing phases of glid-
ing that precede equilibrium, the relative air velocity 
changes continuously in magnitude and in direction. 
Lift and drag forces scale as the velocity squared, and 
their lines-of-action depend on the instantaneous flow 
direction. Additionally, lift and drag coefficients depend 
strongly on the animal’s angle of attack, which changes 
passively as the glide angle changes, and actively if the 
animal changes its pitch angle using control. Under-
standing this coupling of animal behavior and force 

production requires not only kinematics and force 
coefficient data, but also modeling to unify exper-
imental observations with physical theory.

Theoretical models have been used to study the 
effects of force coefficients, wing loading, and initial 
conditions on glider performance and stability. Mod-
els from the late 1800’s were developed to understand 
bird flight [23, 24], but more recent modeling work can 
be categorized as either particle models or rigid-body 
models. Particle models consider the glider as a point 
mass moving in the vertical plane under the influence of 
lift, drag, and gravity [4, 5, 10, 25]. These models decou-
ple the instantaneous lift and drag coefficients from 
the glide dynamics, by assuming that the coefficients 
are either constants or arbitrary functions of time, but 
not functions of angle of attack. A dominant feature 
revealed from particle models is damped oscillations in 
velocity, acceleration, and glide angle time series before 
the glider reaches equilibrium [4, 5, 24, 25]. Rigid-body 
models couple both the translational and rotational 
pitch dynamics of the glider. Jafari et al [26] developed 
two tandem-wing rigid-body models to investigate the 
passive stability characteristics of flying snakes [26], 
finding that stable glides are possible, but depend on 
the initial conditions of pitch and pitch rate. Certain 
combinations of initial conditions lead to equilibrium 
glides, whereas other combinations lead to falling with 
a negligible horizontal velocity.

Here, we used theoretical modeling and a new 
analysis of the velocity polar diagram (sensu Tucker 
[27]) of horizontal versus vertical velocity to develop 
a non-equilibrium theoretical framework to under-
stand the mechanics of gliding. This work was specifi-
cally motivated by the question, what is the effect of 
angle-of-attack-dependent lift and drag coefficients on 
a glider’s trajectory dynamics? We developed a rigid-
body model using a new rescaling to isolate the effects 
of the lift and drag coefficients. This rescaling enabled 
us to test the effect of lift and drag coefficients using 
simulated glides, with angle-of-attack-dependent force 
coefficients taken from previous studies. In particular, 
we used force coefficients from studies of flying squir-
rels [10, 20], flying snakes [8], sugar gliders [28], flying 
fish [29], chukar partridge [30] and dragonflies [31]. 
This broad sampling of animals helps to elucidate com-
monalities of non-equilibrium gliding, demonstrating 
the utility of this non-equilibrium framework across 
phylogenetically diverse species. As future kinematics 
studies reveal more detailed glide information, this 
framework can be used to answer questions about how 
gliders control the trajectory by varying body posture.

2. Methods

We formulate the equations of motion for a glider 
translating in the vertical x-z plane (figure 1(e)) under 
the influence of lift, drag, and gravity. We analyze the 
glider as a rigid body in which angle of attack changes 
with glide angle and a specified body pitch angle. That is, 
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we do not write an equation of motion for the rotational 
dynamics, but instead use the pitch angle to elicit 
different system responses. To encapsulate a glider’s 
motion in an intuitive and informative manner, we use 
the velocity polar diagram (figure 1(g)) instead of time 
series of position, velocity, acceleration, and glide angle 
(figures 1(a)–(d)). The velocity, acceleration, and glide 
angle information is embedded in the diagram, and 
equilibrium gliding can be clearly identified as points 
where the acceleration vector goes to zero and to which 
velocity trajectories are attracted to or repelled from.

2.1. Rigid-body model equations of motion
Using the free-body diagram in figure 1(f) for a glider of 
mass m in an inertial reference frame defined by x and z, 
we write the equations of motion in the horizontal and 
vertical directions as

˙
˙

γ γ
γ γ

= −
= + −

mv F F
mv F F mg

sin cos
cos sin ,

x

z

L D

L D
 (2.1)

where the overdot signifies the time derivative, FL and 
FD are the lift and drag forces, vx and vz are the velocities 
in the horizontal and vertical directions, and ˙=a vx x 
and ˙=a vz z are the accelerations in the horizontal and 
vertical directions. The instantaneous glide angle, 

/γ = − − v vtan z x
1 , is defined as positive for a clockwise 

rotation from the horizontal axis (i.e. the glide angle 
will be positive when the animal glides downward). 
By definition, the drag force acts counter to the local 
direction of forward travel along the glide trajectory, lift 
force acts normal to it, and both are written as

( ) ( )ρ α ρ α= =F
v

SC F
v

SC
2

,
2

,L

2

L D

2

D (2.2)

where ρ is air density, = +v v vx z
2 2  is airspeed, S is 

projected surface area of the glider, α γ θ= +  is angle 
of attack, and θ is pitch angle, which specifies the angle 
between the mean chord line and the horizontal axis 
(positive counter-clockwise from the horizontal).  

Figure 1. Construction of the velocity polar diagram. (a)–(d) Time histories of position, velocity, acceleration, and glide angle 
from one simulated glide. The solid circle denotes the location of maximum glide angle, marking the end of the ballistic phase. The 
open circle denotes an increase in acceleration near the end of the trajectory. The dashed line in (d) indicates the equilibrium glide 
angle, γ∗. (e) Horizontal (x) and vertical (z) glide path of the simulated glider, where equally spaced points in time are indicated by 
the ‘x’ markers, and arrows indicate the direction of forward travel. (f) Schematic of the rigid-body glider model with pitch control 
analyzed and simulated in this study. (g) Velocity polar diagram, with the simulated trajectory overlaid in black and motion in 
forward time indicated by the arrow on the trajectory. Gray lines indicate trajectories with different initial conditions of velocity. The 
end of the ballistic phase occurs when the velocity trajectory transitions onto the terminal velocity manifold. The terminal velocity 

manifold is surrounded by a low acceleration magnitude region, + <a a 0.1x z
2 2  g, indicated by the purple shading. The animal 

accelerates along the manifold, indicated by loss of shading and denoted with the open circle. The stable equilibrium is denoted 
by the blue circle; the equilibrium glide angle is the angle subtended between the horizontal axis and a line from the origin to the 
equilibrium point. The empty wedge-shaped area results from of the angle of attack limitations of the experimentally measured lift 
and drag coefficients (see supplemental information (stacks.iop.org/BB/12/026013/mmedia)).
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Pitch angle is a free parameter in the model, whereas 
glide angle is not.

The lift and drag coefficients, ( )αCL  and ( )αCD , are 
functions of angle of attack in this model, as deter-
mined from lift and drag curves specific to each glider. 
In general, these curves depend on airfoil shape and 
Reynolds number [32], and must be determined 
experimentally. For this analysis, we chose charac-
teristic lift and drag curves for a particular Reynolds 
number and wing shape, using angle of attack as the 
only free parameter that determines the instantaneous 
lift and drag coefficients. Although the lift and drag 
coefficients are velocity-independent, the lift and drag 
forces are not. Combining equations (2.1) and (2.2), 
we arrive at the following expression for the glider’s 
accelerations,

˙ [ ( ) ( ) ]ρ α γ α γ= −v
v S

m
C C

2
sin cosx

2

L D (2.3)

˙ [ ( ) ( ) ]ρ α γ α γ= + −v
v S

m
C C g

2
cos sinz

2

L D

 

(2.4)

2.2. Dimensional analysis
We non-dimensionalize the equations of motion using 
the chord length c as the characteristic length scale. 
For a flying snake, the chord length is nominally the 
flattened aerial width of the animal [5, 8], and for a 
gliding mammal, it is the distance between the wrist 
and the ankle along the stretched patagium [21, 33]. 

The non-dimensional time scale, /=T c g , is found 
by normalizing by the gravitational acceleration 
g; it follows that the characteristic velocity scale is 
/ =c T cg . We define the non-dimensional time, 

velocity, and positions as

¯
/

¯ ¯= = =t
t

c g
v

v
cg

p
p

c
, , .

where v is either vx or vz and p is either x or z. After 
substituting the non-dimensional groups into the 
equations of motion (2.3) and (2.4), we find

¯
¯ ¯ [ ( ) ( ) ]

¯
¯ ¯ [ ( ) ( ) ]

α γ α γ

α γ α γ

= −

= + −

ε

ε

v
t

v C C

v
t

v C C

d
d

sin cos

d
d

cos sin 1

x

z

2
L D

2
L D

where the non-dimensional parameter ε can be cast in 
terms of wing loading, WS  =  mg/S, as

ρ ρ
= =ε

c S
m

g c
W2 2 S

We define ε as the universal glide scaling parameter and 
discuss its significance in section 4.2.

2.3. Rescaling and final equation form
The non-dimensional equations can be further 
simplified by rescaling velocity and time as ˆ ¯= εv v and 
ˆ ¯= εt t . Writing completely in terms of ˆ ˆ γ=v v cosx  

and ˆ ˆ γ= −v v sinz , the Cartesian form of the equations of 
motion is

ˆ ˆ ˆ [ ( ) ˆ ( ) ˆ ]α α= − + +′v v v C v C vx x z z x
2 2

L D 
(2.5)

ˆ ˆ ˆ [ ( ) ˆ ( ) ˆ ]α α= + − −′v v v C v C v 1z x z x z
2 2

L D 

(2.6)
where prime notation is used as a shorthand for 

rescaled time derivatives 
t̂

d
d

. These equations are 

integrated to construct the velocity polar diagram 
trajectories. The polar form of the equations, written 

in terms of the airspeed ˆ ˆ ˆ= +v v vx z
2 2 and glide angle 

γ = − − v vtan z x
1 ˆ / ˆ , is

ˆ ( ) ˆγ α
γ

= − +′ vC
v

cos
L (2.7)

ˆ ˆ ( )α γ= − +′v v C sin2
D (2.8)

Note that the rescaled equations do not depend on 
body size or wing loading, but only on the lift and 
drag coefficients. Therefore, any differences in glide 
performance must result from differences in the lift 
and drag curves.

2.4. Equilibrium gliding
Equilibrium gliding occurs when the resultant 
aerodynamic force balances the gravitational force 
on the glider, producing a constant glide angle and 
speed. This condition requires that the left-hand 
sides of expressions (2.5) to (2.8) are zero, resulting 
in the equilibrium states ( ˆ ˆ )∗ ∗v v,x z  and ( ˆ )γ∗ ∗v, . Once the 
equilibrium glide angle γ∗ is known, the equilibrium 
airspeed ˆ∗v  is determined from equations (2.7) or 
(2.8), and the equilibrium horizontal and vertical 
velocities are found using ˆ ˆ γ=∗ ∗ ∗v v cosx  and 
ˆ ˆ γ= −∗ ∗ ∗v v sinz . Simple algebraic manipulation of the 
equilibrium equations of motion results in the well-
known expression for the equilibrium glide angle

( )
( )

( )
( )

α
α

γ θ
γ θ

γ= =
+
+

=
∗

∗

∗

∗
∗F

F
C
C

C

C
cot ,L

D

L

D

L

D
 (2.9)

where α γ θ= +∗ ∗ . This transcendental equation for 
the equilibrium glide angle γ∗ can have multiple 
solutions, which depend on the number of times the 

lift-to-drag ratio curve C
C

L

D
 intersects the γ∗cot  curve. 

Furthermore, the location and number of equilibria 
depend on the pitch angle θ. Because lift and drag 
are not analytical expressions of angle of attack, the 
equilibrium glide angle is found numerically. From 
equation (2.9), changing the pitch angle shifts the 
equilibrium glide angle, and to find these values, 
we consecutively shifted the lift-to-drag ratio curve 
over a range of specified pitch angles and used the 
Newton–Raphson root-finding method to locate the 
intersections. This technique is shown in figure 2, where 
two equilibrium glide states exist for a pitch of !10  and 
only one equilibrium for a pitch of − !10 .

Bioinspir. Biomim. 12 (2017) 026013
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2.5. Equilibria type and stability analysis
To determine the stability type and location of 
equilibrium points in the velocity polar diagram, 
we use linear stability analysis [34] by classifying the 
eigenvalues of the Jacobian matrix of partial derivatives 
for the polar coordinate equations (2.7) and (2.8) 
evaluated at equilibrium. For this system of two 
equations, the eigenvalues λ1,2 are

( )( ) /λ τ τ=
+

− ± − ∆C

C C2
8 ,1,2

D

L
2

D
2 1 4

2
 

(2.10)

τ = +
′⎛

⎝⎜
⎞
⎠⎟

C

C
3L

D
 (2.11)

∆ = + +
′⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

C
C

C
C

1L

D

L

D

2

 (2.12)

where ( )′C
C

L

D
 denotes the slope of the lift-to-drag 

ratio curve. The stability type depends on both the 
magnitude and slope of the lift and drag curves at 
equilibrium. This system permits five common 
types of equilibrium points, based on the signs and 
magnitudes of τ and ∆: stable and unstable foci, stable 
and unstable nodes, and saddle points. A summary of 
these equilibrium types is shown in figure 3.

If lift and drag coefficients are independent of angle 
of attack, then the primed terms in equations (2.11) and 
(2.12) are zero, and only stable equilibria are possible. 
That is, the simulated glider will never have a horizon-
tal velocity of zero and will always reach an equilibrium 
with some horizontal velocity. Additionally, that equi-
librium will be a stable focus if lift-to-drag ratio exceeds 

the low value of ≈ 0.3541

2 2
 (γ >∗ !70.53 ), and other-

wise will be a stable node. If lift and drag coefficients are 
dependent on angle of attack, more dynamical behavior 
is possible.

2.6. Model input from experimentally measured lift 
and drag curves
To test the effect of angle-of-attack-dependent 
force coefficients and the applicability of the non-
equilibrium gliding framework, we use aerodynamic 
coefficient curves (figure 4) from a range of animal 
gliders, including flying squirrel [20], flying snake [8], 

Figure 2. Pitch as a bifurcation parameter. Increasing the body pitch angle θ shifts the lift-to-drag ratio curves horizontally to the left, 
which changes the number of intersections with γcot . Each intersection is an equilibrium point, which are indicated by round markers at 
the intersection points for varying pitch angles. Force coefficient data are for a flying snake cross-sectional shape [8] at =Re 11 000.

Figure 3. Summary of equilibrium type as a function 
of lift and drag curves. The equilibrium type is uniquely 
determined by the lift and drag curves and their slopes 
evaluated at the equilibrium angle of attack. Previous models 
of animal gliding, which assumed constant lift and drag 
coefficients, only observed stable node and stable focus type 
equilibrium points, as indicated by the horizontal gray line.

Bioinspir. Biomim. 12 (2017) 026013
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sugar glider [28], and flying fish [29], as well as two 
active flyers, juvenile chukar partridge at 20 days post 
hatch (d.p.h.) [30], and dragonfly [31]. These species 
vary in size, Reynolds number, and aerodynamic 
force-producing structure. The chukar at 20 d.p.h can 
sustain level flight, but lacks the locomotor capacity of 
adults, as the wing is still developing and produces only 
small amounts of lift. Dragonflies use brief periods of 
gliding, lasting up to 0.5 s and covering 1 m. However, 
gliding is often interrupted by wingbeats, so glide 
durations are short (less than 0.2 s, mean of 0.13 s 
[31]). Coefficient curves are classified in three ways, 

based on data from previous studies (table 1). The 
‘airfoil’ curves are from wind tunnel experiments of a 
representative airfoil model. The ‘whole animal’ curves 
are from wind tunnel measurements of a deceased and 
taxidermically-prepared animal. The ‘kinematics 
curves’ are reconstructed from recorded glide trials of 
flying squirrels, and are further discussed below. The 
coefficient values were smoothed with third-order 
B-splines to provide a continuous representation for 
simulations and stability calculations.

Because the aerodynamic coefficients for the entire 
animal will be different from those of the airfoil alone [35], 

Figure 4. Lift, drag, and lift-to-drag ratio coefficient curves used in this study. Airfoil-based curves for (a) flying squirrels [20],  
(b) flying snakes [8], and (c) chukar partridge [30], and whole-animal curves for (d) sugar gliders [28], (e) dragonflies [31],  
and (f) flying fish [29]. Measured values are indicated with markers, and spline-fit values are indicated with solid lines.

Bioinspir. Biomim. 12 (2017) 026013



7

I J Yeaton et al

we also analyzed force coefficient curves (figure 7(a)) 
 derived from kinematics measurements of flying squir-
rels gliding to a tree located 18 m from the launch plat-
form [10]. These ‘kinematics’ coefficient curves were 
back-calculated from individual glides, as well as from 
an ensemble of all glides (see supplemental informa-
tion). To reconstruct the angle-of-attack-dependent 
coefficients, first the force coefficients were calcu-
lated by rearranging equation (2.2). Second, the time- 
varying angle of attack was approximated as the sum of 
the calculated glide angle and an assumed pitch angle 
of zero degrees. We had to approximate the pitch angle 
because it was not available from the kinematics data. 
In general, the force coefficient curves measured from 
wind tunnel tests are of higher quality because (1) the 
velocities and angles of attack are precisely known, (2) 
they cover a wider angle of attack range, and (3) noise-
magnifying numerical derivatives [36] are not present. 
Nonetheless, these coefficient curves were included to 
help synthesize theoretical predictions with observed 
glides.

2.7. Model assumptions
The complete non-equilibrium glide framework 
consists of the equations of motion, equations  
(2.5)–(2.8), and lift and drag coefficients determined 
from experiments. The model assumes angle-of-attack 
dependent, but velocity independent, quasi-steady 
lift and drag coefficients that are representative of the 
animal mid-glide. Although lift and drag coefficients 
are velocity independent, the lift and drag forces depend 
on the instantaneous velocity. Additionally, we do not 
explicitly model the rotational motion of the glider, 
but instead treat only one rotational direction, pitch, 
as a parameter that is systematically varied to elicit 
different glide performance. Finally, we treat motion 
in the vertical x-z plane only, ignoring side forces and 

full three-dimensional glide trajectories resulting from 
yaw and roll rotations. The above assumptions provide 
the simplest model to explore the effect of angle-of-
attack dependent lift and drag coefficients on a glider’s 
trajectory dynamics.

3. Results

3.1. Structure of the velocity polar diagrams
Velocity polar diagrams for the airfoil and whole-
animal-based lift and drag curves are shown in 
figure 5 for two different pitch angles. In these plots, 
initial conditions from the animal gliders originate 
near the origin of the diagram, with a near-zero 
vertical velocity and low horizontal velocity. These 
plots show that only certain equilibrium glides can be 
reached for the initial conditions typically observed 
in real glides. The velocity polar diagrams generally 
have multiple equilibria including stable nodes and 
saddle points. The stable and unstable manifolds of 
the saddle point delineate the basins of stability of 
stable glides. The upper stable branch of the saddle 
point, which runs vertically through the diagrams, 
acts as a separatrix (sensu Strogatz [34]) and can block 
accessibility to low glide angle equilibrium points. 
Additionally, saddles show that there are stable and 
unstable directions in the velocity polar diagram; 
these directions determine the glider’s trend toward 
equilibrium.

Nearly all velocity trajectories in figure 5 (except for 
figure 5(dii)) fall quickly onto a one-dimensional mani-
fold. If the trajectory originates in the basin of stability 
of the equilibrium point, the trajectory moves along the 
manifold and stable gliding is achieved. Otherwise, the 
trajectory is pushed to a steep glide where the horizon-
tal velocity is low and the animal is in effect falling. The 
initial quick descent of the glider to the manifold corre-
sponds to the ballistic phase of gliding (figures 1(d) and 
(g)), and movement along the manifold corresponds 
to the shallowing phase of gliding. We designate this 
one-dimensional manifold as the ‘terminal velocity 
manifold’ as it is a higher-dimensional analog of the 
terminal velocity, and dynamics along it are a relatively 
slow evolution toward stable equilibrium. The termi-
nal velocity manifold is approximated by the curve of 
zero vertical acceleration, the vz nullcline, along which 
equation (2.6) is zero. A trajectory in the vicinity of the 
nullcline would be in a near-vertical force balance, with 
the vertical component of the total aerodynamic force 
balancing the weight of the gliders. Nullclines are shown 
on the flying snake and chukar velocity polar diagrams 
(figures 5(bi), (ci), and (cii)). These curves pass through 
any equilibrium points present in the velocity polar dia-
gram, and best approximate the terminal velocity mani-
fold locally around the stable node. If a saddle point 
exists (e.g. figures 5(ai), (aii), (bii), (cii), and (fi)), then 
the terminal velocity manifold is also approximated 
by the unstable branch of a saddle point and the less-
stable manifold of a stable node. Furthermore, we can  

Table 1. Types of force coefficient data used in this study. Details 
describing the derivation of the kinematic squirrel coefficients are 
presented in the supplemental information.

Animal
Data 
source Description Source

Flying 
squirrel

Airfoil Latex membrane in a wind 
tunnel

[20]

Flying snake Airfoil Printed cross-section of 
Chrysopelea paradisi body

[8]

Chukar 20 
d.p.h.

Airfoil Juvenile Alectoris chukar 
wing

[30]

Sugar glider Whole 
animal

Petaurus breviceps papuanus 
placed in wind tunnel

[28]

Dragonfly Whole 
animal

Calopteryx splendens placed 
in wind tunnel

[31]

Flying fish whole 
animal

Cypselurus hiraii placed in 
wind tunnel, model L2

[29]

Kinematic 
squirrel

Kin-
ematics

Ensemble of Glaucomys 
sabrinus glides

[10]

Individual 
squirrel

Kin-
ematics

Individual Glaucomys 
sabrinus glides

[10]

Bioinspir. Biomim. 12 (2017) 026013



8

I J Yeaton et al

Figure 5. Velocity polar diagrams. Two different pitch values, indicated by (i) and (ii), are shown for (a) flying squirrels, (b) flying 
snakes, (c) chukar partridge, (d) sugar gliders, (e) dragonflies, and (f) flying fish. Pitch values are specified by vertical lines in figure 6. 
Gray lines are simulated glide trajectories, and arrows indicate motion along the trajectory through time. Equilibrium gliding is 
indicated by circle markers, and the glide angle is read as the angle subtended from the horizontal axis as before to the equilibrium 
point(s). Saddle points and their stable and unstable branches are indicated in red, with separatrices running vertically to the saddle 
points. The inset in (bii) shows 2nd and 3rd-order accurate analytical approximations of the terminal velocity manifold in the 
vicinity of the saddle point equilibrium. Vertical velocity nullclines, where the vertical acceleration is zero, are shown in (bi), (ci), 
and (cii), as the solid purple line passing though the equilibrium points and near the terminal velocity manifold. (ai) Flying squirrel, 
θ  =  0. (aii) Flying squirrel, θ  =  2. (bi) Flying snake, θ  =  0. (bii) Flying snake, θ  =  5. (ci) Chukar 20 d.p.h., θ  =  0. (cii) Chukar 20 
d.p.h., θ  =  13. (di) Sugar glider, θ  =  0. (dii) Sugar glider, θ  =  10. (ei) Dragonfly, θ  =  −10. (eii) Dragonfly, θ  =  −25. (fi) Flying fish, 
θ  =  −10. (fii) Flying fish, θ  =  −25.

Bioinspir. Biomim. 12 (2017) 026013



9

I J Yeaton et al

approximate the terminal velocity manifold analyti-
cally (see Supplemental Information), as shown in the 
inset of figure 5(bii).

Low-acceleration regions ( ⩽  a g0.1  where 

= +a a ax z
2 2) are identified by shading in all velocity 

polar diagrams in figure 5. These regions are located 
around the equilibrium points and along terminal 
velocity manifolds, which indicates that the glider will 
exhibit little change in velocity while far from equilib-
rium, with glide dynamics dictated by the direction 
of the manifold. Trajectories can also leave the low- 
acceleration region (figures 5(bi) and (bii)) while 
moving along the terminal velocity manifold towards  
equilibrium. In these velocity polar diagrams, this results 
from the peak in the lift-to-drag ratio of the flying snake 
coefficients near an angle of attack 35° (figure 4(b)).

3.2. Pitch bifurcation diagrams
The equilibrium points and corresponding equilibrium 
glide angles shown in figure 5 are summarized in a single 
bifurcation diagram for each glider in figure 6. For a 
given pitch angle, these diagrams show the stability type 
and glide angle of all possible equilibrium glides.

The bifurcation diagrams show multiple co-exist-
ing equilibrium points at high and low angles of attack, 
which persist over a range of pitch angles. The flying 
squirrel bifurcation diagram (figure 6(a)) shows that 
upwards of four co-existing equilibrium points are pos-
sible. In general, only a single stable equilibrium exists 
when pitch is negative, with equilibrium glide angles 
relatively insensitive to pitch. We refer to the slope of 
the pitch bifurcation curve along the branch of stable 
equilibrium points as the ‘pitch sensitivity’, calculated 
as /γ θ∗d d . For the flying squirrel bifurcation diagram, 
a saddle-node bifurcation occurs at a maximum pitch 
of !2 . Beyond this pitch angle, no shallow equilibrium 
glides are observed, and the glider is essentially falling. 
The flying snake bifurcation diagram (figure 6(b)) is 
similar to the flying squirrel bifurcation diagram, 
except that more than four equilibria are possible at 
select pitch angles around !1 . The stable node and sad-
dle point are much closer, and no equilibrium glides are 
found beyond the saddle-node bifurcation at a pitch 
angle of !12 .

The chukar, sugar glider, and dragonfly bifurcation 
diagrams (figures 6(c)–(e)) show a flat equilibrium 
glide angle region over a large range of pitch angles. 
Due to the low lift-to-drag ratio of the dragonfly, equi-
librium glides are steep, being nominally !70  in glide 
angle. The flying fish and dragonfly bifurcation dia-
grams show that only negative pitch angles allow stable 
equilibria; in this condition, a flying fish or dragonfly 
would be nose-down at equilibrium.

3.3. Velocity polar diagrams from kinematics data
To demonstrate how these analytical methods can 
be applied to experimental data, we used mean force 
coefficients from a flying squirrel glide experiment 

(figure 7(a)) as model inputs to construct both a 
bifurcation diagram (figure 7(b)) and velocity polar 
diagrams at zero and positive pitch values (figures 7(ci) 
and (cii)). The kinematic squirrel velocity trajectories 
show spiraling behaviors around both stable or unstable 
foci. This spiraling is also present in the velocity polar 
diagrams derived from individual glide trials (figures 
7(d) and (e)), with the experimental velocity trajectory 
overlaid.

The kinematic squirrel bifurcation diagram (figure 7 
(b)) shows foci at low equilibrium glide angles that are 
insensitive to pitch; in particular, the equilibrium glide 
angle is almost constant from −5 to 4°. The two solid 
lines in this figure indicate the maximum and mini-
mum glide angles of an unstable periodic orbit, which 
exists between Hopf bifurcation points at θ≈− !1  and 
θ≈ !5.6 . This corresponds to the unstable periodic 
orbit in figure 7(ci) and the only closed contour in the 
velocity polar diagram. This Hopf bifurcation occurs 
any time the equilibrium changes from an unstable to a 
stable focus (and vice versa), and the characteristics of 
the resulting periodic orbit can be computed analyti-
cally given the lift and drag curves (see supplemental 
information).

4. Discussion

We have developed a dynamical systems framework to 
understand non-equilibrium animal gliding based only 
on the lift and drag coefficients. In this conceptualization 
of gliding, equilibrium is represented as a point in the 
velocity polar diagram where the accelerations are 
zero; trajectories will progress towards or away from 
equilibrium depending on the initial conditions and 
the equilibrium type. Analysis of the velocity polar 
diagram indicates that pitch angle has a large effect 
on the glide trajectory and that animal gliding has 
more complicated dynamics than previously realized. 
However, these dynamics can be systematically explored 
using the velocity polar diagram and by incorporating 
the lift and drag coefficient curves into the equation of 
motion.

4.1. Effect of lift and drag coefficients
Because lift and drag coefficients are the only model 
inputs, the analysis presented here can be viewed as 
a parametric study of representative lift and drag 
curves and how the structure of these curves affects 
non-equilibrium gliding. The analytically-derived 
expressions for equilibrium type (figure 3) and the 
general topology of the velocity polar diagrams (figure 5) 
indicate commonalities in how glide trajectories 
proceed based solely on the lift and drag curves. First, 
multiple equilibria are possible, and these generally 
occur for slightly negative to positive pitch values. 
Second, unstable equilibria are possible, particularly 
saddle points which appear along a terminal velocity 
manifold. Third, spiraling motion in the velocity polar 
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diagram is seen in several of the diagrams, particularly 
from the kinematics curves, but also when lift and drag 
coefficients are constants.

The difference in velocity polar diagram structure 
when there is a terminal manifold or when there is a 
focus-type equilibrium suggests future extensions of 
this work to investigate if gliders switch between dif-

ferent glide motifs. The motion around a focus-type 
equilibrium in the kinematics-based flying squir-
rel velocity polar diagrams (figures 7(c)–(e)), with a 
decrease in vertical velocity throughout the trajectory, 
is not seen in the airfoil-based velocity polar diagrams 
(figure 5). These different gliding motifs could provide 
complementary means to modify the glide path, but 

Figure 6. Pitch bifurcation diagrams for equilibrium glide angle γ∗ as pitch angle θ varies. Diagrams correspond to (a) flying 
squirrels, (b) flying snakes, (c) chukar partridge, (d) sugar gliders, (e) dragonflies, and (f) flying fish. Equilibrium glide angles are 
found as intersection(s) of the bifurcation curve with vertical lines at a specified pitch angle, with multiple intersections indicating 
multiple equilibrium points. Colors correspond to different equilibrium types; cool colors are locally attracting and warm colors 
are locally repelling. Vertical lines indicate pitch angles used in the velocity polar diagrams in figure 5, and the arrows on these lines 
indicate the passive direction change of glide angle. Not all angles of attack were available in the original data; these regions are 
indicated with gray shading.
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how the animal switches between them is unknown. 
For example, the focus-based motif should lessen land-
ing forces, because the vertical velocity is near zero or 

merely slightly positive at the end of the glide. However, 
the animal would have higher accelerations throughout 
the glide, which in theory would require more control 

Figure 7. Non-equilibrium glide framework applied to kinematics data of flying squirrels from [10]. (a) Aerodynamic coefficients 
derived from an ensemble of kinematics measurements. Solid points are mean  ± s.e.m. (b) Pitch bifurcation diagram. ((ci) and 
(cii)) Velocity polar diagrams at zero and positive pitch angles, respectively. The closed contour in (ci) is a periodic orbit due to a 
Hopf bifurcation. ((d) and (e)) Velocity polar diagrams derived from individual glide trials. The calculated velocity trajectory is 
indicated in blue and equal time points are indicated at 0.08 s intervals. Note that all velocity polar diagrams have the same limits 
because the kinematics data have been non-dimensionalized and rescaled. (a) angle of attack, α(degrees). (b) pitch angle, θ(degrees). 
(ci) kinematic flyimg squirrel, θ = !0 . (cii) kinematic flyimg squirrel, θ = !6 . (d) individual flying squirrel (trial 54). (e) individual 
flying squirrel (trial 22).
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authority to maintain stability. In the terminal velocity 
manifold motif, accelerations are lower for the major-
ity of the glide, but a large pitch-up maneuver would 
be required for landing to lower the airspeed. How the 
animal switches between these motifs with changes to 
lift and drag coefficients, or with unsteady aerodynamic 
and/or fluid-structure interaction effects [37–39], are 
important considerations for future work.

Calculating the kinematics-based lift and drag coef-
ficient curves was done as a way to compare measured 
animal trajectories to model predictions. The velocity 
polar diagrams derived from wind tunnel measurements 
(figures 5(ai), (aii), (di), and (dii)) are substanti ally 
different from the kinematics-based ones (figures 7(c)–
(e)). There are several possible reasons for this. One pos-
sibility is that the kinematics data are insufficient (due to 
undersampling, noise, or experimental error) to derive 
force coefficient curves. The kinematics data lack the 
ballistic phase of the glide, and the assumption of zero 
pitch angle used to derive the kinematics-based curves 
is likely to be invalid over part of the glide. Another pos-
sibility is that wind tunnel coefficient curves do not 
accurately represent the whole-animal aerodynamics in 
flight. This is most likely true for the artificial membrane 
curves, in which a thin latex sheet represents the patagial 
membrane, but does not include the limbs and tail of the 
flying squirrel. The sugar glider coefficient curves pro-
vide an intermediary to understand whole-animal lift 
and drag characteristics, as it is of a taxidermically pre-
pared mammal in a likely flight configuration. In fact, 
these curves show spiraling in the velocity polar diagram 
(figure 5(dii)) for certain positive pitch angles, which is a 
likely flight posture used by flying squirrels [19]. Spiral-
ing is also seen in the kinematics-based velocity polar 
diagrams in figures 7(c)–(e).

4.2. Comparison to other modeling studies  
of gliding
In the model presented here, the magnitude and 
orientation of the aerodynamic force vectors are 
modulated by pitch angle. Previous particle models 
were not directional, with the aerodynamic force vectors 
evolving under passive dynamics only [4, 5, 10, 25]. 
However, both types of models neglect rotational 
stability and consider translational motion assuming 
quasi-steady aerodynamics.

A significant difference between previous models 
and the model presented here is that lift and drag coef-
ficients are not constants, but instead are angle of attack 
dependent. This difference results in drastically differ-
ent simulated glide trajectories in both position and 
velocity space. When lift and drag coefficients are con-
stants, only stable equilibria are possible, meaning that 
there are no physically realistic values of initial velocity 
or wing loading that result in falling directly downward. 
Additionally, these equilibria are predominantly of the 
focus type—the oscillatory behavior observed in previ-
ous models was a consequence of the lift-to-drag ratio 
only. This oscillatory behavior is very evident when 

viewed in the velocity polar diagram (see figure 1 in 
the supplemental information). The glider does not 
smoothly transition from the ballistic phase to motion 
along the terminal velocity manifold, but instead oscil-
lates towards an equilibrium glide.

When aerodynamic force coefficients depend on 
angle of attack, coexisting stable and unstable equilibrium 
points are possible. These equilibrium points organize the 
global topology of the velocity polar diagram and segre-
gate regions that are reachable from typically low take-
off velocities, rendering certain stable glide trajectories 
infeasible. Certain equilibria become inaccessible when 
a saddle point appears along the terminal velocity mani-
fold. Because glides originate in the upper left quadrant of 
the velocity polar diagram, with near-zero vertical veloc-
ity and small horizontal velocity, the upper branch of the 
saddle point’s stable manifold acts as a separatrix, which 
blocks low glide angle equilibrium points. The appear-
ance of a saddle point explains the basin of stability obser-
vations in the ˙θ θ−0 0 space in previous snake modeling 
work [26], as certain initial condition combinations can 
lead to unsuccessful glides. In that previous study, the 
pitch rate affects the traversal of the non-autonomous 
velocity space, where this separatrix appears and blocks 
stable glides. This effect can also be understood as sweep-
ing through pitch angle in the pitch bifurcation diagram 
in figure 6(b), where moving from negative to slightly 
positive pitch leads to a saddle-node bifurcation.

The newly presented non-dimensionalization 
and rescaling of the equations of motion is a signifi-
cant difference from previous studies. This rescaling 
reduces the difference between species to their lift and 
drag coefficient curves only. The universal glide scaling 
param eter ( /∝ε c WS) not only facilitates modeling and  
normalization of experimental trajectories, but provides 
a metric to compare gliders based on their chord length 
and wing loading. Under geometric scaling of isometry, 
and assuming ∝c L and ∝m L3, one would expect chord 
length to scale as /∝c m1 3. Experimental data suggest 
that wing loading scales isometrically, /∝W mS

1 3 [1], 
so one would therefore expect =ε constant for a given 
species. The universal glide scaling parameter is shown 
in figure 8 for a variety of animal gliders across several 
orders of magnitude of mass. The scaling of ε with mass 
is not as evident as with wing loading [1], but there 
appear to be three distinct groupings. The first grouping 
has an ε value of 0.1 and includes dragonflies only. The 
next grouping has an ε of 0.04 and includes Draco, squid, 
and mammals. The third grouping, with an ε of 0.003, 
includes flying snakes and flying fish. For flying snakes, ε 
is nearly constant over two orders of magnitude in mass, 
and for Draco, ε is nearly constant over one order of 
magnitude in mass. These different scaling groups sug-
gest that the chord length used to non-dimensionalize 
the equations of motion has a large effect on ε for differ-
ent gliding species.

The universal glide scaling parameter also helps 
to explain why smaller individuals with lower wing  
loading are generally better gliders, covering more  
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horizontal distance from a given take-off height. The 
framework presented here identifies equilibrium points 
in the velocity polar diagram, but it does not specify the 
time required to reach equilibrium. By converting both 
time and velocity back to physical units using ε,

ˆ ˆ
ρ ρ

= =t
W
g

t v
W

v
2

,
2S S

2 (4.1)

we see that both dimensional time and velocity are 
proportional to the square root of wing loading. 
Because the time to equilibrium t̂  is fixed in (4.1), the 
glider with lower wing loading will reach equilibrium 
sooner. If a large and a small individual were to take off 
from the same physical height and with the same initial 
conditions in the velocity polar diagram, the smaller 
individual would traverse more of the velocity space 
before landing. This would correspond with a higher 
shallowing rate, lower velocity, and greater horizontal 
distance traveled.

4.3. Implications for animals that glide
The global view of gliding developed here provides 
insight into how a glider’s translational motion changes 
with pitch. The results of this work show that once the 
glider is at equilibrium, changing pitch angle has only 
a small effect on glide angle. For example, for the sugar 
glider (figure 6(d)), the equilibrium glide angles change 
only !10  over a pitch range of !25 . A similar trend holds 
for the other wind-tunnel based bifurcation diagrams, 
in which the low glide angle equilibrium is relatively 
insensitive to pitch. The initial launch parameters 
and the ballistic glide phase are therefore important 
because they determine how close to the basin of 
stability the glider is, and if control is needed to select a 
stable equilibrium. This analysis suggests that animals 
could select pitch values to avoid unstable features in 
the velocity polar diagram, with a worst-case scenario 

resulting in a fall with negligible horizontal velocity. A 
negative pitch angle shortly after launch and through 
the ballistic phase will confer greater translational 
stability, and will also act to direct the lift vector 
horizontally.

Additionally, hysteresis effects are possible as the 
pitch angle changes. The equilibrium glide angle can 
increase rapidly if the pitch angle increases above a criti-
cal threshold (figures 6(a) and (b)). To re-establish a 
low glide angle equilibrium glide, a glider would have 
to decrease its pitch to a negative value so that only the 
upper stable branch of equilibria are possible. There-
fore, a pitch-up maneuver prior to landing would not 
only slow the animal, but may remove all equilibria 
from the velocity polar diagram, so the animal would 
begin to fall. Only very steep glides are possible for some 
animals, such as dragonflies (figure 6(e)) and gliding 
arthropods. Arthropod glide trajectories consist of 
large glide angles between 70°–75° and small lift-to-
drag ratio of approximately 0.3 [15–17]. Although 
lift and drag coefficient data are not available, these 
steep trajectories suggest velocity polar diagram struc-
ture similar to figure 5(e), with steep glides to a stable  
equilibrium.

The framework presented here also helps to address 
the question of if and when equilibrium is reached in 
gliding, as it clearly distinguishes true equilibrium 
where accelerations are zero, from equilibrium-like 
gliding in the shallowing phase and along the termi-
nal velocity manifold where accelerations are small. 
Measured fluctuations of the glide path, which indicate 
non-equilibrium gliding, can occur for several reasons. 
One possibility is the animal in such a trajectory is using 
small postural changes to maintain a particular pitch 
angle or to slightly alter the glide path. Another possi-
bility is that experimental errors, from digitization and 
numerical derivatives of position data, give the appear-

Figure 8. Universal glide scaling parameter ε for gliding animals. Mammalian data for flying squirrels, sugar gliders, and colugos 
are from [10, 11, 21, 33, 40], Draco data are from [12, 13], flying fish (Cypselurus hiraii) data are from [29], dragonfly (Sympetrum 
sanguine) data are from [31], flying squid (Sthenoteuthis ptrepus) data are from [1, 41], and flying snake (Chrysopelea paradisi) data 
are from [1, 18, 42].
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ance of spurious fluctuations. In either case, although 
its velocities and accelerations are changing, the glider 
is in effect confined to a region around equilibrium as 
it moves along the vz nullcline and the terminal velocity 
manifold. The animal’s trajectory in the velocity polar 
diagram, or its pitch angle history when viewing the 
pitch bifurcation diagram, can then be used to quantify 
the amount of non-equilibrium gliding and possibly 
control effort to maintain stability.

Lastly, the non-equilibrium gliding framework 
helps to elucidate the role of aerodynamic coefficients 
and airfoil performance on the evolution of flight. It has 
been previously suggested that phugoid gliding (long-
wavelength oscillation of the glide trajectory) was 
used by the feathered dinosaur Microraptor gui [43]. 
These phugoid oscillations can be viewed as the 
position-space representation of a stable focus in the 
velocity polar diagram. Other phase-space structures, 
such as the terminal velocity manifold and the acceler-
ation along it, likely confer other stability or energetic 
advantages. Detailed wind tunnel measurements of 
aerodynamic coefficients of Microraptor gui [44] can 
be used in the framework presented here to quanti fy 
how phase-space structures lead to variable glide per-
formance between prehistoric and modern gliders.

5. Conclusions

We have presented a non-equilibrium framework of 
animal gliding based on the underlying structure in 
the equations of motion and empirically measured 
lift and drag coefficient curves. We find several 
structures in the velocity polar diagram relevant 
to gliders, including a terminal velocity manifold 
surrounded by low acceleration magnitude regions, 
saddle points that define the basin of stability of low 
glide angle equilibrium points, and equilibrium 
points of varying type and stability that affect glide 
performance. This framework not only clarifies 
previous modeling studies which assumed constant 
lift-to-drag ratio, but indicates how an animal 
can actively control its glide trajectory using pitch 
angle. New pitch bifurcation diagrams show how 
the equilibrium points change with pitch angle, 
and how the equilibrium points alter the structure 
of the velocity polar diagram during all phases of 
gliding. As more detailed kinematics data become 
available, this framework can be used to understand 
how experimentally recorded gliders alter their 
trajectory through control of body orientation and 
the likely drivers of this control. This framework also 
suggests that the glide dynamics of engineered aerial 
and aquatic autonomous gliders can be designed to 
exploit the structure of the velocity polar diagram. 
To exploit the structure of the velocity polar diagram 
would require designing angle-of-attack dependent 
lift and drag coefficients such that equilibria of known 
type, stability, and equilibrium glide angle are placed 

in the velocity polar diagram. The autonomous glider 
would then only need small actuations in pitch angle 
to passively switch to different glide states.
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Code repository

Python code to reproduce figures in the manuscript, including velocity polar diagrams and pitch

bifurcation diagrams, can be found at

https://github.com/TheSochaLab/Global-dynamics-of-non-equilibrium-gliding-in-animals.

1 Linear stability analysis

The Jacobian of the polar coordinate equations (2.7) and (2.8) in the main text, evaluated at

equilibrium is
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After simplification, the partial derivatives are

@�

0

@�

= � (C 0
L

+ C

D

)

(C2

L

+ C

2

D

)1/4
@�

0

@v̂

= �2C
L

@v̂

0

@�

=
C

L

� C

0
D

(C2

L

+ C

2

D

)1/2
@v̂

0

@v̂

=
�2C

D

(C2

L

+ C

2

D

)1/4

where the lift and drag coe�cient values, as well as their slopes C

0
L

and C

0
D

, are evaluated at the

equilibrium angle of attack in radians.
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Common types of equilibrium points can be calculated analytically. Saddle point equilibria

occur when

(CL
/CD)

0
< �

h
1 + (CL

/CD)
2

i

and stable equilibria occur when

C

0
L

> �3C
D

.

Lastly, the equilibrium glide velocities at any equilibrium are
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2 Conversion between dimensional, non-dimensional, and rescaled

quantities

Below we list the conversion from dimensional quantities, non-dimensional quantities (with the

overbar), and rescaled quantities (with an overhat).
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The universal glide scaling parameter,
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(2.4)

when substituted back into the rescaled terms, results in the wing loading expression in the main

text (equation 4.1):
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The time, length, and velocity, and acceleration scales are thus
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3 Velocity polar diagram when C
L

and C
D

are constant

When the lift and drag coe�cients are constants, only stable equilibria are possible. Additionally,

they are of spiral type when the lift-to-drag ratio is less that 0.354. Below is a velocity polar

diagram constructed using lift and drag coe�cients values report in Socha et. al (2010), table 1,

for one configuration used in their simulations. We use ‘Case 6: Average’ with C

L

= .54, C
D

= .29,

and C

L

/C

D

= 1.88. They also proposed a definition of equilibrium based on when the glide angle

reaches 5% of its asymptotic value; this range is also indicated on the velocity polar diagram.

As is clear, there is strong spiraling behavior around a stable focus equilibrium point. As indi-

cated in figure 3 in the main text, this equilibrium point is far from the boundary between a node

and a focus. Additionally, the velocity polar diagram indicates that all initial conditions will lead

to a stable glide and that the low acceleration magnitude region is confined around the equilibrium

point.

0 1.5
̂vx

0

-1.5

̂vz

Figure 1: Velocity polar diagram for constant lift and drag coe�cients. The equilibrium condition
proposed by Socha et. al (2010).
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4 Kinematic lift and drag coe�cient curves

Here we derive the lift and drag force from the horizontal and vertical forces. The lift and drag

force are then used to calculate the lift and drag coe�cients. We beginning with the horizontal and

vertical forces:
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To calculate the lift force, we multiply the x-equation by sin � and the z-equation by cos � and

sum. This gives
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which simplifies to
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To obtain the drag force, we multiply the x-equation by � cos � and the z-equation by sin � and

sum. This gives
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The lift and drag coe�cients become
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The lift and drag coe�cients have been written with explicit dependence on both glide angle

and body pitch angle ✓

b

. The glide angle is calculated at each measurement location as � =

� tan�1

v

z

/v

x

, but the body pitch angle is not accessible from the kinematics data and must be

estimated throughout the entire glide. The body pitch angle was specified to be 0° such that the

animal is horizontal to the ground. Short glides presented in [1] of Glaucomys volans showed a pitch

angle tending towards 0°.
Individual squirrel glide trials presented in the data supplement of [2] were reanalyzed for this

study. The data set consists of 59 glides of wild northern flying squirrel (Glaucomys sabrinus). A
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majority of trials, 23 of 59, landed on a tree 18m from the launch site. We analyze these glides

because they were analyzed in detail by in ref. [2] and because longer glides give more opportunity

to reach equilibrium. Individual squirrels were not marked, so analyses were performed using an

average size squirrel based on previous studies. Therefore, we are calculating ‘equivalent’ lift and

drag curves.

Of the 18m glides, we further restrict the data set to 14 trajectories based on the start and end

positions. We require the initial recorded position to be within 3.8m horizontally and 2m vertically

from the jump point. We also require the trajectories to end with a horizontal distance between

16m to 18.5m. These values were selected to ensure the longest possible glides and to capture as

much of the transient portion as possible. Note that most of the ballistic phase of the trajectory

was not recorded in the original data set.

Velocities and accelerations are calculated using a moving window procedure similar to [2].

Velocities are calculated by iterating through the individual position components and fitting a

linear polynomial to the window. The derivative of the window polynomial is evaluated at the

current time to calculate velocity. Acceleration was calculated in a similar way, using the velocity

time series as input. A half-window is used at the start and end of each time series. The half-window

grows until it reaches the set window size. The variable window size increased derivative scatter

if a higher-order polynomial was used. This was especially noticeable at the end of the trajectory

where reported digitzation errors are largest. For all trials, a total window of 81 points, or 0.64 sec,

was used. This window uses 40 points before and after the current time step. A large interrogation

window was used to obtain the bulk glide performance and smooth out small corrections to the

trajectory [2]. Lift and drag coe�cient curves were calculated as described above, as was the lift-

to-drag ratio. There was significant scatter in the lift and drag curves at small glide angles and

therefore angles of attack. This occurred late in the glide, where digitization error was highest. We

therefore restricted these curves to start at 10°, and performed glide angle binning from 10° to 44°
in 2° increments. Next, a third-order spline was fit to the individual lift and drag coe�cient curves.

The scatter and binning is shown in figure 2.

Mean kinematic lift-to-drag ratio curves were calculated by aggregating all glide trials for a

particular species. Because glide angle varied continuously during glides, points within a defined

glide angle range were averaged. A Taylor moment expansion was used to find the mean and

variance of the lift-to-drag-ratio [3, 4]. Naively taking the ratio of lift coe�cient to drag coe�cient

will result in a biased ratio. We use a Taylor series expansion to find the mean and variance of the

lift-to-drag ratio in each glide angle bin using
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where ↵

b

= � + ✓

b

and cov[C
L

(↵
b

), C
D

(↵
b

)] is the covariance.

Although the kinematic method of determining aerodynamic coe�cients is not ideal, it does

provide a measure of the coe�cient curves of gliders in their natural setting. Similar techniques

have been used for small fixed-wing gliders [5, 6] where multiple markers were placed on the glider,

position data di↵erentiated, and aerodynamic parameter calculated. However, this is an idealization

of the experimental data available here, including the mass distribution of animal gliders, unsteady

fluid mechanics, varying wing size and shape, and time-varying mass distribution.
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Figure 2: Mean kinematics-based lift, drag, and lift-to-drag ratio coe�cient curves.
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5 Numerical implementation of Velocity Polar Diagrams

Velocity polar diagrams are constructed by integrating the Cartesian equations of motion for initial

conditions (v̂
0,x

, v̂

0,z

) along the perimeter of the velocity space. This technique requires 1) spline

fits of the lift and drag coe�cients, 2) the measured angle of attack range, and 3) the specified pitch

angle of the glider. The horizontal and vertical velocity initial conditions are specified such that

↵

min

< �

0

�✓ < ↵

max

, where �
0

= � tan�1

v̂

0,z

/v̂

0,x

. This results in the wedge shape of some velocity

polar diagrams. Trajectories are found by integrating the equations forward in time using a variable

time step fifth-order accurate Dormand-Prince ODE solver until one of the following conditions is

met: the angle of attack exceeded the experimentally recorded range; the solver integrates for a

total non-dimensional time of 30; or the velocity trajectory leaves the bounding box v̂

x

2 [0, 1.25],

v̂

z

2 [0,�1.25]. Each trajectory is then plotted to show the phase space flow.

Equilibrium points are found as described in the main text and plotted on the velocity polar

diagram. The stable and unstable branches (separatrices) of saddle point equilibria are found by

integrating trajectories forward and backwards in time for four initial conditions surrounding the

saddle, o↵set by ±0.0001. The backwards integration identifies the unstable branches and the

forward integration specifies the stable branches. Finally, low acceleration regions and nullclines

are found by evaluating the Cartesian equations of motion on a fine grid and then plotting contour

plots for the following conditions: |a| < 0.1 and v̂

0
z

= 0.

6 Stability Analysis and Terminal Velocity Manifold Computation

Below we list the analytical calculation of the terminal velocity manifold and details about the

Hopf bifurcation.

The equilibrium condition implies

v̄

⇤ =
1

(C
L

(↵⇤)2 + C

D

(↵⇤)2)1/4

�

⇤ =cot�1

✓
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x
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⇤ cos �⇤
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⇤
z

=� v̄

⇤ sin �⇤

↵

⇤ =✓ + �

⇤

6.1 Expansion about the equilibrium

In order to obtain an analytical approximation of the eigenvalues and eigenvectors, and to put the

system in a form where we can analytically obtain the glide manifold in the snake phase space, we

first do a change of coordinates centered on an equilibrium point. We will work in polar coordinates,
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since the equations of motion look simpler,

 = � � �

⇤
, r = v̄ � v̄

⇤ (6.1)

where we are working in non-dimensional and rescaled variables. At equilibrium we know
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(6.2)

In the shifted coordinates, the equilibrium is the origin and the equations of motion are

 

0 = �(v̄⇤ + r)C
L

(�⇤ + ✓

⇤ + '+  ) +
1

(v̄⇤ + r)
cos(�⇤ +  ),

r

0 = �(v̄⇤ + r)2C
D

(�⇤ + ✓

⇤ + '+  ) + sin(�⇤ +  ),

(6.3)

We want to write the right-hand-side of the equations of motion as a power series expansion in  

and r. To start out, we will get this expansion to second-order.

Let’s first look at the  0 expression. Note that, via Taylor expansion,
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Using the cos addition formula,

cos(�⇤ +  ) = cos cos �⇤ � sin sin �⇤ (6.5)

along with (6.2), we get
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Also note that C
L

(�⇤ + ✓

⇤ + '+  ) = C

L

(↵⇤ +  ), and by Taylor series expansion we have

C

L

(↵⇤ +  ) = C

L

(↵⇤) +  C

0
L

(↵⇤) + 1

2

 

2

C

00
L

(↵⇤) +O( 3) (6.8)
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and similarly for the drag term,

C

D

(↵⇤ +  ) = C

D

(↵⇤) +  C

0
D

(↵⇤) + 1

2

 

2

C

00
D

(↵⇤) + 1

6

 

3

C

000
D

(↵⇤) +O( 4) (6.9)

so,

�(v̄⇤ + r)C
L

(�⇤ + ✓

⇤ + '+  ) = �v̄

⇤ ⇥
C

L

(↵⇤) +  C

0
L

(↵⇤) + 1

2

 

2

C

00
L

(↵⇤) + 1

6

 

3

C

000
D

(↵⇤) +O( 4)
⇤

� r

⇥
C

L

(↵⇤) +  C

0
L

(↵⇤) + 1

2

 

2

C

00
L

(↵⇤) +O( 3)
⇤

(6.10)

So the  0 expression becomes

 

0 = v̄

⇤ (�C

L

(↵⇤ +  ) + C

L

(↵⇤) cos � C

D

(↵⇤) sin )

+ r (�C

L

(↵⇤ +  )� C

L

(↵⇤) cos + C

D

(↵⇤) sin )

+

✓
r

2

v̄

⇤ � r

3

v̄

⇤2

◆
[C

L

(↵⇤) cos � C

D

(↵⇤) sin ] +O �
r

4

�
(6.11)

Note the Taylor series up to 3rd order in  for cos and sin is,

cos = 1� 1

2

 

2 +O( 4), sin =  � 1

6

 

3 +O( 5)

Plugging in all the Taylor series expansions, we get, up through 3rd order in  and r,

 

0 = v̄

⇤ ��C

L

�  C

0
L

� 1

2

 

2

C

00
L

� 1

6

 

3

C

000
D

+ C

L

� 1

2

 

2

C

L

�  C

D

+ 1

6

 

3

C

D

�

+ r

��C

L

�  C

0
L

� 1

2

 

2

C

00
L

� C

L

+ 1

2

 

2

C

L

+ C

D

 

�

+

✓
r

2

v̄

⇤ � r

3

v̄

⇤2

◆
[C

L

� C

D

 ] +O (4)

(6.12)

where it should be understood that the lift and drag coe�cients and all their derivatives (w.r.t.

angle of attack) are evaluated at the critical point ↵⇤, and where O(4) stands for terms which are

fourth order or higher in the variables  and r.

Grouping terms by powers in  and r, we get

 

0 = v̄

⇤ ⇥�C

0
L

� C

D

⇤
 + 2 [�C

L

] r

+ v̄

⇤

2

⇥�C

00
L

� C

L

⇤
 

2 +
⇥�C

0
L

+ C

D

⇤
 r + 1

v̄

⇤ [C
L

]r2

+ v̄

⇤

6

[C
D

� C

000
L

] 3 + 1

2

[C
L

� C

00
L

] 2

r + 1

v̄

⇤ [�C

D

] r2 + 1

v̄

⇤2 [�C

L

]r3 +O(4)

(6.13)

There are terms linear in  and r, terms second-order in  and r, and terms third-order in  and

r.

We can follow a similar procedure for the r

0 expression. Using the sin addition formula,

sin(�⇤ +  ) = sin cos �⇤ + cos sin �⇤ (6.14)

10



along with (6.2), we get

sin(�⇤ +  ) =
⇥
v̄

⇤2
C

L

sin + v̄

⇤2
C

D

cos 
⇤

= v̄

⇤2 [C
L

sin + C

D

cos ]

= v̄

⇤2 ⇥
C

L

 � 1

6

C

L

 

3 + C

D

� 1

2

 

2

C

D

+O(4)
⇤

(6.15)

Also,

�(v̄⇤ + r)2C
D

(↵⇤ +  ) = �v̄

⇤2 ⇥
C

D

+  C

0
D

+ 1

2

 

2

C

00
D

+ 1

6

 

3

C

000
D

+O(4)
⇤

� 2v̄⇤r
⇥
C

D

+  C

0
D

+ 1

2

 

2

C

00
D

+O(3)
⇤

� r

2

⇥
C

D

+  C

0
D

+O(2)
⇤

(6.16)

so we get

r

0 = v̄

⇤2 ⇥�C

0
D

+ C

L

⇤
 + 2 [�v̄

⇤
C

D

] r

+ v̄

⇤2

2

⇥�C

D

� C

00
D

⇤
 

2 + 2v̄⇤[�C

0
D

] r + [�C

D

]r2

+ v̄

⇤2

6

[�C

L

� C

000
D

] 3 + v̄

⇤[�C

00
D

] 2

r + 1

2

[�C

0
D

] r2 + [0]r3 +O(4)

(6.17)

Putting the ( , r) system into matrix form, we have

"
 

0

r

0

#
=

"
v̄

⇤ [�C

0
L

� C

D

] [�2C
L

]

v̄

⇤2 [�C

0
D

+ C

L

] [�2v̄⇤C
D

]

#

| {z }
A

"
 

r

#
+ F( , r) +O(4) (6.18)

where F( , r) stands for second and third-order terms, and is given by

F( , r) =

"
F

1( , r)

F

2( , r)

#
(6.19)

where

F

1( , r) = v̄

⇤

2

⇥�C

L

� C

00
L

⇤
 

2 +
⇥
C

D

� C

0
L

⇤
 r + 1

v̄

⇤ [C
L

]r2

+ v̄

⇤

6

[C
D

� C

000
L

] 3 + 1

2

[C
L

� C

00
L

] 2

r + 1

v̄

⇤ [�C

D

] r2 + 1

v̄

⇤2 [�C

L

]r3
(6.20)

and

F

2( , r) = v̄

⇤2

2

⇥�C

D

� C

00
D

⇤
 

2 + 2v̄⇤[�C

0
D

] r + [�C

D

]r2

+ v̄

⇤2

6

[�C

L

� C

000
D

] 3 + v̄

⇤[�C

00
D

] 2

r + 1

2

[�C

0
D

] r2 + [0]r3
(6.21)

From the 2⇥ 2 linearization matrix A in (6.18),

A =

"
v̄

⇤ [�C

0
L

� C

D

] [�2C
L

]

v̄

⇤2 [�C

0
D

+ C

L

] [�2v̄⇤C
D

]

#
(6.22)
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(also given in appendix A), we can analytically determine the eigenvalues and eigenvectors in terms

of the equilibrium point and characteristics of the lift and drag curves at that point.

For this simple system, we can write the eigenvalue equation in the standard form as [7, p. 130]

�

2 � ⌧̄�+ �̄ = 0,

where ⌧̄ = trace(A) and �̄ = det(A). The eigenvalues are

�

1

=
⌧̄ +

p
⌧̄

2 � 4�̄

2
, �

2

=
⌧̄ �

p
⌧̄

2 � 4�̄

2

The trace of A is

⌧̄ = v̄

⇤ ⇥�C

0
L

� 3C
D

⇤

and the determinant of A is

�̄ = 2v̄⇤2
⇥
C

2

L

+ C

2

D

+ C

0
L

C

D

� C

0
D

C

L

⇤

So,

⌧̄

2 � 4�̄ = v̄

⇤2 ⇥(C 0
L

+ 3C
D

)2 � 8(C2

L

+ C

2

D

+ C

0
L

C

D

� C

0
D

C

L

)
⇤

= v̄

⇤2 ⇥
C

02
L

+ C

2

D

� 2C 0
L

C

D

� 8C2

L

+ 8C 0
D

C

L

⇤

= v̄

⇤2 ⇥(C
D

� C

0
L

)2 � 8C
L

(C
L

� C

0
D

)
⇤

(6.23)

and the eigenvalues are

�

1,2

=
⌧̄ ±

p
⌧̄

2 � 4�̄

2

We can write the eigenvalues more compactly by introducing ⌧ and �,

⌧ =(C0
L
/CD) + 3

� =(CL
/CD)

0 + (CL
/CD)

2 + 1
(6.24)

such that

⌧̄ =� C

D

(C2

L

+ C

2

D

)1/4
⌧

�̄ =2
C

2

D

(C2

L

+ C

2

D

)1/2
�

(6.25)

in which case,

�

1,2

=
C

D

2(C2

L

+ C

2

D

)1/4

⇣
�⌧ ±

p
⌧

2 � 8�
⌘

(6.26)

and since the prefactor
C

D

2(C2

L

+ C

2

D

)1/4
(6.27)
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is always a positive scalar, the location of the eigenvalues on the complex plane is given solely by

⌧ and �.

6.2 Hopf bifurcation case

We often view the pitch variable ✓ as a bifurcation parameter. A Hopf bifurcation occurs when

⌧̄ = 0 and �̄ > 0, so the eigenvalues are purely imaginary,

�± = ±i!

where ! =
p
�̄ > 0. Suppose this occurs along the branch of equilibria at a particular value of ✓

which we’ll call ✓̄. By the assumption of ⌧̄ = 0, we conclude that

C

0
L

= �3C
D

(6.28)

and from �̄ > 0, we conclude that

C

L

>

1

2

✓
C

0
D

+
q
C

02
D

+ 8C2

D

◆
or C

L

<

1

2

✓
C0
D

�
q
C02
D

+ 8C2

D

◆
(6.29)

Notice that the sign of

d =
d

d✓

(Re(�(✓)))

����
✓=

¯

✓

= 1

2

⌧̄

0 = 1

2

v̄

⇤(�C

00
L

� 3C 0
D

) (6.30)

is an indication of the type of bifurcation. If, as ✓ increases, the equilibrium point is going from a

stable to unstable focus, then ⌧̄

0
> 0. Otherwise, ⌧̄ 0 < 0. Note that

C

00
L

< �3C 0
D

going from stable to unstable, ⌧̄ 0 > 0

C

00
L

> �3C 0
D

going from unstable to stable, ⌧̄ 0 < 0
(6.31)

For the case of purely imaginary eigenvalues, we have

A =

"
v̄

⇤2C
D

�2C
L

v̄

⇤2 (�C

0
D

+ C

L

) �v̄

⇤2C
D

#
(6.32)

where the eigenvalues are ±i!, where

! = v̄

⇤p2
q
C

2

L

� C

L

C

0
D

� 2C2

D

(6.33)

is positive. We solve for the generalized eigenvectors u and v,

u =

"
2C

L

v̄

⇤2C
D

#
v =

"
0

!

#
(6.34)
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Define the matrix P as

P = [u v]

so u is the first column of P and v is the second column of P. This matrix defines a linear

transformation to the eigenbasis (x, y) via

"
 

r

#
= P

"
x

y

#

so the x coordinate is along the u direction and the y coordinate is along the v direction. Note that

 = 2C
L

x

r = v̄

⇤2C
D

x+ !y

(6.35)

The dynamics in the eigenbasis are

"
x

0

y

0

#
=

"
0 �!
! 0

#"
x

y

#
+P�1F(2C

L

x, v̄

⇤2C
D

x+ !y) +O(4) (6.36)

where F, from (6.19), includes the 2nd and 3rd order terms and where

P�1 =

"
1

2CL
0

� v̄

⇤
CD

!CL

1

!

#
(6.37)

We will re-write the nonlinear terms, defining f(x, y) = P�1F(2C
L

x, v̄

⇤2C
D

x+!y), so the resulting

equation now has the form,

"
x

0

y

0

#
=

"
0 �!
! 0

#"
x

y

#
+

"
f

1(x, y)

f

2(x, y)

#
(6.38)

The coe�cient a, from [8] and [9], which determines what kind of Hopf bifurcation will occur, can

be calculated as

a = 1

16

⇥
f

1

xxx

+ f

1

xyy

+ f

2

xxy

+ f

2

yyy

⇤

+ 1

16!

⇥
f

1

xy

(f1

xx

+ f

1

yy

)� f

2

xy

(f2

xx

+ f

2

yy

)� f

1

xx

f

2

xx

+ f

1

yy

f

2

yy

⇤ (6.39)
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where all partial derivatives are evaluated at the bifurcation point, ✓ = ✓̄, x = 0, y = 0,

F

1

xx

= v̄

⇤(4C
L

3 � 4C
L

3

C

00
L

+ 36C
L

C

D

2)

F

1

xy

= !12C
L

C

D

F

1

yy

= v̄

⇤4C
L

(C
L

2 � C

L

C

0
D

� 2C
D

2)

F

2

xx

= �v̄

⇤2(4C
L

2

C

D

+ 8C
D

3 + 4C
L

2

C

00
D

+ 16C
L

C

D

C

0
D

)

F

2

xy

= �v̄

⇤
!(C

L

C

0
L

+ C

D

2)

F

2

yy

= �v̄

⇤24C
D

(C
L

2 � C

L

C

0
D

� 2C
D

2)

F

1

xxx

= �v̄

⇤(8C
L

3

C

000
L

+ 24C
L

2

C

D

C

00
L

+ 96C
L

C

D

3 � 32C
L

3

C

D

)

F

1

xyy

= �v̄

⇤32C
D

C

L

(C
L

2 � C

L

C

0
D

� 2C
D

2)

F

1

xxy

= v̄

⇤(4[C
L

� C

00
L

]C
L

2( !

v̄

⇤ )� 40C
L

C

D

2( !

v̄

⇤ ))

F

1

yyy

= �v̄

⇤12C
L

(C
L

2 � C

L

C

0
D

� 2C
D

2)( !

v̄

⇤ )

F

2

xxy

= �v̄

⇤
!(8C

L

2

C

00
D

+ 8C
L

C

D

C

0
D

)

F

2

yyy

= 0

(6.40)

and we get the partial derivatives of f(x, y) from the relationship

f(x, y) = P�1F(x, y)

which give us

f

1(x, y) = 1

2CL
F

1

(x, y)

f

2(x, y) = � v̄

⇤
CD

!CL
F

1

(x, y) + 1

!

F

2

(x, y)
(6.41)

Knowing the sign of a along with the sign of ⌧ 0 will determine which of the four cases of Hopf

bifurcation is present, via the Poincaré-Andronov-Hopf Bifurcation Theorem ([8]).

For example, for the pitch bifurcation diagram of the ‘kinematic squirrel’, we see a Hopf bifur-

cation for a critical ✓̄ near 0. We can see that d < 0 (eigenvalues going from right half-plane to left

half-plane as ✓� ✓̄ increases through zero). The numerically determined unstable limit cycle exists

for ✓ > ✓̄, which is consistent with a > 0, so we predict that calculating (6.39) will give a > 0. We

also predict that the limit cycle will have a period of approximately T = 2⇡

!

where ! is given from

(6.33), and that the radius of the limit cycle in the (x, y) plane, close to the pitch value ✓̄, is given

by

⇢ =
q
�d

a

(✓ � ✓̄) (6.42)

Notice that the dependence of ⇢ on the constants a and d, as well as distance away from the

bifurcation point, (✓ � ✓̄), reveal how ‘quickly’ the size of the limit cycle grows. The amplitude of
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the limit cycle in terms of glide angle � is provided from (6.35) as,

⇢

�

= 2C
L

⇢ = 2C
L

q
�d

a

(✓ � ✓̄) (6.43)

6.3 Stable node case

If ⌧̄ < 0 and ⌧̄

2 � 4�̄ > 0 (so
p
⌧̄

2 � 4�̄ > 0), then we have two real, and negative, eigenvalues.

The larger magnitude eigenvalue is

�

ss

=
⌧̄ �

p
⌧̄

2 � 4�̄

2
= 1

2

v̄

⇤
✓
�C

0
L

� 3C
D

�
q
(C

D

� C

0
L

)2 � 8C
L

(C
L

� C

0
D

)

◆
, (6.44)

and the smaller magnitude eigenvalue is

�

s

=
⌧̄ +

p
⌧̄

2 � 4�̄

2
= 1

2

v̄

⇤
✓
�C

0
L

� 3C
D

+
q

(C
D

� C

0
L

)2 � 8C
L

(C
L

� C

0
D

)

◆
, (6.45)

so �

ss

< �

s

< 0, where ‘s’ denotes stable and ‘ss’ denotes super stable. Let the corresponding

eigenvectors be e
ss

and e
s

, respectively, understood as column vectors.

Now ⌧̄ < 0 implies that

C

0
L

> �3C
D

, and ⌧̄2 � 4�̄ > 0 implies that

(C
D

� C

0
L

)2 > 8C
L

(C
L

� C

0
D

)

We can solve for e
s

, since it will give us a local approximation of the terminal velocity manifold

described in the text. All we want is the slope m̄ (in ( , r) coordinates), so we let e
s

= [�1,�m̄]T .

From the eigenvector formula

Ae
s

= �

s

e
s

where

A =

"
a b

c d

#
(6.46)

we have

m̄ =
�

s

� a

b

(6.47)

and using (6.22) and (6.53), we get

a = v̄

⇤ ⇥�C

0
L

� C

D

⇤
, b = [�2C

L

]

and thus,

m̄ =
v̄

⇤

4C
L

✓
C

D

� C

0
L

�
q
(C

D

� C

0
L

)2 � 8C
L

(C
L

� C

0
D

)

◆
(6.48)
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We want the slope m in (v̄
x

, v̄

z

) coordinates, so, using the relationship between the cartesian and

polar coordinates,

v̄

x

= v̄ cos �

v̄

z

=� v̄ sin �

we write the transformation between local vectors,

"
dv̄

x

dv̄

z

#
=

"
�v̄

⇤ sin �⇤ cos �⇤

�v̄

⇤ cos �⇤ � sin �⇤

#"
d 

dr

#
(6.49)

and letting dr = m̄ d , we get the slope of the terminal velocity manifold,

m =
dv̄

z

dv̄

x

=
v̄

⇤ cos �⇤ + m̄ sin �⇤

v̄

⇤ sin �⇤ � m̄ cos �⇤
(6.50)

with m̄ as in (6.56). Note, this is the local slope of the terminal velocity manifold, as evaluated at

the stable node point. The slope may change, i.e., the manifold may be curved, as explored in the

next case.

For completeness, we also compute the eigenvector e
ss

= [�1,�n̄]T , and get

n̄ =
v̄

⇤

4C
L

✓
C

D

� C

0
L

+
q
(C

D

� C

0
L

)2 � 8C
L

(C
L

� C

0
D

)

◆
(6.51)

6.4 Saddle case

If �̄ < 0, so �̄ = �|�̄|, then
p
⌧̄

2 � 4�̄ =
p
⌧̄

2 + 4|�̄| > |⌧̄ |, then we have two real eigenvalues,

one negative (�
s

) and one positive (�
u

). The negative eigenvalue is

�

s

=
⌧̄ �

p
⌧̄

2 � 4�̄

2
= 1

2

v̄

⇤
✓
�C

0
L

� 3C
D

�
q

(C
D

� C

0
L

)2 � 8C
L

(C
L

� C

0
D

)

◆
, (6.52)

and the positive eigenvalue is

�

u

=
⌧̄ +

p
⌧̄

2 � 4�̄

2
= 1

2

v̄

⇤
✓
�C

0
L

� 3C
D

+
q
(C

D

� C

0
L

)2 � 8C
L

(C
L

� C

0
D

)

◆
, (6.53)

Let the corresponding eigenvectors be e
s

and e
u

, respectively, understood as column vectors.

We can solve for e
u

, since it will give us a local approximation of the terminal velocity manifold

described in the text. All we want is the slope m̄ (in ( , r) coordinates), so we let e
u

= [�1,�m̄]T .

From the eigenvector formula

Ae
u

= �

u

e
u

where

A =

"
a b

c d

#
(6.54)
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we have

m̄ =
�

u

� a

b

(6.55)

and using (6.22) and (6.53), we get

a = v̄

⇤ ⇥�C

0
L

� C

D

⇤
, b = [�2C

L

]

and thus,

m̄ =
v̄

⇤

4C
L

✓
C

D

� C

0
L

�
q
(C

D

� C

0
L

)2 � 8C
L

(C
L

� C

0
D

)

◆
(6.56)

We want the slope m in (v̄
x

, v̄

z

) coordinates, so, using the relationship between the cartesian and

polar coordinates,

v̄

x

= v̄ cos �

v̄

z

=� v̄ sin �
(6.57)

we write the transformation between local vectors,

"
dv̄

x

dv̄

z

#
=

"
�v̄

⇤ sin �⇤ cos �⇤

�v̄

⇤ cos �⇤ � sin �⇤

#"
d 

dr

#
(6.58)

and letting dr = m̄ d , we get the slope of the terminal velocity manifold,

m =
dv̄

z

dv̄

x

=
v̄

⇤ cos �⇤ + m̄ sin �⇤

v̄

⇤ sin �⇤ � m̄ cos �⇤
(6.59)

with m̄ as in (6.56). Again, this is the local slope of the terminal velocity manifold, as evaluated

at the saddle point, and may be di↵erent from the local slope of the terminal velocity manifold as

evaluated at the stable node, if the manifold is curved.

For completeness, we also compute the eigenvector e
s

= [�1,�n̄]T , and get

n̄ =
v̄

⇤

4C
L

✓
C

D

� C

0
L

+
q
(C

D

� C

0
L

)2 � 8C
L

(C
L

� C

0
D

)

◆
(6.60)

Higher order approximation of terminal velocity manifold. Define the matrix P as

P = [e
u

e
s

]

=

"
�1 �1

�m̄ �n̄

#

so e
u

is the first column of P and e
s

is the second column of P.
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This matrix defines a linear transformation to the eigenbasis (x, y) via

"
 

r

#
= P

"
x

y

#

so the x coordinate is along the e
u

direction and the y coordinate is along the e
s

direction. Note

that

 = �x� y

r = �m̄x� n̄y

(6.61)

and

P�1 =
1

m̄� n̄

"
n̄ �1

�m̄ 1

#
(6.62)

Considering (6.18), we have

"
x

0

y

0

#
= P�1AP| {z }

⇤

"
x

y

#
+P�1F(x, y) (6.63)

where ⇤ is the diagonalized matrix,

⇤ =

"
�

u

0

0 �

s

#

and where care must be taken to calculate the second-order terms, P�1F(x, y), in terms of x and

y, where F(x, y) is given as in (6.19)-(6.21).

We will re-write the nonlinear terms, defining f(x, y) = P�1F(�x� y,�m̄x� n̄y), so

f(x, y) =
1

m̄� n̄

"
n̄ �1

�m̄ 1

#"
a

1

x

2 + a

2

xy + a

3

y

2

b

1

x

2 + b

2

xy + b

3

y

2

#
+O(3)
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where

a

1

= a

1 + b

1

m̄+ c

1

m̄

2

a

2

= 2a1 + b

1(m̄+ n̄) + 2c1m̄n̄

a

3

= a

1 + b

1

n̄+ c

1

n̄

2

b

1

= a

2 + b

2

m̄+ c

2

m̄

2

b

2

= 2a2 + b

2(m̄+ n̄) + 2c2m̄n̄

b

3

= a

2 + b

2

n̄+ c

2

n̄

2

a

1 = v̄

⇤

2

⇥�C

L

� C

00
L

⇤

b

1 =
⇥
C

D

� C

0
L

⇤

c

1 = 1

v̄

⇤ [C
L

]

a

2 = v̄

⇤2

2

⇥�C

D

� C

00
D

⇤

b

2 = 2v̄⇤[�C

0
D

]

c

2 = [�C

D

]

We will refer to the components of f as (f, g).

The resulting equation now has the form,

"
x

0

y

0

#
=

"
�

u

0

0 �

s

#"
x

y

#
+

"
f(x, y)

g(x, y)

#
(6.64)

where

f(x, y) = c

1

x

2 + c

2

xy + c

3

y

2 +O(3)

g(x, y) = d

1

x

2 + d

2

xy + d

3

y

2 +O(3)
(6.65)

where

c

i

= 1

m̄�n̄

( n̄a

i

� b

i

)

d

i

= 1

m̄�n̄

(�m̄a

i

+ b

i

)

We will end up with the expansion about the equilibrium in a form where we can now calculate

the terminal velocity manifold. We re-write (6.64) as,

x

0 = �

u

x+ f(x, y)

y

0 = �

s

y + g(x, y)
(6.66)

where f(x, y) is second-order and higher in x and y, as is g(x, y).

We assume the terminal velocity manifold is given by y = h(x), where h(x) has the Taylor series
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expansion form,

h(x) = ax

2 + bx

3 +O(x4) (6.67)

We can solve for the coe�cients a and b by taking the time derivative of y = h(x), which gives

@h

@x

x

0 � y

0 = 0

i.e.,
@h

@x

[�
u

x+ f(x, h(x))]� [�
s

h(x) + g(x, h(x))] = 0

and equating like powers of x,

(2ax+ 3bx2 +O(x3))
⇥
�

u

x+ c

1

x

2 +O(x3)
⇤� ⇥

�

s

ax

2 + d

1

x

2 +O(x3)
⇤
= 0

i.e.,

[a(2�
u

� �

s

)� d

1

]x2 = 0

so

a =
d

1

(2�
u

� �

s

)

Thus, to a second-order approximation in the (x, y) coordinates, the terminal velocity manifold is

expressed as

y = h(x) =
d

1

(2�
u

� �

s

)
x

2 +O(x3)

thus, in general the manifold will be curved. To get the curvature up through third-order terms,

we need b, so we would have to have f(x, y) calculated up to the third-order terms. We note that

this whole process can be automated using automatic power series expansion tools [10].

To get the terminal velocity manifold in the original (v̄
x

, v̄

z

) coordinates, we use (6.61), (6.1),

and (6.57), to get a parametric curve,

v̄

x

(u) = (v̄⇤ � m̄u� n̄h(u)) cos(�⇤ � u� h(u))

v̄

z

(u) = �(v̄⇤ � m̄u� n̄h(u)) sin(�⇤ � u� h(u))
(6.68)

parametrized by a curvilinear coordinate u which we take to be in some interval I ⇢ R, where the

function h is as in (6.67).

We can determine the lowest order non-linear approximation of the vector field along the 1-

dimensional terminal velocity manifold, as

u

0 = �

u

u+ f(u, h(u))

= �

u

u+ c

1

u

2 +O(u3)
(6.69)

where we are using u as a curvilinear (arc-length) coordinate along the terminal velocity manifold.

This is the analytical formula for the ‘speed’ (actually, acceleration) along the terminal velocity
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curve vs. location along that curve. This tells us that a second equilibrium point (stable) will show

up along the terminal velocity manifold at u = ��

u

/c

1

, which is an approximation of where the

stable node is located.

It is interesting that the local approximation of the dynamics around the saddle point can

imply the existence of the stable point. Also noteworthy is the fact that the terminal velocity

manifold constructed from the saddle point to the stable node is a heteroclinic trajectory (backward

asymptotic to the saddle point and forward asymptotic to the stable node) along which the relative

speed varies according to (6.69).

To find out what role the shape of the terminal velocity manifold plays in modifying the vector

field along it, we must consider third-order terms in (6.18), which would give us

u

0 = �

u

u+ f

2

(u, h(u)) + f

3

(u, h(u)) +O(u4)

= �

u

u+ c

1

u

2 + c

2

au

3 + k

1

u

3 +O(u4)

= �

u

u+ c

1

u

2 +
h
c

2

d

(2�u��s)
+ k

1

i
u

3 +O(u4)

(6.70)

where f

2

(x, y) = c

1

x

2 + c

2

xy+ c

3

y

2 and f

3

(x, y) = k

1

x

3 + k

2

x

2

y+ k

3

xy

2 + k

4

y

3 are the second and

third order terms in the x

0 equation of (6.66), respectively.

Note that

k

1

= 1

m̄�n̄

(n̄ã
1

� b̃

1

)

where

ã

1

= �(A
1

+A

2

m̄+A

3

m̄

2 +A

4

m̄

3)

b̃

1

= �(B
1

+B

2

m̄+B

3

m̄

2 +B

4

m̄

3)

and where the A

i

and B

i

come from the third-order coe�cients in (6.20) and (6.21), respectively,

A

1

= v̄

⇤

6

[C
D

� C

000
L

]

A

2

= 1

2

[C
L

� C

00
L

]

A

3

= 1

v̄

⇤ [�C

D

]

A

4

= 1

v̄

⇤2 [�C

L

]

B

1

= v̄

⇤2

6

[�C

L

� C

000
D

]

B

2

= v̄

⇤[�C

00
D

]

B

3

= 1

2

[�C

0
D

]

B

4

= 0

We note that the third-order coe�cient b is given by

b =
g

1

� a(2c
1

� d

2

)

3�
u

� �

s
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where

g

1

= 1

m̄�n̄

(�m̄ã

1

+ b̃

1

)

6.5 Terminal velocity manifold as slow manifold

In the previous sections, we have looked for local approximations of the terminal velocity manifold

near an equilibrium point, building o↵ of the invariant manifold structure near the equilibrium.

However, we may be able to consider another, more global approach, inspired by singular perturba-

tion theory [7]. In some systems, one can identify a fast variable and a slow variable when a small

parameter appears in one of the ODEs. The dynamics of the fast variable quickly collapse onto a

lower dimensional manifold on which the dynamics evolve more slowly (the slow variable). In the

re-scaled gliding equations of motion for (v̄
x

, v̄

z

), no slow-fast structure can be identified in the

equations themselves (i.e., there is no natural choice of a small parameter), yet a slow manifold ap-

pears to exist. While we do not consider it here, there may methods to obtain the approximate slow

manifold [11, 12], based on the extended zero derivative principle, even if fast and slow variables

have not been identified.

6.6 Acceleration along the terminal velocity manifold

In figure 5bii of the text, we include an inset showing the approximation of the terminal velocity

manifold in the vicinity of the saddle point equilibrium. Below we show the acceleration magnitude

of the glider along the manifold using both the 2nd-order and 3rd-order approximations.
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