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ABSTRACT

Low back pain is a common medical problem around the world affli@d%$ of the
population some time in their life. Low back injury can result frarfoss of torso stability
causing excessive strain in soft tissue. This investigatids $eeapply existing methods to new
applications and to develop new methods to assess torso stabitgt,. the time series averaged
finite time Lyapunov exponent is calculated from data obtained duseaged stability
experiments. The Lyapunov exponent is found to increase with increashkgdifficulty.
Second, a new metric for evaluating torso stability is introdutedthtreshold of stability. This
parameter is defined as the maximum task difficulty in whigimamic stability can be
maintained for the test duration. The threshold of stability éffdgt differentiates torso
stability at two levels of visual feedback. Third, the state esghstribution of the finite time
Lyapunov exponent (FTLE) field is evaluated for deterministic andhsistic systems. Two
new methods are developed to generate the FTLE field from &messdata. Using these
methods, Lagrangian coherent structures (LCS) are found for an invemthdyra, the Acrobot,
and planar wobble chair models. The LCS are ridges in the HiEld& that separate two
inherently different types of motion when applied to rigid-body dycasystems. As a result,
LCS can be used to identify the boundaries of the basin of stalfinally, these new methods

are used to find the basin of stability from time series datkeated from torso stability



experiments. The LCS and basins of stability provide a richer stadeling into the system
dynamics when compared to existing methods.

By gaining a better understanding of torso stability, it is hdpedknowledge can be
used to prevent low back injury and pain in the future. These new metlgdssa be useful in
evaluating other biodynamic systems such as standing posturg) kaee stability, or hip

stability as well as time series applications outside the area of biamesh
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Chapter 1

Introduction

1.1 Low back pain

Low back pain is a common medical problem around the world, affli@0% of the
population at some time in their life (Kelsey and White 1980; Reeveal. 2005). It is the
second most common reason that people seek medical attention, secoma @oiys or flu
(MedlinePlus 2007). Low back pain (LBP) is an enormous problem ibnited States. It is
estimated that Americans spend over $50 billion on LBP annualM¥S 2007). LBP is
classified as a neurological disorder by the National Instafitdealth (NIH) which supports
low back pain research through the National Institute of Neurolo@iarders and Strokes
(NINDS). Back pain is the second most common neurological ailmaht United States led
only by headaches (NINDS 2007). The debilitating nature of laek Ipain reduces the quality
of life for those that suffer from its effects. According ttNDS, low back pain is “the most
common cause of job-related disability”’LBP is common in the US and Europe with point
prevalences estimated to be 5.6% in North America, 13.7% in Denmark, #8C&nhada, and
19% in the UK (Loney and Stratford 1999; Kent and Keating 2005). In addi8B#hjmposes a
substantial burden in the developing world where loss of wagesraddativity interferes with

daily activities (Galukande et al. 2006).
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The causes of low back pain are elusive, and it is likely thay déferent factors elicit
similar symptoms. Cailliet (2003) identified seven sites fon ggneration: external fibers of
the intervertebral disc, posterior longitudinal ligament, nerve daadl sheath, synovial capsule
of the facets, interspinous and supraspinous ligaments, erector spisake, and fascia of the
muscles (Figure 1.1). Although no definite cause of LPB has bestifield, research interests

continue to focus on spinal instability as an underlying factor.
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Figure 1.1: Locations where low back pain is experienced.

1.2 Spinal Stability

Instability of the human spine has long been thought to be an indicator ogk of low
back injury. In 1961, Lucas conducted one of the earliest documented exqsriom spinal
stability (Lucas and Bresler 1961). The amount of spinal stab#i#yarch has steadily increased
over the years. A current search (6-23-07) of PubMed resulted in 2611 articiesadrstbility
ranging from 1963 to the present (Figure 1.2), including 94 artidleadyt published this year.
Despite all of the research into spinal stability, a cledr thetween spinal stability and low back

injury does not yet exist. One possibility is that global instgbof the spine may lead to

18



excessive strain at both the global and local level. Exeesscal deformation may result in
muscle strains and ligament sprains in the lumbar region (M2G@L). This may initiate an
inflammatory response stimulating nociceptors in the region calsingpack pain (Preuss and
Fung 2005). The term spinal stability is often used interchangeatiiytorso stability when
referring to the core stability in the lumbar region. Howetgesome people spinal stability may
imply the stability obtained from passive stiffness associatttdthe ligamentous spine only. In
order to avoid this confusion, this document will predominately use timetteso stability since

it implies the addition of active neuromuscular control.
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Figure 1.2: The number of “spinal stability” publications listed in PubMed is
increasing, indicating that LBP research is becoming increasing more supported.

1.3 Current methods to measure torso stability

Like low back pain, stability is not easily defined (Adams 2007; Reeteal. 20073a;
Reeves et al. 2007b). The first division is between statidigtadnd dynamic stability. For the

torso to be statically stable, the destabilizing forces tnat tiie torso away from an equilibrium
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position must be less than the restorative forces in the systéhen the destabilizing forces
exceed the stabilizing forces, buckling of the spine may oc8awxeral researchers have applied
this methodology to study the spine (Lucas and Bresler 1961; Grandt Orishimo 2001;
McGill 2001; Stokes and Gardner-Morse 2001; Van Dieen et al. 2003; Brown and McGill 2005).

Dynamic stability, in contrast, evaluates moving systentgerahan static systems with
the potential to move. Standing postural sway (Winter 1990; Wintat. 2001) and gait
(Mcgeer 1990; Goswami 1996; Garcia et al. 1998) are two commorcappts of dynamic
stability. Parameters used as indicators of dynamic syalmlitoiomechanics fall into two
general categories. The first category is kinematic biit\g which includes parameters such as
mean center of pressure, 95% ellipse area, root mean squared etimpigcetc. These
kinematic parameters give an indication of range of motion, but tieegyiat true indicators of
stability. The second category includes true stability paemsiet Some of these parametric
methods include stability diffusion analysis (Collins and De L1223; Peterka 2000), rescaled
range analysis (Delignieres et al. 2003), detrended fluctuatidyseméDelignieres et al. 2003;
Gates and Dingwell 2007), and Lyapunov Stability Analysis (Dingetedll. 2000; England and
Granata 2006; Granata and England 2006; Kang and Dingwell 2006).

Stability diffusion analysis was introduced by Collins and De L{U€83) as a new way
to evaluate stability of standing postural sway data. This methgoogs mathematical
techniques from statistical mechanics to evaluate stabilogra@mstabilogram is a plot of the
path of the center of pressure as it moves over time. In twd®ore easily understand the
concept, first consider the similarities between a stabilograch @ random walk. The
stabilogram appears to move randomly in any direction but alsosseeruster about an

equilibrium point near the vertical position (Figure 1.3).

20



20

10-

10+

Anterior-Posterior distance (mm)

-15+

-25 L L L L L L L
-20 -15 -10 -5 0 5 10 15 20
Medial-Lateral distance (mm)

Figure 1.3: Stabilogram displaying the movement of the center of pressure in an
apparently random manner.

In a true random walk, motion at each time step is in a randontidireand overall,
displacement will occur. A random walk where the time step appesazero approximates
Brownian motion. Einstein (1905) showed that the mean square of thacdis@ntDx, of a

particle under one-dimensional Brownian motion is related to the length of tipseeéat, by:
(Dx*) = 2DDxt (1.1)

where D is the diffusion coefficient. In 1968, Mandelbrot extendedctimeept of classical
Brownian motion by introducing fractional Brownian motion (Mandelbrot and Nass 1968).
Placed in the framework of fractional Brownian motion, Einsteinigirmal equation may be

written as:
(Dx*) ~ D™ (1.2)
where H is a scaling exponent equal to %2 . However, the valuentdyHange from 0 to 1 in

fractional Brownian motion. Values of H greater than Y% repres@aisdive correlation with

previous motion and are indicative of persistent behavior. An examplergitent behavior is
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the effect of inertia on a system. Conversely, values of Htless Y2 represent a negative
correlation with previous motion and are indicative of anti-persistenavior. Anti-persistent
behavior is common in a controlled system that drives motion to a set point.

Stability diffusion analysis was used by Collins and De Lucan@yze time series data
(Figure 1.4). The distance between two points in the timesseegjgarated by a time intervet,
was calculated and the mean value determined. This procesepeated for different time
intervals. A log-log plot (similar to 1.4b) was used to deterrttieeshort and long term scaling
exponents, K and H  respectively. Collins and De Luca found the average value;db He
approximately 0.75 indicating short term persistent behavior and thagavealue of kito be

approximately 0.25 indicating long term anti-persistent behavior.
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Figure 1.4: In stability diffusion analysis the mean distance between two points
separated in time is determined (a). Stabilogram-diffusion plots shows the short
term and long term regions (b) (Collins and De Luca 1993).
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Although stability diffusion is still commonly measured, questiongehbeen raised
about the use of stability diffusion analysis stating that itsgastical artifact (Delignieres et al.
2003). Collins and De Luca (1993) explained the short term and longdgroms by open and
closed loop control, respectively. The main argument against tplanation was that two
distinct regions may not be present and that the flattening of fiiasidih plot may instead be
caused by reaching the boundaries of the system. In other words,diffusion expands to
fully fill the available space, no further diffusion is possible.ligh¢eres (2003) suggested using
more traditional approaches such as rescaled range analysis or detrendetibfiLenadysis.

Radebold and Cholewicki (2000; Radebold et al. 2001) conducted seatedly StdiHi
on the lumbar spine using hemispherical balls attached to the bott@seat (Figure 1.5). This
apparatus isolated motion to the lumbar spine. The location of tiber aé pressure (COP) of
the subject was measured during the test using a force [@#ability was analyzed using the

stability diffusion function (Collins and De Luca 1993).

Force
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Figure 1.5: Unstable seated test apparatus (Radebold et al. 2001)
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The research described herein utilized a new seated stapitisradus based upon the
design of Radebold and Cholewicki. The apparatus allowed for mon®lcovér the level of
static stability by providing a continuously adjustable rangeeeforative torque. However,
rather than using stability diffusion, dynamic stability watcglated through evaluation of the
finite time Lyapunov exponents (FTLE). Lyapunov exponents have been usedluate gait
dynamics (Dingwell et al. 2000; England and Granata 2006) and body moggi@Gemhata and
England 2006) but have not been applied to lumbar stability experiments.

Lyapunov stability analysis is based on the Ph.D. dissertatidie&tandr Lyapunov in
1892 (Smirnov 1992; Jury 1996). His theory on dynamic stability diaa¢$ one starts near an
equilibrium point (withind), and the system can be described by a Lyapunov function, then the
state of the system will always remain close to the dxjiufn point (withine). Lyapunov
stability is a weaker form of stability than asymptotidgity, as the latter requires the system to
approach the equilibrium point. Exponential stability is an even strdiogen of stability
specifying that the rate of stability must be exponential. aBge of its generality, Lyapunov
stability has become one of the leading methods used to agsessid stability in a variety of
applications.

In real application, however, it is not practical to evaluate gtabir an infinite amount
of time. When Lyapunov exponents are calculated over a finitepimed, they are denoted as
finite time Lyapunov exponents (FTLE). FTLE have been used to pregjsizing of ships
(Mccue and Troesch 2006), analyze fluid dynamics (Evans et al. 1886an6 and Moser 1991;
Lapeyre 2002; Shadden et al. 2005), predict weather (Yoden and Nomura $968$, stability
of biped robots (Yang and Wu 2006), and detect ventricular tachycarfibaillation (Wessel et

al. 1998).
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In practical application, it is common to calculate FTLE usimgdrized perturbation
equations. Some researchers have investigated higher order if®alebsand Sawada 1985;
Brown et al. 1991; Okushima 2003), but these have been applied primasifssical chaotic
systems (Lorentz attractor, Roessler equation, Henon map, dic)less emphasis on real
applications.

A common method to calculate the linearized FTLE is to detertheneate of separation
(Euclidean distance) of two nearest neighbors in n-dimensional sgiat® (Rosenstein et al.
1993a). Another less common method is to calculate the FTLE by Bnglibe rate of
expansion of a n-dimension hyper-ellipse (Shadden et al. 2005). Aivard each of these

methods will be developed in this proposal to determine the stability of the spine.

1.4 Basin of Stability

A parameter related to the threshold of stability is the basistadfility. Unlike the
threshold of stability, the basin of stability is not a new t€Ashby 1962). The basin of
stability defines a region in state space where stable belexigis. The previously reported
research evaluated stability only within the stable regionaté sfpace. In order to find the basin
of stability, the methods described in later chapters willrektbe experiments into the unstable
region. In doing so, the boundary between stable and unstable behavibe rfaynd which
defines the edge of the basin of stability.

The basin of stability can be more easily visualized in sptee by considering the
motion of a pendulum (Figure 1.6). The pendulum is at the stablebegur point when it is
pointing directly downward. It is at the unstable equilibrium point wihén pointing directly
upward. Small oscillations of the pendulum are shown on the phasesotall almost circular

paths around the stable equilibrium points. This motion of a swinging pendygnerates
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trajectories that move in a clockwise direction. Larger amplitude dsmi$aare observed on the
phase plot as larger less-circular trajectories. The mariramplitude of oscillation occurs
when the pendulum begins its motion starting from a very smalk dragh the upright position.

This motion begins very slowly. By the time the pendulum reaalfesv degrees, it begins to
move more quickly. It passes through the directly downward positioragmum velocity and

then slows down again as it approaches the upright position from thesiokbenn theory, as the
initial angle from the vertical position approaches zero, the onb@ approaches infinity. This

special orbit is the homoclinic orbit.
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Figure 1.6: Phase plot of a single planar pendulum. Nearly circular trajectories
around the stable equilibrium points represent oscillating motion. Larger almost
elliptical trajectories indicate higher amplitude oscillations. The undulating lines
on the top and bottom represent circular orbits in a single direction.

The undulating lines beyond the homoclinic orbit (on the top and bottom of Ridi)re
represent circular orbits in a single direction. In this cts®e pendulum no longer oscillates
since it has enough energy when it reaches the upright verticgbpds continue its motion in

the same direction. Clearly, the oscillatory motion is verfedsht than the orbiting motion.
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The two types of motion are separated by the homoclinic orbithwdtts as a separatrix. The
separatrix can also be used to separate other types of dyraumltsas stable and unstable
behavior. In later chapters, separatrices will be found thatelw¢hé basin of stability in state
space.

The magnitude of the basin of stability has been discussed in papgast atlynamics,
(Garcia et al. 1998; Schmitt 2006) but no explicit plots were shdme method to determine
the basin of stability is through Lagrangian coherent structul@S)L LCS are defined as the
ridges of the spatially distributed Finite-Time Lyapunov Exponent&j field. The LCS form

a separatrix that can be used to determine the boundary of the basin of stability.

1.4 Document Organization

This dissertation has been divided into chapters, some of whichkistrag stand alone
documents. Chapter one introduces the topic of low back pain, describe8Row &ssociated
with spinal stability, and describes the current methods usediloage biomechanical stability.
Chapter two describes an experiment to measure torso gtabdihg existing methods.
Specifically, the (time series averaged) Lyapunov exponent whichdesused for evaluation
of dynamic systems is evaluated. In chapter three, a newcrfeetevaluating torso stability is
introduced, i.e. the threshold of stability. In this study, subjectseatse under two conditions,
normal and limited feedback to the postural control system. Difesein the threshold of
stability are evaluated. In addition, the time series averagaguiopv exponent is calculated for
comparison. In chapter four, mathematical models are developéduefarverted pendulum, a
reduced order system. This simple system shares some bftiaeteristics of the wobble chair.

Methods are developed to generate Lagrangian coherent strutiOfs ¢ome of which define
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the location of the basin of stability. In particular, a nevinoe is developed to find LCS from
time series data without the need for a vector field whicbftisn unavailable in biodynamic
experiments. In chapter five, the methods developed in chapter foextareled to analyze a
planar wobble chair. An aside is taken to evaluate the Acrolsitnilar dynamic system, using
the newly developed methods. This provides insight into the systeamics and a connection
with previous research. A mathematical model for the wobbler dsadeveloped and

anthropometric parameters are used for model calibration. rbatstic and stochastic
simulations are executed and analyzed to find the LCS and dfastiability. In addition, a new

technique to calculate the maximum finite time Lyapunov exponemt firme series data using
the state transition matrix is developed. Using this new methodvatuate simulated

experimental data, LCS and basins of stability are found for the walblalir. In chapter six,
these new methods are applied to real experimental data collected from panigipants. LCS

and basins of stability are found from these data providing a nigtdarstanding of the system
dynamics than the traditional methods of calculating the timessaveraged FTLE employed in

chapter two.
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Chapter 2

Determining Torso Stability Using
Time Series Averaged Lyapunov
Exponents

2.1 Abstract

Mechanical assessment of torso stability is a valuable toatlémtifying individuals at
risk for low-back pain. The apparatus is designed to challengeathibzstg control of subjects
in order to quantify torso stability. In addition, a method is outlif@d calculating the
maximum Lyapunov exponent from the measured data. The results shosigdifwant
negative correlation between chair stability and the maximuapluyov exponent, and good
trial repeatability. The method was found to be sensitive to changsability and indicates
that it may be a useful method to analyze the effects gumatistatic flexion, or interventions

such as physical therapy on torso stability.

2.2 Introduction

Low back pain is a common condition afflicting more than 80% of the ptpalduring
their lifetime (Kelsey and White 1980; Reeves et al. 2005). Theahuspine consists of a

column of vertebrae separated by discs and surrounded by ligamanigbususcular tissue.
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Damage can occur when the tissues of the spine are exposgdessive strain (Adams and
Dolan 1995) that may result from unstable buckling of the vertelmlamn (Preuss and Fung
2005). Direct measurements of buckling loads often results in diestret the test specimen.
Since direct spinal buckling tests cannot be performed on human subjentthod to non-
destructively evaluate spinal column buckling was sought. Bucklinglikely when the spinal
column is able to maintain a stable upright configuration. Thus, stetbdity may be used as an
indicator of risk. Previous research has shown that stability ofotise is a valuable tool for
identifying individuals at risk of low-back pain (Radebold et al. 2000holewicki (2000)
directed subjects to sit on a unstable seat with a hemisphacheattto the bottom. Task
difficulty was modulated by adjusting the radius of curvature wploich the seat pan balanced,
effectively altering the restorative moment. Nonlinear tsages analyses of the seat
movements were used to estimate stability.

The experimental design in the current study modified theeearlethods to modulate
the mechanical static stability of the unstable seat then olss#dreetime-domain stabilizing
performance of a human subject while sitting on this device. Ini@addihe analysis method

was expanded to compute stability through Lyapunov analyses of the measured data.

2.2 Methods

2.2.1 Experimental Apparatus

The wobble chair is a new seated stability testing apparatustiog®f a seat mounted

on a thin, flat seat pan supported by a ball joint (Figure 2.1). dllows the seat pan to pivot
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freely in 2-dimensions about its geometric center. The seatbeaadjusted forward and
backward on the seat pan to assure the subject’'s center ofsniiestly over the pivot point.
Steel springs are located to the front, rear, left, and rigthteo€enter. The springs were selected
such that the free length is equal to the distance from thad#se seat pan of the wobble chair

at the neutral position (Figure 2.1).

Springs

Figure 2.1: The wobble chair is a new seated stability test apparatus where
movement of the lumbar spine is used to maintain balance.

The rotational stiffness can be adjusted by changing the disteora the springs to the

central ball joint. Restorative 2-D momenti§/
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M =Pgq,, p=k>d*
Me P 0 Gus (2.1)

My 0 P Gus
where gs is the 2-D angle vector of the seat, composed of the anterioripositeglegap s and
the medial-lateral anglgu.s. The proportional gain constam, is a function of the spring
stiffness,k, and the distance, The proportional gain matrix, Ras diagonal elements equal to
p. Since the moment is proportional to the square of the spring distararger range of
proportional gain can be achieved. Static stability is decrelgeaducing the stabilizing
restorative moment (i.e. proportional gain provided by the sprinfsis is achieved by moving
the springs closer to the center. The wobble chair’'s continuoge cﬂrgain,zl?allows the level
of static stability to be normalized to body mass and weiglttitlwiion. The gravitational
moment,Mg, about the ball joint can be measured for an individual subject. Thiatjcanal

gradient, G, is a measure of the mass and weight distribution of an individual given by,

NG=T1 M (g,
0. .(45.9;) 2.2)

where, gt is the 2-D angle to the torso. Neutral stability is achieviednathe proportional gain
produced by the spring’s restorative force is equal to andietise gravitational gradient. This
condition is defined as a spring setting of 100%. At spring settinggter than 100%, the
stabilizing moment generated by the springs is greater thardebk®bilizing gravitational

moment. The system is attracted toward the neutral positiorsatatically stable. For spring
settings less than 100% the destabilizing gravitational momemteaer than the stabilizing
spring moment. Upon small perturbations from the neutral position shensys repelled from

the neutral position and is unstable. However, it can be demonstrated Ztssegment under-
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actuated inverted pendulum is controllable and can be stabilizeddFRd)r Humans achieve
this through voluntary and reflexive neuromuscular control. Stabilitys tese typically

conducted at or below the 100% level, thus requiring neuromuscular control to maatidity st
Testing at prescribed levels of instability (e.g. 10 75% G, 50% G) can be achieved by

adjusting the spring location to compensating for anatomical differences$ sulbgscts.

q:

Control
Torque

Figure 2.2: Two segment inverted pendulum model.

2.2.2 Experimental Protocol

Twelve human subjects with no history of low back pain participaieéde study. Prior
to participation all subjects were informed of the nature of thdysand signed an informed
consent form approved by the institutional review board at Virgireah. Before stability
testing was performed, the gravitational gradient for each subj@etobtained. The spring
distances needed to achieve 100%, 75%, and 50% of the subject’'s gravigaahent was

calculated. During experimental stability measurementssubgcts were instructed to sit on
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the wobble chair with their arms crossed over the chest and attermpaintain an upright
posture for 60 seconds. Seat angles and torso angles were deatoi®® Hz in two dimensions
with 6 degrees of freedom electromagnetic sensors (Motion Star Systeressin Technology
Corp, Burlington, VT). The subject was able to use small dynamiements of the torso to
keep the seat at a level position. Each subject was tested at all three $pnigs, s€he order of
the spring setting was randomized to avoid confounding between diffiand trial order.

Subjects performed five practice trials prior to executing five repitsat each setting.

2.2.3 Lyapunov Stability Analyses

The maximum Lyapunov exponent is a measure of local stabilityygeLaxponents
indicate rapid divergence of two points that are initially closstate space (Figure 2.3). By
calculating the maximum Lyapunov exponent from data that is avkm@ages the entire time
series, the global stability of the system is estimatede riaximum Lyapunov exponemtyay

guantifies the exponential rate that two points diverge in state space.

d(Dt) = d (0)e/=™ 2.3)

where d(0) is the initial Euclidean distance in state spaeeebattwo points in the time series.
The evolution timeDt, is the amount of time that has elapsed as the trajecwfritee two
points are tracked forward in time. The Euclidean distance batwee two points at an
evolution time DX, is given by dDt). This analysis method is outlined below.

Measured data consisted of a continuous series of data pointerimgshe trajectory
over the 60 second trial. From the measured data a time depstatentector was generated

using post-processing software (Matlab, Natick, MA).
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A = (g0 <O G O G @ G O] (2.4)

The state vector was filtered at 8 Hz with a seventh ordep&ss Butterworth filter and down-
sampled to 25 Hz prior to analysis. Initially, the first datént in the time series, q(0), was
identified as the reference point. A data point was identifiedwaa close to the reference
point in state space, but not in time. The nearest neighbor wadigteas the point with the
smallest Euclidean distance from the reference point in gpaiees Measures were taken to
ensure that each nearest neighbor was not highly correlatecheiteference point or with any
previously found nearest neighbors. Specifically, the location of tts¢ fieak in the
autocorrelation function was determined, and this temporal range was avotedselection of
the nearest neighbor. Several investigators have tracked thgeatizerof a nearest neighbor to
find the maximum Lyapunov exponent (Wolf et al. 1985; Rosenstein et al.;198@&and and
Granata 2006; Granata and England 2006). In this study the thresstneeighbors were
analyzed in order to reduce variability of the results. Theeapovcess was repeated with each
point in the time series being considered the reference point. TFBhenak between the
reference point and each nearest neighbor was calculated as bothepointd over time
(Figure 2.3). The expansion was defined as the relative incireastance between the two
points for someDt. The mean expansion for a given evolution time was determined by

averaging the expansion over all reference points and all nearest neighbors.

n s d(Dt),
Mean Expansion(Dt):i au),

3n i d(O)ij (2:9)

Where, n is the number of points in the time series indexed by j,ianlde index of the nearest

neighbor.
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Figure 2.3: Nearest neighbor to the reference point was found in n-dimensional
state space. The distance between these two points is tracked as it evolves over
time. The heteroclinic orbit indicates the separatrix between stable and unstable

regions.

The maximum Lyapunov exponent can be calculated by solving equation [2.3].

max

/ = é In(Mean Expansion(Dt)) (2.6)

From the experimental data, the maximum Lyapunov exponent was foundidwating the

slope of the natural log of the mean expansion with respect ®vtietion time over the range
of 0.2 seconds to 0.7 seconds (Figure 2.4). Evolution times less thandhédsseere excluded
from the evaluation because the 8 Hz filter (T =.125 s) removed ofutie data in this range.
After 0.7 seconds, the curve began to flatten as the points apptbtull diffusion within state

space. | max Was calculated for each subject, trial, and week using custanidw code

(National Instruments, Austin, Texas).
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Figure 2.4: The maximum Lyapunov exponent was determined by calculating the
slope of the mean expansion as a function of the evolution time.

2.2.4 Statistical Analysis

Twelve subjects were each tested five times at each spationg. The maximum
Lyapunov exponents calculated for each of the five replicates twals averaged to obtain a
value for that subject under that condition effectively reducingl#tta to the experimental unit
(Sall and Lehman 1996). Repeated measures ANOVA was used tmidetehe effects of
spring setting, week of test, and their interaction. This was auking JPM ® 7.0 (SAS Institute

Inc., Cary, NC), with a criterion of p=0.05 used to conclude significance.
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2.3 Results

The statistical results are shown below (Table 2.1 & 2.2 andd-@&). Spring setting
was found to be negatively correlated withax (Figure 2.5a). Furthermore, post-hoc analysis
using Tukey HSD test showed significant differences betweespatig levels (Table 2.3). No
significant difference was found Inn.x between weeks (Figure 2.5b) or the interaction between

spring and week (Figure 2.5c).

Table 2.1: Main Effects Table

Level Least Sq Mean Std Error Mean
week 0 0.68 0.024 0.53
week 1 0.66 0.024 0.49
Spring 50% NG 0.68 0.024 0.67
Spring 75% NG 0.54 0.024 0.50
Spring 100% NG 0.39 0.024 0.36

Table 2.2: ANOVA Table

Source DF Sum of Squares Mean Square F Ratio Prob>F
Model 16 1.53 0.096 14.0 <.0001*
Subject (Random) 11 0.32 0.029 4.3 0.0001*
Spring 2 0.49 0.249 85.0 <.0001*
week 1 0.0009 0.0009 6.1 0.7166
Spring*week 2 0.012 0.006 0.91 0.41
Error 55 0.38 0.007

C. Total 71 1.91

Table 2.3: Tukey HSD test results

Level Least Sq Mean

50 A 0.68
75 B 0.54
100 C 0.39
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Figure 2.5: The main effect of a) spring setting and b) week of testing is shown. In
addition, the interaction c) between spring and week is presented.
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2.4 Discussion

The negative correlation between the maximum Lyapunov exponent aindstetality
was expected. Higher mean divergence rates associatecdrgeghvilues of max should occur at
the more difficult spring settings. This is because the potential functiballewer with smaller
gradients. Thus, random perturbations inherent in the system leaddpri@otions and higher
divergence rates. The mean value for the maximum Lyapunov expoasnpositive which
indicates divergent behavior in at least one dimension of state.spkxvever, since stability of
the overall system was maintained during the test, the sunh lofjagdunov exponents (i.e. the
Lyapunov spectrum) must be less than or equal to zero.

One limitation of this study was that all stability testsrevconducted with fully active
neuromuscular control. Since no tests were conducted with disablgte@d control, one
cannot separate the contribution of the compensatory neuromusculaol cioin the
uncontrolled dynamics. Thus, it cannot be determined if the compenssargmuscular
control changes as a function of the task difficulty.

Insignificant differences between the two duplicate tedi@es indicate that the method
has good repeatability with relatively small data sets. fegstatability enables experiments to
be conducted that measure changes in stability resulting froyimgaconditions such as fatigue,

flexion relaxation, or physical therapy.

2.5 Summary and Conclusions

The wobble chair apparatus allows for empirical measurementsaf tiynamic stability
over a continuously adjustable range of static stability artdbiligy. Adjustments can be made

to compensate for anatomical differences in subjects allowstg) tie be conducted at a specified
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static stability level. A method for conducting Lyapunov stabaihalysis on the experimental
data was developed that tracked the divergence of nearest neighbalispi@ints in the time
series. The results showed a significant negative correlatibmede chair stability and
generally consistent results from week to week. This methad faiand to be sensitive to
changes in stability and indicates that it may be a useflladdb analyze the differences in

stability resulting from changing parameters.

2.6 Acknowledgements

The research was supported by grant RO1 OH 008504 from NIOSH of ther Gar
Diseases Control. The author would also like to acknowledge the efforts of IGt@gu&l Hyun

Wook Lee in building the apparatus and collecting data presented in this chapter.

41



Chapter 3

Evaluation of the Threshold of
Stability; A Pilot Study

3.1 Abstract

Current methods to study torso stability assess kinematic variabilibygardynamic
stability. In this chapter, a new stability metric is introduced, the threshgldlfity. The
threshold of stability differs from existing methods because it evaldadmtindary between
stability and instability rather than evaluating dynamics within tHaestagion of state space.

In this section, a pilot study was performed using this new method and compared tdaesdlts
for the maximum Lyapunov exponent. Participants were tested using an exigtargtas that
challenges spinal stability (the wobble chair), with eyes both open and shuttsReswed
significant differences in stability between these two conditions usiagrkihod. The

sensitivity of this method indicates that it may be a useful metric in largeies for the
evaluation of torso stability in low back pain patients. In addition, this new method has an
additional advantage over previous methods in that no electronics are needed to perform an
evaluation. Its simplicity, sensitivity, and low cost may make it suitailevfaluating low back

pain patients in a clinical setting.
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3.2 Introduction

Researchers and clinicians continue to search for a reliabkaiodiof low back pain
(LBP). Mainly researchers have studied torso stability so@ation with LBP (Bergmark 1989;
Granata and Orishimo 2001; McGill 2001; Van Dieen et al. 2003; Brown artilIVROO5;
Reeves et al. 2007b). Some methods which have been used to quastifgtability include
kinematic variability parameters borrowed from techniques usedetsune standing postural
sway (Granata and Lee 2008). In addition, dynamic stability methaxtsas stability diffusion
analysis (Cholewicki et al. 2000) and the calculation of Lyapunov exponéfasiaka and
Granata 2007; Granata and Lee 2008) have also been applied. All ohittbsels have at least
one characteristic in common. They each assess stabilitydhyagng the motion within the
stable region of state space. This may not be a good assessment tdabbinvegiability within
the stable region does not always correlate with instabikyrthermore, low variability within
the stable region does not indicate high robustness to perturbatioree I& back injury has
been associated with a loss of stability, it may be more impioto determine at what point
stability is lost, i.e. when the trajectories leave the stag®n of state space. A new metric, the
threshold of stability, was created to quantify this value. Thresifdthbility is defined as the
maximum task difficulty in which stability can be maintained for agiperiod of time.

A new metric, the threshold of stability, was developed for torabilgy using an
unstable sitting apparatus called the wobble chair. The wobble (hgure 2.1 & 3.1) has
movable springs that can be adjusted in order to change the amoestooative torque applied
to the seat (Tanaka and Granata 2007). Increasing task djffisuattained by moving the
stabilizing springs closer to the central ball joint, thus redutiagstabilizing moment provided

by the springs. In this study, a participant’s balance congstésn is challenged to determine
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the maximum task difficulty in which stability can still be imtained. The presence or absence
of visual feedback (i.e. eyes open or shut) was the condition used pildhistudy to determine

the sensitivity of the method.

Figure 3.1: Participant balances on the wobble chair moving the lumbar region of her
torso to maintain stability.
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This study was not focused on understanding the effects of vesedibdck on balance
control. Instead, visual feedback was used to test the sensitititg afethod. There were two
main reasons for selecting visual feedback as the controllethgta First, a within-subjects
test could be performed eliminating the variability from suliedubject and allowing a smaller
number of participants to be tested. Second, a real difference sexigtdin the balance
capability of a participant when compared with and without visualbfeek. Moreover, it was
expected that difference would be large making it more likely taldiected using the new
method. Since this was the first study to evaluate this nevicietvas important to apply the
method to a condition that was likely to have a real and signifaiéfietence. Therefore, if no
difference was found, it could be concluded that the method was ingensithis difference. If
a test condition were evaluated with an unknown outcome, it would not doeifcke negative
result was due to no difference in the controlled parameter or insensitiviity ofathod.

The threshed of stability is a new type of parameter. Toutieogs knowledge, this is
the first study to determine the boundary of torso stability. pAdvious evaluations of torso

stability have examined the level of local instability for overall glghstidble systems.

3.2 Methods

3.2.1 Subjects

Eight adults participated in the study, and were asymptomatitBer at the time of
testing. Of the participants, five were male and three feanale. Mean (SD) body mass was

157(29) kg, stature was 174(15) cm and age was 27(5) years. In addittaipaas had no
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previous history of spinal surgery, sciatica, herniated or ruptdises, or fractured vertebrae.
Prior to beginning the tests, all participants were informeti@htature of the study and signed

an informed consent form approved by the institutional review board at Virginia Tech.

3.2.2 Set-up

Before stability testing was performed, the gravitatiagraldient NG) for each subject
was found using the methods described in chapter 2. With this informtite spring distances
associated with levels ?iG on 5% increments were calculated. Sensors capable of tracking
angles in three-dimensional coordinates (MTx, Xsens Technologissh&de, The Netherlands)
were attached to the base of the seat and to the back of thgpattat approximately the level
of the fifth thoracic vertebrae (T-5). These sensors weretagegick movements of the wobble
chair and trunk during the experiment.

Although full medial-lateral and anterior-posterior motion is posgilsiag the wobble
chair, the focus of this study was on sagittal plane (anterefqm3tmovement. This restriction
was implemented so that the experimental results calculatezhapter 6 could be better
compared to the planer wobble chair simulations developed in chaptdedial lateral (ML)
motion was not restricted in the study. Instead, restorativegsfmioe was set to 100%G in
the ML direction so stability in these directions was easylese (Figure 3.2). Starting with a
spring setting of 8098IG in the anterior and posterior directions, spring distance wasadedre

during the study focusing movement in the sagittal plane.
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Figure 3.2: The wobble chair has four stabilizing springs that can be set to different
distances to control the amount of restorative torque applied to the participant.

3.2.3 Experimental Protocol

Participants were instructed to sit on the wobble chair with anyssed in front of the
body and to attempt to maintain an upright posture. The data collesdioware, a custom
Labview (National Instruments, Austin Texas) program, was eadcuthis program initialized
the position sensor angles establishing a zero degree referahd®gan the angle recording
process at 100 Hz. After a few seconds, stop blocks were removathillgag the wobble
chair. The official start of the trial began 20 seconds into daliaction following sensor

initialization, block removal, and initial stabilization by the tg@pant. Small dynamic
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movements of the torso were used to maintain balance over the batitfaint. The participant
was monitored for 60 seconds to determine if contact was madetheitbbase of the seat
indicating instability. Upon completion of the trial, stabilizing Ik®avere reinserted, and the
participant was allowed to rest for at least one minute between ¢riad®id mental and physical
fatigue.

During the practice phase, spring distance was adjusted folleaiciy trial to determine
the smallest spring distance at which the participant was able to mdiatance for the duration
of the test without becoming unstable. This initial phase of thesézsed two purposes. It
allowed the participant to practice balancing on the wobble thaeduce learning effects, and
it also helped the experimenter to find the approximate value ofhtleshold of stability.
Beginning with this initial spring distance, trials were pearfed to locate the critical spring
distance, i.e. the threshold of stability.

Participants were randomly selected to be tested firstayls open or shut using a coin
toss. After 50% of the people had been tested with eyes shuthH@semaining people were
tested with eyes open first in order to make the overall nundepral for testing order. For
participants who were tested with eyes open first, the praiads were performed with eyes
open. For participants who were tested with eyes shut firsiysheractice trial was performed
with eyes open and the remaining trials were performed withsgyes Following each trial, the
following rules were applied to determine the next spring setithegl. If the participant did not
become unstable and generally stayed within four degrees of tlee €ert g, = 0) as observed
on a biofeedback device, the next spring setting would be reduced b{@0% the participant
did not become unstable and generally stayed within seven degreescehthr, the next spring

setting would be reduced by 10%s. If the participant became unstable and contacted the base,
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the next spring setting would be increased by% Subsequent adjustments were in [§&
increments based on the outcome of the trial. Passing trialsqnt&act was not made with the
base) resulted in a decrease in spring setting for the m@xt @onversely, springs setting were
increased following failing trials.

Tests with either eyes shut or open were performed follotiagoractice trials. Eight
trials were conducted using the spring adjustment procedure dieflmeve to determine the
threshold of stability for this condition. If the threshold of stapitibuld not be determined in
eight trials using the method described in the next section, additiaislwere performed until
a definitive result was obtained.

Preliminary investigations showed the difference in thresholdatilgy between eyes
open and shut was approximately 208G. If eyes open was tested first, the initial spring
setting for the eyes shut test was chosen to be R@4arger than the threshold of stability
found for the eyes open test. Although the actual value of thentidesf stability was found
through testing, this initial adjustment was effective at reduthe number of trials needed to
obtain a definitive result. Conversely, if the eyes shut conditiortesdsd first, the initial spring
setting for the eyes open test was chosen to be @G%maller than the threshold of stability
found for the eyes shut test. Like the first test condition evaluated, a mirofmeight trials was

performed to definitively determine the threshold of stability for the secohdamedition.

3.2.4 Analytical and Statistical Methods

The value for the threshold of stability was determined through ieaion of the test
result at each spring setting (Figure 3.3). The number of pamsthtpiling trials at each spring

setting was tallied. When both passing and failing trialstexiat a given spring setting, the
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majority result was assigned to that spring setting. If upon caoimgpleight trials a definitive
line could be drawn separating passing and failing spring settiegsng at this level was
considered complete. However, if the number of passing and failihg was equal at a given

level, additional trials were performed until a definitive outcome was obtained.

A t-test was performed to determine if differences in timeshold of stability were

detected between the “with” and “without” visual feedback test camditi A value ol = 0.5

was used as the criterion for significance.

threshold of stability for eyes open

threshold of stability for eyes shut

Eyes open Eves Shut /
NG 50 55 60 65
pass pass 1 1 1
fall fall 1 2 2
fall pass pass fall fall fall pass

Figure 3.3: The threshold of stability was found by locating the lowest passing spring
setting. In this case 45% NG for eyes open and 65% NG for eyes shut.

In addition, Lyapunov stability analysis was performed on the firssipg trial at the
threshold of stability for each test condition. The methods descnlathpter 2 were applied to
determine the time series averaged finite time Lyapunov expobéiferences between the two

test conditions for the Lyapunov exponent were also evaluated using a t-test.

3.3 Results

The time series shown in Figure 3.4 is typical of those cotlectdhe angle of the lower
body, q;, shows large variability. The upper body anglg, remains relatively constant. In

some trials an initial adjustment was made during the begjruiithe trial after which relatively
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steady results were maintained. These differences swevilible when viewing); versusg

(Figure 3.5).

10 \
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Figure 3.4: The lower body angle (blue) shows large variability and the upper body
(green) variability is smaller.

Theta 2 (deg)

Theta 1 (deg)

Figure 3.5: After an initial adjustment at the beginning of the trial, the upper body
angle, i, generally stabilized and motion was dominated by the lower body, ¢;. An
RMS value of 3.0 degrees (red circle) was found for dhalirection. In theq,
direction, the RSM value was 2.0 degrees.
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The threshold of stability and maximum Lyapunov exponent were found fdr eac
participant under each condition of visual feedback (Table 3.1). Fdhtéehold of stability,
the mean value for eyes open and shut were 36 (6.4) and 51 (G ®spectively, difference
of ~15% that was significant (t = 11.2; p = .0001). For the maximuapulyov exponent, the
respective values for eyes open and shut were 0.40 (0.18) and 0.47 (0.20), thodidfierthnse

was not be significant (t = 0.786; p = 0.46).

Table 3.1: Results of threshold of stability experiment

Eyes Open Eyes Shut
Participant Threshgld Maximum Thresh_qld Maximum
of Stability Lyapunov of Stability Lyapunov
Exponent Exponent
1 35% 0.42 50% 0.52
2 45% 0.55 65% 0.43
3 35% 0.37 50% 0.44
4 45% 0.10 55% 0.65
5 30% 0.45 45% 0.52
6 40% 0.72 55% 0.74
7 30% 0.29 40% 0.11
8 30% 0.33 50% 0.31

3.4 Discussion

Significant differences in the threshold of stability were foundveen the two groups
showing this method to be sensitive to differences in thesecbmditions. The maximum
Lyapunov exponent did not show a significant difference. This mayéeodthe small number
of trials in this pilot study. In addition, the maximum Lyapunoypaent was evaluated at
different stability levels. This test would be more liketyshow a difference in the Lyapunov

exponent if the eyes open and eyes closed condition were tested at the same 8pgng set
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Preliminary data suggested that the amount of effort applied durirejahidity test was
lower for easier tasks (Granata et al. 2006). As a result,gegdemance of the neuromuscular
control system may not have been applied during easier tasks ntoreepend less energy.
This may explain why the maximum Lyapunov exponent found during pnalisnstudies was
not dramatically higher despite a much higher level of task diffic However, since maximal
effort was required at each individual’s limit of stability,stmay be a more sensitive means of
differentiating the performance capability of the individual’sneenuscular control system. The
threshold of stability identifies a state where the kinemaditability due to system noise has
grown to a value that it is just within the basin of stabildy the individual (see Chapter 4).

Any further increases in system perturbations or task difficultyregliilt in unstable behavior.

3.5 Summary and Conclusions

A pilot study was performed to evaluate the sensitivity of & meetric to detect
differences in torso stability. This new metric, the thodd of stability, differs from other
metrics in that it is associated with the boundary betwé&sriesand unstable regions of state
space. Results found using this method showed significant diffenenstdility between these
two conditions. The sensitivity of this method indicates that i bea useful metric in larger
studies for the evaluation of torso stability in low back pain patients.

This method may find application in a clinical setting. Althoulgitteonics were used in
this study, the time series angle data collected were intdadedaluation in chapter 6 and were
not needed to find the threshold of stability. Furthermore, although a forcevpmtgsed to find

NG for each participant, a rough approximation W& could also be obtained using
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anthropometric parameters measured in the clinician’s offites Would eliminate the need to
purchase and maintain an expensive force plate. Its simplietgjtivity, and low cost may
make it suitable for evaluating low back pain patients in a elirpcactice. If desired, these
initial results could then be confirmed in a fully instrumented bararics laboratory. Finally,
the concept presented herein may be extended to evaluate otlkenssystwhich a threshold

could be found separating two distinctly different outcomes.
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Chapter 4

Locating Separatrices and Basins of
Stability in a Reduced Order Model

4.1 Abstract

An approach is presented for identifying separatrices in spatee generated from noisy
time series data sets representative of those generatedekpariments. This approach
demonstrates how Lagrangian coherent structures (LCS), ridges state space distribution of
finite-time Lyapunov exponents, can be used to locate these smgsratihis method can be
performed using a single trajectory that evolves over time oppog@evious approaches which
required an entire vector field at each instance in time. Tdthad is applied to a biological
simulation in which the separatrix reveals a basin of stabilityhe results of the nonlinear
analysis show that the LCS calculated from only trajectory a&jas well with the LCS found
using the traditional vector field analysis methods. In general, it issbdlibis method provides
a fruitful approach for extracting information from noisy expemtal data with regards to

boundaries between qualitatively different kinds of motion.
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4.2 Introduction

Increasingly, dynamical systems of interest are definedya@nalytical models but by
data from experiments or large-scale simulations. Some exaalpéady exist in the areas of
musculoskeletal biomechanics (Dingwell and Cusumano 2000; Akay 2006nHBragld Granata
2007) and geophysical fluid dynamics (Pierrehumbert 1991b; Piertshtirhi991a; Haynes
2005; Shadden et al. 2005).

In many cases, researchers want to ascertain if detetimehaos is present (Akay 2006;
Falconer et al. 2007). This can be achieved by determining characexbicents that describe
the sensitivity of the solution to initially close-starting coiutis. One popular technique is to
estimate the (maximum) Lyapunov exponent averaged over the samplied pbrstate space
(Benettin et al. 1980a; Benettin et al. 1980b; Wolf et al. 1985; Eckmiaah 1986; Rosenstein
et al. 1993b; Kantz and Schreiber 2004). This method is well suitethédysis of time series
data from experiments.

Higher values of the Lyapunov exponent indicate greater divergatein state space.
When comparing the Lyapunov exponent found for two different experimergsearcher may
conclude that one system is more stable than another. Howeverotitisiston may not
necessarily be true. If the trajectories of both systemsin within the same compact region of
state space, then both systems can be considered stable oweitdherfe evaluated regardless
of the value of the Lyapunov exponent. In order for the system to bagwtable, according to
Lyapunov, the system trajectory must cross the boundary sepatiatingtable and unstable

regions of state space.
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The locations of these boundaries can be found by extracting additndoahation
contained within the time series data. Rather than averagingdpeinov exponents over state
space to obtain a single scalar value as traditionally done, onegerzerate a maximum
Lyapunov exponent field. This field quantifies the expansion raléfatent locations in state
space. This state space perspective can lead to a better amalagsof the system's behavior
through identification of trajectory boundaries. In order to find thesendaries, techniques are
borrowed that were developed for the analysis of fluid flows (H&@90; Haller and Yuan
2000; Haller 2001a; Haller 2001b; Haller 2002; Shadden et al. 2005). Leagracmherent
structures (LCS) (Haller and Yuan 2000) are state space boundéiies are defined as the
ridges of the finite-time Lyapunov exponent (FTLE) field (Shadderalet2005). These
structures indicate the location of the separatrix demarkin@pdhadary between qualitatively
different kinds of motion. In general, LCS are time dependent@naifby generating a FTLE
field from the vector field of the system. However, vectoldfeare usually unavailable in
biomechanics experiments where often only a small number ef\satibles are measured over
time.

In this chapter, LCS theory is applied to a rigid body biodynamroblem to identify
state space boundaries that are assumed to be time independeshoWn that the LCS can be
generated from individual trajectories obtained from time selds without the need of a full
vector field at each instant in time. LCS have previously been shavenrtibust with respect to
noise (Haller 2001a; Haller 2002) making them attractive for msxperimental data analysis
where noise sensitivity is an important issue (Casdagli. t98l1; Ellner and Turchin 1995;

Franca and Savi 2001).
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4.2.1 Applications of LCS to Biomechanics

LCS have previously been used to analyze dynamical systenmedidfy fluid flow
fields from data (Franca and Savi 2001; Haller 2002; Wang 20@8B), analytical biochemical
models (Aldridge et al. 2006), and low degree of freedom mecharystnss(El Rifai et al.
2007). Based on current knowledge, the work presented herein is ttapfilisation of LCS to
time series data with the absence of a vector field. Datasrform is commonly generated in
biomechanical experiments. The biodynamics problem analyzed in this papéerategorized
into a class of biomechanics problems that contain separatritbsre exists a variety of
potential applications for these methods in which two or more quadhatdifferent types of
movement exist. A few examples are illustrated below.

In biomechanics, a separatrix or recovery envelope existebertatanding and falling.
Standing with postural sway is a distinctly different type daftion than falling. During
standing, the body remains in the vicinity of an equilibrium positionnaawgl be characterized as
dynamically stable over a suitable finite-time horizon. Compasemotion to falling where the
body rapidly diverges from the vicinity of the equilibrium positioraatincreasing velocity. In
falling, the body behaves unstably with respect to the uprightakposition. If one allows an
experimental subject to take a step during fall recovery, anbtherdary will develop. Now
three states exist, standing, recovering from a fall with siep, and falling. Each type of
motion is divided from the other by a separatrix. Extending tiesri, a state space diagram
with multiple fronts may be generated.

Previous studies have investigated the range of forward and baskigan that can be
attained while maintaining an upright posture without stepping (Kuo ajad 2893; Winter et

al. 2001; Morasso and Sanguineti 2002). These studies consideredtdm By be quasi-static
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where stability is controlled by muscle strength, base of suppdrthe location of the center of
mass. By analyzing the results of these studies, a stgod@ may be defined in one state space
dimension (position) based on the above parameters. Pai et al. explaisdewrk to two
dimensions by including velocity in his mathematical models (Pai and Pattonl@balrand Pai
2000). Pai used vector fields defined by the system's differepiedtions to determine regions
of stability for balance recovery. Although this work expandecetrauation of stability into
state space, only a small portion of state space was evhlwatd errors in the governing
equations resulted in criticism (Edwards 2001).

A comparable problem to standing postural sway is the challengeaiofaming torso
stability. In this case, a separatrix exists delineatiraplsttorso sway from unstable and
potentially injurious motion. In our laboratory, torso stability is stddusing an experimental
apparatus known as the wobble chair. Torso stability is necassawgid large deformations in
the lumbar spine which is often associated with low back injury @aid (Cholewicki and
McGill 1996; Granata and Orishimo 2001). In this study, the sepaiatextracted from a
reduced order model which captures the essential features of the expearoaéant

The computation of finite-time Lyapunov exponents from experimental luag been
used before in musculoskeletal biomechanics. In particular, ibé@s used to quantify local
dynamic stability during locomotion (Dingwell and Cusumano 2000). Howesegraratrices
between dynamically stable walking/running could also be evaluagng the methods

developed in this paper.
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4.2.2 Sensitivity analysis and finite-time Lyapun oV exponents

In this section, we briefly review some mathematical prelaries regarding stability or
sensitivity of trajectories. Suppose we are given a refettesieetory x(t) going from xat time
to to x; at time {. We assume the trajectory evolves under the dynamical equafiansme-

independent (autonomous) system
x=f(x) xI R (4.1)

This equation describes a flow field or vector field. The sensitofithe reference trajectory is
discussed below.

Let the trajectories of the system (4.1) withyxét X be denoted bf/(t,to).
In other wordsf (t,to) : X(to) ® x(t) denotes the flow map of the dynamical system (4.1) when
mapping particles from their initial location at timgto their location at time t. For our
purposes, the flow map will be denotedf&isty. Xo) or simplyf (t. Xo) so the dependence on the
initial condition x(b) = X is made clear.

Consider a second trajectory that starts slightly away fl@raference trajectory x(t),
i.e., starts from the perturbed initial vectartaxy at time §. As the trajectories evolve, the

vector displacement (or perturbation vector)

OX(t) = f(t;xo + dxo) - f(t;xo) (4.2)

will also evolve. For our purposes, the “second trajectory” migghtthe result of another
experimental trial or another portion of the same trajectepaated by a sufficient amount of

time to avoid a substantial autocorrelation. This is discussed further below.
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The linear relationship between small initial perturbations amtligpations at some time

tis

ax(t) = F (t,t,)0%, @3
where

F(t,t,) = 1/ {E%) 1(TtX;OXO) (4.4

is the state transition matrix (also known as the fundamentakinaThe state transition matrix
can be viewed as a deformation gradient. If an (infinite3imalimensional spherical blob of
particles is placed about the reference trajectory, thenaftaration T = tg the blob will have
expanded in some directions and compressed in others to form an n-dimaérelipsoid

(Figure 4.1).

Figure 4.1: The state transition matrix is a deformation gradient about the
reference trajectory describing how an initially spherical blob of surrounding
particles deforms into an ellipsoid.
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The matrixF (t,tp) contains information about this expansion and contraction as welieas t
rotation of the initial blob of particles due to the locally deforming nature ofdie f
Suppose there exists a state transition matrix over some inte(v&). The size of the

final perturbation at time t is given by
[ax () = a3 [F (t:t,)"F (t:t,)] 0k, (4.5)

where || - || is the vector norm or?, A" denotes the transpose of the matrix A, and the

perturbations are considered as column vectors. The symmetric matrix
C=F (t;t,)" F (t;t,) (4.6)

is the finite-time right Cauchy-Green deformation tensor (Shradtal. 2005). The matrix C is
a rotation-independent measure of deformation; it gives the sqdatiee local change in
distances due to deformation (Fung 1993; Truesdell and Noll 2004).

Since C is a symmetric, positive definite matrix, it hasah, qgositive eigenvalues (Strang 1998;
Lekien et al. 2007).

One can associate with pointa maximum finite-time Lyapunov exponent, given by
1
sl(xo):?lnﬂ//max(C), 4.7)

where T = t4 is the finite duration over which expansion is measured |lapgC) is the
maximum eigenvalue of C with the corresponding (normalized) eigemvégty). In other
words, ifdxg is along €to) at time ¢, then maximum stretching occurs over the time T and the

length of the perturbation vector becomes
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|l (t)]| = €7+ ||a, |, (4.8)

where t =¢ + T (Shadden et al. 2005).

4.2.3 Determination of LCS

Lagrangian coherent structures (LCS, both singular and plural) pagatgces in state space,
separating qualitatively different kinds of motion. These sepeeatrare co-dimension one
boundaries in state space, i.e. n-dimensional surfaces dividing n dmarsgpace. Methods to
generate LCS from vector fields are well established (Haller 2002d8haet al. 2005).

Briefly, the existing method to calculate LCS includes the oreasent or calculation of
a generally time-dependent vector field at each instant ie. tinmitial conditions at a given
instant in time are allowed to evolve due to the vector fieldliyigla set of trajectories. From
these trajectories, a finite time Lyapunov exponent (FTLE)M fican be generated which
represents the rate of local divergence at that instant é til€S are identified as the ridges in
the FTLE field that separate two regions of flow (Figdt8). Since the locations of these
boundaries are changing in a time dependent flow field, the cometer field must be

available for each instant of time.

Figure 4.2: Flow chart depicting how the LCS are traditionally determined
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Figure 4.3 below is used to explain why ridges develop in theERIdld at the LCS. In this
schematic representation, divergence of two points (a and b) uhiistable region and two
points (c and d) in the unstable region are compared. As the poamd b evolve over time,
their trajectories only slightly diverge resulting in a drR3ILE. This result may be plotted as a
data point midway between a and b in state space. Similarlysmoartd d also diverge slightly
resulting in a small value for the FTLE which may be plotted raydbetween these two points.
However, b and ¢ which are on opposites sides of the LCS divergéy grean over a short
time. This results in a large value for the FTLE which wheattgdl in state space lies in the
region of the separatrix. As more data points are entered, aafieokhaped" ridge forms

revealing the LCS at the separatrix.

Figure 4.3: The divergence of two points on opposite sides of a separatrix is
larger than the divergence of points on the same side. This generates a ridge in
the FTLE field at the separatrix.
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Unlike previous methods, the approach described in this paper constiitiEdield
using only trajectory data. This eliminates the need to genanrzector field, which may not be
accessible in an experimental setting. Of course, an FTIE dlgained in this way will be

limited to the portion of state space sampled by trajectories.

4.3 Mathematical Model

The wobble chair has been used to isolate movement of the lumbamsprder to gain
a better understanding of the dynamics utilized to maintain stedwlity and prevent injury
(Figure 4.4) (Cholewicki et al. 2000; Tanaka and Granata 2007). Theewddal consists of a
seat pan and seat supported by a central ball joint. Rigi@dlghatd to the seat is a leg rest to
help minimize relative movement within the lower body. Stalijzsprings are located at the
front, back, left and right of the ball joint and help to support tla¢. s&hese springs may be
moved closer or further from the central pivot point to modify the amolurestorative torque
provided at any given seat angle. Wobble chair experimentymoalty performed at spring
distances where the destabilizing gravitational moment excéedstabilizing spring torque.
This configuration is statically unstable and neuromuscular comtusit be provided for the
participant to maintain his/her balance on the seat. The wobbleichahie to tilt in the sagittal
(forwards and backwards) and frontal (left and right) body planesptaiton in the transverse
plane and translation in all planes are restricted. The wobbleartthexperimental protocol are
designed to minimize relative movement within the lower body and uqmelr. Thus, the lower
body and upper body may each be considered as rigid body segmentamibéespine acts as

a pivot between the lower and upper body segments where the cemt@tioh is assumed to be
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located between the fourth and fifth lumbar vertebra. Given thegsmpisns, a person sitting
on the wobble chair has four degrees of freedom (d.o.f). Two of these ateo.flue to the
forward and backward rotation of the lower body and upper bpdgndqr, respectively. The
remaining two d.o.f. are due to the left and right rotation of therlewe upper body,s andf r,
respectively. Thus, the state of the system may be describagl arsieight dimensional state

space.

Figure 4.4: The wobble chair is an apparatus designed to isolate the movement
of the low back to determine torso stability (Adapted from (Cholewicki et al. 2000;
Tanaka and Granata 2007))
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In order to begin to understand the behavior of the full dimensiosttmy a reduced
model was developed for the wobble chair (Figure 4.5). In this modébmris restricted to the
sagittal plane, and the angle between the lower body and upperstdoddd. These constraints
allow the system to be modeled as a planar inverted pendulum. dtmesteaints effectively
reduce the system from an 8-dimensional state space systar thniensions. Indeed, even
the 8-dimensional state space is only an approximation to the alnfoste number of
dimensions inherent in the human body.

In addition to reducing the computation time, order reduction allavesto visualize
system properties that may not be understandable in higher dam&nd his is the case with the
LCS. In the reduced order model, the LCS are readily appasdimes dividing 2-dimensional
state space. However in the full order system, it is difficultisualize an LCS since it exists as

a 7-dimensional hyper-surface dividing 8-dimensional state space.

4.3.1 Planar Inverted Pendulum Model

The planar inverted pendulum model consists of a point mass at the amjidf mass-
less rod (Figure 4.5). Stabilizing springs like those used indo@lavobble chair are included
in the model. In addition, a proportional-derivative control is used timtama stability.
However, the gain of the proportional controller will be limited tonaximum value, thus
simulating a linear increase in muscle force up to the lefvedaximum voluntary contraction
(MVC). These stabilizing components allow the system to hatalde equilibrium point at the
upright vertical position. The existence of this stable region etserved in wobble chair
experiments where participants were able to balance for 60 seroradstatically unstable

configuration (Granata and Lee 2008).
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Figure 4.5: The reduced order model of the wobble chair consists of a planar
inverted pendulum with stabilizing springs and a limited gain control.

The vector from the pivot to the center of mass when the pendulumthe equilibrium

position (upright vertical) is defined as

0 0
c=nh g= -g (4.9)
0 0

Where h is the height of the center of mass above the pivot pointacEeéeration of gravity
vector is given byg and is expressed in terms of the scalar value of g equal tm/&8
Rotations in the x-y plane are defined by the angle tletad rotation about the z-axis from

local to global coordinates is given by the rotation matrix, R

Coyy - Sing O
R = Sing Cogy 0 (4.10)
0 0 1
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Note that the transformation matrix to convert from global tollocardinates is the inverse of
the transformation matrix to convert from local to global coordmatdso, note that the inverse
of a rotation matrix is its transform. In order to calcutagvelocity, it is necessary to calculate

the time derivative of the rotation matrix. This is obtained by using the chain rul

q d d - Sing -Coxyg O
“R)=L(R)Y=Ryy= Coyy -Sing 0gq 4.11)
dt* 7 dg* "dt 7 0 0 0

The position vector in global coordinates is calculated by applii@gransformation, &to the
position vector in local coordinates, c.

X =R c¢c (4.12)

q

The velocity is found by taking the time derivative of the position vector.

0

~d,y\_d _d d
x=_()= (Rc)= E(Rq)HRq/g%f (4.13)

Xx=Rlgc
The potential energy, V, is a function of the height of the maskergravitational field and
given by,
vV =mg:(R,c) (4.14)

The kinetic energy, T, is a function of the velocity of the aeotenass. Since the pendulum
model is a point mass, the moment of inertia of the body is zero. Thus, T is simply,

T = »m(R)x(Rec) g°

T =y mHCH2 q2 (4.15)

The Lagrangian, L, is given by the difference in kinetic enefgwand potential energy, V. The

Lagrangian is computed as follows.
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L=T-V =ym|c|[ ¢?- mgx(R.c) (4.16)

Lagrange’s equations are applied to find the equations of motion.
— = - ==t (4.17)

Wheret is the sum of all torques applied to the system. The equatisalied for each

Component.
ﬂL
Rk (4.18)
b =mg {R&)
__2( f ) (4.19)
Yomel'q
d L
a 1g "Ml (4.20

Combining these equations yields the equation of motion,

mlc| g - mgXR&)=¢ (4.21)

This equation is further simplified.

2

0
HCH2= hil =h? (4.22)
0
0 -Sing -Cosg 0 O
mg{R&)=m-g x Cosg -Sing 0 h
0 0 0 0 0
0 - hCogyy
=m-g x -hSing =mghSiny (4.23)
0 0
miYg - mghSing =t (4.24)
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Solving for the angular acceleration yields the following equation.

_ mghSig +¢ (4.25)
mk?

Four torqgue/moment components will contribute to the motion of the systé&ime first
component is the gravitational moment, Malculated previously.

M, =mghSig (4.26)
The second component is spring torque, [T is given by the spring force applied at a distance,
d, from the pivot point. The spring compression is given by dfSidsing the spring constant,
k, previously defined, the spring torque can be calculated.
T.=F " d =k(dSing)" d =kd*Sing (4.27)
The third component is limited gain proportional-derivative contrad, §(. The equation for
the limited gain PD control, C, is given by,

G,q if g<gq,
G otherwise

pmax

C(g.9)=G,q+ (4.28)

where, G is the derivative gain constare = G, malGp is the smallest angle at which the
maximum gain is achieved,,Gs the proportional gain constant, and £ax is the maximum
value of proportional gain. Physiologically, a limited gain controtkpresents the limited
muscle strength of the abdominal and spinal extensor muscles.

The fourth component is noise. System noise, N, is introduced into thé¢ asa@@dom
force perturbations (Figure 4.6). It is simulated by a zero n@sarssian normal distribution
with a standard deviatiors,, equal to 1% oNG. Constraints are included in the program to
bound the noise level to an amplitude o6+3A noise frequency (20 Hz) is selected such that it

substantially exceeds the natural frequency of the systemHz)-3 Physiologically, noise can
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be introduced into the system from muscle twitches, inaccurate motor uvéitiactj involuntary
movements, or external environmental forces. In order to solve themsysing an ordinary
differential equation (ODE) solver, it is necessary to detegnthe noise at each time instant
prior to solving the ODE. Within the ODE, the noise at any tiare lse interpolated from the
closest predetermined values allowing the solver to converge oruteosol This method is
necessary because the solver will be unable to converge on arsdiutie noise is randomly
determined within the system dynamics subroutine. For the sionyl&aussian random noise
is be calculated at a frequency of 20 Hz and an amplitude oh@asthdeviations equal to 1% of

the gravitational gradient.

N
T
|

[
|

o
=
|

Noise Torque (Nm)

1
[
—
|

26 _
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time (s)

Figure 4.6: Gaussian random noise with a frequency of 20 Hz, and amplitude
of 3 standard deviations equal to 1% of the gravitational gradient.

Thus, the reduced order model, hereafter referred to simpheanddel, is governed by

the following differential equation
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7= mghsing - kd?sing- C(g,9) + N
mk?

(4.29)

where,q, m, g, h,q, g, k and d are the angular acceleration, mass, accelerationviby gnaight,
rotation angle, angular velocity, spring stiffness, and the distinite springs from the central

ball joint respectively.

4.3.2 Effective potential function

In the mathematical model, the limited gain control causeglato develop in the
effective potential energy curve of the systerg, \ét the upright vertical position (Figure 4.7).
This potential energy well acts as a local attractor ite stpace. Physiologically, this well
allows the participant to balance near the vertical position. edexy larger perturbations that
exceed the well's dimensions in state space will cause theigeart to fall away, hence being
repelled from the vertical position. Thus, the well is of finize sand the system is not globally
stable.

Insight into the system's behavior can be gained by examiningffdativee potential

function

1G9’ if g<gq,

V., =mghcosg - kd* cosg +
o = MITEOS 7 1G,G: +G, .. otherwise

(4.30)

which is the sum of all the potential functions. When the distance the stabilizing springs to
the central ball joint is small, the upright vertical positionnstable. As the springs are moved
further out, the upright vertical position remains unstable until tineshold of stability is

reached. A well forms in the potential curve at the uprighicatrposition upon reaching the
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threshold of stability. This well is a region of local stabiljFigure 4.7). The size of the well
may be enlarged by increasing the restorative torque providedebsptings or the controller

gain.

Figure 4.7: The effective potential energy function is the sum of the individual
components. Under some conditions, a potential well develops near the
equilibrium point.

This stable region may be visualized by examining iso-eneyg phd the flow map in
state space (Figure 4.8 in section 4.4.1). The flow map may bedivittetwo distinct regions
based on the type of motion. The first region is charactebgedliptical orbits centered around

the equilibrium point. The second region is characterized by hypedybits. The heteroclinic
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orbit separates the two regions and also locates the makewdirfes on which the hyperbolic

orbits are aligned.

4.3.4 Model Calibration

The model may be calibrated to match anthropometric data of ealtyparticipant
performing tests on the wobble chair. In order to calibrate gparatus for a specific
participant, the gravitational gradient of the subject is detedminEhe gravitational gradient,
NG, is defined asMy/ g, where M, is the moment about the pivot due to gravifyG is a
function of the participant's body mass and mass distribution.

For this simulation, model parameters were selected to migmbal values for
participants (Table 4.1). A participant with a mass of 69 kg agatational gradient of 291
Nm was used. The resulting height of the center of mass Wwasated to be 43.0 cm. Using
the wobble chair spring stiffness of 10,900 N/m, the distance frorapiiregs to the pivot was
calculated to be 10.35 cm for a spring setting of 4086

An important indicator of the participant's neuromuscular control kityais the
threshold of stability. This parameter is the minimum value ofdék®rative force (i.e. spring
distance) at which the participant is able to maintain balandbeowobble chair. Its value is
expressed as a percentageNgs. Pilot data collected from two healthy subjects yielded a
typical value of 3598G. The model was calibrated by modifying the controller valGgsind

Gp max SO that the threshold of stability matched the value found experimentally.
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Table 4.1: Model Parameters for the Reduced Model

parameter | value | source
m 69 kg typical subject
g 9.81 m/é typical subject
h 43.0 cm calculated fronNG
k 10,900 N/m wobble chair
d 10.35cm value to generate 40%G
Gy 1 Nm/(rad/s) calibration parameter
Gp 190 Nm/rad calibration parameter
Gp max 14.5 Nm calibration parameter

4.4 Nonlinear Analysis

In this section, nonlinear analysis techniques are applied to studtheawodel behaves
under different conditions and using different analysis techniquest, tie parameters of the
human postural control model will be set so that the system igvdetgtic and conservative.
This model will be used to generate a vector field from the gowgdifferential equation. It
will then be shown how the Lagrangian coherent structures calculated frovedtos field align
with the lines associated with the heteroclinic orbit. Second, randmse and a damping
component will be introduced to this deterministic model. The veiglor generated from this
model will be used to determine the LCS for this scenariodTlairmodel of human postural
control will be used to generate simulated experimental dateeifiotm of a single trajectory.
The trajectory will be analyzed and it will be demonstratedttiteLCS can be found without a

vector field.

4.4.1 Deterministic and Conservative Simulation

For the deterministic and conservative simulation, the system anoisdamping function

of the controller are set to zero. The system is modeled M#IJ_AB (MathWorks, Natick,
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MA). Since the system in its current configuration is consemathe heteroclinic orbit can be
determined by generating an iso-energy contour in state space thbdotal energy is equal to
the maximum effective potential energy. The heteroclinic alobhg with lower and higher
energy orbits are shown in Figure 4.8.

A vector field is generated from a regular grid of points in stateespentered around the
upright vertical position. Each of these points are taken asitead condition to determine the
flow map as the vector field evolves over time. The differeetjalation [4.9] is solved using a
Runge Kutta (4,5) ordinary differential equation solver function (MAB function ode45).
The forward time flow map for the system is shown to cameleell with the iso-energy orbits

in Figure 4.8.

Figure 4.8: Orbits and flow map for the deterministic conservative configuration.
Lines ending with a point show the resulting trajectories based on the initial
conditions. The heteroclinic orbit is a separatrix between the stable and unstable
regions.
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The FTLE is calculated for each point on the interior of thé hased on the expansion of the
state transition matrix. These results are combined over state spaceuepdel LE field. The
FTLE field was first calculated by flowing time forwards8conds. Recalling that the LCS are

ridges of the FTLE field, these structures form a “volcaiie shape in the three dimensional

view (Figure 4.9).

Figure 4.9: The 3D view shows the LCS to be easily observable as ridges in the
FTLE field. This plot was generated from a 200 by 200 point grid over a range of
+15 degrees by + 15 deg/sec.
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Viewing Figure 4.9 from the top (Figure 4.10), the LCS are observatigio well with
the iso-energy lines associated with the heteroclinic orbit.ridge is formed around the
heteroclinic orbit which separates stable motion near the uprigitalgrosition from unstable
motion further from the origin in state space. In addition, twordtkss are noticeable. In the
lower right, an LCS generates a hyperbolic material lingl@d 2002) that is aligned with the
iso-energy line associated with the heteroclinic orbit. As tlagedtory approaches the
heteroclinic orbit, the flow on either side of the LCS splits.ysRially, this represents initial
conditions beginning in the unstable region with large angles awg@ laegative angular
velocities. As the trajectories approach the heterocliroit,dhose trajectories on the right side
of the LCS have insufficient kinetic energy to reach the stedgeon of state space before
achieving zero velocity. As time progresses, this trajextofall back in the direction from
which they came.

Trajectories on the left side of the LCS have sufficient gn&wgapproach the upright
vertical position. In fact, these trajectories have too much energnter the stable region of
state space, and they pass over the vertical position to the atberFor the conservative and
deterministic system, there does not exist an approach from threblenstgion of state space
that results in an orbit within the stable region. The LCS famsnpenetrable barrier between
the two regions. The LCS in the upper left describes motion analtgtius LCS on the lower

right but approaching from the other side.
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Figure 4.10: LCS form separatrices in the forward time flow (T = 3 seconds).
Locations of the LCS matches well with the heteroclinic orbit and its isoenergy
lines.

The LCS can also be generated for the backward flow of timgar@=4.11). In this case,
the LCS indicates divergence of the backward time flow wiluah be equally viewed as
convergence of the forward time flow. Once again, the LC®lagerved to correlate with the
line associated with the heteroclinic orbit. Notice that an L€%3lso present around the
heteroclinic orbit in the backwards time flow. Thus, this separa&xists in both temporal
orientations (i.e. it is not an attractor of trajectories). A¥SLassociated with convergence is
observed in the upper right. Physically, this LCS representsothesigence of two groups of

trajectories. Trajectories to the right of the flow apphodte LCS after having insufficient
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energy to reach the heteroclinic orbit. Flow lines to the mfhhe LCS originally approached
form the opposite side, passed over the upright vertical position, and cdnpasiethe stable
region with too much energy to stop. These two trajectories cgaweith each having only
slightly different energies. Like the forward time flowC& also from an impenetrable barrier

between the two regions in the backward time flow.

Figure 4.11: LCS form separatrices in the backward time flow. Locations of the
LCS match well with the heteroclinic orbit and its isoenergy lines.

Depending on the system, the LCS may have different meaningsis case, the LCS
forms a boundary or separatrix between the region of stable glostuaty (around the origin)

and unstable falling motion (beyond the boundary). In this biologicamgbea the
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characteristics of the stable region and its boundary locdépand on the accuracy of a number
of neurological sensory systems, the feedback gain associdkedone muscle strength, and the

time delay of the postural control system.

4.4.2 Deterministic Simulation with Noise

In the previous section, the noise level and the damping component weoe zegb
making the system deterministic and conservative. In thisoseatioise and damping are
introduced to better approximate the actual system. Taking theeesfanto account in equation
[4.9], the flow map is generated (Figure 4.12). For referencegrthies for the conservative

deterministic configuration are also shown.

Figure 4.12: The flow map evolved over 0.3 seconds for the damped system
with noise is plotted simultaneously with the orbits for the conservative
deterministic configuration.

This damping has the effect of reducing the system enerpctaiy the trajectories

towards the origin in state space. This is observed as a isligatd arcing of the flow paths
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over the 0.3 second evolution time. Random noise slightly perturbsajeetories as they
evolve making the system no longer deterministic. This has the jbtenthave a dramatic
effect on the future of a trajectory. Trajectories neal.th8 may be perturbed to the opposite
side crossing the barrier. Thus, stable trajectories may become enatablinstable trajectories
may become stable. Shifts may also occur over the hypenbalierial lines. The forward
(Figure 4.13) and backward (Figure 4.14) time flow plots are shawrthe noisy damped
configuration. Notice that the perturbations cause the LCS teskalistinct than the noise free
LCS. However, the location of the LCS is unaltered, and it isvetily noticeable despite the

presence of noise. By rotating Figure 4.13, the ridge of the FTLE field iseapBrgure 4.15).

Figure 4.13: The location of the LCS aligns well with the lines of the heteroclinic
orbit in the forward time flow damped system with noise. Although the flow is
more diffused than the conservative noise free system, the results are essentially
the same.
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Figure 4.14: The backward time flow analysis shows LCS that also align well
with the lines of the heteroclinic orbit for the damped system with noise.

Figure 4.15: The LCS can be easily observed in a 3 dimensional plot of (Figure
4.13).
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4.4.3 Generation and Analysis of Simulated Experi mental Data

The next step toward evaluation of the real biodynamic systémsisnulate trajectories
similar to those recorded during experiments. In this sinmiathe system begins at the origin
in state space and is perturbed with Gaussian random force pgdnsb These forces generate
movement that is attenuated by a controller. As a result, ghensys able to maintain stability
for a period of time before a sequence of perturbations causegsteenso become unstable
(unrecoverable). Physiologically, this represents a persandaf on the wobble chair initially
having a tilt angle and angular velocity equal to zero. Duringetperiment, system noise
causes the person to sway, and neuromuscular control effort maygploe to maintain a stable
upright posture. The angle is recorded for each segment (Iodenpgper body) typically at a
frequency of 100 or 1000 Hz. Each simulated trial lasts 30 seanndstil the trajectory
becomes unstable and diverges beyond a certain boundary (15 degrees}y ifidependent
trials are generated from the model, and the results are coatsieinto a single trajectory
(Figure 4.16). This trajectory represents a single biodynamic exgetrin which the participant

spends time balancing near the equilibrium point and falling.

Figure 4.16: The time-series data analyzed came from several simulated
experimental trials.
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Unlike vector field data which is much richer, a single tfgey only contains
information about one point in state space at any instant of timerdér to compensate for this
deficiency in information, data are collected as the trajgatxplores different locations in state
space over the duration of the experiment. Since the sysesaumed to be autonomous, these
data can be combined to generate a FTLE field even though the locations spatatenay have
been explored at times separated by several seconds or minutgkerriRore, the lack of a
complete vector field introduces new challenges. Unlike a vaetdnihich is continuous over
space, time series data, viewed as trajectories, mayansesor absent in many regions of state
space. As a result, the FTLE field may be incomplete, and onlppsrf the state space may
be evaluated. Therefore, an important aspect of both an experimemtsandlation is that the
trajectory spans as much of state space as possible. Esigdasially important when trying to
locate LCS because it is not possible to experimentally detertheir locations unless data is
available on both sides of the LCS.

With the simulated trajectory now generated, it is possible to cortdachumerical
analysis. However, in order to better understand the numenmgalagion, the theoretical basis
for calculating the FTLE field from a single trajectoissf will be illustrated. The maximum
FTLE field can be approximated if it is assumed that the titrecof maximum expansion
dominates the dynamics of perturbations in arbitrary directiRnsdnstein et al. 1993b). Under
this assumption, equation [4.7] is presumed to hold for all perturbatidorseegardless of their
initial state space direction. This will result in a lower boapgroximation to the actual value
since the perturbation direction will not be exactly aligned it direction of maximum
expansion. As the focus is now on the maximum FTLE, the maximur& RilLbe referred to

as simply the FTLE hereatfter.
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The FTLE is estimated as the rate of separation of neighbwejegtories. In order to
understand how this is determined from experimental data, consideefdrence trajectory
shown in Figure 4.17. With a reference point established, a taogeion p is identified that is
a perturbation distanalg from the reference point in state space. The data gosdst to pon
another trajectory, inis then found. This other trajectory can be from either a diffeten of
the experimental trial or another portion of the same trial agghiby a sufficient amount of
time to avoid a strong correlation with the reference point. Thisegs is repeated for other
state space directions. Using this method, 2n neighbors are foundcforreference point
corresponding to positive and negative directions of each dimensionesptre. If multiple
nearest neighbors are considered, perturbations are sampled iplenstiite space directions

which increases the likelihood of a separation lying in the direction of maximumsapa

Nearest Neighbor (x, ’
direction, t=0) .

Ny(X1, X2+d0, X3, X4)o

Reference
Trajectory

Reference Point —_

Figure 4.17: The maximum FTLE is found by calculating the growth of
perturbation vectors in multiple state space directions. The assumption is made
that the maximum FTLE dominates the evolution of the perturbation vectors.
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Each point in the data set is sequentially evaluated by congidetinbe a reference point. The
FTLE is calculated for each pair. Unlike previous biomechanicsysemlthat averaged the
FTLE over time and space (Wolf et al. 1985; Rosenstein et al. 1993ip;28K&; England and
Granata 2007), the FTLE value over a finite time, T, is assdcwitd a state-space location.
Since the expansion will be calculated based on two points, thherreéeand the neighbor, it is
logical to assign the expansion value to the midpoint between thespoints (green points)
(Figure 4.18).

In this way, the state space distribution of the FTLE is develofdw: FTLE field is
generated by placing an n-dimensional grid over the state apdaesing the distribution of the
FTLE to generate an n-dimensional surface. At each state &maation, X, the height of the

surface is the scalar valsg(x) from equation [4.6].

(N2)o ?

(2o (N1)e

dq

o

Figure 4.18: Values for the finite time Lyapunov exponents were stored in a
location midway (green) between each reference (blue) and each nearest
neighbor (yellow). These values were used to generate the FTLE field in state
space.
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The choice oflg may influence the FTLE field. The perturbation distaifepes a coarse-
graining parameter selected to be large enough to overcomensysige and small enough to
reveal local features of the FTLE field. However, parametasitéty analysis shows this
method to be relatively insensitive to the valuedgf Reductions in the value df| by two
orders of magnitude reduced the smoothness of the FTLE field but dotharuge the locations
of the LCS.

Using the approach described above, a numerical analysis was petforalculate the
FTLE field from trajectory data. In both the mathematical rhadd wobble chair experiment,
angular position data was available for each d.o.f. of the syst@me the velocities can easily
be calculated from the position data, actual d.o.f. were available fomahdions of state space.
As a result, there is no need to reconstruct state spacethisingethod of delays as others have
done. For the mechanical system being modeled, the measured ceofdnatas used to
numerically construct the time derivative.(drhese two parameters form the 2D state space of x
= (g, g). However, note that the method of using an FTLE field to find L<Ci$ot tied to any
particular means of state space construction.

Analysis of the simulated experimental data for an evolutioe ih0.6 seconds is
shown in Figure 4.19. At this short evolution time, the LCS begins o faar the ejection
regions of state space. These ejection regions are locatesl upger right and lower left of the
heteroclinic orbit. For short evolution times these are the mtatwhere rapid divergence
occurs. However, unlike the vector field simulations presented redudiemap the flow of both
unstable and stable trajectories, the simulated experimeraablgtmaps stable trajectories and
initially stable trajectories that become unstable. As altrtethe hyperbolic material lines

associated with the approaching unstable trajectory are nohprd3espite being less complete
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than the LCS generated from vector field data, the displayed portitve &ICS generated from
trajectory data matches well with the location of the hetmioobrbit and the LCS found from

the vector field of the underlying conservative system (Figures 4.10 & 4.13).

Figure 4.19: At an evolution time of T = 0.6 seconds the LCS is observable near
the ejection points in state space.

For a longer evolution time, 1.2 seconds, the dominant peaks of the LUCtirsher to
the left on the top portion of the heteroclinic orbit and further taigie on the bottom portion
(Figure 4.20). The LCS still aligns well with the heterodlinrbit and for this evolution time
covers the heteroclinic orbit in the first and third quadrants.dthtian, the LCS still matches
well with the location of the LCS generated from vector fodtlh. The reason why the LCS is

visible over a large portion of state space is a result dbtiger evolution time. Consider two
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near points on opposite sides of the LCS on the upper portion of the heierocbit.
Trajectories that originate more to the left will flow tdggr further before reaching the ejection
region where their orbits split. As a result, trajectoriegimating from this region require
longer evolution times before the LCS is noticeable. A sinutardition exists on the lower
portion of the heteroclinic orbit where trajectories originatngre to the right flow together

longer.

Figure 4.20: By T = 1.2 seconds the LCS is clearly observable spanning more of
the boundary.

For an even longer evolution time, 1.8 seconds, the visible portion of tReca@inues
to rotate in the counter clockwise direction (Figure 4.21). By arugegnltime of 2.0 seconds

the LCS is visible near the opposite side of the heteroclinic. ohbitreasing the evolution time
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beyond 2 seconds only results in a loss of contrast in the FTIcEWigh no new information

becoming available (Figure 4.22).

Figure 4.21: By T = 1.2 seconds the LCS is clearly observable spanning more of
the boundary.

Although 20 trials were evaluated for this simulation, a sepairatdagion indicates that
LCS structures may be identified with as little as twoetiseries using this method. However,
smaller trial numbers will tend to be more affected by randoerthian larger sets because the

net effect of random noise reduces as the number of trials increases.
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Figure 4.22: FTLE field at an evolution time, T = 2.4 seconds.

4.5 Conclusions

In this chapter, it has been shown how boundaries that separatatiyedyitdifferent
kinds of motion can be found using the method of Lagrangian coherentistsuapplied to time
series data. This is different than previous approaches to cogpgbé LCS that required a
vector field to be known. Its has been demonstrated that the locatiba b€CS aligned well
with the heteroclinic orbit, a separatrix, of the underlying coatime system even in the
presence of system noise. A demonstration of a computational method 1cCfS using only
trajectory data as is commonly obtained from time seriesfdata biomechanics experiments

has also been presented. The LCS was calculated from sikindé&geand shown to also align
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well with the heteroclinic orbit. Overall, consistent resulesevobtained for the location of the
separatrix using all methods.

In this biological example, the LCS forms the boundary of a basstabflity. Defining
the basin of stability in state space provides a much richer taeirsy of the system dynamics
over previous methods that calculate a single scalar valuebolimelary, or recovery envelope,
could be used in conjunction with sway data to define new measuiredivoflual fall risk, e.g.,
the average distance of an individual's state from the boundary.

It is noted that the state-space-averaged FTLE for any Tinean be obtained by
computing the average of the FTLE field over the sampled rexjistate space. This provides
the link between the current method and previous methods for finding amesdrgapunov
exponent from time series data. In forthcoming work, this methddbe&ildemonstrated on
higher dimensional data and actual experimental data. In geitesalbelieved the method
demonstrated in this study provides a fruitful approach for extracting additidoahation from

noisy experimental data, namely boundaries between qualitatively difieneistof motion.
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Chapter 5

Mathematical Modeling and
Simulation of the Planar Wobble
Chair

5.1 Abstract

Various unstable seat apparatus have been used to isolate mdtenliwhbar spine in
order to quantify torso stability, a factor associated withtbaek pain. A mathematical model
of a human sitting on one such apparatus, the wobble chair, was develop®thn Was
restricted to the sagittal plane and anthropometric data was fosethodel calibration.
Numerical simulations were conducted to find trajectories whicte wealuated to determine
finite time Lyapunov exponents (FTLE) from each initial location in stagéee The FTLE field
was used to find Lagrangian coherent structures, ridges in the fdld, in order to determine
the location of the basin of stability. Both deterministic and sgithaimulations were
performed. The dynamics depend strongly on the control algorithm stithect and finding a
stable controller was a significant portion of this investigatibhe wobble chair is an apparatus

used to isolate certain features of the control germane to torso stability.
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5.2 Introduction

Spinal stability is often associated with low back pain (Bergni®89; Granata and
Orishimo 2001; McGill 2001; Van Dieen et al. 2003; Brown and McGill 200®vBe et al.
2007b). Since usual engineering methods sacrifice the test saumlg stability testing, these
are not suitable for application to human subjects. An unstableyseatatus has been used to
isolate motion of the lumbar spine in order to quantify torso #kal{Cholewicki et al. 2000;
Reeves et al. 2006; Tanaka and Granata 2007; Granata and Lee 2@@&natiC variability
methods such as RMS distance, ellipse area, and path veloatyaf&iand Lee 2008) as well as
dynamic stability methods such as stability diffusion (Cholewatkal. 2000) and Lyapunov
stability (Tanaka and Granata 2007; Granata and Lee 2008) have leekmouguantify the
system dynamics. In addition to analysis of experimental dataathematical model can be a
useful tool to gain better insight into the underlying system mjgg® Often, underlying
dynamics that are not readily apparent through observation maydmediethrough simulations.
In addition, simulations may be performed to show system behavier godtrolled conditions
that may not be possible in highly coupled systems.

In this chapter, simulations of torso stability will be conducted omlduegar model of the
wobble chair (Figure 2.1). The planar wobble chair model is hlyhigonlinear system that
exhibits complex behavior due to strong coupling between the two segménbrder to gain a
better understanding of the system behavior, a similar dynamstiensythe “Acrobot”, will first
be evaluated. The Acrobot consists of a double inverted pendulum withiGctom the joint

between the segments and no actuation at the attachment poirns. btdmastudied by multiple
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researchers for almost 20 years, with a moderate amount of publighkdon this system.
Since the Acrobot is a diffeomorphism of the wobble chair, some ofsdahg properties
exhibited by the Acrobot are also present in the wobble chaire(Nato systems which are
diffeomorphisms share the same dynamics and one system candbedimito the other). After
solving for this simpler system, the model configuration will be morphed into the gvobair to

reveal the solution to this more complex system of interest.

5.2.1 History and properties of the Acrobot

The Acrobot consists of a double inverted pendulum with an actuatoedaetiiie two
segments and no actuator at the pin joint where the Acrobot attchies inertial reference
frame (Figure 5.1). Since the Acrobot model is a diffeomorphismeofvbbble chair model, the
differential equations developed for the wobble chair also apply toAtnebot. The only
differences are in the parameter values (i.e. masses, moofenmisrtia, vector direction and
magnitude to the joint, and vector directions and magnitudes to the cénteass). It is
advantageous to study this slightly simpler and more well-knowtemayis order to gain a better

understanding of the results that may be obtained from the wobble chair.
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joint

Figure 5.1: The Acrobot (acrobatic robot) is patterned after a gymnast on a high
bar (a). Actuation occurs only at the middle joint (hip) with the first joint (hands)
being free to spin about its axis (Murray and Hauser 1991)

Both the Acrobot and wobble chair are underactuated systems, meannpgotses
fewer actuations directions than degrees of freedom (Spong 1995yayMurd Hauser coined
the term “Acrobot” and were the first to show that this undergatusystem was controllable at
any equilibrium point .(Hauser and Murray 1990). Controllability is tidase denotes the ability
to move the segments within configuration space and near an equilipoiminusing only the
single actuator. Since then, others have evaluated the dynaintlos Acrobot (Spong 1995;
Boone 1997) and similar dynamic systems (Hou and Luecke 2003). drodoA is highly
nonlinear with strong coupling between segments. This coupling wdsys®pong to achieve

a linear response from the first segment through momentum couwytimghe second segment.
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This resulted in exponential convergence of segment one. Howevenptlenent of segment
two was complex since its motion was dictated by the dynameigaired to generate the
coupling forces needed to control segment one (Spong 1995). Thus, segmeatliavnot be
controlled for exponential convergence simultaneously with segment one.

One important property of the Acrobot is the existence of an edquifibmanifold
(Murray and Hauser 1991). The manifold exists when the combined cémterss of the two
segments lies directly above the free swinging pin joint. hVein appropriate torque at the
middle joint, this configuration is able to achieve static equilinrivhere the two angleg; and
0o, are static. One way to fix the angle is to apply an ap@teptorque at the joint between the
segments. In the examples below, the equilibrium manifold wasrajedefor two sets of

parameter values, the balanced parameters and the actual system pau&ngetre 5.2).

Figure 5.2: Equilibrium manifold for the Acrobot. Balanced parameter values
were 0.5, 1, 8, 8, and 10 for the length of segment 1, length of segment 2, mass
of segment 1, mass of segment 2, and acceleration of gravity, respectively.
Actual parameters were 0.5, 0.75, 7, 8, and 9.8 respectively (Murray and Hauser
1991).
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Bortoff, a student of Spong, was the first to produce experimesgalts for the Acrobot
(Bortoff 1992) (Figure 5.3). Quantitatively, the results differednf Murray and Hauser for two
reasons. First, the systems had different parameter valussesnéengths, moments of inertia,
friction and damping. Second, Murray and Hauser defined the second jdmtaantpe angle
between the two segments, and Bortoff defined the second angldaheowertical reference.
However, despite these differences, the results are qualiyasueilar. The existence of an
equilibrium manifold is significant because it indicates thatethere an infinite number of
equilibrium points which exists along the length of the manifold. Tétability for the Acrobot

(and the wobble chair) may be achieved with more than one combinatipamdq,.

Figure 5.3: Equilibrium manifold for the physical Acrobot (Bortoff 1992). Note
that the axes are switched when compared with Figure 5.2.
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A second property of the Acrobot is the location of the basin oflisgabThe basin of
stability for the balanced system was found to be a diagonal banddathe vertical position
when plotted in ¢i1,02) variables for both segments at zero velocity (Figure 5.4a)@yuand
Hauser 1991). Although not shown, it is presumed that the basin ditgtalsentered over the
equilibrium manifold. Bortoff also found a basin of stability for therdbot with linear control
(Figure 5.4b) (Bortoff 1992). The solid line encircles a basirtadfilgy for a controller which
has been linearized about the origin. The dashed line encircldsasie of stability for a
controller that is linearized about a balanced configuration in whiehsecond segment is
horizontal. Three important conclusions may be made from the bdsstabdity. First, the
basins of stability are generally, but not exactly, aligned thighequilibrium manifold. Second,
the size of the basin of stability becomes smaller when tsierayis linearized about a point
further from the vertical configuration (the origin). Third, stépinay be achieved further from
the origin by using a controller that is linearized about a renpaint on the equilibrium

manifold near the state of the system.
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b)

Figure 5.4: Basin of stability for (a) the balanced Acrobot (Murray and Hauser
1991) and (b) the physical Acrobot (Bortoff 1992).
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5.2.2 Morphing the Acrobot into the Wobble Chair

The FTLE field (see section 4.2.3) for the wobble chair was gedefateslowly
morphing the Acrobot into the wobble chair. Controller gains were neddifiuring the
progression to ensure that LCS could still be seen at each step thbhsformation. First,
keeping all other parameters the same, the masses weigsgttfeom the Acrobot values to the
wobble chair values (=8 27.4kg;m=8 31.8 kg). Next, the moments of inertia were
changed =0 235kgni;lLb=0 4.86 kg-M). Next the segment and center of mass
vectors were slowly changed. The vectors for the Acrobot auibie chair are shown in Table
5.1. In order to morph all vectors simultaneously, a morphing pencemph was defined.
Each vector wasnorph percent Acrobot and (10@norph percent wobble chair. Some of the

intermediate configurations are shown in Figure 5.5.

Table 5.1: Segment and center of mass vectors

Wobble chair Acrobot
X y z X y z
Ly 0.1272 0.1580 0 0 0.5 0
L 0 0.7179 0 0 0.5 0
C1 -0.1771 0.0780 0 0 1.0 0
C2 0 0.2736 0 0 1.0 0
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Figure 5.5: Center of mass and segment vectors for the Acrobot were slowly
changed to those of the wobble chair. This effectively morphed one model into
the other.

5.3 Mathematical Model of the Planar Wobble Chair

The planar wobble chair was modeled as a double inverted pendulum. iokbée
chair, the first segment consisted of the lower body and the chiae second segment consisted
of the head, arms, and torso. The pivot joint between the two segnentscated between the

fourth and fifth lumbar vertebrae (Van Dieen et al. 2003).
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5.3.1 Anthropometric Parameters

A segmented human model (Figure 5.6) was created so that therlomfathe center of
mass (COM) for each segment and the joint location betweermwihesegments could be

calculated.

/ Head
Upper Arms
Trunk
Forearms /
Hands \
Shanks
\ — Pelvis
Feet
\ Joint 1:
_ Ball & Socket
Springs

Figure 5.6: Model of the person sitting on the wobble chair. Blue components
contribute to segment one. Green components make up segment 2. The joints
are shown in red and the springs in aqua.

Individual body segments were modeled using anthropometric dathefde 1996).
Anthropometric parameters used in the model included segmentsn&3® locations, and
radiuses of gyration for a typical person. Segment values were obtainedtipjyinglthe given
ratios by the subject’s height or weight. Using the anthropameéata and human subject
measurements the following three dimensional vectors were gethdrain components of the

lower body while configured in the seated position (Table 5.2 and Figure 5.7).
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Table 5.2: Lower body vector table

Beginning location Ending location Source
l'oh Origin (ball joint) Hip (greater trochanter) Measurements
lcomt | Hip COM of the thigh Anthropometric
I ot Origin COM of the thigh Fot = Fon+ Ihcomt
I hk Hip Knee Anthropometric
lvcoms | Knee COM of the shank Anthropometric
I os Origin COM of the shank los= Foht Ik * Nkcowms
lka Knee Ankle Anthropometric
racomi | Ankle COM of the foot Anthropometric
Il of Origin COM of the foot Fos= Foh+ Thc+ Tka+ lacoms
Thighs
Mhk fot
Pelvis
l'kcoms —
Shanks

\‘\\ roh

rhcomt

- \
ee Mea

Figure 5.7: Vectors were used to find the locations of the center of mass
of each body segment.

The mass of each component was found from tabulated data. The ragyuatmh for
each segment was used to determine the moment of inertia Foc@aponent about its center

of mass.
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—_ 2 - -
l, ., =mg; J=XY I=h,t,s, f (5.1)
Where, i represents the component (hip, thigh, shank, foot) and j correspdhdsaixis. The
parallel axis theorem was applied to obtain the moment of irErgéach component about the
origin.
—_ 2 - H—
o i =1, +m(roi) J=XY i=ht,s,f (5.2)
All components were combined to develop a composite moment of ifartie lower body,
1™, (5.3)
® — -
Ijj _Ijj_pv+2|u_t+2|Jj_s+2|u_f =Xy
The mass of the lower body,ijrwas determined by calculating the sum of the component

masses. The vector from the origin to the center of maskeofower body was found as

follows:

- rohrnn + 2rotm + 2rosrns + 2rof mf (54)
m, +2m +2m, +2m,

1

The upper body was calculated in a similar manner. Upper body compamnsisted of the
head, torso, two upper arms, two forearms, and two hands. The upper bajymasas
determined by evaluating the sum of the component masses. The afem&ss of the upper
body, &, was calculated with the same techniques used to calcykabewve.

A reduced model was developed for the body, simplifying it into tgiml segments
pivoted at the joint between the fourth and fifth lumbar vertebraenid L5 (Figure 5.8)_. 1and
I:z are the segment vectors of the reduced model. Notice thatvethers ¢ equal _Ll and ¢

equals_lg, then the wobble chair and Acrobot converge to the same system.
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Figure 5.8 — Simplified model of the person sitting on the wobble chair. Position
vectors, L; and L,, show the connectivity of the model. Vectors ¢, and C, are
from the joint to the center of mass of each segment. In the initial balanced
configuration shown, the segment angles g;and ¢ are set to zero.

5.3.2 Planar Wobble Chair Model

A proportional-derivative (PD) controller was used to maintaibilsta However, only
one actuator between the two segments was included. This wasousspresent flexion or
extension of the spine in the lumbar region. No control torque wasd@tween the base and
the chair to simulate the presence of the ball joint. In additompression springs were

included in the model to provide a stabilizing torque. Stabilizing conted achieved by
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causing flexion between the two joints when the overall center afsnis to the right of
equilibrium and extension when the overall center of mass is to the left of equilibrium

A Lagrangian approach was used to determine the equations of mdtiervectors g
Ca, I__l and _Lg are position vectors that move with the local reference framdege defined in the
global reference frame when the system is in equilibrium. Tb®wv&om the ball joint to the
center of mass of the lower body segment.isThe vector from the ball joint to the hinge joint
at the lumbar spine i_le The vector, £is from the hinge joint at the spine to the center of mass

of the upper body segment. The vector from the hinge joint at the &pthe center of mass of

the head is b
Cl_x Ll_x CZ_X L2_>< 0
Cl = Cl_y Ll = Ll_y Cz = CZ_y Lz = L2_y g=-g9 (5-5)
0 0 0 0 0

where, ¢ x and g y are vector components in the local reference frame in the y dimections
respectively. The other terms were defined in a similann@a The acceleration of gravity
vector is given byg and is expressed in terms of the scalar valug efjual to 9.8 mfs
Rotations in the x-y plane are defined by angjeandqg, with the index defining the segment
number. Rotations about the z-axis from local to global coordinagegiven by the rotation

matrices, R and Rp.

Cosg, - Sing, O Cosg, -Sing, O
R,= Sing Cosz O R,= Sing, Cosgy, O (5.6)
0 0 1 0 0 1

The position vectors in global coordinates were calculated by apgplyine rotation

transformations to the position vector in local coordinates.
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Xcl = quCl XL1 = quLl

B B (5.7)
Xcz - quLl + qucz XLl - quLl + qu Lz
The velocity vectors were found by taking the time derivative of the position sector
Xc1 = Rtgqlcl XLl = R[%qlLl
d
Xcz = E(qul‘l + RqZCZ) = quql Ll + Rzg:zqzcz (58)

d
X, = E(R L, + quLz): quql L1 + Rzg:zqzl-z

11

The potential energy, V, is a function of the height of the masstés gravitational field and
given by,
V = mlg )Xcl + ng >X02
=m,g x(R,,c,)+ m,qg ><(quL1 + qucz) (5.9)
The kinetic energy, T, is a function of the velocities of theters of mass and the angular
velocities of the rigid bodies.
T =2m X, *X, +¥xm,X_,xXX_, +w Xl , xw + 5w, xl,xw,

= zm, (Rgg.c, ){Rga.c,)
+¥m, (R[ggql L, + R[gizqzcz)X(Rg:lql L, + Rgzqzcz)
+ g, x1,q, + 2q9,%,4,

= um,c. | g + xm, L, g2 + m, (RL, )RS, )a.q,
rym,e, |’ g2+ 51,97+ %1,q2 (5.10)

The Lagrangian, L, is given by the difference in kinetic energyand potential energy, V.

Lagrange’s equations were applied to find the equations of motion.
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A L L L=T-V

dt g g

d 1(T-vVv) _'"(T'V):[ (5.11)
dt g g

d 1T _d v 1T 1V
dt Tg d g 19 1q

Where,t is the sum of all torques applied to the system. The equatiorsalasd for each

component
TV = m,g (Rgc,)+ m,g <(REL,)
g,
11-[];/2 = m,g X(Rzg:zcz)
WA Vo,
Mg, g,
T
:TTC/ = mz(quu—l)x(ch:zcz )Q1Q2 (5.12)
T
1111 o c m, (RSL, )x(R %c,)a,9,
T 2 2
111167 = m1HC1H q, + m2HL1H q +m, (ngil—l)x(ng:zCz)% + 1.9,
T 2
1111% - mz(Rég:lLl)x(Rc%CZ)ql + mzHCZH q, + 1.4,
d IT

o 1g. - mlela +mufa + m(ReL)HREC g

+m, (ReL, )R g, )2 + m,(REL, )X(REC, ), + 1.9,
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d 9T

dt 1g,

=m,(RaL,)x(R¢c,)q2 + m,(ReL, ) <R ¢, )q.4,

+m,(ReL, )X(REc,)g, + m,[c,['g, + 1,9,

gl 1

Combining these equations yields the equations of motion,

S I d v _ 1T 1V _
oo dt Tg, dt Tg, Tg9, Tg9, '

m1HC1H2('71 + m2HL1H2('71 + mz(qutLl)x(Rzg:zcz )Q1q2
+m, (ReL,)x(R8c,)gz + m,(R&L,)x(Rgc, )g, + 1.g,
- 0)- (m,(ReL,)x(RS,c, )0.9,)

+ (m,g x(Rge,)+ m,g x(RgL,))=¢,

m,fc.| g, + m,|L,| g, + m,(R&L, )x(R,%c, )g?
+ m2(R[Q:lLl)x(R[lecz)q2 +1,9, + mg x(R[g:lcl) (5.13)
+ m,g ><(R£§I:l|_l =t,

g . G I _d IV AT v _
o dt g, dt Mg, g, Tq, °

m, (quu—l)x(ng:zCz )q12 + m, (Rr%Ll)x(Rq(g:Cz )Q1q2
+m,(ReL, )4(REc,)q, + m,|c,|*q, + 1,4,

gl™—1

- (m, (REL,)X(RYc, )a.q, )+ (m,0 X(R¢c,)) = ¢,

- (0)

m, (R4, ){(R¢c, )g? + m,(ReL, )X(Rg.c, )q,

2 (5.14)
+m,|c,[ g, + 1,9, + m,g X(R&c,)=¢,

These two equations were put into a matrix equation with the following form
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Mg+Cqg®+G(g)=t (5.15)

with the matrices defined below.

— m1HC1H2 + m2HL1H2 + |1 m, (Rigi:LLl)x(qu:ZCZ)

M
m, (R¢L,)x(Re.c,) m, .| + 1,
C - 0 m2 (RL%.Ll)X(Rq(g‘CZ)
m, (REL,){Rec,) 0

o - MoxRee)+mg~{ReL,)
m,g {R&c,)

t= "
I.Z
.

qg=
q,

t1 andt, are composed of multiple components as described below

T

Spr

- (T, +T, +C, +C, + Noisdg

. (5.16)
T, +T,+C, +C, + Noise

where, Ty is the spring torque as described above for the inverted pendulum nid€}, and
noise are also described aboveg i$ the torque due to stiffness of the spine, agdisTthe

torque due to damping of the spine.

5.4 Nonlinear Analysis

Nonlinear methods were used to simulate and analyze the Acrobtiteamabble chair
models. First, the Matlab model of the Acrobot was simulateddeteaministic system. The

results were compared to those found by other researchers. Next, the seghoenter of mass
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vectors were slowly morphed from the Acrobot values to the wobble ohitues. A
deterministic simulation was performed on this system and cewgarthe Acrobot. Next, a
simulation was run with noise applied to the wobble chair and timessgata was generated.
Finally, a stochastic analysis was performed on the noisydaries data to find the location of
the basin of stability.

One challenge with this analysis is that the basin of stalibty within the four
dimensions of state space. Although one, two, and three dimensional gesmet relatively
easy to understand, visualization in four our more dimensions is notivieitiand techniques
must be used to evaluate the results. One method is to viee afsa high dimensional system
using a Poincaré sections. In the following analysis, thrémsswvill be examined. In the first

Poincaré section, the sensitivity g@ andq, will be evaluated while the angular velocity gqf

andq, are near zero (Figure 5.9). Using set notation this Poincaré section is given by
SO :{((71,(72 )T St Sl‘ q,»q,» O} (5.17)

where $is the configuration space of a circle. The second Poineati®s is a @ 0) slice of
state space while the angle and angular velocity @re near zero. Set notation this Poincaré

section is given by

S, :{(ql,ql)T S A ‘ q,»q,» O} (5.18)

where is the set of all real numbers representing the tangent spage The third Poincaré

section is ady, ) slice of state space, more precisely,

S, = {(qz,qz)i S'"A |g »q, » O} (5.19)
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Figure 5.9: Poincaré section is a (dz1, ) slice of state space while the angular
velocities (1, () are near zero.

5.4.1 Analysis of the Deterministic Acrobot

A mathematical model was developed with parameter values thelhedathe balanced
system created by Murray and Hauser. Since the system isaon@dded, both segments cannot
be controlled. Therefore, a proportional-derivative (PD) controllerwsad to drive the location
of the total center of mass to the equilibrium manifold. Empirroathods were used to
determine the gain parameters needed to stabilize the Acrdiiw. process of determining
appropriate gains can be difficult in highly nonlinear and unstableragst However, finding

appropriate controller gains for the balanced parameter Acrobotrelasvely simple when
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compared to the wobble chair. These stable controller gains wiibéx as a starting point in
trying to find stable gains for the wobble chair in the next section.

A simulation was conducted using a proportional gain of 9eh@ a derivative gain of
six. The controller was able to drive the total center of rfrass an initial angle of 1 degree to
within 0.1 degrees with what appears to be exponential convergencee(bigQ). Although the
center of mass approached zero, the segments oscillated betwe®drdegrees (Figure 5.11).

The phase plot clearly shows that the system developed a limit cycleg(Bigr)
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Figure 5.10: Simulation results showing that PD controller drove the center of
mass to near the equilibrium manifold.
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Figure 5.11: Time plot for the upper and lower segments of the Acrobot.
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Figure 5.12: Phase plot for the upper and lower segments of the Acrobot.
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The equilibrium manifold was calculated for the balanced AcrobimiceSn and m are
equal and; is twicel, (refer to Figure 5.1), the balanced Acrobot is in static equilibrdran
01 = ¢, provided that an appropriate torques is applied at the mid joinbposdvement (Note
that Murray and Hauser defirgg as the angle between segments while the model developed
herein considerg, to be the angle with respect to the global vertical refejenddus, the
equilibrium manifold for the balanced Acrobot is simply a line vaittlope of -1 plotted on the
zero velocity planegi= g= 0) (Figure 5.13).

Trajectories were calculated for a 31x31 grid of initial valoetsveen the angles of £ 15
degrees. These trajectories were allowed to evolve for 5 sec&talsle trajectories remained
close to the origin in state space and unstable trajectoriesyydiekrged. Unstable trajectories
were evolved until they reached an angle exceeding 300 degraegivedf indicating unstable
behavior. Those trajectories that failed to stay within the boun880(} were considered
unstable and marked with a cross at their initial location i Sjp&ce. Those trajectories that
remained bounded for 5 seconds were considered stable marked withea(Figure 5.13).
Notice that the stable trajectories lie close to the equihibrmanifold found using an
independent method. In addition, results are found to be similar to ghosa in Figure 5.4.
There are a few stable outliers in the field. Perhaps, thpsesent trajectories that generally lie
outside the stable region but happen to move into the stable regsgomattime during their

evolution. As a result, these trajectories may also be attracted toward tii@iaqumanifold.
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Figure 5.13: The blue line show the location of the equilibrium manifold. Circles
show initial locations where trajectories remained in the neighborhood of the
origin. Crosses represent initial locations that resulted in unstable trajectories.

The methods used to calculate the FTLE field for the inverted penduwéuienexpanded

to four dimensions and applied to the Acrobot. The FTLE field genenased(the regular grid

In

method) showed a trough near the location of the equilibrium manifofir@=i5.14).

addition, LCS were observed on each side of the trough. Since theepf@Sent separatrices in

trajectories, they should lie on the boundary between the stable atablenregions of state

Indeed, the LCS are observed to align well with the boundavgelpestable and

space.

unstable trajectories shown in Figure 5.13.
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Figure 5.14 — LCS are visible in both the (a) top view and (b) 3D view of the FTLE
field for the Acrobot.
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With a stable controller found for the Acrobot and the ability to géeadr@S for this
system, these initial parameter values were used asiagfaotnt to generate similar results for
the wobble chair. The FTLE field for the wobble chair was geregiageslowly morphing the
Acrobot into the wobble chair as described above and applying the Edlt&ation technique

described in section 4.2.3.

5.4.2 Analysis of the Deterministic Planar Wobble Chair

The existence of the equilibrium manifold for the wobble chair was kmotvn prior to
evaluation of the Acrobot. However, since the wobble chair is adifephisms of the Acrobot
and it was known that an equilibrium manifold exists for the Acrobot, anyeaonclude that an
equilibrium manifold must also exist for the wobble chair. Téiget another example of how
evaluating a defeomorphism can add new insight into a system.

In order to find the location of the equilibrium manifold, a seriegdnfilibrium points
were calculated. For a given angle of segment one, equilibriumtspaiere found by
determining the angle of the second segment needed for the shenmbments about the free
pin joint to equal zero (Figure 5.15). An appropriate torque was agilibe actuated pin joint
in order to resist motion. The results were similar to the anbad Acrobot (Figure 5.2) and
the physical Acrobot (Figure 5.3). In the actual wobble chair exests, participants were
constrained by the equipment to remain close to the origin ofjridqgh, within £ 15 degrees.
Over this range, the equilibrium manifold is almost linear whettgd on the zero velocity

plane of state space.
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Figure 5.15: Equilibrium manifold for the wobble chair. The box indicated the
region that is attainable in wobble chair experiments. Results are plotted on the
zero velocity plane (1= g.= 0).

Beginning with these controller gains for the balanced Acrobot rivadieg appropriate

gains for the wobble chair easier than finding these “fromtatia Through morphing stable

controller gains were found for the wobble chair which previously couldb@dbund through

trial and error.

Starting from initial angles of -2.2 and 1.8 for theta 1 and thetaspecévely, the

wobble chair dynamics were simulated. A truly convergent syste® found using a

proportional gain of 3x1and a derivative gain of 200 (Figure 5.16). With this system, the

segment oscillations converged to zero (Figure 5.17). The phatsis pllso consistent with a

convergent system (Figure 5.18).
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Figure 5.16: Simulation results showing that PD control drove the center of mass
to the equilibrium manifold.
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Figure 5.17: Time plot for the upper and lower segments of the wobble chair.
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Figure 5.18: Phase plot for the upper and lower segments of the wobble chair.

With the controller gains now defined, trajectories were caediléor an 80x80 grid of
initial values between the angles of + 8 degrees (Figui®). Trajectories that stayed remained
bounded (+ 300 were determined to be stable according to Lyapunov in the fime tAs
before, stable and unstable initial locations were marked wittesiand crosses, respectively.
Notice that the basin of stability is much smaller than thefoned for the Acrobot. This may
be the reason why a stable controller could not be found for the woblreictiea solution was

first found for the Acrobot.
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Figure 5.19: Global view of the basin of stability based on the outcomes of
trajectories. Circles show initial locations where trajectories remained in the
neighborhood of the origin. Crosses represent initial locations that resulted in
unstable trajectories.

Next, the regular grid method was used to find the location of the basin otgtabithe
wobble chair. The technique was similar to that used in chapbert €xpanded from two
dimensions to four. Briefly, the finite time Lyapunov exponent wasutated by determining
the local deformation of a regular grid in four orthogonal dimensiorsnglthis technique, the

LCS for the wobble chair was found (Figure 5.20-22).
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Figure 5.20: In the q, g2 plane, LCS are visible in both the (a) top view and (b) 3D
view of the FTLE field for the wobble chair. The equilibrium manifold (black line),
LCS (ridges), and stable trajectory evolutions (circles) were all observed to
correlate well.
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Figure 5.21: In the g; phase plane, a depression in the FTLE field is observed to
the upper right of the origin in the (a) top view. A (b) 3D view of the FTLE field for
the wobble chair is also shown.
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Figure 5.22: In the g, phase plane, a depression in the FTLE field is observed a
little closer to the origin in the (a) top view. A (b) 3D view of the FTLE field for the
wobble chair is also shown.
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The location of the equilibrium manifold (black line) shown in Figure 5.26 feund to
align well with the trough of the FTLE field. In addition, the basfistability found through the
evolution of trajectories (circles) was also observed to coerglatl with the LCS (ridges) in all
figures. In the phase plots (Figure 5.21 & 5.22), the basins of stdbilind through the LCS
method were larger than that found through evolution of trajectoriess may be due to the
tendency of the system to be more stable to forward perturbatiosedt by system asymmetry.
The same controller gain parameters found in this section werdaigeterate trajectories for

the stochastic simulation in the following section.

5.4.3 Stochastic Analysis of the Planar Wobble Ch  air

The stochastic analysis of the planar wobble chair is sinolahat performed for the
inverted pendulum in section 4.4.3. Beginning from resg;at g, = 0, random force
perturbations were used to destabilize the system while theoklentand springs provided
restorative moments. The first task was to use the mathematolel to generate time series
data representative of that collected from experiments. Thas imtermediate step towards
being able to analyze actual experimental data which will be performed irchapt

From the time series data, two methods were employed tolat@cthe finite time
Lyapunov exponent (FTLE). Each method differs in the way that thd= Rfas calculated.
However, both methods were used to generate an FTLE field. Inuthiedan distance method
(refer to section 4.4.3), the maximum FTLE is found by determirfiegrate of separation
(Euclidean distance) of two nearest neighbors in n-dimensional sgiat® (Rosenstein et al.
1993a). The Euclidean distance in state space is the squaod tlo®tsum of the squares of the

distances in each dimension. This method has been used by seseaatirers to calculate
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FTLE for biodynamic applications (Rosenstein et al. 1993a; Dingatedl. 2000; Granata and
England 2006; Kang and Dingwell 2006). In the second method, the statgidra matrix

method, the FTLE is calculated from the state transition mathich is determined by
evaluating the rate of expansion of a n-dimension hyper-elligsd(fen et al. 2005; Lekien et

al. 2007).

5.4.3.1 Generation of trajectories

The mathematical model for the wobble chair was used to genereteséries data.
Beginning from the origin (0,0,0,0) in state space, random force perturbationsppked ¢o the
system causing movement. Twenty trials were conducted atlaeaef 10%NG and a noise
frequency of 20 Hz. The noise had a Gaussian distribution but was kosuncte that it could
not exceed 8. The same control parameters used for the deterministigsanal the wobble
chair were used in the stochastic simulatiop £@x1¢, Gy = 200). Simulation time was set to
30 seconds, however if either angle exceeded a magnitude of 300 ddwreeal was stopped.
These large angles occur when the system becomes unstalidefores the controller drove the
system toward the equilibrium manifold (Figure 5.23). With th&tesy, the segments oscillated
near zero until the combination of perturbations caused them to go endtajure 5.24). The

phase plot shows both stable and unstable trajectories (Figure 5.25).
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Figure 5.23: Simulation results showing the location of the center of mass over 50
trials. The PD controller drove the system towards the equilibrium manifold.

Theta 1
Theat 2

Figure 5.24: Time plot for the upper and lower segments of the wobble chair. Both
stable and unstable dynamics are visible.
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Thetal
Theat 2

Figure 5.25: Phase plot for the upper and lower segments of the wobble chair.
Both stable and unstable dynamics are visible. Stable behavior occurs within ~4
degrees of the origin (see 5.24).

5.4.3.2 Euclidean distance method

Recall equation (2.3), d(t) = d(0)'e The Euclidean distance was calculated in four

dimensions for the planar wobble chair. Thus, the distance, d(t), is determined by,

2 2 2 ) 517
dO) =@ - @)+ G- G+ @ ) G- G O

where the subscripts n and r refer to the neighbor and the #goemt, respectively. Using
this method the Lyapunov exponeht,was found by fitting the divergence to an exponential

function of evolution time, t, over the time interval [0.2, 0.7] seconds (refer to section 2.2.3).

5.4.3.3 State transition matrix method

The second method employed to generate the FTLE field was thdrataition matrix
method. The state transition matrix, is a function that describes how a perturbation from a
reference trajectory evolves over time (Shadden et al. 2005; Lekien et al. 206)s the same
matrix that was used to generate the FTLE field for therdenistic systems in the previous

section.
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Like the Euclidean distance method, the state transition ma#sxcalculated for each
reference point. First, target points were defined a distdgda the positive and negative
direction of the first dimension (cyan points — Figure 5.26). The steaegghbor to either of the
target points (green point) was found. The vector from the refepmigeto this first neighbor
defined the first principle direction (green arrow). Next, tapgents were defined at a distance
dqg in the positive and negative directions of the second dimension (yatimis). The nearest
neighbor to either of the target points (magenta point) was found,\sadaa from the reference
point to this first neighbor defined the second principle direction ¢émagarrow). This process
was repeated for each dimension of state space. Upon completiornvebtss defined a basis
that spans the dimensions of phase space. Since a preliminatigemi@s showed the principle
directions to align very closely with the basis vectors of thereace frame, those basis vectors

were used for the analysis.

Ellipse at time t; o MaX1, Xo+0d, X3, Xa)i

nz(Xl, X2+dq' X3, X4)O\ //

N
4

Ellipse at time tg

o =4 ;
/ ----- o\ _______ N1(X1+00, Xz, X3, Xa)i

Figure 5.26: The state transition matrix was calculated by first forming a basis
about the reference point using nearly orthogonal vectors, then tracking the
trajectories forward in time (Dt) and determining the changes in the basis vectors.
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As these points were tracked forward in time, the length and atiemtof the basis
vectors changed revealing how a ball of nearest neighbors deforws. simplicity of

illustration, consider the 2-dimensional case and(lt;t(xl, Xz) = (X, y) and

X, (t+Dt)- x (t+Dt) x,(t+Dt)- x (t+Dt)

— an(t) - X (t) Yno (t) - Y (t)
TORUT - v (e Dy y,eD0- ey O
an(t) - X (t) Yno (t) - Y (t)

where the subscripts n and r indicate a neighbor or reference m@sipéctively. The diagonal
terms represent expansion or contraction, and the off-diagonal itedroate shearing (Figure

5.27).

Figure 5.27: Graphical representation of the terms that make up the gradient of
the state transition matrix.

134



5.4.3.5 Results - Euclidean distance method

The Euclidean distance method was applied to the time seriesagehabove. The
resulting FTLE field is shown below for the zero velocity plargre 5.28). Since all
trajectories began from the origin, little is known about the datside of the thin band. The
available data showed that the trajectories with near zeroityefoc both segments to only
existed near the equilibrium manifold. Little structure wasceatble in the FTLE field in either

of the phase plots using the Euclidean distance method (Figures 5.29 & 30).

Figure 5.28: FTLE field for the wobble chair generated using the Euclidean
distance method. This two dimensional plot shows the zero velocity section of the
four dimensional system. Poincaré section width was 50% of the range of the data.
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Figure 5.29: FTLE field for the wobble chair generated using the Euclidean
distance method. This two dimensional plot shows the (1, dl) slice of state space.
The position and velocity of g, is reduced to a 10% band around (gz = O c'lz= 0).

Figure 5.30: FTLE field for the wobble chair generated using the Euclidean
distance method. This two dimensional plot shows the (qz,c']z) slice of state space.
The position and velocity of g; is reduced to a 10% band around (g1 = 0 gy = 0).
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5.4.3.6 Results — State Transition Matrix method

The state transition matrix method was applied to the same dé@ries data. The
resulting FTLE field is shown below for the zero velocity pléifigure 5.31). The results were
similar to those found using the Euclidean distance method. Datamnagpresent on the

equilibrium manifold.

Figure 5.31: FTLE field for the wobble chair generated using the state transition
matrix method. This two dimensional plot shows the zero velocity section of the
four dimensional system. 100% of the available data is shown.

In the phase plots, structure was visible in the FTLE field. pgxedsion was noticeable
around the origin in 4D state space (Figure 5.32 & 5.33). Fagthbase plot, the shape of the
depression was smooth, but its magnitude was much larger than foundhttraaling

trajectories. For the, phase plot, the ridges surrounding the depression were less smooth.

Again, the magnitude of the basin of stability was larger than that calcutatedh trajectories.
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Figure 5.32: FTLE field for the wobble chair generated using the state transition
matrix method. This two dimensional plot shows the (q, dl) slice of state space.
The position and velocity of gz is reduced to a 10% band around (g, = 0 gz = 0).

138



Figure 5.33: FTLE field for the wobble chair generated using the state transition
matrix method. This two dimensional plot shows the (02, 6]2) slice of state space.
The position and velocity of g; is reduced to a 10% band around (g1 = 0 gy = 0).
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Another way to view the four dimensional results is to creatoadimensional grid of
two dimensional data (Figure 5.34). The value of the FTLE at any location mslgntee height
and color of the plot. Below is a 4D plot generated to show thet effeon-zero velocities on
the size and location of the basin of stability. The locaticth@basin of stability was observed
to shift with velocity (see also reference file “LCS nonezeelocities.ppt”). It is observed that
when the lower body velocityg:, is balanced by a upper body velocity, in the opposite
direction and a magnitude of ~1.5 times, the LCS is still pres€his result is consistent with
logical thought, but the magnitude difference was non-intuitive and woukl ¢giane unnoticed

without the 4D plot.

Figure 5.34: The 2-dimensional figures are arranged into a two dimensional
grid. By comparing the figures at different grid locations, the full four dimensional
basin of stability can be visualized (see associated document, “4D Basin of
Stability”)
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5.5 Discussion

The mathematical model of the Acrobot matched well with the ghdxdi results. Since
the governing differential equations were the same for both thebdtand the wobble chair,
this verifies the equations used for the simulations. The basistbility obtained using the
regular grid method for the deterministic system showed good resolufs expected, ridges
formed at the boundary between the stable and unstable regions. iz&hefsthe basin of
stability matched well with the basin of stability determingdracking trajectories. The basin
of stability was found to be smaller for the wobble chair thanAtrobot. It is likely that this
arises from the asymmetry of the system. The systegssstblerant to negative perturbations
than positive ones. This effect was observed as a shift in th®lood the basin of stability
towards the upper right corner of the phase plot. This makes theoktlge basin of stability
closer to the equilibrium manifold in the negative directions implyirat it is easier to fall with
the total center of mass moving backwards. In the simulationsishilly occurred with the
lower body,q;, falling backwards and the upper body falling forwatggFigure 5.24).

This effect was also observed in the stochastic analysis.|l Retaall of the trajectories
began at the origin in state space and were perturbed by rand@reqoaly in both directions.
For those trajectories that did not stay in the neighborhood of the,oaiy of them became
unstable with the center of mass moving in the negative directiomted results were obtained
from the stochastic analysis of the time series data.

The Euclidean distance method did not yield structure for any dPdimecaré sections.
On the other hand, the state transition matrix method yielded stuatihe phase plots, but
these did not match well with the size of the structures found inléterministic simulation.

The large size of the basin of stability found in the stochastic analysibereayesult of the short
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evolution time. In the deterministic system, an evolution time os8conds was adequate to
determine the direction of motion. However, with the added noise oftdbhastic system,
longer evolution times may be necessary to find the basin ofitalsing this method. It may
also be possible that the basin of stability was too smalhtbusing the methods applied. A
different controller may provide larger basin of stability tivety be easier to detect using this
method. The neuromuscular control applied by the human brain is expetiednore effective
than the simple PD control modeled herein. Although neuromuscular coasrtime delay that
retards performance, it is probably highly nonlinear and able to gramticipatory control.
Considering these factors, it is possible that the basin ofistatil be larger for actual human

balance control.

5.6 Summary and Conclusions

In this chapter, a mathematical model was developed for the plantdrie chair using
anthropometric data to calibrate the model for a typical humarecubjThe governing
differentials equation were developed for this model and solved reatigitio find trajectories.
These trajectories were evaluated to find finite time Lyapung@orents (FTLE). The state
space distribution of the FTLE was tracked, and a FTLE fieldgeasrated. This was used to
find Lagrangian coherent structures and the locations of the basin of stability

Analyses of the deterministic model were effective in findimgybasin of stability for the
wobble chair. However, results obtained for the stochastic systald not be correlated with
those found by the deterministic methods of tracking the evolutionjettivaes. Yet, structure
was observed in the FTLE field using the state transition matethod. Future evaluations

using different evolution times and/or system parameters may yield edregvaonclusion.
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Chapter 6

Determining the Basin of Stability
through Wobble Chair Experiments

6.1 Abstract

Torso stability associated with low back pain has been tested using a vadédtgrent
methods. However, the basin of stability for the human torso has not been identified ngnowi
the limits of the stable region may provide additional information that could be useful i
preventing injury. The aim of this study was to determine this basin of stéitmhtyseated
stability test data generated in the laboratory. Tests conducted on patsicyith eyes open
and closed showed a significant change in the dimensions of the basin of stabilitg. At t
threshold of stability, the basin of stability was found to be larger for egsesdccthan eyes open
presumably due to larger kinematic variability. In the future, this method may aganother

useful tool to evaluate other balance control problems for which time series azadable.

6.2 Introduction

Low back pain is a common medical ailment afflicting 80% of the ptipulat some

time in their life (Kelsey and White 1980; Reeves et al. 2085)ack of torso stability has often
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been considered a contributing factor to low back pain. Torso stdiaktypeen evaluated using
a variety of different methods including kinematic variability agdaimic stability (Cholewicki
et al. 2000; Tanaka and Granata 2007; Granata and Lee 2008). However, many cgstenex s
are not globally stable and contain regions of state space it wtaible behavior is exhibited,
the basin of stability. Knowledge of the limits of the stableoregnay be useful in preventing
injury. Currently, the basin of stability has not been found for the huorao. The aim of this
study was to determine this basin of stability from seatduilisfatest data generated in the
laboratory. Unlike the previous tests that evaluated stability only withistéifsde region of state
space, this test analyzes data in both the stable and unstabtesregprso instability can occur
when the level of kinematic variability is able to exceed lihsin of stability. In order to
provide a thorough understanding of the relationship between kineraatbility and the basin
of stability, a discussion of effective potential function, thresholdstability and basin of

stability follows.

6.2.1 Basin of Stability and Effective Potential Function Relationship

Spring distance has an effect on both the kinematic variabilityeo$ystem and the size
of the basin of stability. A schematic representation is shavfigure 6.1. At 10098G, the
system is neutrally stable without the controller. When the aibetris applied, the system
becomes globally stable, meaning the entire state space betimenbsasin of stability. In
addition, for a given level of perturbations, the kinematic variabgigmall (~1.8 in Figure 6.1).
When the spring distance is decreased to 8085 the uncontrolled system becomes unstable
(dashed line) and the controlled system has locally stable belna@aothe origin but is unstable

beyond a critical point,qg The region within g is the basin of stability which is now smaller
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than the entire state space. It is also observed that the kinemaability is larger (~3.8) at

50%NG than 1009NG for the same level of perturbations.

0.5
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Ki Hi Controlled Dyn 50%
0.3 1 inematic Controlled Dyn 100%
: variability
02 /qcr (50%)
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o

Angle (degrees)

Figure 6.1: Schematic diagram showing the effect of spring setting on the basin of
stability and the kinematic variability.

As spring distance decreases, kinematic variability increasdsthe basin of stability
decreases. As long as the basin of stability is larger beakinematic variability, the controller
is able to stabilize the system. However, when the kinematiability exceeds the basin of
stability, conditions may exist that cause the system to beeomtable (Figure 6.2). In this
case, the basin of stability is still finite, but kinematiciafaitity becomes infinite. With this

configuration, the system will exhibit both stable and unstablevimhlaased on the pattern of
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the perturbations applied. The threshold of stability defined in ah@psethe spring setting in

which stability is maintained throughout test, i.e kinematic vartglddlls just within the basin

of stability.
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Figure 6.2: When spring distance is reduced to a point where kinetic energy due
to random perturbations exceeds effective potential energy, the system can
exhibit unstable behavior.
6.2.2 Energy approach to the basin of stability
An energy approach may also be used to develop an understandingrefationship

between kinematic variability and the basin of stability. Systesth random perturbations that

are capable of generating kinetic energy that exceedsdenum effective potential energy,
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Vetr, Of the system may exhibit unstable behaviogi i¥ the sum of the potential functions of the
system.

The amount of time spent in the stable region verses the unstptn rcan be
theoretically calculated by comparing the probability distranutiunction (PDF) of the kinetic
energy with 4. Under random perturbations, the PDF for kinetic energy will néeoed at
zero and have higher energies at lower probabilities. If theftdhe PDF exceeds the energy of
the Ver, unstable behavior can occur. Frequency of unstable behavior ngcean be
approximated by calculating the area under the upper and lower koke that kinetic energy
may exceed potential energy without causing the system tumgeanstable. This is because
major trajectory separations only occur near the ejection postate space. As a result, if the
boundary defining the basin of stability is crossed due to random lpegtrans it is possible for
random perturbations to cause the trajectory to cross back int@kie itgion since trajectories

do not diverge away from the ejection point.

0.1

Figure 6.3: When kinetic energy (red) exceeds effective potential energy (black)
unstable behavior occurs (http:/en.wikipedia.org/wiki/Image:DisNormal06.svQ)
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6.2.2 Generating both stable and unstable system behavior

It is desirable for analysis to have a substantial amount ofwd#tan both stable and
unstable regions of state space. If the basin of stabiligoisitnall or nonexistent, little or no
data will be collected in the stable region. However, if trenbaf stability is too large, little or
no data will be collected in the unstable region. Ideally, thetikie@ergy level generated by
random perturbations should slightly exceed the effective potentiddeofystem. Thus, the
system will exhibit stable behavior, but given the right combinadioperturbations, unstable
behavior can be generated.

For a system, there are two ways to achieve this condition; adjust the pertuldat! or
decrease the effective potential energy of the system. edsioig perturbation amplitudes
increases kinetic energy and kinematic variability of the systélowever, in human subjects
testing, it is often not possible to adjust the perturbation amplituckube it is generated by
naturally occurring variability in the neuromuscular systddowever, in the testing conducted
herein, the effective potential energy of the system is undecdhtol of the experimenter.
Since the spring distance contributes to the effective potentiptdyding restorative torque,

altering the spring distance changes the value of the effective pbtenti&on.

6.3 Methods

Time series data for this analysis were collected duringttiety described in chapter 3.
Recall that motion sensors were attached to the seat ofatbiglevchair (Figure 2.1 & 3.1) and
back of the participant to record three dimensional angle @é&aeconds of data were recorded

at 100 Hz for each trial. Between trials the anterior and posspring distances were changed

148



to alter task difficulty. The lateral springs were kepl@%NG. This large value dfG for
the lateral springs made maintaining medial lateral stpl®hsy focusing the motion in the

sagittal plane (Figure 6.4).

Figure 6.4: Human body planes. During the experimental trials, motion was
focused in the sagittal plane (http:/en.wikipedia.org/wiki/Core_%28anatomy%29

The analysis methods used to determine the basin of stability &iomulated
experimental data in chapter 5 were applied to the time s#aiescollected during the study

(chapter 3). Trials of interest were those one incremenN@Gpsmaller than the threshold of
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stability. These trials had data in both the stable and unsegms of state space. The size of
the basin was measured in four dimensions from the Poincaré sestmbnise volume of a 4D

bounding box (the representing the basin of stability) was calculated.

6.4 Results

Of the eight participants tested, subject three showed the mosistency for any
particular test condition. For the eight tests with eyes open, piscipant consistently
alternated levels passing each time at R&/and failing each time at 30%s. Because of this
consistency, these four replicated trials at 8@owere selected for the initial analysis. Two
dimensional slices of the basin of stability were calculat@éguBoincaré sections which are
described earlier in this dissertation (section 5.4). Initiatl\structure was visible, but structure
became noticeable when very thin slices were used. Figure 6.5 shewero velocity plot
which was constructed by selecting valuesipandc']z that lie within 0.01% of the data range.
This Poincaré section included 2.7% of the data points. A basin dftgtalasis noticeable near
the origin in state space (0, 0, 0, 0) and showed some alignment witkquti®rium manifold
predicted by the mathematical model in chapter 5 (section 5.4.2).sid&ef the basin was
approximately 4 degrees @1 and 3 degrees up.

The @1, qu) slice of state space was constructed by selectingsalig and é|2 that lie
within 0.01% of the data range (Figure 6.6). In the plot, a basimbiist was noticeable near
the origin in state space (0, 0, 0, 0). Furthermore, the size anddhthpebasin matched well
with the size and shape generated from trajectory data (seerchdpt details). The size of the

basin was spanned a range of approximately 4 degreesumd 8 degrees/s q1
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Figure 6.5: FTLE field for participant #3 with eyes open generated using state
transition matrix method. This two dimensional plot shows the zero velocity
section of the four dimensional system. A bounding box was drawn (black dashed
lines) to approximate the dimensions of the basin of stability.
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Figure 6.6: FTLE field for participant #3 with eyes open generated using the state
transition matrix method. This two dimensional plot shows phase space of q;. A
bounding box was drawn (black dashed lines) to approximate the dimensions of
the basin of stability.

The @, gy) slice of state space was constructed by selectingsalim and dl that lie

within 0.01% of the data range (Figure 6.7). In the plot, a basimbiist was noticeable near
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the origin in state space (0, 0, 0, 0). Furthermore, the size tladie was similar to the size
generated from trajectory data, but the shape was differditte size of the basin was

approximately 4 degrees @a and 10 degrees/s qz

Figure 6.7: FTLE field for participant #3 with eyes open generated using the state
transition matrix method. This two dimensional plot shows the phase space of ..
A bounding box was drawn (black dashed lines) to approximate the dimensions of
the basin of stability.
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The volume of the basin of stability,s¥s, was approximated by a 4-dimensional rectangular
solid,

max

7

q,

max

max , max ,

V. =

BOS 1

(6.1)

min 2 min 1 min min

where each of the fouy parameters is the length of the basin of stability in thae Space
direction. In this case, déswas 1280 degred's’ (4°x 4°x 10%s x 87s). Sinceq; andg, were
shown in more than one plot, the best view of the LCS was used to mhetehm dimension of
the basin of stability in this direction.

For the eyes shut condition, only two trials were available foestuHtjree. A data range
of 0.01% was used for they(cp) (Figure 6.8) anddq, g;) slices of state space (Figure 6.10).
The @3, 02) slices of state space (Figure 6.9) yielded almost no dataata range of 0.01%, so
the range was increased until a surface was visible (0.03%).rafges foq;, gy, 611, dz were
estimated to be 5 degrees, 6 degrees, 10 degrees/s, 10 degsgestsyedy. Applying equation

[6.1], the \sos Was calculated to be 3000 degféss
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Figure 6.8: FTLE field for participant #3 with eyes shut generated using the state
transition matrix method. This two dimensional plot shows the zero velocity
section of the four dimensional system. The bounding box drawn (black dashed
lines) to approximates ¥ of the basin of stability. The full basin is assumed to by

symmetric with respect of the origin in g;and dp.
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Figure 6.9: FTLE field for participant #3 with eyes shut generated using the state
transition matrix method. This two dimensional plot shows the phase space of q;.
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Figure 6.10: FTLE field for participant #3 with eyes shut generated using the state
transition matrix method. This two dimensional plot shows the phase space of ..
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The basin of stability was determined for each condition and subject e process above.

Results are shown in the table below (Table 6.1).

Table 6.1: Basin of stability volume

Eyes Open Eyes Closed
Participant q. @ | @ 7 4D il d g2 17 4D

range range range range volume* range range range range volume*

(deg) (deg/s) (deg) (deg/s) (deg 4/5 2) (deg) (deg/s) (deg) (deg/s) (deg 4/s 2)
1 6 4 4 4 384 6 6 8 10 2880
2 6 6 8 8 2304 6 6 9 15 4860
3 4 4 10 8 1280 5 6 10 10 3000
4 5 6 8 12 2880 8 7 7 15 5880
5 8 4 15 12 5760 6 12 8 20 11520
6 6 3 10 10 1800 9 5 15 10 6750
7 2 3 3 14 252 6 I 5 15 3150
8 4 6 3 40 2880 8 7 2 10 1120

* indicates significant

A paired t-test was conducted to determine if differenneparameters were detected
between test performed with and without visual feedback. A vdlae=00.05 was used as the
criterion for significance. The seat angular veloahjy,(mean difference = 2.5; p = 0.026) and
the 4D volume (mean difference = 2700; p = 0.012) were found to b&tistly different using
a paired t-test. Seat angtg, (mean difference = 1.63; p = 0.075) also tended to increase with
the eyes closed, however no significant difference was found. @ngde,q., (mean difference
=.38; p = 0.78) and torso angular velocthy,, (mean difference = -.38; p = 0.93) were generally

invariant to changes in test condition.
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6.5 Discussion

The 4-dimensional volume of the basin of stability was signifigdarger with eyes
closed than eyes open when tested just beyond the threshold of sfabiksch condition.
Changes in angle and angular velocity of the lower body causeddifference. This is
consistent with experimental observations which showed seat anigégethe dominant segment
used by the participant to control balance. A larger basin biligtgor eyes closed may be
explained by considering the effect of visual feedback on balancelkoim general, feedback
to a controller will improve performance by allowing more preagplication of the control
torques. In contrast, a lack of feedback can result in poor timimgrifol torque, incorrect
application of torque direction, and system drift. All of thesdofaclead to an increase in
kinematic variability of the system. Recall that when kingenazariability exceeds the basin of
stability, the system becomes unstable. At the threshold ofitstattie increased kinematic
variability caused by lack of visual feedback must be matchdd aviarger basin of stability.
The lack of feedback control can also explain the changes irasgit and angular velocity.
Inferior performance of the balance control system (predomindnitlgn by the lower body)
leads to non-optimal trajectories. Control error can causeysiens to deviate from equilibrium
by larger angles which then require higher velocities to recstaaility. These factors can
contribute to larger angles and angular velocities and ultipnati&rger basin of stability at the
threshold of stability.

One limitation of this method is the often ambiguous shape of the bastability and
the subjective determination of its size. Thus, accuracy andtedjpldy of the method may not

be good for some experiments. However, large differencesmemesured in thg; directions of

state space while virtually no difference was measured ig.thate space directions. Since the
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researcher was “blind” to the implications of directions differences, sote slibjective nature
of these measurements was removed. Thus, it is encouragirguthasignificant differences

between the state space directions were observed and explainable.

6.6 Summary and Conclusions

This method effectively showed that a basin of stability can be genématedime series
data collected from biomechanics experiments. Finite time Lyapexponent (FTLE) fields
were generated using the state transition matrix method. Wiitbse tFTLE fields, LCSs were
found identifying the boundary of the basin of stability. At thedhoéd of stability, the basin of
stability was found to be larger for eyes closed than eyes ppEsumably due to larger
kinematic variability. In the future, this method may serve rasher useful tool to evaluate

other balance control problems for which time series data is available.
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Chapter 7

Summary and Conclusions

7.1 Research Summary and Contributions

A series of related studies were performed in order to impgrevenderstanding of torso
instability, a factor often associated with low back pain. fifsestudy examined torso stability
using time series averaged finite time Lyapunov exponents (FTLRs was an application of
an existing method to a new problem. It was found that differancgsring distance (i.e. task
difficulty) were detectable using this method. In addition, the FiMa& found to be repeatable
when subjects were retested one week later.

The next study was an experiment designed to assess thevidgrdith new metric, the
threshold of stability. This new metric is interesting becausealuates the limits of stability
rather then the variability or trends of a stable systemeqltires no electronics and is easy to
administer the test. A significant difference was found betwesticipants with and without
visual feedback showing the method to be sensitive to differencesaincbatontrol with only
eight participants. Due to the simplicity and sensitivity of thisthod, it may be suitable for

assessment of low back pain in a clinical setting.
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In order to better understand the experimental work, mathematiodelsn were
developed for the human torso. Initially a reduced model wasedrso that methods could be
developed to evaluate the state space distribution of the FTLEhougl the state space
distribution of the FTLE had been evaluated for other engineeringnsys it had not been
applied to biomechanics or time series data in general. Lagracgherent structures were
found in the FTLE field showing the location of separatrices in tlagedtiory paths.
Furthermore, the basin of stability was found for the deterrmdnssistem. As a step toward
being able to apply this method to time series data similéwatacbllected in chapter 3, methods
were developed to find LCS from time series data. To the aukrmwwledge this is the first
application of LCS to time series data in the absence of a vector field.

Next the reduced model was extended to develop a model of the wobbie chai
Anthropometric data was used to calibrate the model, but initiabyal@de controller could not
be found. This problem was overcome by investigating the Acrobgstens with similar but
inherently more stable dynamics. After first finding conéoparameters for the Acrobot, a
morphing technique was used to find controller parameters thdizgdlihe wobble chair. An
addition benefit of the assessment of the Acrobot was that it pibeldes which aided in the
discovery of an unknown parameter for the wobble chair, the equilibriamfold. Extending
the methods developed for the reduced model, the FTLE field wascceratd CS were found.
Basins of stability for the deterministic simulation of the webtiiair model matched well with
those created by evolving trajectories form various inittates.  However, the stochastic
simulation failed to match well with trajectory data. Perhtps was because the basin of
stability was small using the stable linear control which wasd. As a result there may have

been an inadequate signal to noise ratio to effectively define the edge ofithe ba
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Finally, the methods developed using simulated experimental data applied to real
experimental data obtained from wobble chair experiments. Usegtate transition matrix
method for finding the FTLE field, structure was noticeable neaotiggn in 4D state space.
For the first time, the dimensions of the basin of stabilityewdatermined in each state space
direction along with the total volume. Results showed the basitalfity to be larger (at the
threshold of stability) for eyes closed than open. This result lmeagxplained by a larger
amount of kinematic variability for the eyes closed condition |leathra larger basin of stability
at the threshold of stability (see section 6.5 for a full disongs The location of the LCS was
often difficult to identify which made finding the basin of stabilg#pmewhat subjective.
However, statistically significant and logically explainablsutes were obtained even with these
challenges.

Evaluating the state space distribution of the FTLE led to insiglitwas not intuitively
available using existing method that produces a scalar value.ur@@xpected finding was the
existence of a one-dimensional equilibrium manifold to which stahjectories were clustered

around rather than a single equilibrium point.

7.2 Future Work

A trend was observed in the experiments toward failing in thé&wead direction,
although an insufficient amount of data was collected to quantifgethesults. This is
interesting because it was also predicted by the wobble omagiel. This prediction was
probably due to asymmetry about the central ball joint. In a futudy,sthe number of forward

and backward falls could be counted to see if a significant diiferexists. It may also be
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possible to correlate the results with clinical data for LBfepts to determine if the same ratio
exists for tissue injury presumably caused the forward, backwarkhteral instability. This
information may be useful to determining how people carry loads on the back.

Different controllers could be evaluated to determine if theahdtuman response could
be predicted. These controllers could include non-linear feedback tgae delay, and gain
limitations. If an accurate model for the torso could be apesl, simulations could be
performed to evaluate expensive or possibly dangerous scenarioasstivh effects of large
inertial loads on the human torso during space flight, optimizatiofeofien seat performance,
or determination of critical torso loading.

Finally, the methods presented herein could be extended to otheohi®amechanics
such as standing postural sway, fall prevention, gait analysisaluration of sports movements.
Furthermore, there may be applications outside of biomechanics suahabsis of robot

movements, vehicle controls, or other time series phenomenon.
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