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ABSTRACT 

 

Low back pain is a common medical problem around the world afflicting 80% of the 

population some time in their life.  Low back injury can result from a loss of torso stability 

causing excessive strain in soft tissue.  This investigation seeks to apply existing methods to new 

applications and to develop new methods to assess torso stability.  First, the time series averaged 

finite time Lyapunov exponent is calculated from data obtained during seated stability 

experiments. The Lyapunov exponent is found to increase with increasing task difficulty.  

Second, a new metric for evaluating torso stability is introduced, the threshold of stability.  This 

parameter is defined as the maximum task difficulty in which dynamic stability can be 

maintained for the test duration.  The threshold of stability effectively differentiates torso 

stability at two levels of visual feedback.  Third, the state space distribution of the finite time 

Lyapunov exponent (FTLE) field is evaluated for deterministic and stochastic systems.  Two 

new methods are developed to generate the FTLE field from time series data.  Using these 

methods, Lagrangian coherent structures (LCS) are found for an inverted pendulum, the Acrobot, 

and planar wobble chair models.  The LCS are ridges in the FTLE field that separate two 

inherently different types of motion when applied to rigid-body dynamic systems.  As a result, 

LCS can be used to identify the boundaries of the basin of stability.  Finally, these new methods 

are used to find the basin of stability from time series data collected from torso stability 
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experiments.  The LCS and basins of stability provide a richer understanding into the system 

dynamics when compared to existing methods.  

By gaining a better understanding of torso stability, it is hoped this knowledge can be 

used to prevent low back injury and pain in the future.  These new methods may also be useful in 

evaluating other biodynamic systems such as standing postural sway, knee stability, or hip 

stability as well as time series applications outside the area of biomechanics. 
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Chapter 1 
 

Introduction  
 

1.1   Low back pain 

Low back pain is a common medical problem around the world, afflicting 80% of the 

population at some time in their life (Kelsey and White 1980; Reeves et al. 2005).  It is the 

second most common reason that people seek medical attention, second only to colds or flu 

(MedlinePlus 2007).  Low back pain (LBP) is an enormous problem in the United States.  It is 

estimated that Americans spend over $50 billion on LBP annually (NINDS 2007).  LBP is 

classified as a neurological disorder by the National Institute of Health (NIH) which supports 

low back pain research through the National Institute of Neurological Disorders and Strokes 

(NINDS).  Back pain is the second most common neurological ailment in the United States led 

only by headaches (NINDS 2007).  The debilitating nature of low back pain reduces the quality 

of life for those that suffer from its effects.  According to NINDS, low back pain is “the most 

common cause of job-related disability”.   LBP is common in the US and Europe with point 

prevalences estimated to be 5.6% in North America, 13.7% in Denmark, 28.7% in Canada, and 

19% in the UK (Loney and Stratford 1999; Kent and Keating 2005).  In addition, LBP imposes a 

substantial burden in the developing world where loss of wages and productivity interferes with 

daily activities (Galukande et al. 2006). 
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 The causes of low back pain are elusive, and it is likely that many different factors elicit 

similar symptoms.  Cailliet (2003) identified seven sites for pain generation: external fibers of 

the intervertebral disc, posterior longitudinal ligament, nerve root dural sheath, synovial capsule 

of the facets, interspinous and supraspinous ligaments, erector spinae muscle, and fascia of the 

muscles (Figure 1.1).  Although no definite cause of LPB has been identified, research interests 

continue to focus on spinal instability as an underlying factor. 

 

Figure 1.1:  Locations where low back pain is experienced. 

1.2   Spinal Stability 

Instability of the human spine has long been thought to be an indicator of the risk of low 

back injury.  In 1961, Lucas conducted one of the earliest documented experiments on spinal 

stability (Lucas and Bresler 1961).  The amount of spinal stability research has steadily increased 

over the years.  A current search (6-23-07) of PubMed resulted in 2611 articles on spinal stability 

ranging from 1963 to the present (Figure 1.2), including 94 articles already published this year.  

Despite all of the research into spinal stability, a clear link between spinal stability and low back 

injury does not yet exist.  One possibility is that global instability of the spine may lead to 

* 
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excessive strain at both the global and local level.  Excessive local deformation may result in 

muscle strains and ligament sprains in the lumbar region (McGill 2001).  This may initiate an 

inflammatory response stimulating nociceptors in the region causing low back pain (Preuss and 

Fung 2005).  The term spinal stability is often used interchangeably with torso stability when 

referring to the core stability in the lumbar region.  However, to some people spinal stability may 

imply the stability obtained from passive stiffness associated with the ligamentous spine only.  In 

order to avoid this confusion, this document will predominately use the term torso stability since 

it implies the addition of active neuromuscular control. 
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Figure 1.2: The number of “spinal stability” publications listed in PubMed is 
increasing, indicating that LBP research is becoming increasing more supported.  

1.3   Current methods to measure torso stability 

Like low back pain, stability is not easily defined (Adams 2007; Reeves et al. 2007a; 

Reeves et al. 2007b).  The first division is between static stability and dynamic stability.  For the 

torso to be statically stable, the destabilizing forces that drive the torso away from an equilibrium 
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position must be less than the restorative forces in the system.  When the destabilizing forces 

exceed the stabilizing forces, buckling of the spine may occur.  Several researchers have applied 

this methodology to study the spine (Lucas and Bresler 1961; Granata and Orishimo 2001; 

McGill 2001; Stokes and Gardner-Morse 2001; Van Dieen et al. 2003; Brown and McGill 2005).   

Dynamic stability, in contrast, evaluates moving systems rather than static systems with 

the potential to move.  Standing postural sway (Winter 1990; Winter et al. 2001) and gait 

(Mcgeer 1990; Goswami 1996; Garcia et al. 1998) are two common applications of dynamic 

stability.  Parameters used as indicators of dynamic stability in biomechanics fall into two 

general categories.  The first category is kinematic variability, which includes parameters such as 

mean center of pressure, 95% ellipse area, root mean squared displacement, etc.  These 

kinematic parameters give an indication of range of motion, but they are not true indicators of 

stability.  The second category includes true stability parameters.  Some of these parametric 

methods include stability diffusion analysis (Collins and De Luca 1993; Peterka 2000), rescaled 

range analysis (Delignieres et al. 2003), detrended fluctuation analysis (Delignieres et al. 2003; 

Gates and Dingwell 2007), and Lyapunov Stability Analysis (Dingwell et al. 2000; England and 

Granata 2006; Granata and England 2006; Kang and Dingwell 2006).   

Stability diffusion analysis was introduced by Collins and De Luca (1993) as a new way 

to evaluate stability of standing postural sway data.  This method employs mathematical 

techniques from statistical mechanics to evaluate stabilograms.  A stabilogram is a plot of the 

path of the center of pressure as it moves over time.  In order to more easily understand the 

concept, first consider the similarities between a stabilogram and a random walk. The 

stabilogram appears to move randomly in any direction but also seems to cluster about an 

equilibrium point near the vertical position (Figure 1.3).   
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Figure 1.3: Stabilogram displaying the movement of the center of pressure in an 
apparently random manner. 

 

In a true random walk, motion at each time step is in a random direction, and overall, 

displacement will occur.  A random walk where the time step approaches zero approximates 

Brownian motion.  Einstein (1905) showed that the mean square of the displacement, ∆x, of a 

particle under one-dimensional Brownian motion is related to the length of time elapsed, ∆t, by: 

 tDx ∆=∆ 22
 (1.1) 

where D is the diffusion coefficient.  In 1968, Mandelbrot extended the concept of classical 

Brownian motion by introducing fractional Brownian motion (Mandelbrot and Van Ness 1968).  

Placed in the framework of fractional Brownian motion, Einstein’s original equation may be 

written as: 

 
H

tx
22 ~ ∆∆  (1.2) 

where H is a scaling exponent equal to ½ .  However, the value of H may range from 0 to 1 in 

fractional Brownian motion.  Values of H greater than ½ represent a positive correlation with 

previous motion and are indicative of persistent behavior.  An example of persistent behavior is 
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the effect of inertia on a system.  Conversely, values of H less than ½ represent a negative 

correlation with previous motion and are indicative of anti-persistent behavior.  Anti-persistent 

behavior is common in a controlled system that drives motion to a set point. 

Stability diffusion analysis was used by Collins and De Luca to analyze time series data 

(Figure 1.4).  The distance between two points in the time series separated by a time interval, ∆t, 

was calculated and the mean value determined.  This process was repeated for different time 

intervals.  A log-log plot (similar to 1.4b) was used to determine the short and long term scaling 

exponents, Hst and Hlt , respectively.  Collins and De Luca found the average value of Hst to be 

approximately 0.75 indicating short term persistent behavior and the average value of Hlt to be 

approximately 0.25 indicating long term anti-persistent behavior.   

 

 

Figure 1.4:  In stability diffusion analysis the mean distance between two points 
separated in time is determined (a).  Stabilogram-diffusion plots shows the short 
term and long term regions (b) (Collins and De Luca 1993). 
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Although stability diffusion is still commonly measured, questions have been raised 

about the use of stability diffusion analysis stating that it is a statistical artifact (Delignieres et al. 

2003).  Collins and De Luca (1993) explained the short term and long term regions by open and 

closed loop control, respectively.  The main argument against this explanation was that two 

distinct regions may not be present and that the flattening of the diffusion plot may instead be 

caused by reaching the boundaries of the system.  In other words, when diffusion expands to 

fully fill the available space, no further diffusion is possible.  Delignieres (2003) suggested using 

more traditional approaches such as rescaled range analysis or detrended fluctuation analysis.   

 Radebold and Cholewicki (2000; Radebold et al. 2001) conducted seated stability tests 

on the lumbar spine using hemispherical balls attached to the bottom of a seat (Figure 1.5).  This 

apparatus isolated motion to the lumbar spine.  The location of the center of pressure (COP) of 

the subject was measured during the test using a force plate.  Stability was analyzed using the 

stability diffusion function (Collins and De Luca 1993).   

 

Figure 1.5:  Unstable seated test apparatus (Radebold et al. 2001)  



24 

The research described herein utilized a new seated stability apparatus based upon the 

design of Radebold and Cholewicki.   The apparatus allowed for more control over the level of 

static stability by providing a continuously adjustable range of restorative torque.  However, 

rather than using stability diffusion, dynamic stability was calculated through evaluation of the 

finite time Lyapunov exponents (FTLE).  Lyapunov exponents have been used to evaluate gait 

dynamics (Dingwell et al. 2000; England and Granata 2006) and body movements (Granata and 

England 2006) but have not been applied to lumbar stability experiments.   

Lyapunov stability analysis is based on the Ph.D. dissertation of Aleksandr Lyapunov in 

1892 (Smirnov 1992; Jury 1996).  His theory on dynamic stability states that if one starts near an 

equilibrium point (within δ), and the system can be described by a Lyapunov function, then the 

state of the system will always remain close to the equilibrium point (within ε).  Lyapunov 

stability is a weaker form of stability than asymptotic stability, as the latter requires the system to 

approach the equilibrium point.  Exponential stability is an even stronger form of stability 

specifying that the rate of stability must be exponential.  Because of its generality, Lyapunov 

stability has become one of the leading methods used to assess dynamic stability in a variety of 

applications.   

In real application, however, it is not practical to evaluate stability for an infinite amount 

of time.  When Lyapunov exponents are calculated over a finite time period, they are denoted as 

finite time Lyapunov exponents (FTLE).   FTLE have been used to predict capsizing of ships 

(Mccue and Troesch 2006), analyze fluid dynamics (Evans et al. 1990; Vastano and Moser 1991; 

Lapeyre 2002; Shadden et al. 2005), predict weather (Yoden and Nomura 1993), assess stability 

of biped robots (Yang and Wu 2006), and detect ventricular tachycardia or fibrillation (Wessel et 

al. 1998).   
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In practical application, it is common to calculate FTLE using linearized perturbation 

equations.  Some researchers have investigated higher order models (Sano and Sawada 1985; 

Brown et al. 1991; Okushima 2003), but these have been applied primarily to classical chaotic 

systems (Lorentz attractor, Roessler equation, Henon map, etc) with less emphasis on real 

applications.    

A common method to calculate the linearized FTLE is to determine the rate of separation 

(Euclidean distance) of two nearest neighbors in n-dimensional state space (Rosenstein et al. 

1993a).  Another less common method is to calculate the FTLE by evaluating the rate of 

expansion of a n-dimension hyper-ellipse (Shadden et al. 2005).  A variation of each of these 

methods will be developed in this proposal to determine the stability of the spine. 

1.4   Basin of Stability 
A parameter related to the threshold of stability is the basin of stability.  Unlike the 

threshold of stability, the basin of stability is not a new term (Ashby 1962).  The basin of 

stability defines a region in state space where stable behavior exists.  The previously reported 

research evaluated stability only within the stable region of state space.  In order to find the basin 

of stability, the methods described in later chapters will extend the experiments into the unstable 

region.  In doing so, the boundary between stable and unstable behavior may be found which 

defines the edge of the basin of stability.   

The basin of stability can be more easily visualized in state space by considering the 

motion of a pendulum (Figure 1.6).  The pendulum is at the stable equilibrium point when it is 

pointing directly downward.  It is at the unstable equilibrium point when it is pointing directly 

upward.  Small oscillations of the pendulum are shown on the phase plot as small almost circular 

paths around the stable equilibrium points.  This motion of a swinging pendulum generates 
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Figure 1.6:  Phase plot of a single planar pendulum.  Nearly circular trajectories 
around the stable equilibrium points represent oscillating motion.  Larger almost 
elliptical trajectories indicate higher amplitude oscillations.  The undulating lines 
on the top and bottom represent circular orbits in a single direction. 

trajectories that move in a clockwise direction.  Larger amplitude oscillations are observed on the 

phase plot as larger less-circular trajectories.  The maximum amplitude of oscillation occurs 

when the pendulum begins its motion starting from a very small angle from the upright position. 

This motion begins very slowly.  By the time the pendulum reaches a few degrees, it begins to 

move more quickly.  It passes through the directly downward position at maximum velocity and 

then slows down again as it approaches the upright position from the other side.  In theory, as the 

initial angle from the vertical position approaches zero, the orbit time approaches infinity.  This 

special orbit is the homoclinic orbit.   

 

 

 

 

 

 

 

 

 

 

 

The undulating lines beyond the homoclinic orbit (on the top and bottom of Figure 1.6) 

represent circular orbits in a single direction.  In this case, the pendulum no longer oscillates 

since it has enough energy when it reaches the upright vertical position to continue its motion in 

the same direction.  Clearly, the oscillatory motion is very different than the orbiting motion.  

θ  

θ&homoclinic orbit 
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The two types of motion are separated by the homoclinic orbit which acts as a separatrix.  The 

separatrix can also be used to separate other types of dynamics such as stable and unstable 

behavior.  In later chapters, separatrices will be found that locates the basin of stability in state 

space.   

The magnitude of the basin of stability has been discussed in papers on gait dynamics, 

(Garcia et al. 1998; Schmitt 2006) but no explicit plots were shown.  One method to determine 

the basin of stability is through Lagrangian coherent structures (LCS).   LCS are defined as the 

ridges of the spatially distributed Finite-Time Lyapunov Exponent (FTLE) field.  The LCS form 

a separatrix that can be used to determine the boundary of the basin of stability.  

1.4   Document Organization 

 This dissertation has been divided into chapters, some of which can exist as stand alone 

documents.  Chapter one introduces the topic of low back pain, describes how LBP is associated 

with spinal stability, and describes the current methods used to evaluate biomechanical stability.  

Chapter two describes an experiment to measure torso stability using existing methods.  

Specifically, the (time series averaged) Lyapunov exponent which has been used for evaluation 

of dynamic systems is evaluated.  In chapter three, a new metric for evaluating torso stability is 

introduced, i.e. the threshold of stability.  In this study, subjects are tests under two conditions, 

normal and limited feedback to the postural control system.  Differences in the threshold of 

stability are evaluated.  In addition, the time series averaged Lyapunov exponent is calculated for 

comparison.  In chapter four, mathematical models are developed for the inverted pendulum, a 

reduced order system.  This simple system shares some of the characteristics of the wobble chair.  

Methods are developed to generate Lagrangian coherent structures (LCS), some of which define 
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the location of the basin of stability.  In particular, a new method is developed to find LCS from 

time series data without the need for a vector field which is often unavailable in biodynamic 

experiments.  In chapter five, the methods developed in chapter four are extended to analyze a 

planar wobble chair.  An aside is taken to evaluate the Acrobot , a similar dynamic system, using 

the newly developed methods.  This provides insight into the system dynamics and a connection 

with previous research.  A mathematical model for the wobble chair is developed and 

anthropometric parameters are used for model calibration.  Deterministic and stochastic 

simulations are executed and analyzed to find the LCS and basin of stability. In addition, a new 

technique to calculate the maximum finite time Lyapunov exponent from time series data using 

the state transition matrix is developed.  Using this new method to evaluate simulated 

experimental data, LCS and basins of stability are found for the wobble chair.  In chapter six, 

these new methods are applied to real experimental data collected from human participants.  LCS 

and basins of stability are found from these data providing a richer understanding of the system 

dynamics than the traditional methods of calculating the time series averaged FTLE employed in 

chapter two. 
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Chapter 2 
 

Determining Torso Stability Using 

Time Series Averaged Lyapunov 

Exponents 
  

 

2.1   Abstract 

Mechanical assessment of torso stability is a valuable tool for identifying individuals at 

risk for low-back pain.  The apparatus is designed to challenge the stabilizing control of subjects 

in order to quantify torso stability.  In addition, a method is outlined for calculating the 

maximum Lyapunov exponent from the measured data.  The results showed a significant 

negative correlation between chair stability and the maximum Lyapunov exponent, and good 

trial repeatability.  The method was found to be sensitive to changes in stability and indicates 

that it may be a useful method to analyze the effects of fatigue, static flexion, or interventions 

such as physical therapy on torso stability. 

2.2   Introduction 

Low back pain is a common condition afflicting more than 80% of the population during 

their lifetime (Kelsey and White 1980; Reeves et al. 2005).  The human spine consists of a 

column of vertebrae separated by discs and surrounded by ligamentous and muscular tissue.  
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Damage can occur when the tissues of the spine are exposed to excessive strain (Adams and 

Dolan 1995) that may result from unstable buckling of the vertebral column (Preuss and Fung 

2005).  Direct measurements of buckling loads often results in destruction of the test specimen. 

Since direct spinal buckling tests cannot be performed on human subjects, a method to non-

destructively evaluate spinal column buckling was sought.  Buckling is unlikely when the spinal 

column is able to maintain a stable upright configuration.  Thus, torso stability may be used as an 

indicator of risk.  Previous research has shown that stability of the torso is a valuable tool for 

identifying individuals at risk of low-back pain (Radebold et al. 2001).  Cholewicki (2000) 

directed subjects to sit on a unstable seat with a hemisphere attached to the bottom.  Task 

difficulty was modulated by adjusting the radius of curvature upon which the seat pan balanced, 

effectively altering the restorative moment.  Nonlinear time-series analyses of the seat 

movements were used to estimate stability.  

The experimental design in the current study modified the earlier methods to modulate 

the mechanical static stability of the unstable seat then observes the time-domain stabilizing 

performance of a human subject while sitting on this device.  In addition, the analysis method 

was expanded to compute stability through Lyapunov analyses of the measured data. 

 

2.2   Methods 

 

2.2.1   Experimental Apparatus 

The wobble chair is a new seated stability testing apparatus consisting of a seat mounted 

on a thin, flat seat pan supported by a ball joint (Figure 2.1).  This allows the seat pan to pivot 
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freely in 2-dimensions about its geometric center. The seat can be adjusted forward and 

backward on the seat pan to assure the subject’s center of mass is directly over the pivot point.  

Steel springs are located to the front, rear, left, and right of the center. The springs were selected 

such that the free length is equal to the distance from the base to the seat pan of the wobble chair 

at the neutral position (Figure 2.1).   

 

                            

Figure 2.1:  The wobble chair is a new seated stability test apparatus where 
movement of the lumbar spine is used to maintain balance.   

 

The rotational stiffness can be adjusted by changing the distance from the springs to the 

central ball joint.  Restorative 2-D moment M
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(2.1) 

where θ
1

S is the 2-D angle vector of the seat, composed of the anterior-posterior angle θAP_S and 

the medial-lateral angle θML_S. The proportional gain constant, p, is a function of the spring 

stiffness, k, and the distance, d.  The proportional gain matrix, P
=

, has diagonal elements equal to 

p.  Since the moment is proportional to the square of the spring distance, a larger range of 

proportional gain can be achieved.  Static stability is decreased by reducing the stabilizing 

restorative moment (i.e. proportional gain provided by the springs).  This is achieved by moving 

the springs closer to the center.  The wobble chair’s continuous range of gain, P
=

, allows the level 

of static stability to be normalized to body mass and weight distribution.  The gravitational 

moment, Μ
1

g, about the ball joint can be measured for an individual subject.  The gravitational 

gradient, “G, is a measure of the mass and weight distribution of an individual given by, 
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(2.2) 

 

where, θ
1

T is the 2-D angle to the torso.  Neutral stability is achieved when the proportional gain 

produced by the spring’s restorative force is equal to and offsets the gravitational gradient.  This 

condition is defined as a spring setting of 100%.  At spring settings greater than 100%, the 

stabilizing moment generated by the springs is greater than the destabilizing gravitational 

moment.  The system is attracted toward the neutral position and is statically stable.  For spring 

settings less than 100% the destabilizing gravitational moment is greater than the stabilizing 

spring moment.  Upon small perturbations from the neutral position the system is repelled from 

the neutral position and is unstable.  However, it can be demonstrated that a 2-segment under-
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actuated inverted pendulum is controllable and can be stabilized (Figure 2.2).  Humans achieve 

this through voluntary and reflexive neuromuscular control. Stability tests are typically 

conducted at or below the 100% level, thus requiring neuromuscular control to maintain stability. 

Testing at prescribed levels of instability (e.g. 100%“G, 75%“G, 50%“G) can be achieved by 

adjusting the spring location to compensating for anatomical differences in test subjects. 

 

                         

Figure 2.2:  Two segment inverted pendulum model. 

2.2.2   Experimental Protocol 

Twelve human subjects with no history of low back pain participated in the study.  Prior 

to participation all subjects were informed of the nature of the study and signed an informed 

consent form approved by the institutional review board at Virginia Tech.  Before stability 

testing was performed, the gravitational gradient for each subject was obtained.  The spring 

distances needed to achieve 100%, 75%, and 50% of the subject’s gravitational gradient was 

calculated.  During experimental stability measurements, the subjects were instructed to sit on 
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the wobble chair with their arms crossed over the chest and attempt to maintain an upright 

posture for 60 seconds. Seat angles and torso angles were recorded at 100 Hz in two dimensions 

with 6 degrees of freedom electromagnetic sensors (Motion Star Systems, Ascension Technology 

Corp, Burlington, VT).  The subject was able to use small dynamic movements of the torso to 

keep the seat at a level position.  Each subject was tested at all three spring settings.  The order of 

the spring setting was randomized to avoid confounding between difficulty and trial order.  

Subjects performed five practice trials prior to executing five replications at each setting. 

 

2.2.3   Lyapunov Stability Analyses 

The maximum Lyapunov exponent is a measure of local stability.  Large exponents 

indicate rapid divergence of two points that are initially close in state space (Figure 2.3).  By 

calculating the maximum Lyapunov exponent from data that is averaged over the entire time 

series, the global stability of the system is estimated.  The maximum Lyapunov exponent, λmax, 

quantifies the exponential rate that two points diverge in state space. 

  
t

edtd
∆=∆ max)0()( λ

 (2.3) 

where d(0) is the initial Euclidean distance in state space between two points in the time series.  

The evolution time, ∆t, is the amount of time that has elapsed as the trajectories of the two 

points are tracked forward in time.  The Euclidean distance between the two points at an 

evolution time, ∆t, is given by d(∆t).  This analysis method is outlined below. 

Measured data consisted of a continuous series of data points representing the trajectory 

over the 60 second trial.  From the measured data a time dependent state vector was generated 

using post-processing software (Matlab, Natick, MA). 
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The state vector was filtered at 8 Hz with a seventh order low pass Butterworth filter and down-

sampled to 25 Hz prior to analysis.  Initially, the first data point in the time series, q(0), was 

identified as the reference point.  A data point was identified that was close to the reference 

point in state space, but not in time.  The nearest neighbor was identified as the point with the 

smallest Euclidean distance from the reference point in state space.  Measures were taken to 

ensure that each nearest neighbor was not highly correlated with the reference point or with any 

previously found nearest neighbors.  Specifically, the location of the first peak in the 

autocorrelation function was determined, and this temporal range was avoided in the selection of 

the nearest neighbor.  Several investigators have tracked the divergence of a nearest neighbor to 

find the maximum Lyapunov exponent (Wolf et al. 1985; Rosenstein et al. 1993a; England and 

Granata 2006; Granata and England 2006).  In this study the three nearest neighbors were 

analyzed in order to reduce variability of the results.  The above process was repeated with each 

point in the time series being considered the reference point.  The distance between the 

reference point and each nearest neighbor was calculated as both points evolved over time 

(Figure 2.3).  The expansion was defined as the relative increase in distance between the two 

points for some ∆t.  The mean expansion for a given evolution time was determined by 

averaging the expansion over all reference points and all nearest neighbors.   

 ∑∑
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Where, n is the number of points in the time series indexed by i, and j is the index of the nearest 

neighbor.   
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Figure 2.3:  Nearest neighbor to the reference point was found in n-dimensional 
state space.  The distance between these two points is tracked as it evolves over 
time.  The heteroclinic orbit indicates the separatrix between stable and unstable 
regions. 

 

The maximum Lyapunov exponent can be calculated by solving equation [2.3]. 

 ( ))(ln
1

max
tExpansionMean

t
∆

∆
=λ  (2.6) 

From the experimental data, the maximum Lyapunov exponent was found by calculating the 

slope of the natural log of the mean expansion with respect to the evolution time over the range 

of 0.2 seconds to 0.7 seconds (Figure 2.4).  Evolution times less than 0.2 seconds were excluded 

from the evaluation because the 8 Hz filter (T =.125 s) removed much of the data in this range.  

After 0.7 seconds, the curve began to flatten as the points approached full diffusion within state 

space.  λmax was calculated for each subject, trial, and week using custom Labview code 

(National Instruments, Austin, Texas).   
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Figure 2.4:  The maximum Lyapunov exponent was determined by calculating the 
slope of the mean expansion as a function of the evolution time. 

 

2.2.4   Statistical Analysis 

Twelve subjects were each tested five times at each spring setting. The maximum 

Lyapunov exponents calculated for each of the five replicate trials was averaged to obtain a 

value for that subject under that condition effectively reducing the data to the experimental unit 

(Sall and Lehman 1996).  Repeated measures ANOVA was used to determine the effects of 

spring setting, week of test, and their interaction.  This was done using JPM ® 7.0 (SAS Institute 

Inc., Cary, NC), with a criterion of p=0.05 used to conclude significance. 
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2.3   Results 

The statistical results are shown below (Table 2.1 & 2.2 and Figure 2.5).  Spring setting 

was found to be negatively correlated with λmax (Figure 2.5a).  Furthermore, post-hoc analysis 

using Tukey HSD test showed significant differences between all spring levels (Table 2.3).  No 

significant difference was found in λmax between weeks (Figure 2.5b) or the interaction between 

spring and week (Figure 2.5c).  

 

Table 2.1:  Main Effects Table   

Level Least Sq Mean   Std Error Mean 
week 0 0.68  0.024 0.53 
week 1 0.66  0.024 0.49 
     

Spring 50% ∇G 0.68  0.024 0.67 

Spring 75% ∇G 0.54  0.024 0.50 

Spring 100% ∇G  0.39  0.024 0.36 

 

Table 2.2:  ANOVA Table         

Source DF Sum of Squares Mean Square F Ratio Pr ob > F 
Model 16 1.53 0.096 14.0 <.0001* 
Subject (Random) 11 0.32 0.029 4.3 0.0001* 
Spring 2 0.49 0.249 85.0 <.0001* 
week 1 0.0009 0.0009 6.1 0.7166 
Spring*week 2 0.012 0.006 0.91 0.41 
Error 55 0.38 0.007   
C. Total 71 1.91    
 
 
Table 2.3:  Tukey HSD test results 
  
Level    Least Sq Mean 
50 A     0.68 
75   B   0.54 
100     C 0.39 
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Figure 2.5:  The main effect of a) spring setting and b) week of testing is shown.  In 
addition, the interaction c) between spring and week is presented.  

 

a) 

b) 

c) 
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2.4   Discussion 

The negative correlation between the maximum Lyapunov exponent and chair stability 

was expected.  Higher mean divergence rates associated with large values of λmax should occur at 

the more difficult spring settings.  This is because the potential function is shallower with smaller 

gradients.  Thus, random perturbations inherent in the system lead to larger motions and higher 

divergence rates.  The mean value for the maximum Lyapunov exponent was positive which 

indicates divergent behavior in at least one dimension of state space.  However, since stability of 

the overall system was maintained during the test, the sum of all Lyapunov exponents (i.e. the 

Lyapunov spectrum) must be less than or equal to zero.  

One limitation of this study was that all stability tests were conducted with fully active 

neuromuscular control.  Since no tests were conducted with disabled or altered control, one 

cannot separate the contribution of the compensatory neuromuscular control from the 

uncontrolled dynamics.  Thus, it cannot be determined if the compensatory neuromuscular 

control changes as a function of the task difficulty. 

Insignificant differences between the two duplicate test sessions indicate that the method 

has good repeatability with relatively small data sets.  Test repeatability enables experiments to 

be conducted that measure changes in stability resulting from varying conditions such as fatigue, 

flexion relaxation, or physical therapy. 

2.5   Summary and Conclusions 

The wobble chair apparatus allows for empirical measurement of torso dynamic stability 

over a continuously adjustable range of static stability and instability.  Adjustments can be made 

to compensate for anatomical differences in subjects allowing tests to be conducted at a specified 
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static stability level.  A method for conducting Lyapunov stability analysis on the experimental 

data was developed that tracked the divergence of nearest neighbors for all points in the time 

series.  The results showed a significant negative correlation between chair stability and 

generally consistent results from week to week.  This method was found to be sensitive to 

changes in stability and indicates that it may be a useful method to analyze the differences in 

stability resulting from changing parameters. 
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Chapter 3 
 

Evaluation of the Threshold of 

Stability; A Pilot Study 
 
 
 

3.1   Abstract 

Current methods to study torso stability assess kinematic variability or local dynamic 

stability.  In this chapter, a new stability metric is introduced, the threshold of stability.  The 

threshold of stability differs from existing methods because it evaluates the boundary between 

stability and instability rather than evaluating dynamics within the stable region of state space.  

In this section, a pilot study was performed using this new method and compared to results found 

for the maximum Lyapunov exponent. Participants were tested using an existing apparatus that 

challenges spinal stability (the wobble chair), with eyes both open and shut.  Results showed 

significant differences in stability between these two conditions using this method.  The 

sensitivity of this method indicates that it may be a useful metric in larger studies for the 

evaluation of torso stability in low back pain patients.  In addition, this new method has an 

additional advantage over previous methods in that no electronics are needed to perform an 

evaluation.  Its simplicity, sensitivity, and low cost may make it suitable for evaluating low back 

pain patients in a clinical setting.   
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3.2   Introduction 

Researchers and clinicians continue to search for a reliable indicator of low back pain 

(LBP).  Mainly researchers have studied torso stability in association with LBP (Bergmark 1989; 

Granata and Orishimo 2001; McGill 2001; Van Dieen et al. 2003; Brown and McGill 2005; 

Reeves et al. 2007b).   Some methods which have been used to quantify torso stability include 

kinematic variability parameters borrowed from techniques used to measure standing postural 

sway (Granata and Lee 2008).  In addition, dynamic stability methods such as stability diffusion 

analysis (Cholewicki et al. 2000) and the calculation of Lyapunov exponents  (Tanaka and 

Granata 2007; Granata and Lee 2008) have also been applied.  All of these methods have at least 

one characteristic in common.  They each assess stability by evaluating the motion within the 

stable region of state space.  This may not be a good assessment tool since high variability within 

the stable region does not always correlate with instability.  Furthermore, low variability within 

the stable region does not indicate high robustness to perturbations.  Since low back injury has 

been associated with a loss of stability, it may be more important to determine at what point 

stability is lost, i.e. when the trajectories leave the stable region of state space.  A new metric, the 

threshold of stability, was created to quantify this value.  Threshold of stability is defined as the 

maximum task difficulty in which stability can be maintained for a given period of time. 

A new metric, the threshold of stability, was developed for torso stability using an 

unstable sitting apparatus called the wobble chair.  The wobble chair (Figure 2.1 & 3.1) has 

movable springs that can be adjusted in order to change the amount of restorative torque applied 

to the seat (Tanaka and Granata 2007).  Increasing task difficulty is attained by moving the 

stabilizing springs closer to the central ball joint, thus reducing the stabilizing moment provided 

by the springs.  In this study, a participant’s balance control system is challenged to determine 
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the maximum task difficulty in which stability can still be maintained.  The presence or absence 

of visual feedback (i.e. eyes open or shut) was the condition used in this pilot study to determine 

the sensitivity of the method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Participant balances on the wobble chair moving the lumbar region of her 
torso to maintain stability. 
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This study was not focused on understanding the effects of visual feedback on balance 

control.  Instead, visual feedback was used to test the sensitivity of the method.   There were two 

main reasons for selecting visual feedback as the controlled parameter.  First, a within-subjects 

test could be performed eliminating the variability from subject to subject and allowing a smaller 

number of participants to be tested.  Second, a real difference should exist in the balance 

capability of a participant when compared with and without visual feedback.  Moreover, it was 

expected that difference would be large making it more likely to be detected using the new 

method.  Since this was the first study to evaluate this new metric, it was important to apply the 

method to a condition that was likely to have a real and significant difference.  Therefore, if no 

difference was found, it could be concluded that the method was insensitive to this difference.  If 

a test condition were evaluated with an unknown outcome, it would not be clear if a negative 

result was due to no difference in the controlled parameter or insensitivity of the method. 

The threshed of stability is a new type of parameter.  To the author’s knowledge, this is 

the first study to determine the boundary of torso stability.  All previous evaluations of torso 

stability have examined the level of local instability for overall globally stable systems.   

 

 

3.2   Methods 

3.2.1   Subjects 

Eight adults participated in the study, and were asymptomatic for LBP at the time of 

testing.  Of the participants, five were male and three were female.  Mean (SD) body mass was 

157(29) kg, stature was 174(15) cm and age was 27(5) years.  In addition, participants had no 
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previous history of spinal surgery, sciatica, herniated or ruptured discs, or fractured vertebrae.  

Prior to beginning the tests, all participants were informed of the nature of the study and signed 

an informed consent form approved by the institutional review board at Virginia Tech.   

 

3.2.2   Set-up 

Before stability testing was performed, the gravitational gradient (∇G) for each subject 

was found using the methods described in chapter 2.  With this information, the spring distances 

associated with levels of ∇G on 5% increments were calculated.  Sensors capable of tracking 

angles in three-dimensional coordinates (MTx, Xsens Technologies; Enschede, The Netherlands) 

were attached to the base of the seat and to the back of the participant at approximately the level 

of the fifth thoracic vertebrae (T-5).  These sensors were used to track movements of the wobble 

chair and trunk during the experiment.   

Although full medial-lateral and anterior-posterior motion is possible using the wobble 

chair, the focus of this study was on sagittal plane (antero-posterior) movement.  This restriction 

was implemented so that the experimental results calculated in chapter 6 could be better 

compared to the planer wobble chair simulations developed in chapter 5.  Medial lateral (ML) 

motion was not restricted in the study.  Instead, restorative spring force was set to 100% ∇G in 

the ML direction so stability in these directions was easy to achieve (Figure 3.2).  Starting with a 

spring setting of 80% ∇G in the anterior and posterior directions, spring distance was decreased 

during the study focusing movement in the sagittal plane. 

 

 



47 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2:  The wobble chair has four stabilizing springs that can be set to different 
distances to control the amount of restorative torque applied to the participant. 

 

3.2.3   Experimental Protocol 

Participants were instructed to sit on the wobble chair with arms crossed in front of the 

body and to attempt to maintain an upright posture.  The data collection software, a custom 

Labview (National Instruments, Austin Texas) program, was executed.  This program initialized 

the position sensor angles establishing a zero degree reference and began the angle recording 

process at 100 Hz.  After a few seconds, stop blocks were removed destabilizing the wobble 

chair.  The official start of the trial began 20 seconds into data collection following sensor 

initialization, block removal, and initial stabilization by the participant.  Small dynamic 
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movements of the torso were used to maintain balance over the central ball joint.  The participant 

was monitored for 60 seconds to determine if contact was made with the base of the seat 

indicating instability.  Upon completion of the trial, stabilizing blocks were reinserted, and the 

participant was allowed to rest for at least one minute between trials to avoid mental and physical 

fatigue. 

During the practice phase, spring distance was adjusted following each trial to determine 

the smallest spring distance at which the participant was able to maintain balance for the duration 

of the test without becoming unstable.  This initial phase of the test served two purposes.  It 

allowed the participant to practice balancing on the wobble chair to reduce learning effects, and 

it also helped the experimenter to find the approximate value of the threshold of stability.  

Beginning with this initial spring distance, trials were performed to locate the critical spring 

distance, i.e. the threshold of stability.   

Participants were randomly selected to be tested first with eyes open or shut using a coin 

toss.  After 50% of the people had been tested with eyes shut first, the remaining people were 

tested with eyes open first in order to make the overall numbers equal for testing order.  For 

participants who were tested with eyes open first, the practice trials were performed with eyes 

open.  For participants who were tested with eyes shut first, the first practice trial was performed 

with eyes open and the remaining trials were performed with eyes shut.  Following each trial, the 

following rules were applied to determine the next spring setting used.  If the participant did not 

become unstable and generally stayed within four degrees of the center (θ1 = θ2 = 0) as observed 

on a biofeedback device, the next spring setting would be reduced by 20% ∇G.  If the participant 

did not become unstable and generally stayed within seven degrees of the center, the next spring 

setting would be reduced by 10% ∇G.  If the participant became unstable and contacted the base, 
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the next spring setting would be increased by 5% ∇G.  Subsequent adjustments were in 5% ∇G 

increments based on the outcome of the trial.  Passing trials (i.e. contact was not made with the 

base) resulted in a decrease in spring setting for the next trial.  Conversely, springs setting were 

increased following failing trials. 

Tests with either eyes shut or open were performed following the practice trials.  Eight 

trials were conducted using the spring adjustment procedure defined above to determine the 

threshold of stability for this condition.  If the threshold of stability could not be determined in 

eight trials using the method described in the next section, additional trials were performed until 

a definitive result was obtained. 

Preliminary investigations showed the difference in threshold of stability between eyes 

open and shut was approximately 20% ∇G.  If eyes open was tested first, the initial spring 

setting for the eyes shut test was chosen to be 20% ∇G larger than the threshold of stability 

found for the eyes open test.  Although the actual value of the threshold of stability was found 

through testing, this initial adjustment was effective at reducing the number of trials needed to 

obtain a definitive result.  Conversely, if the eyes shut condition was tested first, the initial spring 

setting for the eyes open test was chosen to be 20% ∇G smaller than the threshold of stability 

found for the eyes shut test.  Like the first test condition evaluated, a minimum of eight trials was 

performed to definitively determine the threshold of stability for the second test condition. 

   

3.2.4   Analytical and Statistical Methods 

The value for the threshold of stability was determined through examination of the test 

result at each spring setting (Figure 3.3).  The number of passing and failing trials at each spring 

setting was tallied.  When both passing and failing trials existed at a given spring setting, the 
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majority result was assigned to that spring setting.  If upon completing eight trials a definitive 

line could be drawn separating passing and failing spring settings, testing at this level was 

considered complete.  However, if the number of passing and failing trials was equal at a given 

level, additional trials were performed until a definitive outcome was obtained. 

A t-test was performed to determine if differences in the threshold of stability were 

detected between the “with” and “without” visual feedback test conditions.  A value of α = 0.5 

was used as the criterion for significance.   

 

threshold of stability for eyes open threshold of stability for eyes shut

Eyes open Eyes Shut

∇∇∇∇G 40 45 50 ∇∇∇∇G 50 55 60 65

pass 2 2 pass 1 1 1

fail 2 1 fail 1 2 2

fail pass pass fail fail fail pass

 

Figure 3.3:  The threshold of stability was found by locating the lowest passing spring 

setting.  In this case 45% ∇G for eyes open and 65% ∇G for eyes shut. 
 

In addition, Lyapunov stability analysis was performed on the first passing trial at the 

threshold of stability for each test condition.  The methods described in chapter 2 were applied to 

determine the time series averaged finite time Lyapunov exponent.  Differences between the two 

test conditions for the Lyapunov exponent were also evaluated using a t-test.   

3.3   Results 

The time series shown in Figure 3.4 is typical of those collected.  The angle of the lower 

body, θ1, shows large variability.  The upper body angle, θ2, remains relatively constant.  In 

some trials an initial adjustment was made during the beginning of the trial after which relatively 



51 

steady results were maintained.  These differences are also visible when viewing θ1 versus θ2 

(Figure 3.5). 

 

 

 

      Angle (deg) 

 

 

 

 

Time (s) 

Figure 3.4:  The lower body angle (blue) shows large variability and the upper body 
(green) variability is smaller. 

 

 

 

 

 

 

 

 

Figure 3.5:  After an initial adjustment at the beginning of the trial, the upper body 

angle, θ1, generally stabilized and motion was dominated by the lower body, θ1.  An 

RMS value of 3.0 degrees (red circle) was found for the θ1 direction.  In the θ2 
direction, the RSM value was 2.0 degrees.  
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The threshold of stability and maximum Lyapunov exponent were found for each 

participant under each condition of visual feedback (Table 3.1).  For the threshold of stability, 

the mean value for eyes open and shut were 36 (6.4) and 51 (7.4) %∇G, respectively, difference 

of ~15% that was significant (t = 11.2; p = .0001).  For the maximum Lyapunov exponent, the 

respective values for eyes open and shut were 0.40 (0.18) and 0.47 (0.20), though this difference 

was not be significant (t = 0.786; p = 0.46).   

 

Table 3.1:  Results of threshold of stability experiment 

Eyes Open Eyes Shut  
 

Participant 
Threshold 
of Stability 

Maximum 
Lyapunov 
Exponent 

Threshold 
of Stability 

Maximum 
Lyapunov 
Exponent 

1 35% 0.42 50% 0.52 
2 45% 0.55 65% 0.43 
3 35% 0.37 50% 0.44 
4 45% 0.10 55% 0.65 
5 30% 0.45 45% 0.52 
6 40% 0.72 55% 0.74 
7 30% 0.29 40% 0.11 
8 30% 0.33 50% 0.31 

 

3.4   Discussion 

Significant differences in the threshold of stability were found between the two groups 

showing this method to be sensitive to differences in these two conditions.  The maximum 

Lyapunov exponent did not show a significant difference.  This may be due to the small number 

of trials in this pilot study.  In addition, the maximum Lyapunov exponent was evaluated at 

different stability levels.  This test would be more likely to show a difference in the Lyapunov 

exponent if the eyes open and eyes closed condition were tested at the same spring setting. 
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Preliminary data suggested that the amount of effort applied during the stability test was 

lower for easier tasks (Granata et al. 2006).  As a result, peak performance of the neuromuscular 

control system may not have been applied during easier tasks in order to expend less energy.  

This may explain why the maximum Lyapunov exponent found during preliminary studies was 

not dramatically higher despite a much higher level of task difficulty.  However, since maximal 

effort was required at each individual’s limit of stability, this may be a more sensitive means of 

differentiating the performance capability of the individual’s neuromuscular control system.  The 

threshold of stability identifies a state where the kinematic variability due to system noise has 

grown to a value that it is just within the basin of stability for the individual (see Chapter 4).   

Any further increases in system perturbations or task difficulty will result in unstable behavior. 

 

3.5   Summary and Conclusions 

A pilot study was performed to evaluate the sensitivity of a new metric to detect 

differences in torso stability.  This new metric, the threshold of stability, differs from other 

metrics in that it is associated with the boundary between stable and unstable regions of state 

space.  Results found using this method showed significant differences in stability between these 

two conditions.  The sensitivity of this method indicates that it may be a useful metric in larger 

studies for the evaluation of torso stability in low back pain patients.   

This method may find application in a clinical setting.  Although electronics were used in 

this study, the time series angle data collected were intended for evaluation in chapter 6 and were 

not needed to find the threshold of stability.  Furthermore, although a force plate was used to find 

∇G for each participant, a rough approximation of ∇G could also be obtained using 
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anthropometric parameters measured in the clinician’s office.  This would eliminate the need to 

purchase and maintain an expensive force plate.  Its simplicity, sensitivity, and low cost may 

make it suitable for evaluating low back pain patients in a clinical practice.  If desired, these 

initial results could then be confirmed in a fully instrumented biomechanics laboratory.  Finally, 

the concept presented herein may be extended to evaluate other systems in which a threshold 

could be found separating two distinctly different outcomes.   
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Chapter 4 
 

Locating Separatrices and Basins of 

Stability in a Reduced Order Model  
 

 
 

4.1   Abstract 

An approach is presented for identifying separatrices in state space generated from noisy 

time series data sets representative of those generated from experiments.  This approach 

demonstrates how Lagrangian coherent structures (LCS), ridges in the state space distribution of 

finite-time Lyapunov exponents, can be used to locate these separatrices.  This method can be 

performed using a single trajectory that evolves over time opposed to previous approaches which 

required an entire vector field at each instance in time.   The method is applied to a biological 

simulation in which the separatrix reveals a basin of stability.  The results of the nonlinear 

analysis show that the LCS calculated from only trajectory data aligns well with the LCS found 

using the traditional vector field analysis methods.  In general, it is believed this method provides 

a fruitful approach for extracting information from noisy experimental data with regards to 

boundaries between qualitatively different kinds of motion.   
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4.2   Introduction 

Increasingly, dynamical systems of interest are defined not by analytical models but by 

data from experiments or large-scale simulations. Some examples already exist in the areas of 

musculoskeletal biomechanics (Dingwell and Cusumano 2000; Akay 2006; England and Granata 

2007) and geophysical fluid dynamics (Pierrehumbert 1991b; Pierrehumbert 1991a; Haynes 

2005; Shadden et al. 2005). 

In many cases, researchers want to ascertain if deterministic chaos is present (Akay 2006; 

Falconer et al. 2007).  This can be achieved by determining characteristic exponents that describe 

the sensitivity of the solution to initially close-starting conditions. One popular technique is to 

estimate the (maximum) Lyapunov exponent averaged over the sampled portion of state space 

(Benettin et al. 1980a; Benettin et al. 1980b; Wolf et al. 1985; Eckmann et al. 1986; Rosenstein 

et al. 1993b; Kantz and Schreiber 2004).  This method is well suited for analysis of time series 

data from experiments. 

Higher values of the Lyapunov exponent indicate greater divergence rates in state space.  

When comparing the Lyapunov exponent found for two different experiments, a researcher may 

conclude that one system is more stable than another.  However, this conclusion may not 

necessarily be true.  If the trajectories of both systems remain within the same compact region of 

state space, then both systems can be considered stable over the finite time evaluated regardless 

of the value of the Lyapunov exponent.  In order for the system to become unstable, according to 

Lyapunov, the system trajectory must cross the boundary separating the stable and unstable 

regions of state space.  
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The locations of these boundaries can be found by extracting additional information 

contained within the time series data.  Rather than averaging the Lyapunov exponents over state 

space to obtain a single scalar value as traditionally done, one can generate a maximum 

Lyapunov exponent field.   This field quantifies the expansion rate at different locations in state 

space.  This state space perspective can lead to a better understanding of the system's behavior 

through identification of trajectory boundaries. In order to find these boundaries, techniques are 

borrowed that were developed for the analysis of fluid flows (Haller 2000; Haller and Yuan 

2000; Haller 2001a; Haller 2001b; Haller 2002; Shadden et al. 2005).  Lagrangian coherent 

structures (LCS) (Haller and Yuan 2000) are state space boundaries which are defined as the 

ridges of the finite-time Lyapunov exponent (FTLE) field (Shadden et al. 2005).  These 

structures indicate the location of the separatrix demarking the boundary between qualitatively 

different kinds of motion.  In general, LCS are time dependent and found by generating a FTLE 

field from the vector field of the system.  However, vector fields are usually unavailable in 

biomechanics experiments where often only a small number of state variables are measured over 

time. 

In this chapter, LCS theory is applied to a rigid body biodynamics problem to identify 

state space boundaries that are assumed to be time independent.  It is shown that the LCS can be 

generated from individual trajectories obtained from time series data without the need of a full 

vector field at each instant in time.  LCS have previously been shown to be robust with respect to 

noise (Haller 2001a; Haller 2002) making them attractive for use in experimental data analysis 

where noise sensitivity is an important issue  (Casdagli et al. 1991; Ellner and Turchin 1995; 

Franca and Savi 2001).   
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4.2.1   Applications of LCS to Biomechanics 

LCS have previously been used to analyze dynamical systems defined by fluid flow 

fields from data (Franca and Savi 2001; Haller 2002; Wang et al. 2003), analytical biochemical 

models (Aldridge et al. 2006), and low degree of freedom mechanical systems(El Rifai et al. 

2007).  Based on current knowledge, the work presented herein is the first application of LCS to 

time series data with the absence of a vector field.  Data in this form is commonly generated in 

biomechanical experiments. The biodynamics problem analyzed in this paper may be categorized 

into a class of biomechanics problems that contain separatrices.  There exists a variety of 

potential applications for these methods in which two or more qualitatively different types of 

movement exist.  A few examples are illustrated below. 

In biomechanics, a separatrix or recovery envelope exists between standing and falling.  

Standing with postural sway is a distinctly different type of motion than falling.  During 

standing, the body remains in the vicinity of an equilibrium position and may be characterized as 

dynamically stable over a suitable finite-time horizon.  Compare this motion to falling where the 

body rapidly diverges from the vicinity of the equilibrium position at an increasing velocity.  In 

falling, the body behaves unstably with respect to the upright vertical position.  If one allows an 

experimental subject to take a step during fall recovery, another boundary will develop.  Now 

three states exist, standing, recovering from a fall with one step, and falling.  Each type of 

motion is divided from the other by a separatrix. Extending this theory, a state space diagram 

with multiple fronts may be generated. 

Previous studies have investigated the range of forward and backwards lean that can be 

attained while maintaining an upright posture without stepping (Kuo and Zajac 1993; Winter et 

al. 2001; Morasso and Sanguineti 2002).  These studies considered the system to be quasi-static 
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where stability is controlled by muscle strength, base of support and the location of the center of 

mass.  By analyzing the results of these studies, a stable region may be defined in one state space 

dimension (position) based on the above parameters.  Pai et al. expanded this work to two 

dimensions by including velocity in his mathematical models (Pai and Patton 1997; Iqbal and Pai 

2000). Pai used vector fields defined by the system's differential equations to determine regions 

of stability for balance recovery.  Although this work expanded the evaluation of stability into 

state space, only a small portion of state space was evaluated, and errors in the governing 

equations resulted in criticism (Edwards 2001). 

A comparable problem to standing postural sway is the challenge of maintaining torso 

stability. In this case, a separatrix exists delineating stable torso sway from unstable and 

potentially injurious motion. In our laboratory, torso stability is studied using an experimental 

apparatus known as the wobble chair.  Torso stability is necessary to avoid large deformations in 

the lumbar spine which is often associated with low back injury and pain (Cholewicki and 

McGill 1996; Granata and Orishimo 2001).  In this study, the separatrix is extracted from a 

reduced order model which captures the essential features of the experimental data. 

  The computation of finite-time Lyapunov exponents from experimental data has been 

used before in musculoskeletal biomechanics.  In particular, it has been used to quantify local 

dynamic stability during locomotion (Dingwell and Cusumano 2000). However, separatrices 

between dynamically stable walking/running could also be evaluated using the methods 

developed in this paper. 
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4.2.2   Sensitivity analysis and finite-time Lyapunov exponents 

In this section, we briefly review some mathematical preliminaries regarding stability or 

sensitivity of trajectories.  Suppose we are given a reference trajectory x(t) going from x0 at time 

t0 to x1 at time t1.  We assume the trajectory evolves under the dynamical equations of a time-

independent (autonomous) system 

 
n

Rxxfx ∈= )(&  (4.1) 

This equation describes a flow field or vector field.  The sensitivity of the reference trajectory is 

discussed below. 

Let the trajectories of the system (4.1) with x(t0) = x0 be denoted by φ(t,t0).   

In other words, φ(t,t0) : x(t0) → x(t) denotes the flow map of the dynamical system (4.1) when 

mapping particles from their initial location at time t0 to their location at time t.  For our 

purposes, the flow map will be denoted as φ(t,t0; x0) or simply φ(t; x0) so the dependence on the 

initial condition x(t0) = x0 is made clear. 

Consider a second trajectory that starts slightly away from the reference trajectory x(t), 

i.e., starts from the perturbed initial vector x0+δx0 at time t0.  As the trajectories evolve, the 

vector displacement (or perturbation vector) 
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will also evolve.  For our purposes, the “second trajectory” might be the result of another 

experimental trial or another portion of the same trajectory separated by a sufficient amount of 

time to avoid a substantial autocorrelation.  This is discussed further below. 
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The linear relationship between small initial perturbations and perturbations at some time 

t is    
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is the state transition matrix (also known as the fundamental matrix).  The state transition matrix 

can be viewed as a deformation gradient.  If an (infinitesimal) n-dimensional spherical blob of 

particles is placed about the reference trajectory, then after a duration T = t-t0, the blob will have 

expanded in some directions and compressed in others to form an n-dimensional ellipsoid 

(Figure 4.1).  

 

 

 

 

 

 

 

  

 

 

 

Figure 4.1:  The state transition matrix is a deformation gradient about the 
reference trajectory describing how an initially spherical blob of surrounding 
particles deforms into an ellipsoid. 
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The matrix Φ(t,t0) contains information about this expansion and contraction as well as the 

rotation of the initial blob of particles due to the locally deforming nature of the flow.   

Suppose there exists a state transition matrix over some interval, Φ(t,t0).  The size of the 

final perturbation at time t is given by 

 
0000

2

)];();([)( xttttxtx
TT δδδ ΦΦ=  (4.5) 

where || · || is the vector norm on �
n
, AT denotes the transpose of the matrix A, and the 

perturbations are considered as column vectors.  The symmetric matrix 
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is the finite-time right Cauchy-Green deformation tensor (Shadden et al. 2005).  The matrix C is 

a rotation-independent measure of deformation; it gives the square of the local change in 

distances due to deformation (Fung 1993; Truesdell and Noll 2004). 

Since C is a symmetric, positive definite matrix, it has n real, positive eigenvalues (Strang 1998; 

Lekien et al. 2007). 

One can associate with point x0 a maximum finite-time Lyapunov exponent, given by 

 ,)(ln
1

)(
max01

C
T

x λσ =  (4.7) 

where T = t-t0 is the finite duration over which expansion is measured and λmax(C) is the 

maximum eigenvalue of C with the corresponding (normalized) eigenvector ê1(t0).  In other 

words, if δx0 is along ê1(t0) at time t0, then maximum stretching occurs over the time T and the 

length of the perturbation vector becomes  
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where t = t0 + T (Shadden et al. 2005). 

 

4.2.3   Determination of LCS 

Lagrangian coherent structures (LCS, both singular and plural) are separatrices in state space, 

separating qualitatively different kinds of motion. These separatrices are co-dimension one 

boundaries in state space, i.e. n-dimensional surfaces dividing n dimensional space.   Methods to 

generate LCS from vector fields are well established (Haller 2002; Shadden et al. 2005). 

Briefly, the existing method to calculate LCS includes the measurement or calculation of 

a generally time-dependent vector field at each instant in time.  Initial conditions at a given 

instant in time are allowed to evolve due to the vector field yielding a set of trajectories. From 

these trajectories, a finite time Lyapunov exponent (FTLE) field can be generated which 

represents the rate of local divergence at that instant in time.  LCS are identified as the ridges in 

the FTLE field that separate two regions of flow (Figure 4.2).  Since the locations of these 

boundaries are changing in a time dependent flow field, the complete vector field must be 

available for each instant of time.  

 

 
 

Figure 4.2:  Flow chart depicting how the LCS are traditionally determined 
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Figure 4.3 below is used to explain why ridges develop in the FTLE field at the LCS.  In this 

schematic representation, divergence of two points (a and b) within the stable region and two 

points (c and d) in the unstable region are compared.  As the points a and b evolve over time, 

their trajectories only slightly diverge resulting in a small FTLE.  This result may be plotted as a 

data point midway between a and b in state space.  Similarly, points c and d also diverge slightly 

resulting in a small value for the FTLE which may be plotted midway between these two points.  

However, b and c which are on opposites sides of the LCS diverge greatly even over a short 

time.  This results in a large value for the FTLE which when plotted in state space lies in the 

region of the separatrix. As more data points are entered, a ''volcano shaped'' ridge forms 

revealing the LCS at the separatrix.   

 
 

 
 

Figure 4.3:  The divergence of two points on opposite sides of a separatrix is 
larger than the divergence of points on the same side. This generates a ridge in 
the FTLE field at the separatrix. 
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Unlike previous methods, the approach described in this paper constructs a FTLE field 

using only trajectory data.  This eliminates the need to generate a vector field, which may not be 

accessible in an experimental setting.  Of course, an FTLE field obtained in this way will be 

limited to the portion of state space sampled by trajectories. 

 

4.3   Mathematical Model 

The wobble chair has been used to isolate movement of the lumbar spine in order to gain 

a better understanding of the dynamics utilized to maintain torso stability and prevent injury 

(Figure 4.4) (Cholewicki et al. 2000; Tanaka and Granata 2007).  The wobble chair consists of a 

seat pan and seat supported by a central ball joint.  Rigidly attached to the seat is a leg rest to 

help minimize relative movement within the lower body.  Stabilizing springs are located at the 

front, back, left and right of the ball joint and help to support the seat.  These springs may be 

moved closer or further from the central pivot point to modify the amount of restorative torque 

provided at any given seat angle.  Wobble chair experiments are typically performed at spring 

distances where the destabilizing gravitational moment exceeds the stabilizing spring torque.  

This configuration is statically unstable and neuromuscular control must be provided for the 

participant to maintain his/her balance on the seat.  The wobble chair is able to tilt in the sagittal 

(forwards and backwards) and frontal (left and right) body planes, but rotation in the transverse 

plane and translation in all planes are restricted.  The wobble chair and experimental protocol are 

designed to minimize relative movement within the lower body and upper body.  Thus, the lower 

body and upper body may each be considered as rigid body segments.  The lumber spine acts as 

a pivot between the lower and upper body segments where the center of rotation is assumed to be 
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located between the fourth and fifth lumbar vertebra.  Given these assumptions, a person sitting 

on the wobble chair has four degrees of freedom (d.o.f). Two of these d.o.f. are due to the 

forward and backward rotation of the lower body and upper body, θS and θT, respectively.  The 

remaining two d.o.f. are due to the left and right rotation of the lower and upper body, φS and φT, 

respectively. Thus, the state of the system may be described using an eight dimensional state 

space. 

 
 

 
 

Figure 4.4:  The wobble chair is an apparatus designed to isolate the movement 
of the low back to determine torso stability (Adapted from (Cholewicki et al. 2000; 
Tanaka and Granata 2007)) 
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In order to begin to understand the behavior of the full dimensional system, a reduced 

model was developed for the wobble chair (Figure 4.5).  In this model, motion is restricted to the 

sagittal plane, and the angle between the lower body and upper body is fixed.  These constraints 

allow the system to be modeled as a planar inverted pendulum.  These constraints effectively 

reduce the system from an 8-dimensional state space system to two dimensions.  Indeed, even 

the 8-dimensional state space is only an approximation to the almost infinite number of 

dimensions inherent in the human body.   

In addition to reducing the computation time, order reduction allows one to visualize 

system properties that may not be understandable in higher dimensions.  This is the case with the 

LCS.  In the reduced order model, the LCS are readily apparent as lines dividing 2-dimensional 

state space.  However in the full order system, it is difficult to visualize an LCS since it exists as 

a 7-dimensional hyper-surface dividing 8-dimensional state space. 

 

4.3.1   Planar Inverted Pendulum Model 

The planar inverted pendulum model consists of a point mass at the end of a rigid mass-

less rod (Figure 4.5).  Stabilizing springs like those used in the actual wobble chair are included 

in the model.   In addition, a proportional-derivative control is used to maintain stability.  

However, the gain of the proportional controller will be limited to a maximum value, thus 

simulating a linear increase in muscle force up to the level of maximum voluntary contraction 

(MVC).  These stabilizing components allow the system to have a stable equilibrium point at the 

upright vertical position.  The existence of this stable region was observed in wobble chair 

experiments where participants were able to balance for 60 seconds in a statically unstable 

configuration (Granata and Lee 2008).  
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Figure 4.5:  The reduced order model of the wobble chair consists of a planar 
inverted pendulum with stabilizing springs and a limited gain control. 

 
 

The vector from the pivot to the center of mass when the pendulum is in the equilibrium 

position (upright vertical) is defined as c.   
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Where h is the height of the center of mass above the pivot point.  The acceleration of gravity 

vector is given by g and is expressed in terms of the scalar value of g equal to 9.8 m/s2.  

Rotations in the x-y plane are defined by the angle theta, θ.  A rotation about the z-axis from 

local to global coordinates is given by the rotation matrix, Rθ.   
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Note that the transformation matrix to convert from global to local coordinates is the inverse of 

the transformation matrix to convert from local to global coordinates.  Also, note that the inverse 

of a rotation matrix is its transform.  In order to calculate the velocity, it is necessary to calculate 

the time derivative of the rotation matrix.  This is obtained by using the chain rule. 
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The position vector in global coordinates is calculated by applying the transformation, Rθ, to the 

position vector in local coordinates, c.  
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The velocity is found by taking the time derivative of the position vector. 
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The potential energy, V, is a function of the height of the mass in the gravitational field and 

given by, 

( )cRgmV
vv

θ⋅=  

The kinetic energy, T, is a function of the velocity of the center of mass.  Since the pendulum 

model is a point mass, the moment of inertia of the body is zero.  Thus, T is simply,   
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The Lagrangian, L, is given by the difference in kinetic energy, T, and potential energy, V.  The 

Lagrangian is computed as follows. 

0 

(4.11) 
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(4.15) 
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Lagrange’s equations are applied to find the equations of motion. 
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 Where τ is the sum of all torques applied to the system.  The equation is solved for each 

component. 
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Combining these equations yields the equation of motion, 
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This equation is further simplified. 
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Solving for the angular acceleration yields the following equation. 

2
mh

mghSin τθ
θ

+
=&&  

Four torque/moment components will contribute to the motion of the system.  The first 

component is the gravitational moment, Mg, calculated previously. 

θmghSinM
g

=  

The second component is spring torque, Ts.  It is given by the spring force applied at a distance, 

d, from the pivot point.  The spring compression is given by d*Sinθ.  Using the spring constant, 

k, previously defined, the spring torque can be calculated. 
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The third component is limited gain proportional-derivative control, C(θ, θ
.
).  The equation for 

the limited gain PD control, C, is given by, 
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where, Gd is the derivative gain constant, θcr = Gp max/Gp is the smallest angle at which the 

maximum gain is achieved, Gp is the proportional gain constant, and Gp max is the maximum 

value of proportional gain.  Physiologically, a limited gain controller represents the limited 

muscle strength of the abdominal and spinal extensor muscles.   

The fourth component is noise.  System noise, N, is introduced into the model as random 

force perturbations (Figure 4.6).  It is simulated by a zero mean Gaussian normal distribution 

with a standard deviation, σ, equal to 1% of ∇G.  Constraints are included in the program to 

bound the noise level to an amplitude of ±3σ.  A noise frequency (20 Hz) is selected such that it 

substantially exceeds the natural frequency of the system (<~3 Hz).  Physiologically, noise can 

(4.25) 

(4.26) 

(4.27) 
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be introduced into the system from muscle twitches, inaccurate motor unit activation, involuntary 

movements, or external environmental forces. In order to solve the system using an ordinary 

differential equation (ODE) solver, it is necessary to determine the noise at each time instant 

prior to solving the ODE.  Within the ODE, the noise at any time can be interpolated from the 

closest predetermined values allowing the solver to converge on a solution.  This method is 

necessary because the solver will be unable to converge on a solution if the noise is randomly 

determined within the system dynamics subroutine.  For the simulation, Gaussian random noise 

is be calculated at a frequency of 20 Hz and an amplitude of 3 standard deviations equal to 1% of 

the gravitational gradient.   
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Figure 4.6:  Gaussian random noise with a frequency of 20 Hz, and amplitude 
of 3 standard deviations equal to 1% of the gravitational gradient. 

 

Thus, the reduced order model, hereafter referred to simply as the model, is governed by 

the following differential equation 
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where, θ
..

, m, g, h, θ, θ
.
, k and d are the angular acceleration, mass, acceleration of gravity, height, 

rotation angle, angular velocity, spring stiffness, and the distance of the springs from the central 

ball joint respectively.   

 

4.3.2   Effective potential function 

In the mathematical model, the limited gain control causes a well to develop in the 

effective potential energy curve of the system, Veff, at the upright vertical position (Figure 4.7).   

This potential energy well acts as a local attractor in state space.  Physiologically, this well 

allows the participant to balance near the vertical position.  However, larger perturbations that 

exceed the well's dimensions in state space will cause the participant to fall away, hence being 

repelled from the vertical position.  Thus, the well is of finite size, and the system is not globally 

stable. 

Insight into the system's behavior can be gained by examining the effective potential 

function  
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which is the sum of all the potential functions.  When the distance from the stabilizing springs to 

the central ball joint is small, the upright vertical position is unstable.  As the springs are moved 

further out, the upright vertical position remains unstable until the threshold of stability is 

reached.  A well forms in the potential curve at the upright vertical position upon reaching the 
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threshold of stability. This well is a region of local stability (Figure 4.7).  The size of the well 

may be enlarged by increasing the restorative torque provided by the springs or the controller 

gain.   

 
Figure 4.7:  The effective potential energy function is the sum of the individual 
components.  Under some conditions, a potential well develops near the 
equilibrium point. 

 
 

This stable region may be visualized by examining iso-energy plots and the flow map in 

state space (Figure 4.8 in section 4.4.1). The flow map may be divided into two distinct regions 

based on the type of motion.  The first region is characterized by elliptical orbits centered around 

the equilibrium point.  The second region is characterized by hyperbolic orbits.  The heteroclinic 



75 

orbit separates the two regions and also locates the material flow lines on which the hyperbolic 

orbits are aligned. 

4.3.4   Model Calibration 

The model may be calibrated to match anthropometric data of a typical participant 

performing tests on the wobble chair.  In order to calibrate the apparatus for a specific 

participant, the gravitational gradient of the subject is determined.  The gravitational gradient, 

∇G, is defined as ∑Mg/∑θ, where Mg is the moment about the pivot due to gravity.  ∇G is a 

function of the participant's body mass and mass distribution.   

For this simulation, model parameters were selected to match typical values for 

participants (Table 4.1).  A participant with a mass of 69 kg and a gravitational gradient of 291 

Nm was used.  The resulting height of the center of mass was calculated to be 43.0 cm.  Using 

the wobble chair spring stiffness of 10,900 N/m, the distance from the springs to the pivot was 

calculated to be 10.35 cm for a spring setting of 40% ∇G.    

An important indicator of the participant's neuromuscular control capability is the 

threshold of stability.  This parameter is the minimum value of the restorative force (i.e. spring 

distance) at which the participant is able to maintain balance on the wobble chair.  Its value is 

expressed as a percentage of ∇G.   Pilot data collected from two healthy subjects yielded a 

typical value of 35% ∇G.  The model was calibrated by modifying the controller values, Gp and 

Gp max, so that the threshold of stability matched the value found experimentally. 
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Table 4.1:  Model Parameters for the Reduced Model 

parameter value source 

m 69 kg typical subject 
g 9.81 m/s2 typical subject 
h 43.0 cm calculated from ∇G 
k 10,900 N/m wobble chair 
d 10.35 cm value to generate 40% ∇G 
Gd 1 Nm/(rad/s) calibration parameter 
Gp 190 Nm/rad calibration parameter 
Gp max 14.5 Nm calibration parameter 

 
 
 

4.4   Nonlinear Analysis 

In this section, nonlinear analysis techniques are applied to study how the model behaves 

under different conditions and using different analysis techniques.  First, the parameters of the 

human postural control model will be set so that the system is deterministic and conservative.  

This model will be used to generate a vector field from the governing differential equation.  It 

will then be shown how the Lagrangian coherent structures calculated from this vector field align 

with the lines associated with the heteroclinic orbit.  Second, random noise and a damping 

component will be introduced to this deterministic model.  The vector field generated from this 

model will be used to determine the LCS for this scenario. Third, a model of human postural 

control will be used to generate simulated experimental data in the form of a single trajectory.  

The trajectory will be analyzed and it will be demonstrated that the LCS can be found without a 

vector field. 

4.4.1   Deterministic and Conservative Simulation  

For the deterministic and conservative simulation, the system noise and damping function 

of the controller are set to zero.  The system is modeled using MATLAB (MathWorks, Natick, 
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MA). Since the system in its current configuration is conservative, the heteroclinic orbit can be 

determined by generating an iso-energy contour in state space where the total energy is equal to 

the maximum effective potential energy.  The heteroclinic orbit along with lower and higher 

energy orbits are shown in Figure 4.8. 

A vector field is generated from a regular grid of points in state space centered around the 

upright vertical position.  Each of these points are taken as an initial condition to determine the 

flow map as the vector field evolves over time.  The differential equation [4.9] is solved using a 

Runge Kutta (4,5) ordinary differential equation solver function (MATLAB function ode45).  

The forward time flow map for the system is shown to correlate well with the iso-energy orbits 

in Figure 4.8. 

 

 
Figure 4.8:  Orbits and flow map for the deterministic conservative configuration.  
Lines ending with a point show the resulting trajectories based on the initial 
conditions.  The heteroclinic orbit is a separatrix between the stable and unstable 
regions. 
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The FTLE is calculated for each point on the interior of the grid based on the expansion of the 

state transition matrix. These results are combined over state space to produce a FTLE field.  The 

FTLE field was first calculated by flowing time forward 3 seconds.  Recalling that the LCS are 

ridges of the FTLE field, these structures form a “volcano” like shape in the three dimensional 

view (Figure 4.9).  

 

 

 

 
 

Figure 4.9:  The 3D view shows the LCS to be easily observable as ridges in the 
FTLE field. This plot was generated from a 200 by 200 point grid over a range of 
±15 degrees by ± 15 deg/sec.  
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Viewing Figure 4.9 from the top (Figure 4.10), the LCS are observed to align well with 

the iso-energy lines associated with the heteroclinic orbit.  A ridge is formed around the 

heteroclinic orbit which separates stable motion near the upright vertical position from unstable 

motion further from the origin in state space.  In addition, two other LCS are noticeable.  In the 

lower right, an LCS generates a hyperbolic material line (Haller 2002) that is aligned with the 

iso-energy line associated with the heteroclinic orbit. As the trajectory approaches the 

heteroclinic orbit, the flow on either side of the LCS splits.  Physically, this represents initial 

conditions beginning in the unstable region with large angles and large negative angular 

velocities.  As the trajectories approach the heteroclinic orbit, those trajectories on the right side 

of the LCS have insufficient kinetic energy to reach the stable region of state space before 

achieving zero velocity.  As time progresses, this trajectories fall back in the direction from 

which they came.  

Trajectories on the left side of the LCS have sufficient energy to approach the upright 

vertical position.  In fact, these trajectories have too much energy to enter the stable region of 

state space, and they pass over the vertical position to the other side.  For the conservative and 

deterministic system, there does not exist an approach from the unstable region of state space 

that results in an orbit within the stable region.  The LCS forms an impenetrable barrier between 

the two regions.  The LCS in the upper left describes motion analogous to the LCS on the lower 

right but approaching from the other side.  
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Figure 4.10:  LCS form separatrices in the forward time flow (T = 3 seconds).  
Locations of the LCS matches well with the heteroclinic orbit and its isoenergy 
lines.  

 

The LCS can also be generated for the backward flow of time (Figure 4.11).  In this case, 

the LCS indicates divergence of the backward time flow which can be equally viewed as 

convergence of the forward time flow.  Once again, the LCS are observed to correlate with the 

line associated with the heteroclinic orbit.  Notice that an LCS is also present around the 

heteroclinic orbit in the backwards time flow.  Thus, this separatrix exists in both temporal 

orientations (i.e. it is not an attractor of trajectories).  An LCS associated with convergence is 

observed in the upper right.  Physically, this LCS represents the convergence of two groups of 

trajectories.  Trajectories to the right of the flow approach the LCS after having insufficient 
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energy to reach the heteroclinic orbit.  Flow lines to the right of the LCS originally approached 

form the opposite side, passed over the upright vertical position, and continued past the stable 

region with too much energy to stop. These two trajectories converge with each having only 

slightly different energies.  Like the forward time flow, LCS also from an impenetrable barrier 

between the two regions in the backward time flow.   

 
Figure 4.11:  LCS form separatrices in the backward time flow.  Locations of the 
LCS match well with the heteroclinic orbit and its isoenergy lines.  

 
 

Depending on the system, the LCS may have different meanings.  In this case, the LCS 

forms a boundary or separatrix between the region of stable postural sway (around the origin) 

and unstable falling motion (beyond the boundary).  In this biological example, the 
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characteristics of the stable region and its boundary location depend on the accuracy of a number 

of neurological sensory systems, the feedback gain associated with core muscle strength, and the 

time delay of the postural control system. 

4.4.2   Deterministic Simulation with Noise  

In the previous section, the noise level and the damping component were set to zero 

making the system deterministic and conservative.  In this section, noise and damping are 

introduced to better approximate the actual system. Taking these factors into account in equation 

[4.9], the flow map is generated (Figure 4.12).  For reference, the orbits for the conservative 

deterministic configuration are also shown. 

 

 
Figure 4.12:  The flow map evolved over 0.3 seconds for the damped system 
with noise is plotted simultaneously with the orbits for the conservative 
deterministic configuration.  

This damping has the effect of reducing the system energy attracting the trajectories 

towards the origin in state space.  This is observed as a slight inward arcing of the flow paths 
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over the 0.3 second evolution time.  Random noise slightly perturbs the trajectories as they 

evolve making the system no longer deterministic. This has the potential to have a dramatic 

effect on the future of a trajectory.  Trajectories near the LCS may be perturbed to the opposite 

side crossing the barrier.  Thus, stable trajectories may become unstable, and unstable trajectories 

may become stable.  Shifts may also occur over the hyperbolic material lines.  The forward 

(Figure 4.13) and backward (Figure 4.14) time flow plots are shown for the noisy damped 

configuration.  Notice that the perturbations cause the LCS to be less distinct than the noise free 

LCS.  However, the location of the LCS is unaltered, and it is still very noticeable despite the 

presence of noise.  By rotating Figure 4.13, the ridge of the FTLE field is apparent (Figure 4.15). 

 

 
Figure 4.13:  The location of the LCS aligns well with the lines of the heteroclinic 
orbit in the forward time flow damped system with noise.  Although the flow is 
more diffused than the conservative noise free system, the results are essentially 
the same.  
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Figure 4.14:  The backward time flow analysis shows LCS that also align well 
with the lines of the heteroclinic orbit for the damped system with noise. 

 
Figure 4.15:  The LCS can be easily observed in a 3 dimensional plot of (Figure 
4.13). 
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4.4.3   Generation and Analysis of Simulated Experimental Data 

The next step toward evaluation of the real biodynamic system is to simulate trajectories 

similar to those recorded during experiments. In this simulation, the system begins at the origin 

in state space and is perturbed with Gaussian random force perturbations.  These forces generate 

movement that is attenuated by a controller.  As a result, the system is able to maintain stability 

for a period of time before a sequence of perturbations causes the system to become unstable 

(unrecoverable).  Physiologically, this represents a person balancing on the wobble chair initially 

having a tilt angle and angular velocity equal to zero.  During the experiment, system noise 

causes the person to sway, and neuromuscular control effort must be applied to maintain a stable 

upright posture.  The angle is recorded for each segment (lower and upper body) typically at a 

frequency of 100 or 1000 Hz.  Each simulated trial lasts 30 seconds or until the trajectory 

becomes unstable and diverges beyond a certain boundary (15 degrees).  Twenty independent 

trials are generated from the model, and the results are concatenated into a single trajectory 

(Figure 4.16).  This trajectory represents a single biodynamic experiment in which the participant 

spends time balancing near the equilibrium point and falling. 

 

 
Figure 4.16:  The time-series data analyzed came from several simulated 
experimental trials. 
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Unlike vector field data which is much richer, a single trajectory only contains 

information about one point in state space at any instant of time.  In order to compensate for this 

deficiency in information, data are collected as the trajectory explores different locations in state 

space over the duration of the experiment.  Since the system is assumed to be autonomous, these 

data can be combined to generate a FTLE field even though the locations in state space may have 

been explored at times separated by several seconds or minutes.  Furthermore, the lack of a 

complete vector field introduces new challenges.  Unlike a vector field which is continuous over 

space, time series data, viewed as trajectories, may be sparse or absent in many regions of state 

space. As a result, the FTLE field may be incomplete, and only portions of the state space may 

be evaluated.  Therefore, an important aspect of both an experiment and a simulation is that the 

trajectory spans as much of state space as possible.  This is especially important when trying to 

locate LCS because it is not possible to experimentally determine their locations unless data is 

available on both sides of the LCS.   

With the simulated trajectory now generated, it is possible to conduct the numerical 

analysis.  However, in order to better understand the numerical simulation, the theoretical basis 

for calculating the FTLE field from a single trajectory first will be illustrated.  The maximum 

FTLE field can be approximated if it is assumed that the direction of maximum expansion 

dominates the dynamics of perturbations in arbitrary directions (Rosenstein et al. 1993b).  Under 

this assumption, equation [4.7] is presumed to hold for all perturbation vectors regardless of their 

initial state space direction.  This will result in a lower bound approximation to the actual value 

since the perturbation direction will not be exactly aligned with the direction of maximum 

expansion.  As the focus is now on the maximum FTLE, the maximum FTLE will be referred to 

as simply the FTLE hereafter. 
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The FTLE is estimated as the rate of separation of neighboring trajectories.  In order to 

understand how this is determined from experimental data, consider the reference trajectory 

shown in Figure 4.17.  With a reference point established, a target location p1 is identified that is 

a perturbation distance δq from the reference point in state space.  The data point closest to p1 on 

another trajectory, n1, is then found.  This other trajectory can be from either a different run of 

the experimental trial or another portion of the same trial separated by a sufficient amount of 

time to avoid a strong correlation with the reference point.  This process is repeated for other 

state space directions.  Using this method, 2n neighbors are found for each reference point 

corresponding to positive and negative directions of each dimension of state space.  If multiple 

nearest neighbors are considered, perturbations are sampled in multiple state space directions 

which increases the likelihood of a separation lying in the direction of maximum expansion.  

 

 

 
 
 
 
 
 

 

 

 

 

 

 
 
 

Figure 4.17:  The maximum FTLE is found by calculating the growth of 
perturbation vectors in multiple state space directions.  The assumption is made 
that the maximum FTLE dominates the evolution of the perturbation vectors. 
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Each point in the data set is sequentially evaluated by considering it to be a reference point.  The 

FTLE is calculated for each pair.  Unlike previous biomechanics analyses that averaged the 

FTLE over time and space (Wolf et al. 1985; Rosenstein et al. 1993b; Akay 2006; England and 

Granata 2007), the FTLE value over a finite time, T, is associated with a state-space location.   

Since the expansion will be calculated based on two points, the reference and the neighbor, it is 

logical to assign the expansion value to the midpoint between these two points (green points) 

(Figure 4.18). 

In this way, the state space distribution of the FTLE is developed.  The FTLE field is 

generated by placing an n-dimensional grid over the state space and using the distribution of the 

FTLE to generate an n-dimensional surface.  At each state space location, x, the height of the 

surface is the scalar value σ1(x) from equation [4.6].   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.18:  Values for the finite time Lyapunov exponents were stored in a 
location midway (green) between each reference (blue) and each nearest 
neighbor (yellow).  These values were used to generate the FTLE field in state 
space. 
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The choice of δq may influence the FTLE field.  The perturbation distance δq is a coarse-

graining parameter selected to be large enough to overcome system noise and small enough to 

reveal local features of the FTLE field. However, parameter sensitivity analysis shows this 

method to be relatively insensitive to the value of δq.  Reductions in the value of δq by two 

orders of magnitude reduced the smoothness of the FTLE field but did not change the locations 

of the LCS.   

Using the approach described above, a numerical analysis was performed to calculate the 

FTLE field from trajectory data.  In both the mathematical model and wobble chair experiment, 

angular position data was available for each d.o.f. of the system.  Since the velocities can easily 

be calculated from the position data, actual d.o.f. were available for all dimensions of state space.  

As a result, there is no need to reconstruct state space using the method of delays as others have 

done.  For the mechanical system being modeled, the measured coordinate (q) was used to 

numerically construct the time derivative (q
.
).  These two parameters form the 2D state space of x 

= (q, q
.
).  However, note that the method of using an FTLE field to find LCS is not tied to any 

particular means of state space construction. 

  Analysis of the simulated experimental data for an evolution time of 0.6 seconds is 

shown in Figure 4.19.  At this short evolution time, the LCS begins to form near the ejection 

regions of state space.  These ejection regions are located to the upper right and lower left of the 

heteroclinic orbit.  For short evolution times these are the locations where rapid divergence 

occurs.  However, unlike the vector field simulations presented earlier that map the flow of both 

unstable and stable trajectories, the simulated experimental data only maps stable trajectories and 

initially stable trajectories that become unstable.  As a result, the hyperbolic material lines 

associated with the approaching unstable trajectory are not present.  Despite being less complete 
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than the LCS generated from vector field data, the displayed portion of the LCS generated from 

trajectory data matches well with the location of the heteroclinic orbit and the LCS found from 

the vector field of the underlying conservative system (Figures 4.10 & 4.13).   

 
 

Figure 4.19:  At an evolution time of T = 0.6 seconds the LCS is observable near 
the ejection points in state space. 

 

 

For a longer evolution time, 1.2 seconds, the dominant peaks of the LCS shift further to 

the left on the top portion of the heteroclinic orbit and further to the right on the bottom portion 

(Figure 4.20).  The LCS still aligns well with the heteroclinic orbit and for this evolution time 

covers the heteroclinic orbit in the first and third quadrants.  In addition, the LCS still matches 

well with the location of the LCS generated from vector field data.  The reason why the LCS is 

visible over a large portion of state space is a result of the longer evolution time.  Consider two 
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near points on opposite sides of the LCS on the upper portion of the heteroclinic orbit. 

Trajectories that originate more to the left will flow together further before reaching the ejection 

region where their orbits split.  As a result, trajectories originating from this region require 

longer evolution times before the LCS is noticeable.  A similar condition exists on the lower 

portion of the heteroclinic orbit where trajectories originating more to the right flow together 

longer. 

 

 
Figure 4.20:  By T = 1.2 seconds the LCS is clearly observable spanning more of 
the boundary. 

 

 

For an even longer evolution time, 1.8 seconds, the visible portion of the LCS continues 

to rotate in the counter clockwise direction (Figure 4.21).  By an evolution time of 2.0 seconds 

the LCS is visible near the opposite side of the heteroclinic orbit.  Increasing the evolution time 
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beyond 2 seconds only results in a loss of contrast in the FTLE field with no new information 

becoming available (Figure 4.22). 

 

 
 

Figure 4.21:  By T = 1.2 seconds the LCS is clearly observable spanning more of 
the boundary. 

 

Although 20 trials were evaluated for this simulation, a separate simulation indicates that 

LCS structures may be identified with as little as two time series using this method.  However, 

smaller trial numbers will tend to be more affected by random noise than larger sets because the 

net effect of random noise reduces as the number of trials increases.   
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Figure 4.22:  FTLE field at an evolution time, T = 2.4  seconds. 

 
 

4.5   Conclusions 

In this chapter, it has been shown how boundaries that separate qualitatively different 

kinds of motion can be found using the method of Lagrangian coherent structures applied to time 

series data.  This is different than previous approaches to computing the LCS that required a 

vector field to be known.  Its has been demonstrated that the location of the LCS aligned well 

with the heteroclinic orbit, a separatrix, of the underlying conservative system even in the 

presence of system noise. A demonstration of a computational method to find LCS using only 

trajectory data as is commonly obtained from time series data from biomechanics experiments 

has also been presented.   The LCS was calculated from simulated data and shown to also align 
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well with the heteroclinic orbit.  Overall, consistent results were obtained for the location of the 

separatrix using all methods. 

In this biological example, the LCS forms the boundary of a basin of stability.  Defining 

the basin of stability in state space provides a much richer understanding of the system dynamics 

over previous methods that calculate a single scalar value.  The boundary, or recovery envelope, 

could be used in conjunction with sway data to define new measures of individual fall risk, e.g., 

the average distance of an individual's state from the boundary.   

It is noted that the state-space-averaged FTLE for any time T can be obtained by 

computing the average of the FTLE field over the sampled region of state space.  This provides 

the link between the current method and previous methods for finding an averaged Lyapunov 

exponent from time series data.  In forthcoming work, this method will be demonstrated on 

higher dimensional data and actual experimental data.  In general, it is believed the method 

demonstrated in this study provides a fruitful approach for extracting additional information from 

noisy experimental data, namely boundaries between qualitatively different kinds of motion. 
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Chapter 5 

 

Mathematical Modeling and 

Simulation of the Planar Wobble 

Chair 
 

 
 

5.1   Abstract 

Various unstable seat apparatus have been used to isolate motion of the lumbar spine in 

order to quantify torso stability, a factor associated with low back pain.   A mathematical model 

of a human sitting on one such apparatus, the wobble chair, was developed.  Motion was 

restricted to the sagittal plane and anthropometric data was used for model calibration.  

Numerical simulations were conducted to find trajectories which were evaluated to determine 

finite time Lyapunov exponents (FTLE) from each initial location in state space.  The FTLE field 

was used to find Lagrangian coherent structures, ridges in the FTLE field, in order to determine 

the location of the basin of stability.  Both deterministic and stochastic simulations were 

performed.  The dynamics depend strongly on the control algorithm of the subject and finding a 

stable controller was a significant portion of this investigation.  The wobble chair is an apparatus 

used to isolate certain features of the control germane to torso stability.  
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5.2   Introduction 

Spinal stability is often associated with low back pain (Bergmark 1989; Granata and 

Orishimo 2001; McGill 2001; Van Dieen et al. 2003; Brown and McGill 2005; Reeves et al. 

2007b).  Since usual engineering methods sacrifice the test sample during stability testing, these 

are not suitable for application to human subjects.  An unstable seat apparatus has been used to 

isolate motion of the lumbar spine in order to quantify torso stability (Cholewicki et al. 2000; 

Reeves et al. 2006; Tanaka and Granata 2007; Granata and Lee 2008).  Kinematic variability 

methods such as RMS distance, ellipse area, and path velocity (Granata and Lee 2008) as well as 

dynamic stability methods such as stability diffusion (Cholewicki et al. 2000) and Lyapunov 

stability (Tanaka and Granata 2007; Granata and Lee 2008) have been used to quantify the 

system dynamics.  In addition to analysis of experimental data, a mathematical model can be a 

useful tool to gain better insight into the underlying system dynamics.  Often, underlying 

dynamics that are not readily apparent through observation may be detected through simulations.  

In addition, simulations may be performed to show system behavior under controlled conditions 

that may not be possible in highly coupled systems.   

In this chapter, simulations of torso stability will be conducted on the planar model of the 

wobble chair (Figure 2.1).  The planar wobble chair model is a highly nonlinear system that 

exhibits complex behavior due to strong coupling between the two segments.   In order to gain a 

better understanding of the system behavior, a similar dynamic system, the “Acrobot”, will first 

be evaluated.  The Acrobot consists of a double inverted pendulum with actuation on the joint 

between the segments and no actuation at the attachment point.  It has been studied by multiple 
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researchers for almost 20 years, with a moderate amount of published work on this system.  

Since the Acrobot is a diffeomorphism of the wobble chair, some of the same properties 

exhibited by the Acrobot are also present in the wobble chair (Note: Two systems which are 

diffeomorphisms share the same dynamics and one system can be morphed into the other).  After 

solving for this simpler system, the model configuration will be morphed into the wobble chair to 

reveal the solution to this more complex system of interest. 

5.2.1    History and properties of the Acrobot 

The Acrobot consists of a double inverted pendulum with an actuator between the two 

segments and no actuator at the pin joint where the Acrobot attaches to the inertial reference 

frame (Figure 5.1).  Since the Acrobot model is a diffeomorphism of the wobble chair model, the 

differential equations developed for the wobble chair also apply to the Acrobot.  The only 

differences are in the parameter values (i.e. masses, moments of inertia, vector direction and 

magnitude to the joint, and vector directions and magnitudes to the center of mass).  It is 

advantageous to study this slightly simpler and more well-known system in order to gain a better 

understanding of the results that may be obtained from the wobble chair.   
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Figure 5.1:   The Acrobot (acrobatic robot) is patterned after a gymnast on a high 
bar (a).  Actuation occurs only at the middle joint (hip) with the first joint (hands) 
being free to spin about its axis (Murray and Hauser 1991) 

 

Both the Acrobot and wobble chair are underactuated systems, meaning they posses 

fewer actuations directions than degrees of freedom (Spong 1995).  Murray and Hauser coined 

the term “Acrobot” and were the first to show that this underactuated system was controllable at 

any equilibrium point .(Hauser and Murray 1990).  Controllability in this case denotes the ability 

to move the segments within configuration space and near an equilibrium point using only the 

single actuator.  Since then, others have evaluated the dynamics of the Acrobot (Spong 1995; 

Boone 1997) and similar dynamic systems (Hou and Luecke 2003).  The Acrobot is highly 

nonlinear with strong coupling between segments.  This coupling was used by Spong to achieve 

a linear response from the first segment through momentum coupling with the second segment.  

a) segment 2 

segment 1 

Actuated 

pin joint 

fixed 

pin 

joint 
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This resulted in exponential convergence of segment one.  However, the movement of segment 

two was complex since its motion was dictated by the dynamics required to generate the 

coupling forces needed to control segment one (Spong 1995).  Thus, segment two could not be 

controlled for exponential convergence simultaneously with segment one. 

 One important property of the Acrobot is the existence of an equilibrium manifold 

(Murray and Hauser 1991).  The manifold exists when the combined center of mass of the two 

segments lies directly above the free swinging pin joint.  With an appropriate torque at the 

middle joint, this configuration is able to achieve static equilibrium where the two angles, θ1 and 

θ2, are static.  One way to fix the angle is to apply an appropriate torque at the joint between the 

segments.  In the examples below, the equilibrium manifold was generated for two sets of 

parameter values, the balanced parameters and the actual system parameters (Figure 5.2). 

 

 

Figure 5.2:  Equilibrium manifold for the Acrobot.  Balanced parameter values 
were 0.5, 1, 8, 8, and 10 for the length of segment 1, length of segment 2, mass 
of segment 1, mass of segment 2, and acceleration of gravity, respectively.  
Actual parameters were 0.5, 0.75, 7, 8, and 9.8 respectively (Murray and Hauser 
1991). 
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Bortoff, a student of Spong, was the first to produce experimental results for the Acrobot 

(Bortoff 1992) (Figure 5.3).  Quantitatively, the results differed from Murray and Hauser for two 

reasons.  First, the systems had different parameter values: masses, lengths, moments of inertia, 

friction and damping.  Second, Murray and Hauser defined the second joint angle as the angle 

between the two segments, and Bortoff defined the second angle from the vertical reference.  

However, despite these differences, the results are qualitatively similar. The existence of an 

equilibrium manifold is significant because it indicates that there are an infinite number of 

equilibrium points which exists along the length of the manifold.  Thus, stability for the Acrobot 

(and the wobble chair) may be achieved with more than one combination of θ1 and θ2.   

 

 

 

Figure 5.3:  Equilibrium manifold for the physical Acrobot (Bortoff 1992).  Note 
that the axes are switched when compared with Figure 5.2. 
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A second property of the Acrobot is the location of the basin of stability.  The basin of 

stability for the balanced system was found to be a diagonal band around the vertical position 

when plotted in (θ1,θ2) variables for both segments at zero velocity (Figure 5.4a)(Murray and 

Hauser 1991).  Although not shown, it is presumed that the basin of stability is centered over the 

equilibrium manifold.  Bortoff also found a basin of stability for the Acrobot with linear control 

(Figure 5.4b) (Bortoff 1992).  The solid line encircles a basin of stability for a controller which 

has been linearized about the origin.  The dashed line encircles the basin of stability for a 

controller that is linearized about a balanced configuration in which the second segment is 

horizontal.  Three important conclusions may be made from the basins of stability.  First, the 

basins of stability are generally, but not exactly, aligned with the equilibrium manifold.  Second, 

the size of the basin of stability becomes smaller when the system is linearized about a point 

further from the vertical configuration (the origin).  Third, stability may be achieved further from 

the origin by using a controller that is linearized about a remote point on the equilibrium 

manifold near the state of the system. 
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Figure 5.4:  Basin of stability for (a) the balanced Acrobot (Murray and Hauser 
1991) and (b) the physical Acrobot (Bortoff 1992).  

 

a) 

b) 
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5.2.2    Morphing the Acrobot into the Wobble Chair 

The FTLE field (see section 4.2.3) for the wobble chair was generated by slowly 

morphing the Acrobot into the wobble chair.  Controller gains were modified during the 

progression to ensure that LCS could still be seen at each step of the transformation.  First, 

keeping all other parameters the same, the masses were increased from the Acrobot values to the 

wobble chair values (m1 = 8 → 27.4 kg ; m2 = 8 → 31.8 kg).  Next, the moments of inertia were 

changed (I1 = 0 → 2.35 kg·m2 ; I2 = 0 → 4.86 kg·m2).  Next the segment and center of mass 

vectors were slowly changed.  The vectors for the Acrobot and wobble chair are shown in Table 

5.1.  In order to morph all vectors simultaneously, a morphing percent, morph, was defined.  

Each vector was morph percent Acrobot and (100- morph) percent wobble chair.  Some of the 

intermediate configurations are shown in Figure 5.5. 

 

 

Table 5.1:  Segment and center of mass vectors  

 Wobble chair 

       x               y              z 

Acrobot 

x              y               z 

L1 0.1272 0.1580 0 0 0.5 0 

L2 0 0.7179 0 0 0.5 0 

c1 -0.1771 0.0780 0 0 1.0 0 

c2 0 0.2736 0 0 1.0 0 
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 100% Acrobot  70% Acrobot 30% Acrobot 0% Acrobot 

  0% wobble chair 30% wobble chair 70% wobble chair 100% wobble chair 

 

Figure 5.5:  Center of mass and segment vectors for the Acrobot were slowly 
changed to those of the wobble chair.  This effectively morphed one model into 
the other. 

 

5.3   Mathematical Model of the Planar Wobble Chair 

The planar wobble chair was modeled as a double inverted pendulum.  In the wobble 

chair, the first segment consisted of the lower body and the chair.  The second segment consisted 

of the head, arms, and torso.  The pivot joint between the two segments was located between the 

fourth and fifth lumbar vertebrae (Van Dieen et al. 2003).   
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5.3.1   Anthropometric Parameters 

A segmented human model (Figure 5.6) was created so that the location of the center of 

mass (COM) for each segment and the joint location between the two segments could be 

calculated.   

 
Figure 5.6:  Model of the person sitting on the wobble chair.  Blue components 
contribute to segment one.  Green components make up segment 2.  The joints 
are shown in red and the springs in aqua. 

 

Individual body segments were modeled using anthropometric data (de Leva 1996).  

Anthropometric parameters used in the model included segment masses, COM locations, and 

radiuses of gyration for a typical person.  Segment values were obtained by multiplying the given 

ratios by the subject’s height or weight.  Using the anthropometric data and human subject 

measurements the following three dimensional vectors were generated from components of the 

lower body while configured in the seated position (Table 5.2 and Figure 5.7). 
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Table 5.2:  Lower body vector table 

 

 

 

 

 

 
 
 
 
 
 
 

 
 

Figure 5.7:  Vectors were used to find the locations of the center of mass 
of each body segment. 

 

The mass of each component was found from tabulated data.  The radius of gyration for 

each segment was used to determine the moment of inertia for each component about its center 

of mass.   

 Beginning location Ending location  Source 

roh Origin (ball joint) Hip (greater trochanter) Measurements 

rhCOMt Hip COM of the thigh Anthropometric 

rot Origin COM of the thigh rot  =  roh +  rhCOMt 

rhk Hip Knee Anthropometric 

rkCOMs Knee COM of the shank Anthropometric 

ros Origin COM of the shank ros  =  roh +  rhk + rkCOMs 

rka Knee Ankle Anthropometric 

raCOMf Ankle COM of the foot Anthropometric 

rof Origin COM of the foot ros  =  roh +  rhk +  rka + raCOMf 

raCOMf 

Thighs 

Shanks 

Feet 
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Where, i represents the component (hip, thigh, shank, foot) and j corresponds to the axis.  The 

parallel axis theorem was applied to obtain the moment of inertia of each component about the 

origin. 
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All components were combined to develop a composite moment of inertia for the lower body, 
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The mass of the lower body, m1, was determined by calculating the sum of the component 

masses.  The vector from the origin to the center of mass of the lower body was found as 

follows: 
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The upper body was calculated in a similar manner.  Upper body components consisted of the 

head, torso, two upper arms, two forearms, and two hands.  The upper body mass, m2, was 

determined by evaluating the sum of the component masses.  The center of mass of the upper 

body, c
-

2, was calculated with the same techniques used to calculate c
-

1 above. 

A reduced model was developed for the body, simplifying it into two rigid segments 

pivoted at the joint between the fourth and fifth lumbar vertebrae, L4 and L5 (Figure 5.8). L
-

1 and 

L
-

2 are the segment vectors of the reduced model.  Notice that if the vectors c
-

1 equal L
-

1 and c
-

2 

equals L
-

2, then the wobble chair and Acrobot converge to the same system.   

 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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Figure 5.8 – Simplified model of the person sitting on the wobble chair.  Position 

vectors, L
-

1 and L
-

2, show the connectivity of the model.  Vectors c
-

1 and c
-

2 are 

from the joint to the center of mass of each segment.  In the initial balanced 

configuration shown, the segment angles θ1and θ2 are set to zero. 

 

5.3.2   Planar Wobble Chair Model 

A proportional-derivative (PD) controller was used to maintain stability.  However, only 

one actuator between the two segments was included.  This was used to represent flexion or 

extension of the spine in the lumbar region.  No control torque was applied between the base and 

the chair to simulate the presence of the ball joint.  In addition, compression springs were 

included in the model to provide a stabilizing torque.  Stabilizing control was achieved by 
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causing flexion between the two joints when the overall center of mass is to the right of 

equilibrium and extension when the overall center of mass is to the left of equilibrium.    

A Lagrangian approach was used to determine the equations of motion.  The vectors c
-

1,   

c
-

2, L
-

1 and L
-

2 are position vectors that move with the local reference frame and are defined in the 

global reference frame when the system is in equilibrium.  The vector from the ball joint to the 

center of mass of the lower body segment is c
-

1.  The vector from the ball joint to the hinge joint 

at the lumbar spine is L
-

1.  The vector, c
-

2, is from the hinge joint at the spine to the center of mass 

of the upper body segment.  The vector from the hinge joint at the spine to the center of mass of 

the head is L
-

2 
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where, c1_x and c1_y are vector components in the local reference frame in the x and y directions 

respectively.  The other terms were defined in a similar manner.  The acceleration of gravity 

vector is given by g
-
 and is expressed in terms of the scalar value of g equal to 9.8 m/s2.  

Rotations in the x-y plane are defined by angles θ1 and θ2 with the index defining the segment 

number.  Rotations about the z-axis from local to global coordinates are given by the rotation 

matrices, Rθ and Rθ2. 
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The position vectors in global coordinates were calculated by applying the rotation 

transformations to the position vector in local coordinates. 

(5.5) 

(5.6) 
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The velocity vectors were found by taking the time derivative of the position vectors.    
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The potential energy, V, is a function of the height of the masses in the gravitational field and 

given by, 
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The kinetic energy, T, is a function of the velocities of the centers of mass and the angular 

velocities of the rigid bodies.   
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The Lagrangian, L, is given by the difference in kinetic energy, T, and potential energy, V.  

Lagrange’s equations were applied to find the equations of motion. 

(5.7) 

(5.8) 

(5.9) 

(5.10) 
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Where, τ is the sum of all torques applied to the system.  The equation was solved for each 

component 
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Combining these equations yields the equations of motion, 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( )

( ) ( ) ( )

( )
1112

11111222112

2

2221121

2

121

2

11

1112111

2122112

11222112

2

222112

21221121

2

121

2

11

1

1111

1

0

:

τ

θθ

θθθ

τ

θθ

θθθ

θθθθ

τ
θθθθ

θ

θ

θθθ

θθ

θθ

θθ

θθθθ

θθ

=′⋅+

′⋅++′⋅′+

′′⋅′++

=′⋅+′⋅+

′⋅′′−−















+′⋅′+′′⋅′+

′⋅′′++

=
∂

∂
+

∂

∂
−









∂

∂
−









∂

∂

LRgm

cRgmIcRLRm

cRLRmLmcm

LRgmcRgm

cRLRm

IcRLRmcRLRm

cRLRmLmcm

VTV

dt

dT

dt

d

vv

vv&&&&vv

&vv
&&

v
&&v

vvvv

&&vv

&&&&vv
&vv

&&vv
&&

v
&&v

&&

 

 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( )
2222222

2

22

122112

2

122112

22222122112

222

2

22122112

2122112

2

122112

2

2222

2

0

:

τθθ

θθ

τθθ

θθθ

θθθ

τ
θθθθ

θ

θ

θθθθ

θθθ

θθ

θθθθ

=′⋅+++

′⋅′+′⋅′′

=′⋅+′′⋅′−

−














++′⋅′+

′′⋅′+′⋅′′

=
∂

∂
+

∂

∂
−









∂

∂
−









∂

∂

cRgmIcm

cRLRmcRLRm

cRgmcRLRm

IcmcRLRm

cRLRmcRLRm

VTV

dt

dT

dt

d

vv&&&&v

&&vv
&vv

vv&&vv

&&&&v&&vv

&&vv
&vv

&&

 

These two equations were put into a matrix equation with the following form 

(5.13) 

(5.14) 
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τ1 and τ2 are composed of multiple components as described below 
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where, TSpr is the spring torque as described above for the inverted pendulum model.  Cp, Cd, and 

noise are also described above.  Tsk is the torque due to stiffness of the spine, and Tsd is the 

torque due to damping of the spine. 

 

5.4   Nonlinear Analysis 

 Nonlinear methods were used to simulate and analyze the Acrobot and the wobble chair 

models.  First, the Matlab model of the Acrobot was simulated as a deterministic system.  The 

results were compared to those found by other researchers.  Next, the segment and center of mass 

(5.15) 

(5.16) 
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vectors were slowly morphed from the Acrobot values to the wobble chair values.  A 

deterministic simulation was performed on this system and compared to the Acrobot.  Next, a 

simulation was run with noise applied to the wobble chair and time series data was generated.  

Finally, a stochastic analysis was performed on the noisy time series data to find the location of 

the basin of stability. 

One challenge with this analysis is that the basin of stability lies within the four 

dimensions of state space.  Although one, two, and three dimensional geometries are relatively 

easy to understand, visualization in four our more dimensions is non-intuitive, and techniques 

must be used to evaluate the results.  One method is to view a slice of a high dimensional system 

using a Poincaré sections.  In the following analysis, three sections will be examined.  In the first 

Poincaré section, the sensitivity to θ1 and θ2 will be evaluated while the angular velocity of θ1 

and θ2 are near zero (Figure 5.9).  Using set notation this Poincaré section is given by  

 ( ){ }0,
11

11

210
≈≈×∈=Σ θθθθ &&SS    (5.17) 

where S1 is the configuration space of a circle.   The second Poincaré section is a (θ1, θ
·

1) slice of 

state space while the angle and angular velocity of θ2 are near zero.  Set notation this Poincaré 

section is given by  

 ( ){ }0,
22

1

110
≈≈ℜ×∈=Σ θθθθ && S    (5.18) 

where √ is the set of all real numbers representing the tangent space of θ1.  The third Poincaré 

section is a (θ2, θ
·

2) slice of state space, more precisely, 

 ( ){ }0,
11

1

220
≈≈ℜ×∈=Σ θθθθ && S    (5.19) 
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Figure 5.9:  Poincaré section is a (θ1, θ2) slice of state space while the angular 

velocities (θ
·

1, θ
·

2) are near zero.  

 

5.4.1   Analysis of the Deterministic Acrobot 

 
A mathematical model was developed with parameter values that matched the balanced 

system created by Murray and Hauser.  Since the system is underactuated, both segments cannot 

be controlled.  Therefore, a proportional-derivative (PD) controller was used to drive the location 

of the total center of mass to the equilibrium manifold.  Empirical methods were used to 

determine the gain parameters needed to stabilize the Acrobot.  The process of determining 

appropriate gains can be difficult in highly nonlinear and unstable systems.  However, finding 

appropriate controller gains for the balanced parameter Acrobot was relatively simple when 
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compared to the wobble chair.  These stable controller gains will be used as a starting point in 

trying to find stable gains for the wobble chair in the next section. 

A simulation was conducted using a proportional gain of 9x103 and a derivative gain of 

six.  The controller was able to drive the total center of mass from an initial angle of 1 degree to 

within 0.1 degrees with what appears to be exponential convergence (Figure 5.10).  Although the 

center of mass approached zero, the segments oscillated between ~ ± 5 degrees (Figure 5.11).  

The phase plot clearly shows that the system developed a limit cycle (Figure 5.12.) 
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Figure 5.10:  Simulation results showing that PD controller drove the center of 
mass to near the equilibrium manifold.  
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Figure 5.11:  Time plot for the upper and lower segments of the Acrobot.  
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Figure 5.12:  Phase plot for the upper and lower segments of the Acrobot.  
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  The equilibrium manifold was calculated for the balanced Acrobot.  Since m1 and m2 are 

equal and l1 is twice l2 (refer to Figure 5.1), the balanced Acrobot is in static equilibrium when  

θ1 = θ2 , provided that an appropriate torques is applied at the mid joint to stop movement (Note 

that Murray and Hauser define θ2 as the angle between segments while the model developed 

herein considers θ2 to be the angle with respect to the global vertical reference).  Thus, the 

equilibrium manifold for the balanced Acrobot is simply a line with a slope of -1 plotted on the 

zero velocity plane (θ
....

1= θ
....

2= 0) (Figure 5.13).   

Trajectories were calculated for a 31x31 grid of initial values between the angles of ± 15 

degrees.  These trajectories were allowed to evolve for 5 seconds.  Stable trajectories remained 

close to the origin in state space and unstable trajectories quickly diverged.  Unstable trajectories 

were evolved until they reached an angle exceeding 300 degrees, definitively indicating unstable 

behavior.  Those trajectories that failed to stay within the bounds (±300°) were considered 

unstable and marked with a cross at their initial location in state space.  Those trajectories that 

remained bounded for 5 seconds were considered stable marked with a circle (Figure 5.13).  

Notice that the stable trajectories lie close to the equilibrium manifold found using an 

independent method.  In addition, results are found to be similar to those shown in Figure 5.4.  

There are a few stable outliers in the field.  Perhaps, these represent trajectories that generally lie 

outside the stable region but happen to move into the stable region at some time during their 

evolution.  As a result, these trajectories may also be attracted toward the equilibrium manifold. 
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Figure 5.13:  The blue line show the location of the equilibrium manifold.  Circles 
show initial locations where trajectories remained in the neighborhood of the 
origin.  Crosses represent initial locations that resulted in unstable trajectories. 

 

The methods used to calculate the FTLE field for the inverted pendulum were expanded 

to four dimensions and applied to the Acrobot.  The FTLE field generated (using the regular grid 

method) showed a trough near the location of the equilibrium manifold (Figure 5.14).  In 

addition, LCS were observed on each side of the trough.  Since the LCS represent separatrices in 

trajectories, they should lie on the boundary between the stable and unstable regions of state 

space.  Indeed, the LCS are observed to align well with the boundary between stable and 

unstable trajectories shown in Figure 5.13. 
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Figure 5.14 – LCS are visible in both the (a) top view and (b) 3D view of the FTLE 
field for the Acrobot. 
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With a stable controller found for the Acrobot and the ability to generate LCS for this 

system, these initial parameter values were used as a starting point to generate similar results for 

the wobble chair.  The FTLE field for the wobble chair was generated by slowly morphing the 

Acrobot into the wobble chair as described above and applying the FTLE calculation technique 

described in section 4.2.3. 

5.4.2   Analysis of the Deterministic Planar Wobble Chair 

 
The existence of the equilibrium manifold for the wobble chair was not known prior to 

evaluation of the Acrobot.  However, since the wobble chair is a diffeomorphisms of the Acrobot 

and it was known that an equilibrium manifold exists for the Acrobot, one may conclude that an 

equilibrium manifold must also exist for the wobble chair.   This is yet another example of how 

evaluating a defeomorphism can add new insight into a system.  

In order to find the location of the equilibrium manifold, a series of equilibrium points 

were calculated.  For a given angle of segment one, equilibrium points were found by 

determining the angle of the second segment needed for the sum of the moments about the free 

pin joint to equal zero (Figure 5.15).  An appropriate torque was applied at the actuated pin joint 

in order to resist motion.  The results were similar to the unbalanced Acrobot (Figure 5.2) and 

the physical Acrobot (Figure 5.3).  In the actual wobble chair experiments, participants were 

constrained by the equipment to remain close to the origin of the graph, within ± 15 degrees.  

Over this range, the equilibrium manifold is almost linear when plotted on the zero velocity 

plane of state space. 
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Figure 5.15:  Equilibrium manifold for the wobble chair.  The box indicated the 

region that is attainable in wobble chair experiments. Results are plotted on the 

zero velocity plane (θ
....

1= θ
....

2= 0). 
 
 

Beginning with these controller gains for the balanced Acrobot made finding appropriate 

gains for the wobble chair easier than finding these “from scratch”.  Through morphing stable 

controller gains were found for the wobble chair which previously could not be found through 

trial and error.   

Starting from initial angles of -2.2 and 1.8 for theta 1 and theta 2, respectively, the 

wobble chair dynamics were simulated.  A truly convergent system was found using a 

proportional gain of 3x105 and a derivative gain of 200 (Figure 5.16).  With this system, the 

segment oscillations converged to zero (Figure 5.17).  The phase plot is also consistent with a 

convergent system (Figure 5.18). 
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Figure 5.16:  Simulation results showing that PD control drove the center of mass 
to the equilibrium manifold.  
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Figure 5.17:   Time plot for the upper and lower segments of the wobble chair.  
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Figure 5.18:   Phase plot for the upper and lower segments of the wobble chair.  

  

With the controller gains now defined, trajectories were calculated for an 80x80 grid of 

initial values between the angles of ± 8 degrees (Figure 5.19).  Trajectories that stayed remained 

bounded (± 300°) were determined to be stable according to Lyapunov in the finite time.  As 

before, stable and unstable initial locations were marked with circles and crosses, respectively. 

Notice that the basin of stability is much smaller than the one found for the Acrobot.  This may 

be the reason why a stable controller could not be found for the wobble chair until a solution was 

first found for the Acrobot.   
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Figure 5.19: Global view of the basin of stability based on the outcomes of 
trajectories.  Circles show initial locations where trajectories remained in the 
neighborhood of the origin.  Crosses represent initial locations that resulted in 
unstable trajectories.    

 
 

 Next, the regular grid method was used to find the location of the basin of stability for the 

wobble chair.  The technique was similar to that used in chapter 4 but expanded from two 

dimensions to four.  Briefly, the finite time Lyapunov exponent was calculated by determining 

the local deformation of a regular grid in four orthogonal dimensions.  Using this technique, the 

LCS for the wobble chair was found (Figure 5.20-22).   
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Figure 5.20:  In the θ1, θ2 plane, LCS are visible in both the (a) top view and (b) 3D 
view of the FTLE field for the wobble chair.  The equilibrium manifold (black line), 
LCS (ridges), and stable trajectory evolutions (circles) were all observed to 
correlate well. 
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Figure 5.21:  In the θ1 phase plane, a depression in the FTLE field is observed to 
the upper right of the origin in the (a) top view.  A (b) 3D view of the FTLE field for 
the wobble chair is also shown.   
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Figure 5.22:  In the θ2 phase plane, a depression in the FTLE field is observed a 
little closer to the origin in the (a) top view.  A (b) 3D view of the FTLE field for the 
wobble chair is also shown. 
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The location of the equilibrium manifold (black line) shown in Figure 5.20 was found to 

align well with the trough of the FTLE field.  In addition, the basin of stability found through the 

evolution of trajectories (circles) was also observed to correlate well with the LCS (ridges) in all 

figures.  In the phase plots (Figure 5.21 & 5.22), the basins of stability found through the LCS 

method were larger than that found through evolution of trajectories.  This may be due to the 

tendency of the system to be more stable to forward perturbations caused by system asymmetry.  

The same controller gain parameters found in this section were used to generate trajectories for 

the stochastic simulation in the following section. 

 

5.4.3   Stochastic Analysis of the Planar Wobble Chair 

The stochastic analysis of the planar wobble chair is similar to that performed for the 

inverted pendulum in section 4.4.3.  Beginning from rest at θ1 = θ2 = 0, random force 

perturbations were used to destabilize the system while the controller and springs provided 

restorative moments.  The first task was to use the mathematical model to generate time series 

data representative of that collected from experiments.  This is an intermediate step towards 

being able to analyze actual experimental data which will be performed in chapter 6. 

From the time series data, two methods were employed to calculate the finite time 

Lyapunov exponent (FTLE).  Each method differs in the way that the FTLE was calculated.  

However, both methods were used to generate an FTLE field.  In the Euclidean distance method 

(refer to section 4.4.3), the maximum FTLE is found by determining the rate of separation 

(Euclidean distance) of two nearest neighbors in n-dimensional state space (Rosenstein et al. 

1993a).  The Euclidean distance in state space is the square root of the sum of the squares of the 

distances in each dimension.  This method has been used by several researchers to calculate 
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FTLE for biodynamic applications (Rosenstein et al. 1993a; Dingwell et al. 2000; Granata and 

England 2006; Kang and Dingwell 2006).  In the second method, the state transition matrix 

method, the FTLE is calculated from the state transition matrix which is determined by 

evaluating the rate of expansion of a n-dimension hyper-ellipse (Shadden et al. 2005; Lekien et 

al. 2007). 

 

5.4.3.1   Generation of trajectories 

The mathematical model for the wobble chair was used to generate time series data.  

Beginning from the origin (0,0,0,0) in state space, random force perturbations were applied to the 

system causing movement.  Twenty trials were conducted at noise level of 10% ∇G and a noise 

frequency of 20 Hz.  The noise had a Gaussian distribution but was bounded such that it could 

not exceed 3σ.  The same control parameters used for the deterministic analysis of the wobble 

chair were used in the stochastic simulation (Gp = 3x105, Gd = 200).  Simulation time was set to 

30 seconds, however if either angle exceeded a magnitude of 300 degrees, the trial was stopped.  

These large angles occur when the system becomes unstable.  As before, the controller drove the 

system toward the equilibrium manifold (Figure 5.23).  With this system, the segments oscillated 

near zero until the combination of perturbations caused them to go unstable (Figure 5.24).  The 

phase plot shows both stable and unstable trajectories (Figure 5.25). 
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Figure 5.23:  Simulation results showing the location of the center of mass over 50 
trials.  The PD controller drove the system towards the equilibrium manifold.  

 

  

 

Figure 5.24:  Time plot for the upper and lower segments of the wobble chair. Both 
stable and unstable dynamics are visible. 

Theta 1 
Theat 2 
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Figure 5.25:  Phase plot for the upper and lower segments of the wobble chair. 
Both stable and unstable dynamics are visible.  Stable behavior occurs within ~4 
degrees of the origin (see 5.24). 

5.4.3.2   Euclidean distance method 

Recall equation (2.3), d(t) = d(0) eλt.  The Euclidean distance was calculated in four 

dimensions for the planar wobble chair.  Thus, the distance, d(t), is determined by, 

2
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where the subscripts n and r refer to the neighbor and the reference point, respectively.  Using 

this method the Lyapunov exponent, λ, was found by fitting the divergence to an exponential 

function of evolution time, t, over the time interval [0.2, 0.7] seconds (refer to section 2.2.3). 

5.4.3.3   State transition matrix method 

The second method employed to generate the FTLE field was the state transition matrix 

method.  The state transition matrix, Φ, is a function that describes how a perturbation from a 

reference trajectory evolves over time (Shadden et al. 2005; Lekien et al. 2007).  This is the same 

matrix that was used to generate the FTLE field for the deterministic systems in the previous 

section. 

(5.17) 

Theta 1 
Theat 2 
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Like the Euclidean distance method, the state transition matrix was calculated for each 

reference point.  First, target points were defined a distance δq in the positive and negative 

direction of the first dimension (cyan points – Figure 5.26).  The nearest neighbor to either of the 

target points (green point) was found.  The vector from the reference point to this first neighbor 

defined the first principle direction (green arrow).  Next, target points were defined at a distance 

δq in the positive and negative directions of the second dimension (yellow points).  The nearest 

neighbor to either of the target points (magenta point) was found, and a vector from the reference 

point to this first neighbor defined the second principle direction (magenta arrow).  This process 

was repeated for each dimension of state space.  Upon completion, these vectors defined a basis 

that spans the dimensions of phase space.  Since a preliminary investigation showed the principle 

directions to align very closely with the basis vectors of the reference frame, those basis vectors 

were used for the analysis. 

 

 

 

 

 

 

 

 

 

Figure 5.26:  The state transition matrix was calculated by first forming a basis 
about the reference point using nearly orthogonal vectors, then tracking the 

trajectories forward in time (∆t) and determining the changes in the basis vectors. 

 

Reference Trajectory 
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Ellipse at time t0 

t0 

ti 

n2(x1, x2+δq, x3, x4)0 

δq 

n1(x1+δq, x2, x3, x4)0 

n2(x1, x2+δq, x3, x4)i 

n1(x1+δq, x2, x3, x4)i 
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As these points were tracked forward in time, the length and orientation of the basis 

vectors changed revealing how a ball of nearest neighbors deforms.  For simplicity of 

illustration, consider the 2-dimensional case and let ( ) ( )yxxxx ,,
21

==
r

  and 
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           (5.18) 

where the subscripts n and r indicate a neighbor or reference point, respectively.  The diagonal 

terms represent expansion or contraction, and the off-diagonal terms indicate shearing (Figure 

5.27). 

 

 

  

Figure 5.27:  Graphical representation of the terms that make up the gradient of 
the state transition matrix. 
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5.4.3.5   Results - Euclidean distance method 

The Euclidean distance method was applied to the time series generated above.  The 

resulting FTLE field is shown below for the zero velocity plane (Figure 5.28).  Since all 

trajectories began from the origin, little is known about the data outside of the thin band.   The 

available data showed that the trajectories with near zero velocity for both segments to only 

existed near the equilibrium manifold.  Little structure was noticeable in the FTLE field in either 

of the phase plots using the Euclidean distance method (Figures 5.29 & 30). 

 

 

 

Figure 5.28:  FTLE field for the wobble chair generated using the Euclidean 
distance method.  This two dimensional plot shows the zero velocity section of the 
four dimensional system. Poincaré section width was 50% of the range of the data. 
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Figure 5.29:  FTLE field for the wobble chair generated using the Euclidean 

distance method.  This two dimensional plot shows the (θ1, θ
·

1) slice of state space.   

The position and velocity of θ2 is reduced to a 10% band around (θ2 = 0, θ
·

2 = 0).  

 

Figure 5.30:  FTLE field for the wobble chair generated using the Euclidean 

distance method.  This two dimensional plot shows the (θ2, θ
·

2) slice of state space.   

The position and velocity of θ1 is reduced to a 10% band around (θ1 = 0, θ
·

1 = 0). 
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5.4.3.6   Results – State Transition Matrix method 

The state transition matrix method was applied to the same time series data.  The 

resulting FTLE field is shown below for the zero velocity plane (Figure 5.31).  The results were 

similar to those found using the Euclidean distance method.  Data was only present on the 

equilibrium manifold. 

 

Figure 5.31:  FTLE field for the wobble chair generated using the state transition 
matrix method.  This two dimensional plot shows the zero velocity section of the 
four dimensional system.  100% of the available data is shown. 

 

 In the phase plots, structure was visible in the FTLE field.  A depression was noticeable 

around the origin in 4D state space (Figure 5.32 & 5.33).  For the θ1 phase plot, the shape of the 

depression was smooth, but its magnitude was much larger than found through tracking 

trajectories.  For the θ2 phase plot, the ridges surrounding the depression were less smooth.  

Again, the magnitude of the basin of stability was larger than that calculated through trajectories. 
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Figure 5.32:  FTLE field for the wobble chair generated using the state transition 

matrix method.  This two dimensional plot shows the (θ1, θ
·

1) slice of state space.   

The position and velocity of θ2 is reduced to a 10% band around (θ2 = 0, θ
·

2 = 0).  
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Figure 5.33:  FTLE field for the wobble chair generated using the state transition 

matrix method.  This two dimensional plot shows the (θ2, θ
·

2) slice of state space.   

The position and velocity of θ1 is reduced to a 10% band around (θ1 = 0, θ
·

1 = 0).  
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Another way to view the four dimensional results is to create a two dimensional grid of 

two dimensional data (Figure 5.34).  The value of the FTLE at any location is given by the height 

and color of the plot.  Below is a 4D plot generated to show the effect of non-zero velocities on 

the size and location of the basin of stability.  The location of the basin of stability was observed 

to shift with velocity (see also reference file “LCS non-zero velocities.ppt”).  It is observed that 

when the lower body velocity, θ
·

1, is balanced by a upper body velocity, θ
·

2, in the opposite 

direction and a magnitude of ~1.5 times, the LCS is still present.  This result is consistent with 

logical thought, but the magnitude difference was non-intuitive and would have gone unnoticed 

without the 4D plot. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34:  The 2-dimensional figures are arranged into a two dimensional 

grid.  By comparing the figures at different grid locations, the full four dimensional 

basin of stability can be visualized (see associated document, “4D Basin of 

Stability”)  
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5.5   Discussion 

The mathematical model of the Acrobot matched well with the published results.  Since 

the governing differential equations were the same for both the Acrobot and the wobble chair, 

this verifies the equations used for the simulations.  The basins of stability obtained using the 

regular grid method for the deterministic system showed good resolution.  As expected, ridges 

formed at the boundary between the stable and unstable regions.  The sizes of the basin of 

stability matched well with the basin of stability determined by tracking trajectories.  The basin 

of stability was found to be smaller for the wobble chair than the Acrobot.  It is likely that this 

arises from the asymmetry of the system.  The system is less tolerant to negative perturbations 

than positive ones.  This effect was observed as a shift in the location of the basin of stability 

towards the upper right corner of the phase plot.  This makes the edge of the basin of stability 

closer to the equilibrium manifold in the negative directions implying that it is easier to fall with 

the total center of mass moving backwards.  In the simulations this usually occurred with the 

lower body, θ1, falling backwards and the upper body falling forwards, θ2 (Figure 5.24).  

This effect was also observed in the stochastic analysis.  Recall that all of the trajectories 

began at the origin in state space and were perturbed by random noise equally in both directions.  

For those trajectories that did not stay in the neighborhood of the origin, all of them became 

unstable with the center of mass moving in the negative direction.  Limited results were obtained 

from the stochastic analysis of the time series data.   

The Euclidean distance method did not yield structure for any of the Poincaré sections.  

On the other hand, the state transition matrix method yielded structure in the phase plots, but 

these did not match well with the size of the structures found in the deterministic simulation.  

The large size of the basin of stability found in the stochastic analysis may be a result of the short 
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evolution time.  In the deterministic system, an evolution time of 0.5 seconds was adequate to 

determine the direction of motion.  However, with the added noise of the stochastic system, 

longer evolution times may be necessary to find the basin of stability using this method.  It may 

also be possible that the basin of stability was too small to find using the methods applied.  A 

different controller may provide larger basin of stability that may be easier to detect using this 

method.  The neuromuscular control applied by the human brain is expected to be more effective 

than the simple PD control modeled herein.  Although neuromuscular control has time delay that 

retards performance, it is probably highly nonlinear and able to provide anticipatory control.  

Considering these factors, it is possible that the basin of stability will be larger for actual human 

balance control. 

5.6   Summary and Conclusions 

In this chapter, a mathematical model was developed for the planar wobble chair using 

anthropometric data to calibrate the model for a typical human subject.  The governing 

differentials equation were developed for this model and solved numerically to find trajectories.  

These trajectories were evaluated to find finite time Lyapunov exponents (FTLE).  The state 

space distribution of the FTLE was tracked, and a FTLE field was generated.  This was used to 

find Lagrangian coherent structures and the locations of the basin of stability. 

Analyses of the deterministic model were effective in finding the basin of stability for the 

wobble chair.  However, results obtained for the stochastic system could not be correlated with 

those found by the deterministic methods of tracking the evolution of trajectories.  Yet, structure 

was observed in the FTLE field using the state transition matrix method.  Future evaluations 

using different evolution times and/or system parameters may yield a rewarding conclusion. 
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Chapter 6 
 

Determining the Basin of Stability 

through Wobble Chair Experiments 
 

 
 

6.1   Abstract 

Torso stability associated with low back pain has been tested using a variety of different 

methods.  However, the basin of stability for the human torso has not been identified.  Knowing 

the limits of the stable region may provide additional information that could be useful in 

preventing injury.  The aim of this study was to determine this basin of stability from seated 

stability test data generated in the laboratory.  Tests conducted on participants with eyes open 

and closed showed a significant change in the dimensions of the basin of stability.  At the 

threshold of stability, the basin of stability was found to be larger for eyes closed than eyes open 

presumably due to larger kinematic variability.  In the future, this method may serve as another 

useful tool to evaluate other balance control problems for which time series data is available. 

 

6.2   Introduction 

Low back pain is a common medical ailment afflicting 80% of the population at some 

time in their life (Kelsey and White 1980; Reeves et al. 2005).  A lack of torso stability has often 
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been considered a contributing factor to low back pain.  Torso stability has been evaluated using 

a variety of different methods including kinematic variability and dynamic stability  (Cholewicki 

et al. 2000; Tanaka and Granata 2007; Granata and Lee 2008).  However, many complex systems 

are not globally stable and contain regions of state space in which stable behavior is exhibited, 

the basin of stability.  Knowledge of the limits of the stable region may be useful in preventing 

injury.  Currently, the basin of stability has not been found for the human torso.  The aim of this 

study was to determine this basin of stability from seated stability test data generated in the 

laboratory.  Unlike the previous tests that evaluated stability only within the stable region of state 

space, this test analyzes data in both the stable and unstable regions.  Torso instability can occur 

when the level of kinematic variability is able to exceed the basin of stability.  In order to 

provide a thorough understanding of the relationship between kinematic variability and the basin 

of stability, a discussion of effective potential function, threshold of stability and basin of 

stability follows.  

 

6.2.1   Basin of Stability and Effective Potential Function Relationship 

Spring distance has an effect on both the kinematic variability of the system and the size 

of the basin of stability.  A schematic representation is shown in Figure 6.1.  At 100% ∇G, the 

system is neutrally stable without the controller.  When the controller is applied, the system 

becomes globally stable, meaning the entire state space becomes the basin of stability.  In 

addition, for a given level of perturbations, the kinematic variability is small (~1.8 in Figure 6.1).  

When the spring distance is decreased to 50% ∇G, the uncontrolled system becomes unstable 

(dashed line) and the controlled system has locally stable behavior near the origin but is unstable 

beyond a critical point, qcr.  The region within ±qcr is the basin of stability which is now smaller 
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than the entire state space.  It is also observed that the kinematic variability is larger (~3.8) at 

50% ∇G than 100% ∇G for the same level of perturbations. 
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Figure 6.1:  Schematic diagram showing the effect of spring setting on the basin of 
stability and the kinematic variability. 

 

As spring distance decreases, kinematic variability increases and the basin of stability 

decreases.  As long as the basin of stability is larger than the kinematic variability, the controller 

is able to stabilize the system.  However, when the kinematic variability exceeds the basin of 

stability, conditions may exist that cause the system to become unstable (Figure 6.2).  In this 

case, the basin of stability is still finite, but kinematic variability becomes infinite.  With this 

configuration, the system will exhibit both stable and unstable behavior based on the pattern of 
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the perturbations applied.  The threshold of stability defined in chapter 3 is the spring setting in 

which stability is maintained throughout test, i.e kinematic variability falls just within the basin 

of stability. 
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Figure 6.2: When spring distance is reduced to a point where kinetic energy due 
to random perturbations exceeds effective potential energy, the system can 
exhibit unstable behavior. 

 

6.2.2   Energy approach to the basin of stability 

An energy approach may also be used to develop an understanding of the relationship 

between kinematic variability and the basin of stability.  Systems with random perturbations that 

are capable of generating kinetic energy that exceeds the maximum effective potential energy, 

Extent of observed 
kinematic variability 

qcr (43%) 



147 

Veff, of the system may exhibit unstable behavior.  Veff is the sum of the potential functions of the 

system.   

The amount of time spent in the stable region verses the unstable region can be 

theoretically calculated by comparing the probability distribution function (PDF) of the kinetic 

energy with Veff.  Under random perturbations, the PDF for kinetic energy will be centered at 

zero and have higher energies at lower probabilities.  If the tail of the PDF exceeds the energy of 

the Veff, unstable behavior can occur.  Frequency of unstable behavior occurring can be 

approximated by calculating the area under the upper and lower tails.  Note that kinetic energy 

may exceed potential energy without causing the system to become unstable. This is because 

major trajectory separations only occur near the ejection point in state space.  As a result, if the 

boundary defining the basin of stability is crossed due to random perturbations it is possible for 

random perturbations to cause the trajectory to cross back into the stable region since trajectories 

do not diverge away from the ejection point.   

 

 

 

 

 

 

 

 

 

Figure 6.3: When kinetic energy (red) exceeds effective potential energy (black) 
unstable behavior occurs (http://en.wikipedia.org/wiki/Image:DisNormal06.svg)  
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6.2.2   Generating both stable and unstable system behavior 

It is desirable for analysis to have a substantial amount of data within both stable and 

unstable regions of state space.  If the basin of stability is too small or nonexistent, little or no 

data will be collected in the stable region.  However, if the basin of stability is too large, little or 

no data will be collected in the unstable region.  Ideally, the kinetic energy level generated by 

random perturbations should slightly exceed the effective potential of the system.  Thus, the 

system will exhibit stable behavior, but given the right combination of perturbations, unstable 

behavior can be generated. 

For a system, there are two ways to achieve this condition; adjust the perturbation level or 

decrease the effective potential energy of the system.  Increasing perturbation amplitudes 

increases kinetic energy and kinematic variability of the system.  However, in human subjects 

testing, it is often not possible to adjust the perturbation amplitude because it is generated by 

naturally occurring variability in the neuromuscular system.  However, in the testing conducted 

herein, the effective potential energy of the system is under the control of the experimenter.  

Since the spring distance contributes to the effective potential by providing restorative torque, 

altering the spring distance changes the value of the effective potential function.   

  

6.3   Methods 

Time series data for this analysis were collected during the study described in chapter 3.  

Recall that motion sensors were attached to the seat of the wobble chair (Figure 2.1 & 3.1) and 

back of the participant to record three dimensional angle data.  60 seconds of data were recorded 

at 100 Hz for each trial.  Between trials the anterior and posterior spring distances were changed 
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to alter task difficulty.  The lateral springs were kept at 100% ∇G.  This large value of ∇G for 

the lateral springs made maintaining medial lateral stability easy focusing the motion in the 

sagittal plane (Figure 6.4). 

 

 

 

Figure 6.4:  Human body planes. During the experimental trials, motion was 
focused in the sagittal plane (http://en.wikipedia.org/wiki/Core_%28anatomy%29). 

 
 
 

The analysis methods used to determine the basin of stability from simulated 

experimental data in chapter 5 were applied to the time series data collected during the study 

(chapter 3).  Trials of interest were those one increment (5%∇G) smaller than the threshold of 
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stability.  These trials had data in both the stable and unstable regions of state space.  The size of 

the basin was measured in four dimensions from the Poincaré sections and the volume of a 4D 

bounding box (the representing the basin of stability) was calculated. 

 

6.4   Results 

Of the eight participants tested, subject three showed the most consistency for any 

particular test condition.  For the eight tests with eyes open, this participant consistently 

alternated levels passing each time at 35%∇G and failing each time at 30%∇G.  Because of this 

consistency, these four replicated trials at 30%∇G were selected for the initial analysis.  Two 

dimensional slices of the basin of stability were calculated using Poincaré sections which are 

described earlier in this dissertation (section 5.4).  Initially no structure was visible, but structure 

became noticeable when very thin slices were used.  Figure 6.5 shows the zero velocity plot 

which was constructed by selecting values of θ
·

1 and θ
·

2 that lie within 0.01% of the data range.  

This Poincaré section included 2.7% of the data points.  A basin of stability was noticeable near 

the origin in state space (0, 0, 0, 0) and showed some alignment with the equilibrium manifold 

predicted by the mathematical model in chapter 5 (section 5.4.2).  The size of the basin was 

approximately 4 degrees in θ1 and 3 degrees in θ2. 

The (θ1, θ
·

1) slice of state space was constructed by selecting values of θ2 and θ
·

2 that lie 

within 0.01% of the data range (Figure 6.6).  In the plot, a basin of stability was noticeable near 

the origin in state space (0, 0, 0, 0).  Furthermore, the size and shape of the basin matched well 

with the size and shape generated from trajectory data (see chapter 5 for details).  The size of the 

basin was spanned a range of approximately 4 degrees in θ1 and 8 degrees/s in θ
·

1. 
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Figure 6.5:  FTLE field for participant #3 with eyes open generated using state 
transition matrix method.  This two dimensional plot shows the zero velocity 
section of the four dimensional system. A bounding box was drawn (black dashed 
lines) to approximate the dimensions of the basin of stability. 
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Figure 6.6:  FTLE field for participant #3 with eyes open generated using the state 

transition matrix method.  This two dimensional plot shows phase space of θ1.   A 
bounding box was drawn (black dashed lines) to approximate the dimensions of 
the basin of stability. 

The (θ2, θ
·

2) slice of state space was constructed by selecting values of θ1 and θ
·

1 that lie 

within 0.01% of the data range (Figure 6.7).  In the plot, a basin of stability was noticeable near 
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the origin in state space (0, 0, 0, 0).  Furthermore, the size of the basin was similar to the size 

generated from trajectory data, but the shape was different.  The size of the basin was 

approximately 4 degrees in θ2 and 10 degrees/s in θ
·

2. 

 

 

 

 
 

Figure 6.7:  FTLE field for participant #3 with eyes open generated using the state 

transition matrix method.  This two dimensional plot shows the phase space of θ2.   
A bounding box was drawn (black dashed lines) to approximate the dimensions of 
the basin of stability. 
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The volume of the basin of stability, VBOS, was approximated by a 4-dimensional rectangular 

solid, 

 
max

min2

max

min1

max

min2

max

min1
θθθθ && ×××=

BOS
V  (6.1) 

where each of the four θ parameters is the length of the basin of stability in that state space 

direction.  In this case, VBOS was 1280 degrees4/s2 (4°x 4°x 10°/s x 8°/s).  Since θ1 and θ2 were 

shown in more than one plot, the best view of the LCS was used to determine the dimension of 

the basin of stability in this direction. 

For the eyes shut condition, only two trials were available for subject three.  A data range 

of 0.01% was used for the (θ1, θ2)  (Figure 6.8) and (θ1, θ
·

1) slices of state space (Figure 6.10).  

The (θ2, θ
·

2) slices of state space (Figure 6.9) yielded almost no data at a data range of 0.01%, so 

the range was increased until a surface was visible (0.03%).  The ranges for θ1, θ2, θ
·

1, θ
·

2 were 

estimated to be 5 degrees, 6 degrees, 10 degrees/s, 10 degrees/s, respectively.  Applying equation 

[6.1], the VBOS was calculated to be 3000 degrees4/s2. 
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Figure 6.8:  FTLE field for participant #3 with eyes shut generated using the state 
transition matrix method.  This two dimensional plot shows the zero velocity 
section of the four dimensional system.  The bounding box drawn (black dashed 
lines) to approximates ¼ of the basin of stability.  The full basin is assumed to by 

symmetric with respect of the origin in θ1and θ2. 
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Figure 6.9:  FTLE field for participant #3 with eyes shut generated using the state 

transition matrix method.  This two dimensional plot shows the phase space of θ1.    
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Figure 6.10:  FTLE field for participant #3 with eyes shut generated using the state 

transition matrix method.  This two dimensional plot shows the phase space of θ2.    
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The basin of stability was determined for each condition and subject using the process above.  

Results are shown in the table below (Table 6.1). 

 

Table 6.1:  Basin of stability volume 

Eyes Open Eyes Closed  
 

Participant θθθθ1 

range 

(deg) 

θθθθ
·

1
* 

range 

(deg/s) 

θθθθ2222 

range 

(deg) 

θθθθ
·

2 

range 

(deg/s) 

4D 
volume* 

(deg
4
/s

2
) 

θθθθ1 

range 

(deg) 

θθθθ
·

1
* 

range 

(deg/s) 

θθθθ2222 

range 

(deg) 

θθθθ
·

2 

range 

(deg/s) 

4D 
volume* 

(deg
4
/s

2
) 

1 6 4 4 4 384 6 6 8 10 2880 
2 6 6 8 8 2304 6 6 9 15 4860 
3 4 4 10 8 1280 5 6 10 10 3000 
4 5 6 8 12 2880 8 7 7 15 5880 
5 8 4 15 12 5760 6 12 8 20 11520 
6 6 3 10 10 1800 9 5 15 10 6750 
7 2 3 3 14 252 6 7 5 15 3150 
8 4 6 3 40 2880 8 7 2 10 1120 

* indicates significant 

 

A paired t-test was conducted to determine if differences in parameters were detected 

between test performed with and without visual feedback.  A value of α = 0.05 was used as the 

criterion for significance.  The seat angular velocity, θ
·

1, (mean difference = 2.5; p = 0.026) and 

the 4D volume (mean difference = 2700; p = 0.012) were found to be statistically different using 

a paired t-test.  Seat angle, θ1, (mean difference = 1.63; p = 0.075) also tended to increase with 

the eyes closed, however no significant difference was found.  Torso angle, θ2, (mean difference 

= .38; p = 0.78) and torso angular velocity, θ
·

2, (mean difference = -.38; p = 0.93) were generally 

invariant to changes in test condition. 
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6.5   Discussion 

The 4-dimensional volume of the basin of stability was significantly larger with eyes 

closed than eyes open when tested just beyond the threshold of stability for each condition.  

Changes in angle and angular velocity of the lower body caused this difference.  This is 

consistent with experimental observations which showed seat angle to be the dominant segment 

used by the participant to control balance.  A larger basin of stability for eyes closed may be 

explained by considering the effect of visual feedback on balance control.  In general, feedback 

to a controller will improve performance by allowing more precise application of the control 

torques.  In contrast, a lack of feedback can result in poor timing of control torque, incorrect 

application of torque direction, and system drift.  All of these factors lead to an increase in 

kinematic variability of the system.  Recall that when kinematic variability exceeds the basin of 

stability, the system becomes unstable.  At the threshold of stability, the increased kinematic 

variability caused by lack of visual feedback must be matched with a larger basin of stability.   

The lack of feedback control can also explain the changes in seat angle and angular velocity.  

Inferior performance of the balance control system (predominantly driven by the lower body) 

leads to non-optimal trajectories.  Control error can cause the system to deviate from equilibrium 

by larger angles which then require higher velocities to recover stability.   These factors can 

contribute to larger angles and angular velocities and ultimately a larger basin of stability at the 

threshold of stability. 

One limitation of this method is the often ambiguous shape of the basin of stability and 

the subjective determination of its size.  Thus, accuracy and repeatability of the method may not 

be good for some experiments.  However, large differences were measured in the θ1 directions of 

state space while virtually no difference was measured in the θ2 state space directions.  Since the 
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researcher was “blind” to the implications of directions differences, some of the subjective nature 

of these measurements was removed.  Thus, it is encouraging that such significant differences 

between the state space directions were observed and explainable.  

 

6.6   Summary and Conclusions 

This method effectively showed that a basin of stability can be generated from time series 

data collected from biomechanics experiments.  Finite time Lyapunov exponent (FTLE) fields 

were generated using the state transition matrix method.  Within these FTLE fields, LCSs were 

found identifying the boundary of the basin of stability.  At the threshold of stability, the basin of 

stability was found to be larger for eyes closed than eyes open presumably due to larger 

kinematic variability.  In the future, this method may serve as another useful tool to evaluate 

other balance control problems for which time series data is available. 
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Chapter 7 
 

Summary and Conclusions 
 

 

7.1   Research Summary and Contributions 

A series of related studies were performed in order to improve the understanding of torso 

instability, a factor often associated with low back pain.  The first study examined torso stability 

using time series averaged finite time Lyapunov exponents (FTLE).  This was an application of 

an existing method to a new problem.  It was found that differences in spring distance (i.e. task 

difficulty) were detectable using this method.  In addition, the FTLE was found to be repeatable 

when subjects were retested one week later.   

The next study was an experiment designed to assess the sensitivity of a new metric, the 

threshold of stability.  This new metric is interesting because it evaluates the limits of stability 

rather then the variability or trends of a stable system.  It requires no electronics and is easy to 

administer the test.  A significant difference was found between participants with and without 

visual feedback showing the method to be sensitive to differences in balance control with only 

eight participants.  Due to the simplicity and sensitivity of this method, it may be suitable for 

assessment of low back pain in a clinical setting. 
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In order to better understand the experimental work, mathematical models were 

developed for the human torso.    Initially a reduced model was created so that methods could be 

developed to evaluate the state space distribution of the FTLE.  Although the state space 

distribution of the FTLE had been evaluated for other engineering systems, it had not been 

applied to biomechanics or time series data in general.  Lagrangian coherent structures were 

found in the FTLE field showing the location of separatrices in the trajectory paths.  

Furthermore, the basin of stability was found for the deterministic system.  As a step toward 

being able to apply this method to time series data similar to that collected in chapter 3, methods 

were developed to find LCS from time series data.  To the authors knowledge this is the first 

application of LCS to time series data in the absence of a vector field. 

Next the reduced model was extended to develop a model of the wobble chair.  

Anthropometric data was used to calibrate the model, but initially, a stable controller could not 

be found.  This problem was overcome by investigating the Acrobot, a system with similar but 

inherently more stable dynamics.  After first finding controller parameters for the Acrobot, a 

morphing technique was used to find controller parameters that stabilized the wobble chair. An 

addition benefit of the assessment of the Acrobot was that it provided clues which aided in the 

discovery of an unknown parameter for the wobble chair, the equilibrium manifold.  Extending 

the methods developed for the reduced model, the FTLE field was created and LCS were found.  

Basins of stability for the deterministic simulation of the wobble chair model matched well with 

those created by evolving trajectories form various initial states.   However, the stochastic 

simulation failed to match well with trajectory data.  Perhaps this was because the basin of 

stability was small using the stable linear control which was found.  As a result there may have 

been an inadequate signal to noise ratio to effectively define the edge of the basin. 
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Finally, the methods developed using simulated experimental data were applied to real 

experimental data obtained from wobble chair experiments.  Using the state transition matrix 

method for finding the FTLE field, structure was noticeable near the origin in 4D state space.  

For the first time, the dimensions of the basin of stability were determined in each state space 

direction along with the total volume.  Results showed the basin of stability to be larger (at the 

threshold of stability) for eyes closed than open.  This result may be explained by a larger 

amount of kinematic variability for the eyes closed condition leading to a larger basin of stability 

at the threshold of stability (see section 6.5 for a full discussion).  The location of the LCS was 

often difficult to identify which made finding the basin of stability somewhat subjective.  

However, statistically significant and logically explainable results were obtained even with these 

challenges.   

Evaluating the state space distribution of the FTLE led to insight that was not intuitively 

available using existing method that produces a scalar value.  One unexpected finding was the 

existence of a one-dimensional equilibrium manifold to which stable trajectories were clustered 

around rather than a single equilibrium point.   

 

7.2   Future Work 

A trend was observed in the experiments toward failing in the backward direction, 

although an insufficient amount of data was collected to quantify these results.  This is 

interesting because it was also predicted by the wobble chair model.  This prediction was 

probably due to asymmetry about the central ball joint.  In a future study, the number of forward 

and backward falls could be counted to see if a significant difference exists.  It may also be 
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possible to correlate the results with clinical data for LBP patients to determine if the same ratio 

exists for tissue injury presumably caused the forward, backward, or lateral instability.  This 

information may be useful to determining how people carry loads on the back. 

Different controllers could be evaluated to determine if the actual human response could 

be predicted.  These controllers could include non-linear feedback gain, time delay, and gain 

limitations.  If an accurate model for the torso could be developed, simulations could be 

performed to evaluate expensive or possibly dangerous scenarios such as the effects of large 

inertial loads on the human torso during space flight, optimization of ejection seat performance, 

or determination of critical torso loading. 

Finally, the methods presented herein could be extended to other areas of biomechanics 

such as standing postural sway, fall prevention, gait analysis, or evaluation of sports movements.  

Furthermore, there may be applications outside of biomechanics such as analysis of robot 

movements, vehicle controls, or other time series phenomenon. 
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