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THEORY AND MODELLING

Quasi-steady aerodynamic theory under-predicts glide
performance in flying snakes
Isaac J. Yeaton1,2, Shane D. Ross3, and John J. Socha1

ABSTRACT

Flying snakes (genus Chrysopelea) glide without the use of
wings. Instead, they splay their ribs and undulate through the
air. A snake’s ability to glide depends on how well its morph-
ing wing-body produces lift and drag forces. However, previous
kinematics experiments under-resolved the body, making it
impossible to estimate the aerodynamic load on the animal or to
quantify the different wing configurations throughout the glide.
Here, we present new kinematic analyses of a previous glide
experiment, and use the results to test a theoretical model of
flying snake aerodynamics using previously measured lift and
drag coefficients to estimate the aerodynamic forces. This anal-
ysis is enabled by new measurements of the center of mass
motion based on experimental data. We find that quasi-steady
aerodynamic theory under-predicts lift by 35% and over-predicts
drag by 40%. We also quantify the relative spacing of the body
as the snake translates through the air. In steep glides, the body
is generally not positioned to experience tandem effects from
wake interaction during the glide. These results suggest that
unsteady 3D effects, with appreciable force enhancement, are
important for snake flight. Future work can use the kinematics
data presented herein to form test conditions for physical mod-
eling, as well as computational studies to understand unsteady
fluid dynamic effects on snake flight.

KEYWORDS: gliding, snake, undulation, aerodynamics

INTRODUCTION
Animal flight requires producing and controlling aerodynamic
lift and drag forces via neuromuscular control and/or special-
ized morphology. Flapping fliers use paired beating wings, while
most vertebrate gliders deploy pairs of stretched skin between
limbs (Byrnes et al., 2008; Bahlman et al., 2013; Khandelwal and
Hedrick, 2022), extendable ribs (McGuire, 2003; McGuire and
Dudley, 2005), webbed feet (McCay, 2001), or modified fins (Park
and Choi, 2010; O’Dor et al., 2013). By contrast, flying snakes flat-
ten their bodies and undulate through the air, turning the whole
animal into an ‘S’-shaped morphing wing-body (Socha, 2002).
The wing-body changes configuration continuously throughout the
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glide as the body forms straight segments connected by tight lat-
eral bends that travel posteriorly (figure 1D) (Socha et al., 2005).
The snake’s aerial undulation is composed of horizontal and verti-
cal waves which are 90◦ out of phase and whose frequencies differ
by a factor of two (Yeaton et al., 2020). While airborne, the pos-
ture of the body is never symmetric about any axis, which has
functional implications for force production and balance, and dis-
tinguishes flying snakes from most other flapping flyers or gliders
(Khandelwal et al., 2023).

A fundamental component to snake flight is how effective
the wing-body is at producing lift and drag forces, and how
these forces change as the animal accelerates and the glide shal-
lows (Socha et al., 2015). Understanding lift and drag production
requires knowing the detailed kinematics of the morphing wing,
as well as the lift and drag characteristics of the wing at each con-
figuration. Given the orientation of the wing-body and the lift and
drag coefficients of the cross-section, first-order approximations
of the lift and drag forces can be calculated using the quasi-steady
assumption (Ellington, 1984; Yeaton et al., 2020).

The quasi-steady assumption states that the forces acting on a
wing are a function of its instantaneous speed and orientation to
the flow; its acceleration and the time history of the flow are not
considered. The validity of quasi-steady theory can be checked
by examining if the resultant aerodynamic force matches the cen-
ter of mass acceleration of the animal. Although the quasi-steady
assumption has proved insufficient to explain force production
during flapping flight of insects and vertebrates (Hedenström
et al., 2007; Warrick et al., 2005; Videler et al., 2004; Elling-
ton et al., 1996; Muijres et al., 2008; Maxworthy, 1981; Dudley
and Ellington, 1990; Dickinson et al., 1999; Chin and Lentink,
2016), it has not been tested explicitly for animal gliders (sensu
stricto) with their nominally static body postures (Socha, 2011;
Socha et al., 2015). Despite flying snakes displaying large postu-
ral changes involved in aerial undulation, a previous study found
that undulation frequency was not significantly correlated to any
glide performance variables, suggesting that undulation itself has a
minor role in aerodynamic force production and that quasi-steady
theory could be applicable (Socha and LaBarbera, 2005). Addi-
tionally, the fast forward speed compared to the relatively slow
speed of undulation, quantified as the advance ratio, also suggests
that quasi-steady theory might be applicable (Holden et al., 2014).
However, the precise aerodynamic forces produced during snake
flight have never been calculated because the detailed wing-body
kinematics and the center of mass trajectory were unknown.

A quasi-steady analysis requires known lift and drag coeffi-
cients for the flyer of interest. The lift and drag characteristics of
the 2D cross-sectional shape of C. paradisi have been studied pre-
viously using load cell measurements, particle image velocimetry,
and computational fluid dynamics (Miklasz et al., 2010; Holden
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et al., 2014; Krishnan et al., 2014). The roughly triangular cross-
section acts as a lifting bluff body (figures 1D and 2A), with the
concave ventral surface and protruding lips serving to improve
force production (Miklasz et al., 2010). The shape produces appre-
ciable lift over a large range of angle of attack, with the lift-to-drag
ratio peaking at an angle of attack of 35◦ (figure 2A). The profile
has gentle stall characteristics, with drag increasing slowly after
35◦. The cross-section is also effective at producing lift at high
angles of attack, as the lift coefficient at 60◦ is roughly the same
as at 15◦. Additional physical modeling also determined that when
two snake-like profiles are offset, there is a modification of the lift
and drag through wake interaction effects (Miklasz et al., 2010).
More recent physical modeling investigated such ‘tandem’ effects,
finding appreciable lift-to-drag ratio changes for particular wing
configurations of gap (horizontal spacing) and stagger (vertical
spacing) that may be realizable during gliding (Jafari et al., 2021).

In addition to the lift and drag characteristics, quasi-steady
theory requires knowledge of the body’s kinematics: the instanta-
neous wing configuration, its orientation to the flow, and each body
segment’s motion. Previous kinematic measurements of snake
flight recorded either three or five landmarks on the body (Socha,
2002; Socha et al., 2005; 2010). Although these data enabled a
detailed center of mass trajectory analysis, the time-varying body
posture and its orientation to the airflow had to be estimated from
the horizontal body posture and glide angle. However, in a real fly-
ing snake, different sections of the body might experience different
angles of attack, and portions of the body are swept relative to the
airflow, which will affect the forces and moments acting on the
body. Additionally, the out-of-plane bending of the body causes
the snake’s wing-body to twist, thereby changing the local angle of
attack (Yeaton et al., 2020). These complexities of the aerial snake
made it impossible to estimate the locomotor forces from a few
landmark points alone, and proved insufficient for guiding model-
ing studies. Additionally, the center of mass position, velocity, and
acceleration could only be estimated, as the true configuration of
the body was not known.

Here, we test the effectiveness of quasi-steady theory at approx-
imating lift and drag forces along a flying snake’s body during
gliding. To do so, we did two things: 1) We conducted a new anal-
ysis of three-dimensional kinematics data from our recent study
(Yeaton et al., 2020). Specifically, we used 11–17 landmark points
along the snake’s body to recover the snake’s time-varying body
posture recorded in an experimental setting. This new analysis
enabled us to estimate the center of mass position with high fidelity
and subsequently calculate velocity and acceleration. Knowing the
mass of the snake, we then used the center of mass acceleration to
calculate the total time-varying aerodynamic force on the snake,
which we take as the ‘true’ value. 2) Then, using as few assump-
tions as possible, we estimated the time-varying aerodynamic force
produced across the entire body as predicted by quasi-steady the-
ory. To do so, we used the 3D kinematics to define the local wing
orientation, and calculated quasi-steady lift and drag forces using
the previously measured 2D force coefficients, the blade element
method, and simple sweep theory. This calculation of forces is a
sum of infinitesimal elements, which analogizes the snake as col-
lection of particles that connect with one another, but does not
behave as a rigid body. We then tested the quasi-steady assumption
by comparing the absolute errors between the center of mass force
(‘true’) and the estimated theoretical aerodynamic force (‘model’).
This study provides the first detailed analysis of the total aerody-
namic load on flying snakes during gliding. Additionally, we use

the kinematics data to estimate how Reynolds number, angle of
attack, and sweep angle vary along the body, which can used to
inform future physical and computational modeling of snake flight.

METHODS
New analyses of snake kinematics

This study newly analyzes 3D kinematics data from an experiment
originally presented in Yeaton et al. (2020). The main focus of that
paper was to develop a quasi-steady analysis of gliding to examine
the role of aerial undulation on gliding. Data related to undula-
tion were presented therein, and the remainder of the un-analyzed
kinematics data are addressed in the current study. A total of 43
glide trials from 7 snakes of the species Chrysopelea paradisi are
presented here. We refer the reader to the previous paper for the
full details of the experiment; for convenience, a brief summary is
provided below.

We recorded the position of between 11 and 17 infrared tape
markers placed along the dorsal surface of flying snakes using a
23-camera motion capture system with a sampling rate of 179Hz.
Experiments were conducted in “The Cube”, a four-story-tall
black-box theatre located in the Moss Arts Center at Virginia Tech,
modified for use as a large indoor glide arena (figure 1A-C) under
IACUC protocol #15-034. Snakes were allowed to jump and glide
under their own volition from a height of 8.3m. From the landmark
points, we exported the marker trajectories and filled gaps using
Kalman filters. We then smoothed the marker time series using
two passes of a 2nd-order Butterworth filter, with cutoff frequen-
cies selected separately for each coordinate time series for each
marker (Winter, 2009); these values ranged from 7-17 Hz, which
are greater than the nominal undulation frequencies observed in
gliding snakes (≈1-2 Hz).

From the filtered marker time series, we fit cubic splines to form
a continuous representation of the body at each moment in time
(figure 3A,B). The spline defines the position of each segment k
of the body, r⃗Ik(t) = (xk(t), yk(t), zk(t)), relative to the inertial
frame. We calculated the velocity and acceleration of each location
along the body in the inertial frame using finite differences,

v⃗Ik(t) =
r⃗Ik(t+∆t)− r⃗Ik(t−∆t)

2∆t
(1)

a⃗Ik(t) =
r⃗Ik(t+∆t)− 2r⃗Ik(t) + r⃗Ik(t−∆t)

∆t2
(2)

with second-order accurate forward and backward differences used
at the beginning and end of each time series. We then super-
imposed the average mass distribution, measured from snake
sectioning (Yeaton et al., 2020), onto the spline and calculated the
center of mass in the inertial frame as,

R⃗I
o(t) =

1

M

∑
k

mk r⃗
I
k(t), (3)

where R⃗I
o(t) is the center of mass, mk is the mass of segment k of

the body (figure 3E), and M is the total mass. The center of mass
position was then filtered using a Butterworth filter as above, and
the center of mass velocity and acceleration were calculated using
finite differences.

The center of mass trajectory was then iteratively rotated from
the inertial frame into a straightened frame such that the glide path
aligns with the vertical Y Z plane while preserving the total arc-
length displacement of the center of mass. The kinematic variables
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were rotated about the Z axis into the straightened frame by the
yaw angle, ψ, calculated using theX and Y velocities of the center
of mass, as,

ψ = − tan−1 (Ṙo,X/Ṙo,Y

)
, (4)

where ˙⃗
RI
o(t) = (Ṙo,X , Ṙo,Y , Ṙo,Z) is the center of mass inertial

velocity. The glide angle, γ, was calculated from the straightened
frame center of mass velocity as,

γ = − tan−1 (Ṙo,Z/Ṙo,Y

)
, (5)

which is the angle of the center of mass velocity down from the
horizontal plane.

Center of mass motion

The center of mass motion was newly analyzed by consider-
ing the trajectories from the overhead view in the inertial frame
(X and Y ), as well as the side view in the straightened tra-
jectory frame (Y and Z). The trajectories were also analyzed
using velocity polar diagrams, which encode how the forward and
vertical velocity change during the glide. These diagrams also
encode the glide angle and different phases of gliding (ballistic,
shallowing, equilibrium), which can be related to the angle-of-
attack dependent lift and drag characteristics of the glider (Yeaton
et al., 2017). The velocities, and therefore the entire diagram,
can be non-dimensionalized and rescaled using an animal-specific
characteristic velocity scale, v∗, given by,

v∗ =

√
2WS

ρ
, (6)

where WS is the wing loading and ρ is the air density. Physically,
the velocity scale, v∗, is equivalent to the terminal velocity if the
drag coefficient were 1. The velocities are scaled as,

v̂ =
v

v∗
. (7)

The non-dimensionalization and rescaling enables us to compare
trajectories from different individuals with different sizes.

Reconstructing the wing-body orientation

The wing orientation of the snake’s body was reconstructed
by overlaying an airfoil coordinate system onto the spline
(figure 3C,D). The airfoil coordinate system, denoted as
{T̂ , Ĉ, B̂}, allows us to calculate the orientation of each local body
segment relative to the flow and its resulting aerodynamic forces.
To define the airfoil coordinate system, we used the local unit tan-
gent vector, T̂ , of the spline and the inertial Ẑ direction. The unit
tangent vector is locally tangent to the body at arc-length location
s and time t and points posteriorly down the body from the head
to the vent and is defined from the spline only. The local chord-
line direction, denoted as Ĉ, was assumed to be along a horizontal
direction along the cross-product Ẑ × T̂ . Lastly, the right-handed
coordinate system was completed by a direction which locally
points up through the backbone of the animal, denoted as B̂. The

airfoil coordinate system is given by,

T̂ (s, t) =

∥∥∥∥∂r⃗I(s, t)∂s

∥∥∥∥, (8)

Ĉ(s, t) =
Ẑ × T̂ (s, t)∥∥Ẑ × T̂ (s, t)

∥∥ , (9)

B̂(s, t) = T̂ (s, t)× Ĉ(s, t), (10)

where s is the arc-length coordinate and t is time. As mentioned
previously, we defined Ĉ(s, t) such that it lies within the hori-
zontal plane. We tried to define Ĉ using other assumptions about
minimal twisting of the snake, but visually the results did not
match observed photographic and video footage of the glides. We
note that using our approximation of Ĉ(s, t), the airfoil coordinate
system twists depending on the local orientation of the body.

To reconstruct the time-varying three-dimensional body, we
rotated the previously determined snake airfoil segment (Socha,
2011) to lie within the local Ĉ-B̂ plane at each position along the
body. The segment is then scaled to a specified width (which is also
the chord length, c(s)) based on its arc-length distance along the
body, s (figure 3F). Qualitatively, the resulting wing-body model
is visually very similar to the observed body while gliding.

Lift and drag forces

Lift and drag forces were calculated using the blade element
method and simple sweep theory, along with previously measured
quasi-steady lift and drag coefficients from (Holden et al., 2014).
Each location along the body was treated as aerodynamically inde-
pendent (e.g., no wake-interaction effects) and the lift and drag
forces were calculated as,

f⃗L =
ρU2

⊥
2

· c(s) · CL(α,Re) · L̂, (11)

f⃗D =
ρU2

⊥
2

· c(s) · CD(α,Re) · D̂, (12)

where f⃗L and f⃗D are the lift and drag force per unit length, respec-
tively, ρ is the air density, U⊥ is the velocity locally perpendicular
to the body, c(s) is the measured chord length as it varies along the
body, CL and CD are the lift and drag coefficients (figure 2A) as
functions of angle-of-attack α and Reynolds number Re = Uc/ν,
where U is the total velocity magnitude, and L̂ and D̂ are described
below. The total aerodynamic force that acts at the center of mass
is calculated by integrating the lift and drag forces, which vary
along the body and with time.

Simple sweep theory was used to calculate forces on the curved
sections of the body. Only the velocity component that is locally
perpendicular to the body was used to calculate the forces, which
enabled us to use previously measured lift and drag coefficients for
the snake body cross-section with a sweep angle of zero degrees.
The local velocity, ˙⃗

R(s, t), was projected into the Ĉ(s, t)-B̂(s, t)
plane such that it is locally normal to the body as follows,

˙⃗
RT = (

˙⃗
R · T̂ )T̂ , (13)

˙⃗
RCB =

˙⃗
R− ˙⃗

RT , (14)

U∥ =
∥∥∥ ˙⃗
RT

∥∥∥, (15)

U⊥ =
∥∥∥ ˙⃗
RCB

∥∥∥, (16)
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where the subscripts indicate along which direction the velocity
lies. The angle of attack, α, is the angle between the perpendicular
velocity and the chord-line direction, and is given by,

α(s, t) = cos−1

(
˙⃗
RCB · Ĉ
U⊥

)
. (17)

The sweep angle, β, was calculated as the angle between the
velocity within the plane of the bottom of the snake and the total
velocity,

β(s, t) = cos−1

(
˙⃗
RTC · T̂

|| ˙⃗RTC ||

)
− π

2
, (18)

where ˙⃗
RTC =

˙⃗
R− ˙⃗

RB and ˙⃗
RB = (

˙⃗
R · B̂)B̂. The shift of π/2

accounts for the above dot product as the angle between the tan-
gent vector and the velocity, not the velocity and the chord-line
direction.

The lift and drag coefficients are functions of both angle of
attack and Reynolds number. The orientation of the drag vector,
D̂, is along the direction of the perpendicular velocity ˙⃗

RCB ; the
orientation of the lift vector, L̂, is normal to both the tangent vector
and drag vector. The force orientations are given by,

D̂ = − ˙⃗
RCB/U⊥, (19)

L̂ = T̂ × D̂. (20)

The effect of simple sweep theory is to reduce the velocity in
the force equations (11) and (12). We quantified this effect by tak-
ing the ratio of the forces with and without the simple sweep theory
assumption. Because simple sweep theory only affects the veloc-
ity, this ratio is the fraction of the dynamic pressure due to the
curved sections of the snake body. The dynamic pressure fraction
reduces to,

qf =
U2
⊥
U2

. (21)

Aerodynamic force errors

We quantified the error of the quasi-steady force estimates by com-
paring the total aerodynamic force acting at the center of mass with
the acceleration of the center of mass in the straightened frame.
The translational equations of motion for the snake are,

F⃗L + F⃗D +mg⃗ = m
¨⃗
Ro, (22)

where m is the animal’s mass, g⃗ = −gẐ is gravity, and ¨⃗
Ro is the

center of mass inertial acceleration. The total lift and drag forces
acting at the center of mass, F⃗L and F⃗D , are,

F⃗L =

∫ L

0

f⃗Lds, F⃗D =

∫ L

0

f⃗Dds, F⃗A = F⃗L + F⃗D, (23)

where L is the length of the animal, F⃗A is the total aerodynamic
force, and f⃗L and f⃗D are the lift and drag per unit length, respec-
tively. The translational equations of motion were normalized by
the weight of each animal, mg, so that errors could be compared

across individuals. The weight term was then moved to the right-
hand side of (22) to isolate the forces. This manipulation results in
the normalized force equation,

F⃗A

mg
=

¨⃗
Ro

g
+ Ẑ. (24)

The acceleration, ¨⃗
Ro, was measured experimentally while the

aerodynamic force, F⃗A, was from the quasi-steady aerodynamic
model. In general, we do not expect these to be in agreement. That
is, (24) will not hold. We quantify the aerodynamic force error as
the non-dimensional vector,

ϵ⃗ =
¨̄⃗
Ro − ⃗̄FA + Ẑ,

= (ϵX , ϵY , ϵZ),
(25)

where,

ϵX = ¨̄Ro,X − F̄A,X

ϵY = ¨̄Ro,Y − F̄A,Y

ϵZ = ¨̄Ro,Z − F̄A,Z + 1,

(26)

where the bar indicates normalized forces ( ⃗̄FA = F⃗A/(mg)) and

accelerations (
¨̄⃗
Ro =

¨⃗
Ro/g), and the one in the ϵZ equation results

from the gravitational acceleration. Because the errors were cal-
culated in the straightened frame, ϵX is the lateral error of forces
trying to move the center of mass away from the trajectory, ϵY
is the error contributing to forward motion, and ϵZ is the error in
offsetting the animal’s weight against gravity. Using the straight-
ened frame allows us to compare errors consistently across trials.
If instead we used the forces and acceleration in the inertial frame,
the ϵX and ϵY errors would not directly correlate to moving the
animal away from the trajectory or for forward motion, but a less
intuitive combination of the two.

For each trial, we compared the non-dimensional force errors
as a function of the height of the animal’s center of mass above the
ground, as this proceeds with the progress of the glide in a manner
which can be compared across all trials. Lastly, linear interpola-
tion was used to interpolate the accelerations and forces such that
each glide was sampled on a uniform height grid. This enabled
us to calculate the averages and standard deviations of the forces,
accelerations, and errors for each individual.

Quantifying differences between model and kinematics

In our aerodynamic analysis, we focused on quantifying the dis-
crepancies between our model predictions and experimental obser-
vations. Specifically, we observed consistent deviations in the
force estimates in the forward (ϵY ) and vertical (ϵZ ) directions.
Our model tended to overestimate drag force and underestimate
lift force when compared to experimental data.

To quantify these discrepancies, we introduced time-varying
multiplier factors bL(t) and bD(t) for the lift and drag forces,
respectively. These factors represent how much we need to adjust
the model’s force estimates to align them with experimental obser-
vations, at each time t. Ideally, if the model perfectly matched
the experiments, these multiplier factors would be 1, indicating no
discrepancy.
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We used a numerical minimization procedure to determine the
precise values of these multiplier factors. At each time t, this pro-
cess involved selecting bL(t) and bD(t) to minimize the modified
center of mass error magnitude,

ϵ′(t) = || ¨̄⃗Ro(t)− ⃗̄F ′
A(t) + Ẑ||, (27)

where the modified aerodynamic force is ⃗̄F ′
A(t) = ⃗̄F ′

L(t) +
⃗̄F ′
D(t),

where lift and drag are modified according to,

⃗̄F ′
L(t) = bL(t)

⃗̄FL(t),
⃗̄F ′
D(t) = bD(t) ⃗̄FD(t), (28)

where the prime denotes the modified force.

Gap and stagger measurements

Gap and stagger are defined as the relative horizontal and vertical
position of the downstream body segment relative to the upstream
segment. To quantify the relative spacing of the body for possible
wake interaction effects, we calculated the time-varying gap and
stagger values of the snakes throughout the trajectory. Gap and
stagger are calculated in the trajectory reference frame, defined by
rotating the body from the straightened frame such that the cen-
ter of mass velocity is in the forward direction. In the trajectory
reference frame, gap is defined as the horizontal distance between
the upstream and downstream segments and stagger as the vertical
distance (figure 2C).

Beginning in the straightened frame, the center of mass position
was removed to isolate the relative motion of the body about the
center of mass. Next, the body was rotated about the lateral (X̂)
axis by the glide angle equation (5) such that the center of mass
velocity was in the forward direction. The rotations of the body
into the different frames are given by,

R⃗S = CI→S · R⃗I (29)

R⃗S,c = R⃗S − R⃗S
o (30)

R⃗F = CS→F · R⃗S,c (31)

where the superscripts denote the inertial (I), straightened (S),
and trajectory reference (F ) frames, and the rotation matrices are
denoted by C.

Once in the trajectory reference frame, we found intersections
of the body spline with a vertical plane at the center of mass
(figure 2D,E). The locations of the intersections defined where the
gap and stagger values were calculated. For each intersection, we
took the relative displacement between the upstream and down-
stream airfoils as the gap and stagger, respectively. Sometimes,
the body intersected the vertical plane multiple times. During
these instances, we defined two separate gap and stagger values
from the first and second intersections and the second and third
intersections.

Gap and stagger from previous kinematic measurements

Analysis of the center of mass trajectory revealed steep glides com-
pared to previous kinematic measurements of snake glides (Socha
et al., 2010; 2005). This observation prompted us to revisit data
from these other studies to extract gap and stagger information.
For this analysis, we used data from Socha et al. (2010), which
was the previous best kinematics data. This previous experiment
recorded late-phase gliding in two individuals, with four trials per

snake analyzed, of glides originating from a height of 15m. The
data comprise trajectories of five landmark points (head, 1/4 SVL,
1/2 SVL, 3/4 SVL, and vent), rotated into the trajectory reference
frame. Gap and stagger values were estimated from these data as
described above, using marker pairs — head–1/2, 1/4–3/4, and
1/2–vent — at time points when the lateral displacement of the
marker pairs were the same. Time points with the same lateral dis-
placement are an approximation to intersections of the body with
the vertical plane passing through the center of mass; this approx-
imation was made because the center of mass is not precisely
known from the five-point data.

Assumptions

The analysis presented in this study is based on several layers of
assumptions, beginning with the measured infrared marker trajec-
tories. From the marker trajectories, the spline curve was used to
represent the body as it moves through space. Next, the mass and
width distributions were overlaid on the spline; the mass distri-
bution was measured from anatomical snake sectioning, and the
width distribution from photographs (Yeaton et al., 2020). The gap
and stagger calculations are based on the spline, while the rela-
tive angle-of-attack and sweep angles of the wing segments both
incorporate assumptions discussed below.

A necessary assumption for the quasi-steady force calculations
is the orientation of the airfoil coordinate system. The airfoil coor-
dinate system directly affects the aerodynamic force calculations,
because it is one of two components that determine the angle of
attack (the other being the average forward velocity vector of the
snake along its trajectory). The need for an assumption arises from
the fact that our kinematics data are limited: the IR system is
assumed to have identified the centroid of the marker on the snake,
which is along the dorsal backbone. As such, we have no quan-
titative information about the lateral positions (i.e., the width) of
the snake’s body. As an analogy, this situation is akin to identify-
ing the root and tip of a bird’s wing during flight, but not knowing
the location of the leading and trailing edges. Without that infor-
mation, it is impossible to specify the local angle of attack on any
part of the snake’s body. We selected a method to calculate the air-
foil coordinate system that resulted in a reconstructed wing-body
that was qualitatively similar to images of the snakes while air-
borne (figure 3G,H). The similarity included the twisting of the
body at the ‘U’-bends, the overall orientation of the straight seg-
ments, and the calculated forces varying continuously along the
body. Because we lack the full kinematic data, we have no way of
calculating the error in angle of attack in our model, but the visual
similarity of model to imagery of the real gliding snake provides
some small degree of confidence that the model can be informative
and provide a basis to build upon.

The other aerodynamic assumptions are (1) extrapolation of
lift and drag coefficients between angles of attack of 60◦–90◦,
(2) the use of simple sweep theory to account for the non-
perpendicular body segments, and (3) quasi-steady aerodynamics.
The lift extrapolation is based on the fact that the snake’s cross-
sectional shape is left-right symmetrical, and this shape at 90◦ will
produce zero lift. The drag extrapolation was based on similarity
of the shape to other triangular shapes, with experimental coeffi-
cients reported to be around 2 (Hoerner, 1965). The simple sweep
theory assumption enabled the use of our current best understand-
ing of flying snake aerodynamics, as no data exists on the relative
orientation of the airflow to the body. Likewise, the quasi-steady



561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

6

aerodynamics theory had not been tested on flying snake locomo-
tion given our previously poorer understanding of the whole body
motion during a glide. Overall, the data presented in this study
should help guide future work to address the assumptions used
here.

RESULTS AND DISCUSSION
Center of mass motion

The center of mass trajectory from the side and overhead views
is shown in figure 4A,B for 43 trials from seven individuals. For
the center of mass analysis, multiple glides from three individuals
are shown separately, chosen because these individuals gave the
greatest number of usable trials to analyze, and happened to span
the observed mass range of animals tested. The side views indicate
relatively steep glides compared to previous studies. The largest
animal (snake 81, mass: 107.2 g) only covered about 4m horizon-
tally from an 8.3m jump height. The lightest animal (snake 95,
mass: 37.3 g) has more variation in the horizontal glide distance,
but generally performed better and covered horizontal distances
up to 5m. Trial 618 (figure 4Aiii,Biii) was the best performing
glide, as it shallowed fastest and covered the most horizontal dis-
tance. However, the snake landed on the target tree placed in the
glide arena (figure 1A), so the maximum potential horizontal dis-
tance was not recorded; it is estimated that this snake could have
glided 7m horizontally. The overhead view of the center of mass
trajectories (figure 4B) shows that the glide paths were generally
not straight. The center of mass motion has broad arcs, but no dis-
cernible turning events were observed. The overhead view shows
no oscillations of the center of mass due to undulation.

The dimensional velocity polar diagrams (figure 4C) indicate
initial forward velocities at or below 2m/s for all snakes. The
velocity trajectories initially move vertically downwards on the
diagram as the snakes accelerate downwards while keeping the
horizontal velocity constant during the ballistic phase. The glide
angle during this phase increases from roughly 0◦ to 60◦–75◦

before the velocity trajectory arcs upward. The shape of the arc
upwards is similar across all glides and is consistent with motion
onto the “terminal velocity manifold” in theoretical models of
gliding (Yeaton et al., 2017; Nave Jr and Ross, 2019). For the
smallest snake (figure 4Ciii), the trajectories curve upwards the
most, indicating it progresses farthest through the glide. The curve
upwards is more apparent when viewing the non-dimensional and
rescaled velocity polar diagrams (figure 4D), as all effects of ani-
mal size have been removed. The glides that performed best, trial
618 from snake 95 and trial 505 from snake 88, progressed far-
thest on the velocity polar diagram and had higher initial horizontal
velocities. The higher velocity likely caused the glide to transi-
tion more quickly, while slower horizontal velocities took longer
to transition.

Lift and drag forces

The quasi-steady forces and center of mass accelerations are
shown in figure 5 for the three individuals with the greatest number
of usable glides. If quasi-steady theory properly accounts for the
aerodynamic forces, the left and right plots in figure 5 should be
the same. We see the same trends across individuals in regards to
the forces and accelerations, but quasi-steady theory is insufficient
to explain the aerodynamic forces on the snake. In general, the
force estimates are smoother than the accelerations, with smaller

standard deviations during the trajectory. The lower standard devi-
ation is due to only needing to perform one numerical derivative to
calculate velocities, while the center of mass acceleration requires
two derivatives, as well as integrating the forces having a filtering
effect.

Both the average lateral force and lateral accelerations are
near zero, indicating fairly good agreement between the accel-
erations and quasi-steady theory (figure 5A). The deviations are
larger about the forward and vertical directions. The forward
forces, which are the aerodynamic forces responsible for hor-
izontal motion over the ground, are too low compared to the
accelerations. The average accelerations peak at approximately
0.5 body weight (BW), while the forces peak at approximately
0.25 BW (figure 5B). In contrast, the vertical forces are higher
than the accelerations. The vertical forces are responsible for off-
setting the animal’s weight against gravity. The force time series
indicate that more vertical force is produced than needed to sup-
port the weight (forces are above the dashed line in figure 5C).
The accelerations are lower and only cross the supporting body
weight threshold for the lightest snake. Therefore, the quasi-steady
force estimates show qualitatively the same trends as the acceler-
ations, but the forces are underestimated in the forward direction
and overestimated in the vertical direction.

Across individuals, the accelerations about the lateral direc-
tion are similar. However, there is a qualitative difference in the
forward and vertical directions between the lightest and heaviest
individuals (snake 95, mass: 37.3 g and snake 81, mass: 107.2 g)
with a difference in mass of approximately 2.9×. The forward
acceleration of the lighter snake peaks and then decreases near the
end of the glide, whereas the heavier snake does not show this
behavior. The vertical accelerations show the lighter snake accel-
erating upward near the end of the trajectory, whereas the heavier
snake does not. The medium-heavy snake (snake 91, mass: 71 g,
mass ratio of 1.9× compared to the lighter snake) appears to be
accelerating slightly upwards (figure 5C).

Aerodynamic force errors and adjustments

The absolute force errors, defined as the absolute difference
between the calculated center of mass acceleration and the resul-
tant aerodynamic force, are show in figure 6A for all of the seven
snakes analyzed. Errors are near zero about the lateral direction.
The forward force error is approximately 0.25 BW, while the ver-
tical force error is approximately -0.5 BW. The physical interpre-
tation of these errors is that that quasi-steady theory overestimates
drag and underestimates lift, as the drag force acts predominantly
in the vertical direction, while the lift force acts predominantly
in the forward direction. Decreasing drag and increasing lift will
rotate the resultant aerodynamic force vector forward and reduce
the error.

The required multipliers to the lift and drag forces to reduce
the total error to zero are shown in figure 6B. The lift force
needs to be multiplied by 1.35× and the drag force needs to
be multiplied by 0.6× of the quasi-steady values. Note that the
change in drag is approximately constant throughout the glide,
while the change in lift decreases from approximately 2× to 1×
as the glide progresses. The force multipliers thus indicate that
quasi-steady theory consistently overestimates the total drag force
by approximately 40% and underestimates the total lift force by
approximately 35%.
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Lift and drag distributions

The time-varying lift and drag distributions for the best perform-
ing glides are shown in figure 7 for different heights as the animals
glide. The force distributions have the same orientation as pre-
dicted by quasi-steady theory, but have been scaled using the lift
and drag multipliers such that the total force errors are near zero.
Therefore, the true local lift and drag force may be quite different
than shown. By 10% through the glide (z/h0 = 0.9, the first row
in figure 7), the snake bodies have already formed the ‘S’-shaped
glide posture, and lift and drag forces are being produced. As the
glides progress, the smaller animal (snake 95, mass: 37.3 g, SVL:
64.4 cm) forms a tight body posture, with the posterior body drop-
ping below the head. The larger animal (snake 88, mass: 71.9 g,
SVL: 88.8 cm) has a more open body posture, with fewer spatial
periods of bending, and a more horizontal orientation.

There are commonalities in the force distributions for both ani-
mals. The drag force is continuous along the body, including along
the straight segments and along the ‘U’-bends. In contrast, con-
sistent with the simple sweep theory assumption, the lift force
decreases to zero at the ‘U’-bends, and is largest along the straight
segments. The transition region to zero lift is small and does not
extend over the entire ‘U’-bend region. The small transition region
is likely related to low sweep angles before and after the ‘U’-bends
(figure 8E,F). The estimated force produced by the tail is small
because of the its small width. This small width also results in
lower Reynolds numbers (figure 8A,B). For snake 88, the body
is initially highly swept, with the straight segments angled roughly
45◦ relative to the forward direction. However, the model still indi-
cates that these areas produce appreciable lift force. The side views
of the glides indicate that the drag force acts in the vertical direc-
tion and against the direction of forward motion. The lift force is
angled upwards relative to the horizontal and along the direction
of forward motion.

For the glides shown in figure 7, the time histories of the
Reynolds numbers, angles of attack, sweep angles, and dynamic
pressure fraction distributions are shown in figure 8. The Reynolds
number (figure 8A,B) broadly tends to increase throughout the
glide because the snake’s airspeed increases as it accelerates. The
larger animal has higher Reynolds numbers due to its greater
width and speed. The Reynolds numbers peak midway along the
body, where the animal is widest. The angles of attack are high,
ranging from 60◦ to 90◦ at various points along the body. The ‘U’-
bends have the highest angles of attack (shown as dashed lines in
figure 8A,B), which results in the locations of zero lift produc-
tion in figure 7. The ‘U’-bends have the highest sweep angles,
and locations along the body near the ‘U’-bends have low sweep
values. Even along the straight segments, the sweep angle is gen-
erally greater than 30◦. Lastly, the dynamic pressure fraction is
shown in figure 8G,H, with the 75% contour highlighted. Values
of 100% indicate no decrease in lift or drag due to the swept wing,
whereas values of 0% indicates no force being produced because
of sweep. The straight segments of the snake maintain the most
dynamic pressure, although there are regions where this is not the
case (figure 8G and figure 7 for snake 95 at 0.7 and 0.6 of the
height fallen).

Gap and stagger

The relative spacing of the perpendicular body segments for all
glides and at different progressions through the glide are shown in
figure 9A and summarized in table 1. Initially, the distributions of

gap (horizontal spacing) and stagger (vertical spacing) show high
spread, which decreases later in the glide. During the first quar-
ter of the glides, the median gap is 3.0 c (chord) and the median
stagger is 3.7 c. The second quarter of the glides exhibits the same
median stagger of 3.7 c, but the median gap decreases to 1.0 c. Dur-
ing the third and fourth quarters of the glides, the median gap is
effectively 0 c, while the median stagger is 4.2 c. As a measure
of distribution spread, we use the interquartile range (IQR). Ini-
tially, the gap and stagger interquartile range is (3.8 c, 2.4 c), which
decreases to (2.7 c, 1.8 c) during the second quarter of the glide.
The interquartile ranges decrease further to (2.1 c, 1.7 c) and (2.0 c,
1.3 c) during the second half of the glides. The gap and stagger dis-
tributions indicate gaps that are near zero and even negative. A gap
of zero indicates the forward airflow contacts the anterior and pos-
terior body simultaneously, while a negative gap indicates the rear
airfoil leads the front airfoil. Staggers are generally positive, indi-
cating that the rear airfoil is below the front airfoil relative to the
airflow.

Overlaid on the joint distributions are the gap and stagger mea-
surement locations for wake interaction effects (Jafari et al., 2021).
Gap and stagger combinations are observed in the aerodynamic
interaction region, although these combinations are relatively rare.
Wake interaction effects are most prominent along the top row,
with the rear airfoil directly behind the front airfoil. There are also
wake interaction effects along the second row, but the effect is
smaller. The gap and stagger measurement locations initially over-
lap with the observed gap and stagger distributions, but the overlap
is less later in the glide, as the observed distribution moves to a gap
of zero.

The angles of attack of the front and rear airfoils are shown in
figure 9B. The angle of attack of the rear airfoil is correlated with
the angle of attack of the front airfoil. Initially, angles of attacks
are very high, upwards of 70◦ to 90◦, with the median angle of
attack being 74◦ for both the front and rear airfoils. As the glides
progress, the spread of the angle of attack distribution decreases,
and the median angle of attack ultimately decreases to 56◦ for
the front airfoil and 65◦ for the rear airfoil. All angles of attack
were high, indicating large drag coefficients and small lift coeffi-
cients (figure 2A). The sweep angles of the front and rear airfoils
(figure 9C) do not follow a clear trend as do the angle of attacks.
Initially, there is a large cluster of high sweep angles, which may
be due to the jump and body formation phase of the glide. Later
in the glide, the higher sweep angles are not seen, but there is no
clear trend relating the sweep angle of the front and rear airfoils.

Lastly, gaps and staggers from this study and estimated gaps
and staggers from a previous study with only five markers on the
snake (Socha et al., 2010) are shown in figure 9D. The gaps from
the five marker trials are much greater than observed in this study.
The steep glides from this study have a gap of approximately 0
c, while the shallow glides from the previous study have a gap
greater than 5 c, although the staggers are similar. The gap and
stagger combinations from the five-point trials are generally in the
wake interaction region, although few time points from the current
study are located in the wake interaction region. The third panel
of figure 9D indicates that although uncommon, gap and stagger
configurations in the wake interaction region are observed in the
present study.
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Center of mass motion

This study of flying snake glide trajectories provides the first mea-
surements of the snake’s center of mass informed by the whole
body. The overhead and side views of the glide trajectory provide
our first measurements of the center of mass motion of flying snake
glides. The recorded glides were steeper than would be anticipated
from previous studies, with a horizontal glide distance of only 4m
from a jump height of 8.3m, whereas maximum glides from a pre-
vious experiment averaged 10.1m horizontally from a jump height
of 9.6m (Socha et al., 2005). There are several possible explana-
tions for this difference, including the more massive snakes used in
the present study, physical markers being placed on the body, lack
of visual cues from the indoor glide arena, potential colony effects,
or because wild-caught snakes are more accustomed to gliding.
Alternatively or additionally, only the best performing glides from
previous studies were analyzed in detail, whereas all trials, regard-
less of performance, were analyzed in the present study. The larger
mass directly affects the wing loading of the animal, with pre-
dictable results in the velocity polar diagram; see figure 4. To
address visual cues, a target tree was placed in the arena (see
figure 1), as has been done for previous studies. There was no dis-
cernible difference when handling the animals and encouraging
them to jump. Additionally, the physical tape markers, as opposed
to painted markers, were placed carefully on the animal’s dorsal
surface to minimize disturbance to their flattening. As a control,
one snake was left unmarked and did not show noticeably different
glide behavior or performance than the marked snakes. Although
the glides were steep, the increased spatial and temporal resolu-
tion enabled us to fully quantify the position of the body in much
greater detail than in previous studies. This improved understand-
ing enables us to calculate the center of mass, as well as estimate
aerodynamic forces, and measure the gap and stagger of different
body segments.

The overhead view of the glide path (figure 4B) did not show
obvious center of mass deviations related to undulation. These data
show the unfiltered center of mass, so the smoothing effects of dig-
ital filtering are not present. We do see broad arcing turns, although
no distinct turning events were observed during the trials. This arc-
ing motion could be due to the initial jump conditions and a result
of stabilizing the rotational motion (Yeaton et al., 2020). There is
one trajectory that followed a fairly straight course, trial 413 from
snake 91 (figure 4Bii), from the launch branch to the target tree.
We recorded only a few glides that landed on the tree.

The velocity polar diagrams (figure 4C,D) have been discussed
previously from a theoretical modeling perspective; see (Yeaton
et al., 2017; Nave Jr and Ross, 2019). The empirical velocity
polar diagrams provided here support several theoretical predic-
tions from those previous studies. First, the wing loading rescal-
ing enables comparisons between individuals that vary in mass.
The theoretical studies predicted that smaller individuals would
progress further through the diagram during a glide and show
better glide performance, which was seen in this study with indi-
viduals varying by a factor of three in mass. Additionally, a greater
initial forward velocity was predicted to more quickly reach a
steady state glide and perform better. Here, we found the best per-
forming glides did indeed have greater initial forward velocities.
All diagrams show a characteristic turn that signifies the transition
from the ballistic to the shallowing phases of gliding. The theoreti-
cal model predicted that a trajectory in the velocity polar diagram,
starting from a horizontal jump, will accelerate quickly downwards

before curving upwards, transitioning onto the terminal velocity
manifold, a higher-dimensional analogue to the terminal velocity
speed. This transition point occurs for different absolute airspeeds
for different individuals, However, the rescaled diagrams show that
the transition occurs for a non-dimensional speed of approximately
one, which is approximately the terminal velocity speed.

Potential reasons for discrepancy

Quasi-steady theory was insufficient to explain the aerodynamic
forces produced during short glides in flying snakes. When com-
pared to the experimentally determined center of mass accelera-
tion, the predicted quasi-steady lift forces were 35% lower and the
quasi-steady drag forces were 40% higher. We found that the dif-
ference in drag was constant throughout the glides, whereas the
difference in lift decreased throughout the glide; see figure 6.

One possibility for the lift multiplier changing with progress
through the glide is that initially the angles of attack along the
wing-body are high. As the glide progresses, the angles of attack
decrease from 70◦–90◦ at the start to 50◦–70◦ at the end of the
glide. The lift and drag curves are substantially different at high
angles of attack; the lift coefficient is near zero, while the drag
coefficient is at a maximum; see figure 3A. The relative change
in the lift and drag coefficients also varies as the angle of attack
is decreased. From 90◦ to 60◦, the extrapolated lift coefficient
increases from 0 to about 1, while the extrapolated drag coeffi-
cient only decreases from approximately 2 to 1.6. Therefore, the
modification to the lift force is more sensitive during the initial
portion of the glide as the angle of attack decreases from a high
value. While the lift and drag extrapolated values at α = 90◦ are
based on theory for geometrically similar airfoils (Yeaton et al.,
2020), the true lift and drag values in this regime of angle of attack
are unknown, as previous experiments only measured up to 60◦.
The most likely difference in lift or drag coefficients in this regime
are likely to be in drag, because the estimate at 90◦ is less cer-
tain than in lift (which is zero at 90◦ due to the symmetry of the
airfoil with respect to the airflow at this configuration). However,
the results of this study show that the quasi-steady model over-
estimates drag, suggesting that our extrapolation was not the major
factor in the difference. More generally, it is likely that the dis-
crepancy between model and reality stems from the nature of the
kinematic data: in the trials analyzed here, the snake was not only
undulating but continuously accelerating throughout the trajectory,
yet the model takes a quasi-static approach, which intrinsically
does not include acceleration. It would be interesting to apply the
model in future studies to non-accelerating parts of a glide, which
could in theory be obtained from snakes launched from a greater
height. Such work would build on recent theoretical advances of
our understanding of gliding across all animals including flapping
flyers (Cheney et al., 2020; Usherwood et al., 2020; KleinHeeren-
brink et al., 2022), beyond the gliding-restricted taxa like flying
snakes.

Tandem airfoil effect: Gap, stagger, and airflow orientation

Tandem airfoil effects, due to wake interactions between a leading
airfoil and a trailing airfoil, are an unsteady aerodynamic effect.
They were considered here as a potential reason for the insuffi-
ciency of quasi-steady theory. The distributions of gap and stagger,
and how they change depending on progress through the glide
(figure 9A), revealed zero or even negative gap values at the end
of the glide. The gap and stagger results indicate that flying snakes
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use a wide range of body configurations relative to the airflow.
Notably, during all glides, the gap and stagger values spend lit-
tle time in the region where wake interaction effects are greatest
(figure 9D), from which it can be concluded that this effect is not
the reason for the insufficiency of quasi-steady theory.

While the configurations may not be advantageous from an
aerodynamics and glide performance perspective, they may serve
ecologically relevant functions. For example, snakes executing
short glides, or falling near vertically, may do so to escape preda-
tors. Falling straight downwards still requires controlling aerody-
namic and inertial forces to ensure stability, but will not result in
substantial horizontal travel. Steep glides may allow the snakes to
fall away from the predator while staying on the same tree, or in
the nearby area.

Flying snakes therefore have a large performance envelope
within which to operate. Some glides can be viewed as predom-
inantly falling, in which the animal moves vertically downward
or only covers a few meters horizontally, whereas other glides
cover significant horizontal distance, possibly to escape to a dif-
ferent tree. It is known that other gliding animals (Khandelwal
et al., 2023), such as flying squirrels and Draco lizards, have higher
shallowing rates and shallower glides than flying snakes (Socha
et al., 2015), but they may not be able to execute very steep glides.
The morphing wing-body of flying snakes may be particularly
well suited to stabilize short glides, as it possibly allows the ani-
mal to correct for rotational torques. Additionally, the multi-wing
configuration may enable wake interactions that increase glide per-
formance (figure 9D), although this may not be volitional and may
simply be an artifact of the shallowing glide.

Future work

Future studies are needed to address the assumptions used in
this work. The biggest kinematic assumption is the airfoil coor-
dinate system that is overlaid on the spline fit of the body. This
assumption was used because the orientation of the body was not
resolvable from the marker time series. The airfoil coordinate sys-
tem directly affects the force estimates, as well as angle of attack
and sweep angle estimates. Future experiments, with greater cam-
era coverage, may be able to measure body orientation with higher
resolution.

The next assumptions to be addressed are quasi-steady the-
ory and simple sweep theory. Both assumptions were applied so
that previously measured lift and drag coefficients could be used.
An alternative to using quasi-steady force coefficients and simple
sweep theory would be to perform anatomically accurate compu-
tational fluid dynamics (CFD) simulations, with a moving mesh
derived from the kinematics analysis. This analysis would account
for unsteady fluid phenomena, and provide details about wake
interaction, vortex shedding, and flow at the ‘U’-bends of the
snake. This analysis would also provide insights into span-wise
flow along the straight body segments. In fact, a full-body CFD
analysis has been conducted recently, but it treated the snake in an
idealized fashion, with the motion of the body sinusoidal, confined
to a single, horizontal plane, in a non-accelerating regime (Gong
et al., 2022). This CFD study provides new insight into potential
aerodynamic mechanisms including enhancement by leading and
trailing edge vortices, and it would be useful to conduct a similar
force comparison with experimental data as done here. As an alter-
native to computational models, physical or robotic models could
be tested in air or water tunnels, as in (Holden et al., 2014), or in a

tow tank, in which the model could be accelerated. Flow and force
measurements can then be taken of the whole snake model, or of
straight segments at different attack and sweep angle combinations
(figure 8C,D). Finally, it would be informative to compare model
results with trajectories that include shallower gliding seen in prior
studies (Socha, 2002; Socha et al., 2005; Socha and LaBarbera,
2005; Socha et al., 2010).

In some ways, the reciprocal progression of experiment and
model development suggested by this study parallels the early his-
tory of flight studies of birds, bats, and insects (Alexander, 2003;
Biewener and Patek, 2018; Dudley, 2000). Each of these groups
shared common features of locomotion, but more detailed under-
standing of kinematics and aerodynamics was required to refine
the theoretical understanding of their flight. In a parallel way, this
study similarly represents a foundational step forward in under-
standing how flying snakes glide, providing new inspiration for
future work.

CONCLUSION
Using a new kinematics analysis of the center of mass trajectory
and body orientation, we tested if quasi-steady theory can predict
the time-varying lift and drag forces on flying snakes. Quasi-
steady theory was insufficient to fully explain the forces acting
on the body. Our results indicate that unsteady and 3D aerody-
namic effects are likely important for snake flight, even during
short glides. During some glides, we did find body configura-
tions where the anterior body was located where unsteady wake
interaction effects are possible, but this is unlikely to explain the
shortcomings of the applied quasi-steady theory. However, wake
interaction effects may be more prominent during late phase glid-
ing. The time-varying body posture and orientation can be used in
future computational dynamics and physical modeling studies to
elucidate unsteady and 3D aerodynamic phenomena during snake
flight.
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Data from the glide trials are available at https://github.com/TheSochaLab/Undulation-

enables-gliding-in-flying-snakes. Code used to analyze the glide trials and per-

form the glide simulations is available at https://github.com/TheSochaLab/Quasi-

steady-aerodynamic-theory-under-predicts-glide-performance-in-flying-snakes.
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Fig. 1. Indoor glide arena and glide trial experiments. (A) View inside
“The Cube”, a black-box theatre equipped with launch platform, high-speed
motion capture cameras, and target tree. The floor was covered with large
foam pads. (B) Top, side and rear views of the motion capture camera cover-
age cones. The IR marker trajectories for one trial are shown, with the jump
and landing locations indicated by the yellow markers. (C,D) C. paradisi in
an ‘S’-shaped glide posture. The infrared tape markers can be seen along
the dorsal surface of the snake in C, and around the tail in D. (E) Select
snapshots of a snake in its aerial trajectory from an overhead high-speed
camera, stitched together using Photoshop. Reproduced with permission
from (Yeaton et al., 2020)
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Fig. 2. Quasi-steady aerodynamics and gap and stagger calculations. (A)
Quasi-steady lift and drag coefficients for different angles of attack and
Reynolds number, using values from (Holden et al., 2014). The coefficients
for α > 60◦ are polynomial extrapolations such that the lift and drag coeffi-
cients match a triangular bluff body at α = 90◦ (Hoerner, 1965; Yeaton et al.,
2017). (B) Simple sweep theory and sweep angle calculation. The perpen-
dicular velocity component is used in the force calculations, and is found by
removing the velocity component parallel to the local tangent direction. (C)
Definition of gap, stagger, and angle of attack of the snake in the trajectory
reference frame. Gap is the horizontal spacing and stagger is the vertical
spacing. Both the front and rear airfoils have different angles of attack, sweep
angles, and different local velocities. (D,E) Two time instances from a glide
showing intersections of the body with the plane through the center of mass.
The locations of these intersections are used to calculate gap and stagger.
The body is rotated to the trajectory reference frame, with the center of mass
velocity in the +y-direction, denoted by the black arrow. The time point in (D)
is from 53% through the glide, while (E) is from 90%. The dorsal surface is
indicated in green and the ventral surface in yellow.
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Fig. 3. Method of reconstructing the morphing wing-body of flying snakes
from recorded infrared marker (IR) trajectories. Each image shows the recon-
struction step from one trial at the same time instance. (A) The measured IR
markers provide a discrete representation of the body. (B) Cubic splines are
fit to the IR markers, providing a continuous representation. (C) The tangent
vector, T̂ , is used, along with the vertical direction, to define the airfoil coor-
dinate system in (D). The width of the body is taken to define the chord-line,
Ĉ, and B̂ points upward through the backbone. (E) Mass distribution over-
laid on the spline, visualized as spherical markers with radius proportional
to the mass. The head and mid-body are relatively more massive; the tail
only accounts for ≈ 9% of the snake’s mass. (F) Complete reconstruction of
the morphing wing-body, showing the C. paradisi cross section overlaid on
the spline, incorporating the orientation from (D) and the width distribution.
hl{(G) and (H) compare the output of this reconstruction with an image of
a real snake, both in side view of a snake in a glide trajectory. (G) is from
snake 95 in this study; the full model can be viewed here. (H) is from a
different C. paradisi specimen from a previous filming session (courtesy of
National Geographic Television).

https://sketchfab.com/3d-models/flying-snake-95-trial-618-b52b079936c24494aa9d14090c1e0236
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Fig. 4. Overview of trajectory dynamics for 43 trials from seven flying
snakes. (A) Side view of the glide path in the straightened frame. Three of
the panels are for three individuals that gave the greatest number of usable
glides and spanned the entire mass range of snakes used. The last panel
shows glides for four additional individuals. Different trials for each snake are
indicated by different colors and the trial number is labelled. The first num-
ber of the trial identification is the day of testing. The best performing glides
are trial 618 from snake 95 and trial 505 from snake 88, which are shown in
more detail in figure 7. (B) Overhead view of the glide path showing the unfil-
tered center of mass position in the inertial frame. The glides are generally
not straight and show broad arcing behavior. (C) Velocity polar diagrams of
forward and vertical velocity in the straightened frame. The glide angle is the
angle subtended from the horizontal downward. (D) Velocity polar diagrams
that have been non-dimensionalized and rescaled to remove the effects of
animal size. Velocity trajectories show a characteristic vertical portion dur-
ing the ballistic phase, followed by an upward arc onto the terminal velocity
manifold near a rescaled velocity magnitude of 1. The lightest snake (snake
95) progresses farthest on the diagram and had the best glide performance
(trial 618).
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Fig. 5. Center of mass acceleration and aerodynamic force estimates, nor-
malized by body weight, as functions of height for three snakes that span
the observed mass range of animals tested. The left column is determined
from the right-hand side of equation (24) and consists of the experimental
accelerations and gravity. The right column is determined from the left hand
side of equation (24), which consists of the integrated lift and drag forces
from the quasi-steady aerodynamic model. The black line is the average
for all trials for each snake and the colored band is ±1 standard deviation.
(A) Lateral direction force and acceleration components are close to zero.
(B) Forward forces, responsible for horizontal motion over the ground, are
smoother than forward accelerations, but the force estimates are too low. (C)
Vertical forces, responsible for offsetting the animal’s weight, are too high
compared to vertical accelerations. The dashed line (vertical force = 1) indi-
cates the equilibrium configuration when the aerodynamic forces balance the
weight (i.e., only gravity is acting on the snake in the vertical axis.).
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Fig. 6. Aerodynamic force errors and adjustments. (A) Absolute force errors
normalized by body weight about the lateral, forward, and vertical directions
given by equation (26) for 43 glide trials from seven snakes. The average
errors are shown in black, with the colored bands indicating ±1 standard
deviation. Lateral errors are near zero. Forward force errors are positive,
with a maximum error of 0.25 BW, indicating insufficient forward force. The
vertical force error is negative, with a minimum of approximately -0.5 BW,
indicating too much vertical force. (B) Adjustments to the quasi-steady lift
and drag forces to reduce the forward and vertical force errors to zero. The
left column is the multiplier needed for the lift force and the right column is
the multiplier needed for the drag force. The drag multiplier is nearly constant
for each glide and is approximately 0.6×, while the lift multiplier generally
decreases throughout each glide. The average lift multiplier is approximately
1.35×.
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Fig. 7. Adjusted quasi-steady lift and drag force distributions for two snakes
from the best performing glides; trail 618 from snake 95 on the left, and trial
505 from snake 88 on the right; labeled as in figure 4. For each snake, lift
force distribution (blue) and drag force distribution (yellow) are shown from
the side and top view (left and right columns). Progress through the glide
(height fraction) is marked by the rows, with 0.9 being closest to the launch
branch. The instantaneous forces have been adjusted using the force mul-
tipliers from figure 6B. The instantaneous center of mass velocity is shown
with the black arrow, and the center of mass location by the axes. Each image
is scaled such that the green scale bar is 10 cm. The smaller snake, snake
95, had more out-of-plane motion of the posterior body and a tighter body
profile than the larger snake 88. For both animals, the drag force is continu-
ous and large over the whole body, with the straight and ‘U’-bend segments
contributing similar amounts. The lift force is lowest at the ‘U’-bends, but the
symmetric airfoil produces force along the interior of the bend. The tail pro-
duces little force due to its small width.
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Fig. 8. Space-time plots of Reynolds number, angle of attack, sweep angle,
and dynamic pressure fraction for the glides shown in figure 7. The locations
of the time points in figure 7 are indicated by the vertical black marks along
the abscissa. (A,B) Reynolds number distribution, where the gray dotted lines
denote the ‘U’-bends, found as zero crossings of the horizontal wave (Yeaton
et al., 2020). The Reynolds number increases as the animal accelerates,
with snake 88 having higher Reynolds numbers because it is wider than
snake 95. The tail has a much lower Reynolds number because of its small
width. (C,D) Angle-of-attack distributions, where the ‘U’-bends are ridges of
high angle of attack. (E,F) Sweep angle distribution, where ridges of high
sweep at the ‘U’-bends are surrounded by sweep angles near 0◦. Both the
angles of attack and sweep angles generally decrease as the glide shallows.
(G,H) Fraction of the dynamic pressure, U2

⊥/U2, due to simple sweep theory.
Regions where over 75% of the dynamic pressure is maintained are dark
and outlined with the white contour; these regions generally occur along the
straight segments between the ‘U’-bends.
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Fig. 9. Distributions of gap, stagger, angle of attack, and sweep angle of the
43 glide trials analyzed. Columns (A)–(C) show the distributions for differ-
ent height fractions through the glide. (A) Distributions of stagger vs. gap,
with the median, first, and third quartiles marked in yellow. The red ‘+’ sym-
bols denote measurement locations for wake interaction effects (Jafari et al.,
2021). Measurement configurations where wake interaction effects are great-
est are enclosed in the red box. Initially, the gap and stagger distributions are
relatively disperse, but coalesce as the glides progress. (B) Angle of attack
of the rear airfoil vs. angle of attack of the front airfoil. The angles of attack
are correlated and initially spread along the diagonal. The angles of attack
decrease as the glides progress, which results in more lift and less drag. (C)
Sweep angle of the front and rear airfoils do not follow a clear trend, indi-
cating the airflow is not usually perpendicular to the body, even along the
straight segments. (D) Comparison of gap and stagger from this study (first
panel) and from (Socha et al., 2010) (second panel). The third panel displays
the same information as the first panel, but with the same color bar range as
the second panel to highlight the spread of the data. The tandem effects
test locations are overlaid on each plot. Each study has measured gaps and
staggers in the wake interaction region.
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Table 1. Summary of gap and stagger changes during different
phases of gliding (figure 9A). The median and interquartile range (IQR)

of gap (G) and stagger (S) are displayed in units of maximum chord
length of the animal, denoted by “c”.

Height fraction Median Gap Stagger
(G,S) IQR (Q1, Q3) IQR (Q1, Q3)

1.00 ≥ z/h0 ≥ 0.75 (3.0 c, 3.7 c) 3.8 c (1.4 c, 5.2 c) 2.4 c (2.6 c, 5.0 c)
0.75 ≥ z/h0 ≥ 0.50 (1.0 c, 3.7 c) 2.7 c (-0.4 c, 2.4 c) 1.8 c (2.7 c, 4.5 c)
0.50 ≥ z/h0 ≥ 0.25 (-0.4 c, 4.2 c) 2.1 c (-1.5 c, 0.6 c) 1.7 c (3.3 c, 5.0 c)
0.25 ≥ z/h0 ≥ 0.00 (0.0 c, 4.2 c) 2.0 c (-1.1 c, 0.9 c) 1.3 c (3.5 c, 4.8 c)


