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Multiple Gravity Assists for Low Energy Transport
in the Planar Circular Restricted 3-Body Problem

Matthew A. Werner

(ABSTRACT)

Much effort in recent times has been devoted to the study of low energy transport in

multibody gravitational systems. Despite continuing advancements in computational abili-

ties, such studies can often be demanding or time consuming in the three-body and four-body

settings. In this work, the Hamiltonian describing the planar circular restricted three-body

problem is rewritten for systems having small mass parameters, resulting in a 2D symplectic

twist map describing the evolution of a particle’s Keplerian motion following successive close

approaches with the secondary. This map, like the true dynamics, admits resonances and

other invariant structures in its phase space to be analyzed. Particularly, the map contains

rotational invariant circles reminiscent of McGehee’s invariant tori blocking transport in the

true phase space, adding a new quantitative description to existing chaotic zone estimates

about the secondary. Used in a patched three-body setting, the map also serves as a tool

for investigating transfer trajectories connecting loose captures about one secondary to the

other without any propulsion systems. Any identified initial conditions resulting in such a

transfer could then serve as initial guesses to be iterated upon in the continuous system. In

this work, the projection of the McGehee torus within the interior realm is identified and

quantified, and a transfer from Earth to Venus is exemplified.
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Matthew A. Werner

(GENERAL AUDIENCE ABSTRACT)

The transport of a particle between celestial bodies, such as planets and moons, is an

important phenomenon in astrodynamics. There are multiple ways to mediate this objective;

commonly, the motion can be influenced directly via propulsion systems or, more exotically,

by utilizing the passive dynamics admitted by the system (such as gravitational assists).

Gravitational assists are traditionally modelled using two-body dynamics. That is, a space-

craft or particle performs a flyby within that body’s sphere of influence where momentum

is exchanged in the process. Doing so provides accurate and reliable results, but the design

space effecting the desired outcome is limited when considering the space of all possibilities.

Utilizing three-body dynamics, however, provides a significant improvement in the fidelity

and variety of trajectories over the two-body approach, and thus a broader space through

which to search. Through a series of approximations from the three-body problem, a discrete

map describing the evolution of nearly Keplerian orbits through successive close encounters

with the body is formed. These encounters occur outside of the body’s sphere of influence

and are thus uniquely formed from three-body dynamics. The map enables computation of a

trajectory’s fate (in terms of transit) over numerical integration and also provides a bound-

ary for which transit is no longer possible. Both of these features are explored to develop an

algorithm able to rapidly supply guesses of initial conditions for a transfer in higher fidelity

models and further develop the existing literature on the chaotic zone surrounding the body.
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Chapter 1

Introduction

In recent decades, much work has been done on the three-body problem, especially related

to low energy transfers. Such trajectories were first discovered in the late 1960s going back

to Conley and McGehee and then in the early 1990s with Belbruno and Miller in their low

energy ballistic capture by the moon. Much of this work investigates how low energy ballistic

capture is mediated by invariant manifold structures, which are related to the Lagrange

points that govern transit to the planetary realm – the realm around the secondary – from

the interior and exterior realms. But there is still work to be done looking at the rich

dynamics in just the exterior and just the interior realms. Developed in 2007, the Keplerian

map is an excellent reduced order model for studying this and allows one to co-opt the rich

literature on symplectic maps such as in Meiss [12] and references therein.

Parts of the 4D phase space, like the McGehee tori that exist in the interior and exterior

regions bounding low energy motion, can be understood in terms of dynamics admitted by

the map in the form of rotational invariant circles. Such an investigation is relevant as it adds

to the literature of chaotic zone characterizations about the secondary and, further, provides

an indication if a transfer between given bodies in a patched 4-body setting is possible. This

transfer is directly effected by repeated gravity assists on each secondary without the use of

any external energy sources such as propulsion systems, which has relevance to dynamical

astronomy (e.g., ejecta from one body transferring to another) and mission design (e.g., a

multi-moon orbiter wanting to save fuel). Ultimately, the Keplerian map is a tool that can

1



2 CHAPTER 1. INTRODUCTION

be used to seek desirable regions of phase space for initial conditions resulting in multibody

transfer within the continuous problem.

The structure of this thesis is as follows. Chapter 2 introduces the planar circular re-

stricted 3-body problem (PCR3BP) in continuous time. Simplifying assumptions are then

made to approximate the dynamics in discrete time as a 2D area-preserving (symplectic)

twist map, referred to as the Keplerian map. Chapter 3 investigates the dynamics of this

map to provide a characterization of the chaotic zone surrounding the secondary body by

means of rotational invariant circles. Chapter 4 then demonstrates the method of seeking

transfers by providing an example trajectory between Earth and Venus. Chapter 5 summa-

rizes the current findings.



Chapter 2

Dynamical models

Within a region of the solar system dominated by only three celestial bodies, the motion

of a particle P is well-described by the restricted 4-body problem. A typical configuration

of the problem is shown by Figure 2.1a, in which two of the bodies (planets or moons) orbit

a common central body (the sun or a planet) in a 2-body fashion. Under simplification, the

orbits are circularized and the central body held fixed as in Figure 2.1b; this is the planar

concentric circular restricted 4-body problem (PCCR4BP). Despite this model not satisfying

Newton’s laws of motion, it still provides insightful dynamics useful for exploring solutions

within the true ephemeris. Particularly, one can leverage the rich features of three-body

dynamics by considering the particle P patched between the m1−m2−P and m1−m3−P

systems, each of which resembles the planar circular restricted 3-body problem (PCR3BP).

m1

m2
m3

P

(a) m2, m3 orbiting m1 as in the solar system

m1

m2
m3

P

(b) m2, m3 orbiting m1 in concentric circles

Figure 2.1: Approximating dynamically accurate trajectories as circular orbits (PCCR4BP).

3



4 CHAPTER 2. DYNAMICAL MODELS

2.1 Continuous dynamics

The planar circular restricted 3-body problem (PCR3BP) is formulated in a nondimen-

sional coordinate system rotating with unit angular velocity (relative to the inertial frame)

such that the two bodies of masses m1 and m2, with m2 ⩽ m1, appear stationary. Their

masses and distances from their barycenter (the origin) are given in terms of the mass pa-

rameter µ defined

µ :=
m2

m1 +m2

. (2.1)

The mass parameter always satisfies µ ⩽ 0.5, though physically relevant mass parameters

found throughout the solar system are often much smaller (with the exception of special cases

like the Pluto-Charon pair). Newton’s gravitational constant G = 1 is also dimensionless in

this system of units. Figure 2.2 shows the PCR3BP in the rotating frame with the particle

P located at the (spatial) coordinates (x, y) a distance r from the origin. The distances r1

and r2 from the primary and secondary, respectively, to P follow similarly.

r21 = (x+ µ)2 + y2

r22 = (x+ µ− 1)2 + y2
(2.2)

r

P

µ 1− µ−1 +1
x

y

Secondary
(m2 or µ)

Primary
(m1 or 1− µ)

Figure 2.2: The PCR3BP in the rotating frame (which is subtended an angle t from the inertial
axis). The primary body has (nondimensional) mass 1− µ; likewise, the secondary body has mass
µ. The distance between the bodies is always 1.



2.1. CONTINUOUS DYNAMICS 5

2.1.1 The Hamiltonian

In the rotating frame, the PCR3BP admits a set of autonomous differential equations pro-

viding the dynamics of the particle P . This motion is often described in velocity coordinates

(x, y, ẋ, ẏ) ∈ R4 or momentum coordinates (x, y, px, py) ∈ R4. In the latter case, Hamilton’s

canonical equations provide a source for the particle’s motion with the Hamiltonian function

H : R4 → R written

H =
1

2

(
(px + y)2 + (py − x)2

)
︸ ︷︷ ︸

kinetic energy in the rotating frame

+

(
−1

2
(x2 + y2)− 1− µ

r1
− µ

r2
− 1

2
µ(1− µ)

)
︸ ︷︷ ︸

effective potential energy

. (2.3)

The velocities (ẋ, ẏ) and momenta (px, py) are related via their Legendre transform [5].

px = ẋ− y

py = ẏ + x

(2.4)

By Hamilton’s equations, the momenta have the dynamics ṗx = −Hx and ṗy = −Hy, or

ṗx = +py −
(1− µ)(x+ µ)

((x+ µ)2 + y2)3/2
− µ(x+ µ− 1)

((x+ µ− 1)2 + y2)3/2

ṗy = −px −
(1− µ)y

((x+ µ)2 + y2)3/2
− µy

((x+ µ− 1)2 + y2)3/2
.

(2.5)

These four relations completely describe the particle’s motion in the PCR3BP via momentum

coordinates. The corresponding dynamics in terms of velocity coordinates can be obtained

by differentiation of (2.4) and combining it with (2.5).

Although similar in expression, several notable qualities leave these two sets of coordinates

significantly different from one another. In particular for this work, velocity coordinates

are convenient for numerical integration/coordinate transformations, whereas momentum

coordinates are useful for theoretical developments. Namely that (p2x + p2y)/2 is the inertial

kinetic energy and the dynamics in the (x, y, px, py) phase space are symplectic, or area-

preserving [2, 5].
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2.1.2 Jacobi’s constant & Lagrange points

The Hamiltonian (2.3) is explicitly independent of time and thus a constant of motion

[5, 13, 17]. From this, the Jacobi constant is taken to be

CJ := −2H (2.6)

and thus relates to the energy. In particular, considering where the (rotating frame’s) kinetic

energy vanishes gives rise to the zero-velocity curves, which implicitly show the possible

regions of motion for a given Jacobi constant. A well-known result is that these zero-velocity

curves are split into five cases — notably, the curves completely disappear for CJ ⩽ 3.

These zero-velocity curves bifurcate at the five Lagrange points, which are the PCR3BP’s

equilibria [5]. This set comprises the three collinear points (L1, L2, and L3) and two trian-

gular points (L4 and L5). The ones of particular interest here are nearest to the secondary,

L1 and L2, corresponding to the locations of the zero-velocity curve bifurcations occurring

at CJ = C1 and CJ = C2 in Figure 2.3. These points are given special attention since they

govern minimal-energy transit trajectories between realms. Their locations follow from the

(unique) real solutions to a set of quintic polynomials [5, 17].

Case 1:Case 2:Case 3:Case 4:Case 5:

P

P
P

P
P

Case 5:CJ < 3

P

5
3 ⩽ CJ < C3

P

4
C3 ⩽ CJ < C2

P

3
C2 ⩽ CJ < C1

P

2
C1 ⩽ CJ

P

1

Figure 2.3: The forbidden realm (grey) and the zero-velocity curves (its boundary) for the particle
P with a given Jacobi constant CJ . Case 3 is the first instance where the particle P has full access
to the entire space. The forbidden realm completely disappears in case 5.
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2.2 Small-body approximation

2.2.1 Decomposing the Hamiltonian

Under the assumption µ � 1, where the PCR3BP is considered a perturbation of the

2-body problem (2BP), Ross and Scheeres [15] write the Hamiltonian (2.3) expressed as

H =

(
p2x + p2y

2
− 1

r

)
︸ ︷︷ ︸

K

−
√

a(1− e2)︸ ︷︷ ︸
G

+µ

(
cos θ
r2

− 1√
r2 − 2r cos θ + 1

+
1

r

)
︸ ︷︷ ︸

R

+O(µ2), (2.7)

where (px, py) are the canonical momenta and (r, θ), shown in Figure 2.4, follow from the

2BP. Particularly when µ � 1, the distances r and r1 are equal up to O(µ) and θ is the

argument of latitude in the rotating frame.

r =
a(1− e2)

1 + e cos ν , θ = ω̄ + ν (2.8)

Here, the semimajor axis a, eccentricity e, and true anomaly ν of the particle’s orbit about

the primary are in the usual sense of the 2BP; however, ω̄ is the argument of periapse in

the rotating frame. Its relation to the usual argument of periapse ω is given by inspection of

Figure 2.4. Further, G and K are the particle’s 2BP angular momentum and vis viva integral

in a system with a central mass 1. This integral, called the Keplerian energy, consequently

relates to the semimajor axis as [1, 13]

K := − 1

2a
. (2.9)

Delaunay variables

The Hamiltonian (2.7) is in a desirable form since a transformation into Delaunay vari-

ables (L,G, l, ḡ) ∈ R4, a set of action-angle variables, is proper. The angles l and ḡ are

conjugate to the actions L and G, respectively; in particular, they abide by Hamilton’s

canonical equations.
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X

Y

x

y

apsidal line

apoapse

periapse

a

ae

r

P

ν

ω̄θ

m1

m2t

ω

Figure 2.4: An example trajectory in the PCR3BP with µ � 1. Far away from the secondary m2,
the particle P (nearly) experiences a Keplerian trajectory with orbital elements (a, e, ν, ω) which
relate to the Delaunay variables (L,G, l, g). The orbit is subject to change when P approaches m2

and then stays constant again until the next close approach. This trajectory is shown exterior to
m2; however, a trajectory could also be shown interior to m2. In this case, the close approach
would occur at apoapse. The positioning of the bodies is drawn to scale with µ = 10−7.

In terms of orbital elements, the angles l and ḡ are the mean anomaly and the rotating

frame’s argument of periapse, respectively (i.e., l ≡ M and ḡ ≡ ω̄) [17]. The actions are

L :=
√
a

G := L
√
1− e2,

(2.10)

where appears the angular momentum G. Consequently, the Hamiltonian (2.7) becomes

H = − 1

2L2
−G+ µR +O(µ2). (2.11)

The disturbing function in these variables takes the form R = R(L,G, l, ḡ).

The transformation into Delaunay variables from velocity coordinates (x, y, ẋ, ẏ) is also
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useful. From an integration of the differential equations, (2.10) permits a direct (i.e., time-

independent) realization of the osculating elements (a, e) determining the orbit’s geometry;

its orientation in the plane is given by g = ḡ + t, which is the argument of periapse in the

inertial frame. The full transformation (x, y, ẋ, ẏ) 7→ (L,G, l, ḡ) is provided in Appendix A.

2.2.2 Tisserand’s parameter & manifolds of the Lagrange points

Inserting the Hamiltonian (2.11) into (2.6), the Jacobi constant expressed in terms of

orbital elements is

CJ =
1

a
+ 2
√
a(1− e2) +O(µ). (2.12)

The terms up to leading order are called the Tisserand parameter which approximates the

motion’s true Jacobi constant in the PCR3BP [13]. Thus, the Tisserand parameter is nearly
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Figure 2.5: Contours of the Tisserand parameter. The contour CJ = 3 is the one that includes the
point (a, e) = (1, 0), which corresponds to the secondary. Contours with CJ > 3 are restricted to
either the interior or exterior of m2 whereas CJ ⩽ 3 contours have full access everywhere. Ignoring
transit trajectories between realms, this behavior agrees with Figure 2.3.
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apoap
se

periapse

Figure 2.6: Diagram of the unstable manifolds W u(L1) and W u(L2) until their first apoapse
and periapse, respectively. These events occur when the trajectory grazes the forbidden realm,
corresponding to the Poincaré section {(x, y, ẋ, ẏ) ∈ R4 | ṙ = 0}, where ṙ is given by (A.1).

constant for motion in systems with µ � 1. In this case, the O(µ) terms are dropped and

the Tisserand parameter is identified with the Jacobi constant CJ to ease notation. This

relation is especially useful for writing the eccentricity as e = e(a;CJ) so that an orbit’s

geometry is specified by its semimajor axis and Tisserand parameter. Figure 2.5 shows the

possible trajectories for a given Tisserand parameter.

With µ � 1, the manifolds emanating from the Lagrange points can be characterized

too in terms of semimajor axis a, eccentricity e, and argument of periapse (in the rotating

frame) ω̄. These special 2BP trajectories serve as proxies for the capture/escape trajectories

enclosed by the manifolds winding onto and off of the Lyapunov orbits [9]. To ensure

sufficient distance from the secondary so that a 2BP trajectory is effectively established, the

orbital elements are taken at apoapse when interior to m2, and at periapse when exterior to

m2, as shown in Figure 2.6.

Accurate curve fits of these manifolds at their first apoapse/periapse can be found in the
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following manner. Let Li with i = 1, 2 be the equilibrium point being considered at the

coordinates xeq = (x, y, ẋ, ẏ)eq = (Li, 0, 0, 0) and

µ̄ :=
µ

|Li + µ− 1|3
+

1− µ

|Li + µ|3
. (2.13)

Then the linearization about this point Li provides dynamics with the unstable manifold’s

eigenvalue and corresponding eigenvector (where λ is used unambiguously) [5].

λWu(Li) =

√
µ̄− 2 +

√
9µ̄2 − 8µ̄

2
, vWu(Li) =



1

λ(λ2 − 2µ̄+ 3)/(2− 2µ̄)

λ

(λ2 − 2µ̄− 1)/2


(2.14)

Now let ϕ : R×R4 → R4 be the family of flow maps generating the trajectory x(t) from the

initial condition x0 such that x(t) = ϕ(t,x0). The trajectory ϕ(t,xeq + ϵv̂), where |ϵ| � 1

is a small perturbation, shadows the unstable manifold for t > 0. In particular, choosing

t large enough eventually results in the trajectory grazing the forbidden realm, revealing

characteristics about the manifold’s semimajor axis a and eccentricity e when µ � 1 as

shown in Figure 2.6.

Using the above procedure, the unstable (and stable) manifolds of L1 and L2 are found

to be well approximated by fitting quadratic curves in the spaces (lnµ, ln e) and (e, a) for

some constants α, β, γ, δ, ε ∈ R.

e(µ) = αµβ lnµ+γ, a(µ) = δe2 + εe+ 1 (2.15)

Table 2.1: Fits for the orbital elements (a, e) of the unstable manifolds W u(L1) and W u(L2) at their
first apoapse/periapse. By time-reversal symmetry, these fits also describe the stable manifolds.

Manifold α β γ δ ε

W u(L1) 1.6342 −1.0433× 10−3 0.3002 1.3275 −1.6004

W u(L2) 2.9066 1.2594× 10−3 0.3727 1.8096 1.5666



12 CHAPTER 2. DYNAMICAL MODELS

2.3 Discrete dynamics

2.3.1 The Keplerian map

Using the Hamiltonians (2.7) and (2.11) up to O(µ), Ross and Scheeres [15] provide a

discrete-time approximation, coined the Keplerian map F : C → C, where C = S1 × R is

the cylinder, of the particle’s motion at its apses (either periapse or apoapse) with orbital

elements (ω, a, e). [
ωn+1

Kn+1

]
:=

[
ωn − 2π(−2Kn+1)

−3/2

Kn + µf(ωn)

]
︸ ︷︷ ︸

F(ωn,Kn)

(2.16)

Historically, ω here refers to the argument of periapse in the rotating frame (i.e., ω̄, but

the bar notation is dropped) and is not to be confused with the typical 2BP argument of

periapse ω. The map has twist to the left (erroneously claimed to the right by previous

references [3, 15]) and is posed in terms of the energy K (instead of the semimajor axis

a) to ensure that the dynamics can be symplectic like the original differential equations in

momentum coordinates. The eccentricity e is induced by the Tisserand parameter CJ so that

every trajectory is bound to move along a single contour of Figure 2.5 via the kick function

f : S1 → R written

f(ω) := − 1√
a(1− e2)

∫
S1

(
r3

(r2 − 2r cos(ω − t(ν) + ν) + 1)3/2
− 1

)
sin(ω − t(ν) + ν) dν

− 1√
Q2 + 2Q cos(ω + τ) + 1

+
1√

Q2 + 2Q cos(ω − τ) + 1
+

2 sin τ sinω

Q2
. (2.17)

Here, Q = a(1 + e) and τ = πa3/2 are the apoapse distance and half-period, respectively, of

the (reference) 2BP trajectory r = r(ν) with semimajor axis a and eccentricity e as given by

(2.8). The kick function is integrated over S1 representing one period of motion; numerically,

its features are better resolved using the interval (−π, π) if a > 1 (the exterior/periapse kick

function) and (0, 2π) if a < 1 (the interior/apoapse kick function). With these two cases in



2.3. DISCRETE DYNAMICS 13

mind, the time t = t(ν) over which the orbit acts is compactly written

t(ν) = a3/2M(ν)− τu(1− a), (2.18)

where M is the mean anomaly satisfying Kepler’s equation and u(·) the unit step function.

Further, the Keplerian map F admits an inverse so that backwards iteration is well-defined.[
ωn−1

Kn−1

]
:=

[
ωn + 2π(−2Kn)

−3/2

Kn − µf(ωn−1)

]
︸ ︷︷ ︸

F−1(ωn,Kn)

(2.19)

In both interior and exterior cases, the Keplerian map is denoted F since it is implied clearly

which one is used for motion inside and outside of the secondary. This mapping F corresponds

to a 2BP trajectory with orbital elements (ωn, an, en) becoming (ωn+1, an+1, en+1) after a close

approach with the secondary in forward time (similarly, F−1 in backwards time).

With an initial 2BP trajectory corresponding to the elements (ω0, K0), the Keplerian map

generates a trajectory T in the (ω,K) phase space as

TN
(ω0,K0)

:= {Fn(ω0, K0) ∈ C | n = 0, . . . , N with N ∈ Z} . (2.20)

Here, Fn indicates function composition (i.e., for some k ⩾ 1, Fk = F ◦ Fk−1 and similarly

F−k = F−1 ◦ F−k+1) with F0 the identity. Hence, TN
(ω0,K0)

is never empty. Note that the

inverse map enables a trajectory to be “centered” on the coordinates (ω0, K0); it can be

established as TM,N
(ω0,K0)

:= TM
(ω0,K0)

∪ TN
(ω0,K0)

for some M ⩽ 0 ⩽ N . The bi-infinite trajectory

centered on the coordinates (ω0, K0), if it exists, is called an orbit O [19] and is denoted

O(ω0,K0) := lim
N→∞

T −N,N
(ω0,K0)

. (2.21)

Let T := {TN
(ω0,K0)

| (ω0, K0) ∈ C, N ∈ Z} be the set of all trajectories and, similarly, O the

set of all orbits. The elapsed time (or time of flight) ∆t : T → R over a trajectory is

∆t = 2π
∑
n

a3/2n . (2.22)
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Figure 2.7: Comparison of the (ω, a) phase space between the Keplerian map (left) and the true
differential equations (right), which depict the evolution of 2BP-like trajectories through successive
secondary encounters. This figure is adapted with permission from Ross and Scheeres [15].

Local approximation about a reference trajectory

A necessary and sufficient condition for the Keplerian map to be symplectic is that the

kick function f be independent of the energy K [15]. This requirement is fulfilled by choosing

a particular energy K = K̄, where K̄ is constant, furnishing a reference trajectory described

by all parameters of f (i.e., a, e, Q, and τ all must be constant). Thus, the reference orbit’s

orientation ω is its only degree of freedom.

Nearby orbits with energies similar to K̄ experience similar dynamics through the Kep-

lerian map — that is, the reference trajectory “tangentially approximates” the orbits sur-

rounding it. Let {K1 < K < K2 < 0 | CJ = const.} be the set of trajectories with a

fixed Tisserand parameter (i.e. orbits following a single contour of Figure 2.5) between the

energies K1 and K2. Then one way to pick the reference energy may be

K̄ := κK1 + (1− κ)K2, (2.23)

where κ ∈ [0, 1] is to be chosen — a popular choice being κ = 0.5. Equivalently, one can
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also write the reference energy in terms of the semimajor axes a1 and a2, respectively,

ā := λa1 + (1− λ)a2 (2.24)

The mixing parameters κ and λ differ by the relation

1

λ
− γ

κ
= 1− γ, (2.25)

where γ = K2/K1 = a1/a2. Despite this simplification seemingly leading to inaccuracies,

numerical evidence shows that a reference trajectory is desirable as it results in a phase space

structure resembling the true dynamics while also enabling high computational efficiency [15].

A topologically equivalent kick function

An analytic approximation of the kick function f is readily available and useful. The

integrand of (2.17) can be evaluated at ν = πu(1− a), which produces the curve

f̃(ω) := − σ√
a(1− e2)

(
Q3

(Q2 − 2σQ cosω + 1)3/2
− 1

)
sinω

− 1√
Q2 + 2Q cos(ω + τ) + 1

+
1√

Q2 + 2Q cos(ω − τ) + 1
+

2 sin τ sinω

Q2
(2.26)

where Q = a(1 + σe) and σ = sgn(1 − a). Having similar magnitude and other desirable

properties of the kick function, this expression may be inserted into the Keplerian map while

qualitatively preserving the phase space as seen in Figure 2.8.

Notably, f̃ (2.26) requires less setup and computational resources, and is thus significantly

faster in its evaluation, than f (2.17). Moreover, the preservation of phase space relaxes con-

cerns of trajectories being artificially created due to numerical error since such perturbations

to f are much smaller than replacing f altogether with f̃ . These facts are advantageous

when merely exploring the phase space to seek the existence of particular orbits, which often



16 CHAPTER 2. DYNAMICAL MODELS

can require a large amount of iterations. Once existence is established, however, the kick

function f should be used during the actual evaluation.

Historically, the second line of the kick function f (and therefore f̃) is ignored due to its

small effects in the exterior region. In the interior region, however, new bumps are introduced

(see Figure 2.8 near ω/π = 0.35 and ω/π = 1.65), but their effects are still minimized by

the dominating double spike. Going forward, only the first line in f is used. Still, numerical

evidence indicates that results obtained this way are preserved under the full kick function.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-200

-100

0

100

200

-25

0

0.25 0.3 0.35 0.4 0.45
0.9 0.95 1 1.05 1.1

(a) (ω,K) phase space using f (b) (ω,K) phase space using f̃

Figure 2.8: Comparison of the Keplerian map’s phase space using the kick functions f (2.17)
and f̃ (2.26) iterated N = 2500 times with 100 initial conditions. Here, µ = 10−6, CJ = 3, and
ā = −1/2K̄ = 0.75 (interior motion).



Chapter 3

A boundary of chaotic transport

The Keplerian map effects change in the particle’s 2BP trajectory via the kick function

which models energy gained/lost during a close approach to the secondary. Like all models,

however, the map has its limitations. In particular, trajectories must be bounded and within

the chaotic zone. Previous characterizations of chaotic zones have been studied by Wisdom,

Malhotra, and others in which the particle starts on circular or nearly parabolic orbits

[6, 7, 10, 14, 20]. These scenarios do not fit well with the Keplerian map’s capabilities, so a

new measure of the chaotic zone is needed. The characterization of such a boundary is given

by a rotational invariant circle (RIC), specifically the RIC closest to the secondary.

RICs are quasiperiodic orbits that serve as barriers to transport in phase space. That is,

RIC

Figure 3.1: A rotational invariant circle on the cylinder C = S1 × R. In terms of the Keplerian
map, each RIC forms a continuous function K = K(ω), or equivalently a = a(ω), dividing the
phase space into two distinct regions. Adapted with permission from Ross and Scheeres [15].

17
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the orbit O ∈ O forms an RIC, a continuous curve encircling the cylinder, if O = F(O) so

that a = a(ω) [12, 15]. Paired with continuity over initial conditions, RICs naturally define

a boundary indicating the extent to which a particle can be transported. Thus, determining

the Keplerian map’s bounding RICs is a fundamental research objective.

3.1 Classifying trajectories

Symplectic twist maps admit three classes of trajectories: periodic, quasiperiodic,

and chaotic [12]. A periodic orbit with period n, called an n-cycle, is one that repeats

itself every n iterates. Each iterate in the orbit, therefore, is a fixed point of the map Fn

[16]. The Keplerian map contains both hyperbolic and elliptic fixed points [15]. Ultimately,

the hyperbolic points are what govern transit while each elliptic (neutrally stable) point is

surrounded by a resonance zone. These two kinds of fixed points alternate along a given

s : r band of resonances, where the particle completes s ∈ N orbits for every r ∈ N complete

orbits of the secondary [15]. The band is located at a = (r/s)2/3 and its order is |s− r|.

A quasiperiodic orbit is one that is nearly periodic; it can perform an excursion and

almost come back to where it started. More precisely, it returns arbitrarily close to its

initial condition. Quasiperiodicity on the cylinder comes in two flavors: librational and

rotational motion [12]. Both kind of orbits form closed curves homeomorphic to a circle,

but librational circles enclose themselves on the cylinder whereas rotational circles enclose

themselves around the cylinder (see Figure 3.2).

Chaotic trajectories are (loosely) characterized by having sensitive dependence on initial

conditions [12, 16]. Typically a chaotic trajectory will traverse the phase space (by means

of lobe dynamics) over many iterations while departing from the structures by which they

may have started.
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Figure 3.2: Several periodic (magenta) and quasiperiodic (red, blue) trajectories shown over a
small portion of phase space. (This behavior indeed extends across the cylinder.) The periodic
trajectories comprise elliptic fixed points and, in order of appearance from top to bottom, are 20, 57,
and 37-cycles. Respectively, these periodic orbits are of order 6, 20, and 13. They are surrounded
by a family of librational circles (outlined in blue). The corresponding hyperbolic points are not
shown. Bounding each family of librational circles is a family of rotational circles (outlined in red),
or RICs. Note that each region bounded by RICs is isolated from the others.

3.2 How to detect RICs

Various methods have been developed and popularized within celestial mechanics recently

to identify and classify parts of the phase space. Such methods, including the finite time

Lyapunov exponent (FTLE) and fast Lyapunov indicator (FLI), have proven successful for

characterizing/quantifying just how chaotic certain regions are [4, 8, 18]. However, these

tools proved not to be appropriate here in identifying RICs. As previously stated, RICs

of symplectic twist maps on the cylinder are known to be continuous functions due to a

theorem of Birkhoff [12]. This property enabled further ideas such as fractal dimension and

continuity tests. Similarly to the FTLE and FLI fields, calculating the fractal dimension was

also not an appropriate tool to use; checking for continuity, however, was.

From a numerical perspective, the simple vertical line test is difficult to implement. Each

point in the trajectory would require a bin to check for vertical neighbors. Choosing a bin
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Figure 3.3: An identified RIC in the (ω, a) phase space.

width too small could make a non-function (e.g. librational circle) pass the vertical line

test, whereas one too large could make a legitimate function (e.g. an RIC) fail. Therefore,

each trajectory is treated like a function and checked on its smoothness. This means that

trajectories will be sorted (according to the ω coordinate) and checked if a′(ω) is smooth.

Periodic orbits may be easily identified, but are not nearly as common as quasiperiodic

and chaotic trajectories since they have no measure in the phase space. Hence, a periodic or-

bit will not result from a set of trajectories generated by iteration of randomly selected initial

conditions, almost surely. Sifting through chaotic and quasiperiodic trajectories, however,

poses more of a challenge in identifying RICs.

Most chaotic trajectories are easily eliminated from RIC contention, though some do have

close resemblance when passing nearby a family of RICs (see Figure 3.4). Quasiperiodic

orbits tend to be more difficult as they include both RICs and cantori (which are made of

librational circles); the two become distinguishable from each other given a sufficient number

of iterations. In this regard, the complication of these “phantom RICs” tends not to be

problematic due to sufficient development of librations and chaotic regions (see Figure 3.5).
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Figure 3.4: Left: A cantorus. Each librational circle lies on a smooth curve which, when viewed
all together, appear to fill out a graph, but they do not. Right: Similar, but chaotic. The regions
have a thickness and becomes especially fuzzy near each separatrix. In cases where orbits are sparse
or librations are stretched exceptionally thin, the cantorus is generally more difficult to rule out as
an RIC.

Figure 3.5: Left: Librational circle under iterates of the map. Right: The same librational circle,
but now treated as the function a = a(ω).
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3.2.1 A method to identify RICs

The RIC test is implemented as follows. To be identified as an RIC, a given trajectory

TN
(ω0,K0)

(with N large and |K0−K̄| < δ, where δ is small to establish accuracy of trajectories

near the reference orbit) treated as a function must:

• not exceed a specified extent of excursion Emax

• not exceed a specified arc length ℓmax

• be continuous and smooth

Note that the first two conditions are added only to provide aide to the third. In practice,

both Emax and ℓmax (which scale with the mass parameter µ for a fixed Jacobi constant

CJ) are chosen very large as to not hinder RIC seeking while quickly eliminating obviously

non-RIC trajectories. Checking for smoothness is slightly complicated since N is finite. For

example, if N is too small, then regions of a quasiperiodic trajectory could be disjointed

resulting in leaps/gaps, illustrated in Figure 3.6, which can be difficult to detect.

To begin, the extent of the excursion

E := max{an}Nn=0 − min{an}Nn=0 (3.1)

is calculated first since this operation is the quickest; the trajectory is immediately discarded

if E > Emax. Otherwise, the arc length is then calculated using sorted coordinates.

ℓ :=
N−1∑
n=0

√
(ωn+1 − ωn)2 + (an+1 − an)2 (3.2)

Similarly, the trajectory is immediately discarded if ℓ > ℓmax. Note that the width of the

phase space is 2π and RICs will generally be curved (i.e. not straight lines for µ > 0), so ℓmax

should accordingly be chosen like 2πk for some k > 1. Chaotic trajectories are susceptible
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to both extent and arc length, even when Emax and ℓmax are chosen large, so these two tests

alone are both fast and reliable for eliminating trajectories in highly chaotic regions.

Supposing the trajectory has passed these tests, it’s now treated like a function with

a derivative. As such, single point failures are no longer allowed to accommodate for the

possibility of gaps in the dataset as described in Figures 3.4 and 3.6. To expand upon the

condition of being continuous and smooth, the trajectory must:

• not exceed a specified number of sign changes in its gradient N±∇

• not exceed a specified gradient ∇max a specified number of times N∇max

• not exceed a specified “walking angle” Θmax a specified number of times NΘmax

Similar to before, all five parameters should be chosen quite large to allow RICs to pass

easily while denying librational circles and phantoms. The first two tests are easily carried

out after computing the gradient a′(ω) by simply counting the number of changes in its

sign (n±∇) and amount of times the gradient exceeds its threshold (n∇max). Explicitly, these

1

2

3

4

5

Gap Gap

Figure 3.6: A quasiperiodic trajectory represented as the outer points of a star (shown to guide
the eye) that returns close to its initial condition after five iterates. The initial condition is marked
as blue and its return after performing an excursion is shown in red. Multiple excursions lead to
regions that become filled with iterates separated by gaps. These gaps continue to narrow; for a
large amount of excursions, the regions become indiscernible from one another as they densely pack
together. This star evolution can be viewed as a trajectory on the cylinder (librational circle) and
iterates of the angle around the cylinder (RIC). Note that when viewed on the cylinder, iterates
tend to overlap themselves before the regions encounter each other for the first time (i.e. the initially
large gap “closes”).
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quantities are

n±∇ := #{a : a′(ω) = 0}

n∇max := #{a : |a′(ω)| > ∇max}
(3.3)

Due to the extreme oscillatory nature that RICs could have in this map, N±∇ is typically

taken as N±∇ = pN , where now p ∈ (0, 1) (the percentage of total iterates) is the parameter

to choose. These two tests are also quick, so the trajectory is discarded before moving

onwards if either n±∇ > N±∇ or n∇max > N∇max .

Trajectories making it this far undergo the third and final test above before being de-

clared an RIC. This test checks for continuity using an angle approach, which assists in

vetting trajectories that may have evaded the gradient test by using an additional piece of

information from that of forward finite difference.

Let v1 and v2 be vectors as depicted in Figure 3.7.

v1 =

[
xn+1 − xn

yn+1 − yn

]
=

[
∆x1

∆y1

]
and v2 =

[
xn+2 − xn

yn+2 − yn

]
=

[
∆x2

∆y2

]
(3.4)

Then the angle 2θn ∈ (0, π) between these two vectors follows from a cross product.

sin θn = |v̂1 × v̂2| =
|∆x2∆y1 −∆x1∆y2|√

(∆x2
1 +∆y21)(∆x2

2 +∆y22)
(3.5)

x

y

v1

v2

θn

xn xn+1 xn+2 xn+3

Figure 3.7: Defining the angle θn made between the vectors pointing to the next two neighboring
points, xn+1 and xn+2, from the current point xn for arbitrary data in the (x, y) plane. The question
to address is whether this data set lies on some differentiable curve (shown dashed) or not.
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Remark 3.1. If this data set is representative of a differentiable function such that y = f(x)

for any such function f ∈ C1, then θn → 0 as ∆x1,∆x2 → 0.

Proof. Let ∆x1 = ϵ > 0 and ∆x2 = 2∆x1 = 2ϵ. Suppose y = f(x), where f ∈ C1(R) is a

differentiable function. Then

sin θn =
|2ϵ∆y1 − ϵ∆y2|√

(ϵ2 +∆y21)(4ϵ
2 +∆y22)

=
1

ϵ

|2∆y1 −∆y2|√
(1 + (∆y1/ϵ)2)(4 + (∆y2/ϵ)2)

.

Now, ∆y1 = f(xn + ϵ)− f(xn) and ∆y2 = f(xn + 2ϵ)− f(xn) so that

2∆y1 −∆y2 = 2
(
f(xn + ϵ)− f(xn)

)
−
(
f(xn + 2ϵ)− f(xn)

)
= f(xn + ϵ)− f(xn)−

(
f(xn + 2ϵ)− f(xn + ϵ)

)
.

Hence,

sin θn =

∣∣∣f(xn+ϵ)−f(xn)
ϵ

− f(xn+2ϵ)−f(xn+ϵ)
ϵ

∣∣∣
2

√(
1 +

(
f(xn+ϵ)−f(xn)

ϵ

)2 )(
1 +

(
f(xn+2ϵ)−f(xn)

2ϵ

)2 ) .
Particularly, letting the neighboring points become arbitrarily close to one another provides

lim
ϵ→0

sin θn =
1

2

|f ′(xn)− f ′(xn)|
1 + f ′(xn)2

≡ 0

which implies θn → 0 as ϵ → 0.

Because of quasiperiodicity, iterates on an RIC both fill out a differentiable curve and get

arbitrarily close to one another. Hence, the θ signature of an RIC should remain small when

highly iterated (N � 1) with peaks most probably occurring near regions of high curvature.

Likewise, iterates of librations/cantori and chaotic trajectories should be highly jagged with

frequent, large spikes. Thus, the amount of spikes exceeding the threshold (nΘmax) is counted;

explicitly with θn defined as in (3.5),

nΘmax := #{θ : θ > Θmax}. (3.6)

As with the other two tests here, the trajectory is rejected if nΘmax > NΘmax .
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3.3 Results

The algorithm described above was implemented over 83 mass parameters µ ∈ [10−8, 10−3]

with CJ = 3 using the interior Keplerian map. Through trial and error, the threshold values

were selected according to Table 3.1. A first RIC was identified in each system and its

average semimajor axis was calculated through quadrature; the chaotic zone could then be

estimated as the distance between the secondary and apoapse.

aRIC :=
1

2π

∫
S1

a(ω) dω, rRIC := 1− aRIC(1 + eRIC) (3.7)

Here, eRIC follows from the Tisserand parameter (2.12).

When plotted on a log-log scale as in Figure 3.8, the overall trend of the RIC radius

follows a power law distribution. Applying this fit in the sense of least squares obtains

rRIC ≈ 0.6997µ0.2417. (3.8)

This appearance of the first RIC gives a new definition of the planetary zone radius, where

we note this measure naturally takes into account that three-body dynamics are along energy

10-8 10-7 10-6 10-5 10-4 10-3

10-2

10-1

First order resonances

First + higher order resonances

3:1

5:2

2:1
13:77:4

5:3
3:2

7:54:3
5:4

6:5

7:6
8:7

9:810:9
11:1012:11

Figure 3.8: Growth of the distance from the primary during close approach for which energy kicks
cease to provide meaningful transit.
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Table 3.1: Chosen parameters for detecting RICs.

N δ Emax ℓmax ∇max Θmax N±∇ N∇max NΘmax

104 0.0025 0.025 to 0.050 4π 5 15◦ 4000 50 50

surfaces — in this case, the Tisserand curve in (a, e) space where µ � 1. This RIC boundary

is the largest McGehee torus, which blocks transport between the primary and secondary

for low enough energies [11]. From Figure 3.8, the first emerging RICs appear in families

surrounding first-order mean motion resonances in the (ω, a) phase space for µ ≲ 3× 10−6.

For increasing µ from here, such families are detected at second and higher order resonances

in between the first-order resonances.

These first emerging RICs exhibit step-like behavior because the perturbation strength

µ must fully destroy the RIC families lying outside of the resonance zone before chaotic

trajectories can traverse through it. Generally, each step is slightly tilted downwards for

increasing µ since the family is pushed upwards when being destroyed. This behavior is seen

To secondary

Identified RIC near 

Figure 3.9: Left: The first RIC in the interior Keplerian map with µ = 3.5 × 10−5 and CJ = 3
(corresponding to the 7 : 4 resonance of Figure 3.8), which forms a continuous curve around the
cylinder. Middle: The trajectory in the rotating frame. Note that because the RIC is a continuous
curve, this is actually a densely filled annulus (which is the projection of the McGehee torus into
configuration space). The chaotic zone rRIC is the distance between this invariant surface’s (average)
outer boundary and the secondary. Right: The trajectory in the inertial frame; the elapsed time at
the current iteration, required to transform into the inertial frame, is given by (2.22). The particle
falls into a wobbling, frozen-like orbit due to the RIC’s quasiperiodicity.
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in the bifurcation sequence in Figure 3.10. Some steps shown, such as the 4:3, 3:2, 5:3, and

(most distinctively) 2:1 resonances, have a slight increase in their RIC radius before moving

onto the next step. These correspond to the “strong” RICs below the resonance still existing

after the “weak” RICs above the resonance have already been destroyed. The RICs above

and below the resonance therefore do not bifurcate symmetrically, but the strong ones are

close to follow.

RIC family

First RIC

resonance

Resonances in
the family

To secondary

0.63

0.635

0.64

0.645

0.65

0 0.5 1 1.5 2
0.63

0.635

0.64

0.645

0.65

0 0.5 1 1.5 2

Resonance growth

maximum value

maximum value

Asymmetry

Amplified
resonances
break up the
family

No more
resonances

Figure 3.10: Evolution of RIC families above the 2 : 1 resonance as µ increases from 1.23 × 10−4

(top left) to 2.15 × 10−4 (bottom right). In this progression, the families become thinner and are
pushed upwards, away from the hyperbolic fixed point located around (ω, a) = (π, (1/2)2/3). This
behavior is generic for other s : r resonances.
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3.3.1 Comparison to other chaotic zones

A short comparison to other more well known and established chaotic zones is in order.

The smallest measure for a radius of significant influence around the secondary is the sphere

of influence (SOI) followed by the Hill sphere [1, 13, 17]. Both are obtained by equating

gravitational/centrifugal forces to find the separating region where one body has more in-

fluence on the particle than the other. A more closely related chaotic zone from Wisdom

[20] measures the radius of first-order mean motion resonance overlap. Wisdom’s estimate is

done for initially circular orbits (i.e., confined to e = 0 initially in (a, e) space), which differs

from the RIC estimate in that the extent of the chaotic zone is described along the energy

surface provided by the Tisserand parameter (2.12) in (a, e) space instead of along the a-axis.

The resonance (RIC and Wisdom) estimates are in fair agreement from Figure 3.11; both

lie far above the SOI and Hill zones obtained from force balancing. It is noted that there is

a crossing between the resonance estimates at µ ∼ 1.3× 10−6.

10 -8 10 -7 10 -6 10 -5 10 -4 10

10
-3

10
-2

10 -1

-3

Figure 3.11: Comparison of the RIC radius to other chaotic zone estimates.
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An interesting parallel to the Hill radius, expressed (µ/3)1/3, could be drawn from the

RIC radius (3.8) as it looks similar to (µ/4)1/4. This claim could be refined by repeating the

calculation with µ more resolved, varying the Tisserand parameter CJ , and complementing

these results (of the interior map) with an estimate for the exterior Keplerian map.



Chapter 4

Multibody transfer

Finding a trajectory (in continuous-time) that successfully completes a transfer between

masses in the restricted 4-body problem, say m2 and m3 as shown in Figure 2.1a, is rightfully

challenging and time-consuming — especially so when employing methods like differential

correction. The Keplerian map, however, provides an alternative, much faster way to deter-

mine if the transfer is even possible (via RICs) and identify regions of phase space susceptible

to transfer, thus providing guesses of initial conditions that can then be iterated upon by

differential correction. It is enacted in the PCCR4BP, shown in Figure 2.1b, where the mass

parameter for each three-body system is assumed small enough that the central body m1 is

considered stationary at the origin.

The procedure of finding a transfer, supposing it exists, is as follows. First, the particle

must be able to transition between the two systems using a switching orbit via the Tisserand

curve of Figure 2.5. A reference orbit, along which to evaluate the Keplerian map for

symplecticity, is then established between the manifold trajectories of Section 2.2.2 and the

switching orbit. Initial conditions are populated about the reference orbit and iterated in the

appropriate direction until reaching (a neighborhood of) the switching and manifold orbits in

each system. A pair of trajectories, one from each system, reaching both the switching region

and the manifold region is a transfer trajectory. Finding a transfer trajectory in discrete time

provides an initial guess for initial conditions in continuous time which could then be refined

and brought into more perturbed models through continuation.

31
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4.1 Switching between systems

Without loss of generality, let one of the two 3BPs be a distance 1 from the central body.

Viewing the transfer in forward time, this system is referred to as the departure system. The

remaining 3BP, a distance A > 0 from the primary (in the departure system’s units), is

therefore called the capture system.

The particle admits a Jacobi constant and associated Tisserand parameter in each 3BP

system. Figure 2.5 indicates that, when expressed in consistent units, there can be an

intersection with appropriately chosen values. This intersection provides the switching orbit

as seen in Figure 4.2 — the point at which the particle can move between being controlled by

one 3BP system to the other. In principle, these Tisserand parameters can be independent

from one another, but we take them both to be the same (i.e., CJ1 = CJA = CJ) for

simplicity. In this case, the switching orbit between the departure system and capture

system of distance A > 0 from the central body is given by

aswitch :=
1 +

√
A+ A

CJ

eswitch :=

√
1− C3

J

4

(A−
√
A)2

(A−
√
A+ 1)3

.

(4.1)

Exterior
Interior

Figure 4.1: Dimensionalization of one 3BP system in terms of the other. In this configuration, the
particle’s motion is interior to the departure system (labelled a distance 1 from the primary) and,
similarly, exterior to the capture system (A). Note that the capture system is still a unit distance
away from the primary in its own system (the other body being 1/A).
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Figure 4.2: Tisserand curves from two 3BP systems with a chosen Jacobi constant CJ and distance
A intersect at a switching orbit. The switching orbit is closely surrounded by other potential
switching orbits for slightly different Jacobi constants, forming a switching region. The switching
orbit provides the means for the particle to switch being dominated by one 3BP system to the
other. Here, the switching orbit is parameterized by A = 2 and CJ = 3.

4.1.1 Preliminary energetic bounds

To a zeroth-order approximation (i.e., ignoring the manifolds of the Lagrange points), the

switching orbit (4.1), geometrically described by the parameters (a, e), should be contained

within the two systems of (a, e) = (1, 0) and (a, e) = (A, 0). Knowing 0 < e < 1 provides

preliminary bounds for CJ in terms of the geometry induced by the distance A.

0 < CJ < 22/3
1 +

√
A+ A

(
√
A+ A)2/3︸ ︷︷ ︸

minimum value: 3

(4.2)

This suggests that there is an energy interval for which transfers over the distance |1−A| are

feasible. In other words, the particle can only be so energetic in the Keplerian map before a

transfer becomes impossible, at least in the sense of a sensible switching orbit. While both

bounds are rather weak, they still provide useful information (e.g., CJ > 0).
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Improvements on the bounds are made by knowing that the eccentricity cannot approach

1 (accordingly, the Jacobi constant cannot approach 0) since the switching orbit must be

bounded between the departure and capture orbits. To the same zeroth-order approximation,

the switching orbit is therefore bounded between the two bodies. That is, the inequalities

A < qswitch < Qswitch < 1 for A ∈ (0, 1) and 1 < qswitch < Qswitch < A for A ∈ (1,∞) with

A > 0 some fixed distance must be satisfied for a suitable switching orbit. Here, q = a(1−e)

and Q = a(1 + e) are the periapse and apoapse distances, respectively. The requirements

may be reduced in each case upon plotting these four constraints (implicit functions of A

and CJ); one inequality automatically satisfies the other for all respective values of A.
aswitch(1− eswitch) > A, (0 < A < 1)

aswitch(1− eswitch) > 1, (1 < A < ∞)

Let C intersect
J denote the Jacobi constant at which the above inequalities are violated by

exact equality (i.e., the switching orbit grazes the bodies). Then

1

2
C intersect

J :=


1 +

√
A+ A

(1 +
√
A)2

(√
A2 + 2(1 +

√
A)2 − A

)
, (0 < A < 1)

1 +
√
A+ A

(
√
A+ A)2

(√
1 + 2(

√
A+ A)2 − 1

)
, (1 < A < ∞)

(4.3)

which improves the lower bound of the Jacobi constant (0 < C intersect
J < CJ). By this

measure, an absolute minimum for the Jacobi constant is admitted as
√
8 ≈ 2.83, a statement

that the particle can only be so energetic for the transfer to be possible. Note that the result

for A < 1 is simply the result for A > 1 under the mapping A 7→ 1/A as necessitated by

symmetry. The lower bound may be further refined by considering geometric constraints of

the reference orbits.
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Departure

Capture

Figure 4.3: The switching orbit lies in between the departure (a ∼ 1) and capture (a ∼ A) orbits.
Its Tisserand parameter should be chosen such that it has close approaches to both systems. Not
enough energy (too large of a Jacobi constant) pulls the switching orbit away from the bodies; too
much energy (too low of a Jacobi constant) pushes the switching orbit too close to the bodies since
it intersects their trajectories.

4.2 Symplecticity through reference orbits

Recall that the Keplerian map is parameterized about the reference orbit with geometry

(ā, ē), where ē is induced by the Tisserand parameter CJ (2.12), so that a1 < ā < a2 by

(2.24) for motion along CJ = const. The switching orbit provides a boundary on the extent

to which the particle can transit in each system, which means that the semimajor axes a1

and a2 are determined by the body’s switching and manifold (of Section 2.2.2) orbits.

Let (ā1, ē1) and (āA, ēA) denote the departure and capture systems’ reference orbits (all

expressed in the departure system’s units), respectively. Then to the same zeroth-order

approximation of the manifolds and with CJ = const. between each system,

ā1 = λ+ (1− λ)aswitch, āA = λA+ (1− λ)aswitch. (4.4)

Note that ēA should be evaluated using āA in its own system’s units (i.e., using āA/A).
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4.2.1 Refining the energetic bounds

Similar to before, the manifold orbits may be estimated to zeroth order as the bodies

themselves so that departure becomes (a, e) ≈ (1, 0) and capture likewise (a, e) ≈ (A, 0).

In this case, each reference orbit simply must fit between the secondary’s orbit and the

switching orbit. Doing so will provide a further tightening on the bounds on possible Jacobi

constants CJ as a function of the mixing parameter λ.

To ensure that the reference orbits fall within their respective geometric bounds, the

inequalities A < q̄A < qswitch < Q̄A ≲ q̄1 < Qswitch < Q̄1 < 1 for A ∈ (0, 1) must be obeyed.

The inequalities follow similarly for A ∈ (1,∞); that is, they are the same as above but with

A ⇌ 1. In each of the two scenarios, the inequalities explicitly involving the switching orbit

are automatically satisfied by the others. With q < Q trivially, the set thus reduces to
A < āA(1− ēA) and ā1(1 + ē1) < 1, (0 < A < 1)

1 < ā1(1− ē1) and āA(1 + ēA) < A, (1 < A < ∞).

Further, only one constraint is needed for mixing parameters λ ≳ 0.3 determined graphically.

For simplicity, choose λ = 0.5 so that the reference orbit takes the average semimajor

axis of the body and the switching orbit. Doing so corresponds to about midway along each

Tisserand curve of Figure 4.2. Under this choice, the lower bound of the Jacobi constant for

a given capture distance A such that the trajectory geometries do not intersect each other

is given implicitly as F = 0, where F : R2 → R is given by

F :=


1 +

√
A+ A+ CJ

2CJ

(
1 +

√
1− CJ

3

2

(1−
√
A− A− CJ)2

(1 +
√
A+ A+ CJ)3

)
− 1, (0 < A < 1)

1 +
√
A+ A+ ACJ

2CJ

(
1 +

√
1− ACJ

3

2

(1 +
√
A− A+ ACJ)2

(1 +
√
A+ A+ ACJ)3

)
− A, (1 < A < ∞).

(4.5)
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For numerical implementation requiring higher precision, it may be better to solve the initial

value problem
dCJ

dA
= −

(
∂F

∂CJ

)−1
∂F

∂A
, CJ(1) = 3. (4.6)

In practice, the initial condition cannot be exactly 3, but a close approximation of 3 works

just as well. This curve, forming a new lower bound for Jacobi constants CJ , is shown in

Figure 4.4. An example set of switching and reference orbits is shown in Figure 4.5. These

lower bounds rely only upon the geometry induced by A; specifically, they do not involve

the dynamics of the L1 and L2 neck regions governed by the mass parameter µ in either

system. However, the bounds naturally maximize themselves at CJ = 3 corresponding to

the energy interval of Figure 2.3 without zero-velocity curves. Hence, it should be ensured

that the orbits are nested and the appropriate neck regions are open if CJ > 3.
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Figure 4.4: Improvement of the lower bounds for the Jacobi constant so that the reference orbits
are nested between the bodies and the switching orbit for λ = 0.5. The green regions have no
intersections between any orbits (to zeroth order in µ), so they serve as a good place to select a
Jacobi constant for a given body with semimajor axis a = A. The grey regions can be selected,
but the choice will likely not be as good because orbits will be intersecting each other to varying
degrees of badness. The red region cannot be selected because it violates the constraint 0 < e < 1.
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Departure

Capture

Figure 4.5: The reference orbits (dashed) lie in between the departure/switching and cap-
ture/switching orbits. None of the curves intersect each other which means this Jacobi constant
is admissible by Figure 4.4 (here A = 1.5, CJ = 3, and λ = 0.5). The switching orbit provides a
means to exit one system while entering into the other; each reference orbit typically gets squeezed
between the switching orbit and the perturbing body.

4.3 Finding transfer trajectories

Using the reference orbits to parameterize the kick functions, trajectories in each of the

two systems can now be established. Of particular interest are those trajectories in each

of the two systems that include the manifold and switching orbits. Suppose there are no

RICs blocking transport, corresponding to the particle’s close approach remaining within

the secondary’s chaotic zone, so that a transfer is possible. Then in each system, we wish to

find initial conditions (ω0, K0) of a trajectory TM,N
(ω0,K0)

that does the following:

• For some M ∈ Z, FM(ω0, K0) lies on the manifold orbit (|KM −Kmanifold| = 0).

• For some N ∈ Z, FN(ω0, K0) lies on the switching orbit (|KN −Kswitch| = 0).

• The maps are iterated in opposite directions (MN ⩽ 0).

The particle transfers from the departure manifold orbit to the capture’s manifold orbit in
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forward time; thus, M ⩽ 0 ⩽ N for the departure system while N ⩽ 0 ⩽ M for the capture

system. Equality follows only if the initial conditions are placed on the intended orbit.

These two situations (N = 0 or M = 0) present the simplest configurations of initial

conditions. Without loss of generality, consider the initial conditions placed on the switching

orbit. In this case, the objective is to find trajectories that transit to each system’s manifold

orbit under iteration of the Keplerian map. Because the two systems are independent from

one another, each trajectory connects with the other system regardless of differences in

their ω coordinate. Thus, connection trajectories that also include the manifold orbits are

considered transfer trajectories.

Computationally, acquiring initial conditions that exactly satisfy the requirements is dif-

ficult, so the first two conditions are interpreted to be satisfied within a set tolerance δ. That

is, trajectories from each system are still identified as a connection at the switching orbit

(likewise at the manifold orbit) if they fall within a δ distance of it.

|KM −Kmanifold| < δ and |KN −Kswitch| < δ

This relaxation leads to the notion of the switching region shown in Figure 4.2; the notion

of manifold regions follow similarly. Once transfers are found, they can be sorted according

to both how closely they match to the switching/manifold orbits and their time of flight

(relative to the departure system).

∆ttotal := 2π
∑
i

a
3/2
i︸ ︷︷ ︸

depart. sys. ∆t

+2π
∑
j

(Aaj)
3/2

︸ ︷︷ ︸
capture sys. ∆t

(4.7)

Here, the indices i and j cover all of the iterations in each separate system. The normalization

Aa is written for the capture system since the Keplerian map is iterated in self-consistent

units for each system. The quantity ∆ttotal/2π expresses the duration in terms of how many

circuits the departure body has completed over that amount of time (for Earth, “years”).



40 CHAPTER 4. MULTIBODY TRANSFER

4.3.1 Generating initial conditions

A short discussion on the uniform distribution of initial conditions proceeds. Numerically,

truly random numbers can be difficult to obtain quickly and in large quantity; pseudorandom

numbers are typically used in their stead. Such numbers stem from a seed used in an algo-

rithm, and the sequence of these numbers is called a stream. Each stream is a deterministic

sequence generated by the algorithm and the seed. In this regard, the process is analogous to

a differential equation, where the seed is the initial condition and the stream is the solution

to the system given by the algorithm.

Theoretically, each stream is sufficiently large enough to exhaust all practical desire for

random numbers. The stream, however, is killed and the seed reset to its default value (0)

at the end of each computing session. To avoid repeated numbers during calculations in

the next computing session, one could either recover the stream’s position by requesting a

sufficient amount of numbers, or simply change the seed.

In practical application, the seed is changed to “ensure” that generated streams are

independent from one another. For this work, the seed s is given as

s = w
⌈∏

t
⌉

mod 232, (4.8)

where t = (year, month, day, hour, minute, seconds) is the current time of execution (with

hours in the 24h format, seconds including decimals, and the rule that 0 7→ 999) and w ∈ N

is the worker’s index. For single core computations, w = 1; otherwise, w is automatically

assigned to each worker in the pool. While this formulation does not guarantee a unique seed

at any given execution time, the probability of generating a unique seed from (4.8) exceeded

95%, which was found to be sufficient for this work.
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4.4 Demonstration of an uncontrolled transfer from

Earth to Venus

Using the tools developed for the Keplerian map, a transfer trajectory from Earth to

Venus is demonstrated below. It is noteworthy that the following procedure was also applied

for an Earth to Mars transfer and one eluded to be found.

4.4.1 Setup

Take Earth to be the departure body and Venus as the capture body, which of course

share the sun as the primary body. Because of this choice, the (nondimensional) distances

are measured in astronomical units (AU). From this perspective, the Earth is located at

(a, e) = (1, 0) while Venus at (a, e) = (0.723, 0) — that is, A = 0.723 AU so that the

distance to be transited is |1 − A| = 0.277 AU. The mass parameter of the Sun-Earth

system is µ = 3.0035 × 10−6 and that of the Sun-Venus system is µ = 2.4478 × 10−6. Let

CJ = 3 for the particle’s motion along the energy surface (Figure 2.5); all forbidden realms

(Figure 2.3) are eliminated and the manifold, reference, and switching orbits do not intersect

each other. Thus, this Jacobi constant is admissible.

The departure from Earth occurs in a manner similar to its unstable manifold of the

Sun-Earth L1 point which, by (2.15), is described by (a, e) = (0.962, 0.02962). Similarly for

Venus, but approaching along the stable manifold of the Sun-Venus L2 point, its manifold

orbit is (a, e) = (1.039, 0.02837) — with a in AU, (0.751, 0.02837). The switching orbit

(4.1) for the Sun-Earth system has the semimajor axis aswitch = 0.858; in the Sun-Venus

system, aswitch = 1.187 = 0.858 AU. The eccentricity is induced by the Tisserand parameter

and in both systems is eswitch = 0.140. Let λ = 0.5 so that each reference orbit is the
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Table 4.1: Summary of the parameters used to define the manifold, reference, and switching
orbits for the Sun-Earth and Sun-Venus systems. These two systems are expressed in their own
units; however, the Sun-Venus∗ system is expressed in units relative to the Sun-Earth system. The
unstable and stable manifolds do not follow the energy surface induced by CJ = 3; instead, they
have eccentricities eWu(L1) = 2.962 × 10−2 and eW s(L2) = 2.837 × 10−2. These orbits respectively
correspond to Tisserand parameters CJWu(L1) = 3.00027231 and CJW s(L2) = 3.00027033.

System µ A CJ λ aWu(L1) aW s(L2) ā aswitch

Sun-Earth 3.0035× 10−6 — 3 0.5 0.962 — 0.905 0.858
Sun-Venus 2.4478× 10−6 — 3 0.5 — 1.039 1.117 1.187
Sun-Venus∗ 2.4478× 10−6 0.723 3 0.5 — 0.751 0.807 0.858

average trajectory experienced between the manifold and switching orbits. The Sun-Earth

reference orbit’s semimajor axis is therefore ā = 0.905 AU. In the Sun-Venus system, the

reference orbit has the semimajor axis ā = 1.117 = 0.807 AU. Similarly to the switching

orbit, each reference orbit’s eccentricity follows from (2.12) with CJ = 3. These parameters

(excluding the eccentricities) are neatly summarized above in Table 4.1.

By (3.8), the Earth’s chaotic zone has an extent of rRIC ∼ 3.237× 10−2 AU. Performing

this same calculation, but now using orbital elements of the switching orbit, one obtains

rswitch = 2.250× 10−2 < rRIC. The switching orbit is thus contained within the chaotic zone

(as is the reference orbit since CJ is admissible) and, therefore, reachable from the manifold

orbits. Due to similarity of the two mass parameters and expected approximate symmetry

between the interior and exterior RICs, such a transit in the Sun-Venus system should also

be (indeed, is) possible. Alternatively, one could check that the RIC is not between Earth

(also Venus) and the switching orbit on the energy surface.

4.4.2 Results

Computations were performed over a set of 494× 106 pairs of initial conditions (ω0, K0)

scattered about the reference orbit in each system with (ω0, a0) ∈ (−π, π)×(ā−0.01, ā+0.01),
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Table 4.2: A sample set of initial conditions in the Sun-Earth and Sun-Venus systems that resulted
in transfer between the two bodies.

System ω0 K0

Sun-Earth 1.384 356 764 533 00 −0.554 484 685 404 083
Sun-Venus 2.461 864 944 055 54 −0.616 944 544 206 183
Sun-Venus∗ 2.461 864 944 055 54 −0.446 050 905 461 070

where the energy K0 is given by (2.9), and appropriately iterated 250 times towards the

switching orbit. From these initial conditions, 32 295 connection trajectories were successfully

established within δ = 0.003 energy units of the switching orbit. These pairs were then

used as the set of initial conditions to be iterated towards the manifold orbits; 49 transfer

trajectories — coincidentally 10−7 as many that was started with — were identified. These

transfers were further narrowed by seeking those that made it to within an energy distance

of δ = 0.001 and then sorted by time of flight in accordance with (4.7). The initial conditions

resulting in one transfer are found above in Table 4.2; its total time of flight is 1391 years.

Sun

Venus

Earth

Figure 4.6: An example of an unpowered transfer trajectory with CJ = 3 from Earth to Venus.
Every 50th orbit is drawn. The blue trajectories represents the particle in the Sun-Earth system,
and the orange trajectories for the Sun-Venus system.
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Figure 4.7: Continuation of the example trajectory shown in Figure 4.6. Top: Iterates of the initial
conditions (circled in blue) in both Sun-Earth and Sun-Venus systems. The transfer is understood
to occur in forward time (actually beginning at Earth and arriving at Venus), so the (forward) map
F is used to traverse downwards in a and the inverse map F−1 upwards in a in each system. The
motion in the Sun-Earth system is interior; the motion in the Sun-Venus system is exterior. Note
that the two systems are plotted together on the same ω axis, but the two planets phase differently.
Hence, one needs only check for proximity in K near the switching orbit. (Even if the trajectories
don’t align exactly in the switching region, continuity dictates that there exist trajectories that do.)
Left: Evolution of the semimajor axis as viewed from the initial condition starting in the Earth’s
L1 manifold orbit. This transfer, which is not optimized, takes 1391 years in total. Right: The
particle moves along the energy surface provided by the Tisserand parameter.
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Conclusions

Analyzing the phase space of the planar concentric circular restricted 4-body problem

(PCCR4BP) is challenging due to its high dimensionality. However, the analysis can be

simplified by using a reduced order model under assumptions that the problem is patched

together with planar circular restricted 3-body problems (PCR3BPs) and that the motion of

the particle is mostly Keplerian. Such simplifications lead to the Keplerian map, a measure

of the particle’s motion in discrete time using a 2D phase space consisting of its argument

of periapse and energy.

From this map, a new estimate of the chaotic zone about the secondary is established

by means of rotational invariant circles (RICs). This chaotic zone estimate far exceeds the

sphere of influence (SOI)/Hill estimates and is in close agreement with that of Wisdom. The

main distinction between this estimate and Wisdom’s is that eccentric orbits (and hence the

chaotic zone) are characterized along the energy surface provided by the Tisserand parameter

instead of entirely circular orbits.

Further, the map is capable of rapidly searching through the phase space and producing

trajectories that transfer between the two systems via passive dynamics of gravity assists.

This approach is beneficial because it offers large time savings in identifying phase space

regions prone to admit transfers over blindly searching with numerical integration and dif-

ferential correction. Such initial conditions resulting in transfers found by the Keplerian map

can then be used as initial guesses in finding the transfer in continuous time.
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Appendix A

Transformation to Delaunay Variables

for Orbital Elements

Given a set of velocity coordinates (x, y, ẋ, ẏ) ∈ R4, information about the trajectory’s

orbital elements (a, e) can be realized via a time-independent transformation into Delaunay

variables (L,G, l, ḡ) ∈ R × R × S1 × S1. The transformation is given by Koon et al. [5],

Szebehely [17] and is done by first converting into polar coordinates.

r =
√

x2 + y2

θ = tan−1(y, x)

ṙ =
xẋ+ yẏ

r

θ̇ =
xẏ − yẋ

r2

G = r2(1 + θ̇)

L =
r√

2r − r2ṙ2 −G2

ḡ = θ − cos−1

(
G2 − r

re

)
l = cos−1

(
a− r

ae

)
− rṙ

L

(A.1)

Particularly, (2.10) provides the osculating elements a = L2 and e =
√

1−G2/L2. This fully

defines the geometry of the trajectory; its orientation is given by the argument of periapse in

the inertial frame, g = ḡ + t. The mean anomaly l relates to the true anomaly via Kepler’s

equation.
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