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Identifying dynamical boundaries and phase space transport using Lagrangian

coherent structures

Phanindra Tallapragada

Abstract

In many problems in dynamical systems one is interested in the identification of sets

which have qualitatively different fates. The finite-time Lyapunov exponent (FTLE) method

is a general and equation-free method that identifies codimension-one sets which have a

locally high rate of stretching around which maximal exponential expansion of line elements

occurs. These codimension-one sets thus act as transport barriers. This geometric framework

of transport barriers is used to study various problems in phase space transport, specifically

problems of separation in flows that can vary in scale from the micro to the geophysical.

The first problem which we study is of the nontrivial motion of inertial particles in

a two-dimensional fluid flow. We use the method of FTLE to identify transport barriers

that produce segregation of inertial particles by size. The second problem we study is the

long range advective transport of plant pathogen spores in the atmosphere. We compute

the FTLE field for isobaric atmospheric flow and identify atmospheric transport barriers

(ATBs). We find that rapid temporal changes in the spore concentrations at a sampling

point occur due to the passage of these ATBs across the sampling point.

We also investigate the theory behind the computation of the FTLE and devise a new

method to compute the FTLE which does not rely on the tangent linearization. We do

this using the 925 matrix of a probability density function. This method of computing the

geometric quantities of stretching and FTLE also heuristically bridge the gap between the

geometric and probabilistic methods of studying phase space transport. We show this with

two examples.
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Chapter 1

Introduction

Nonlinear dynamical systems are ubiquitous in science, engineering and economics. But

most of the relevant nonlinear ordinary differential equations (ODEs) do not possess ex-

act analytical solutions. With the advent of computers, this problem has been partially

overcome. Today one can easily numerically generate (approximate) solutions for many of

the prototypical nonlinear ODEs using simple numerical integration packages such as those

found in Matlab. However, despite the ease with which numerical solutions of nonlinear

ODEs can be produced, one still faces tremendous difficulty in drawing general conclusions

about the nature of solutions. This is especially true for aperiodic systems and high dimen-

sional systems. One aspect of a system that we are particularly interested in is phase space

transport. Understanding the structures that govern phase space transport has important

general applications and specifically in mixing and separation problems in fluid flows that

vary in scale from the micro to the geophysical, interplanetary transport and instability of

mechanical systems, to name a few. The primary focus of this thesis is to identify special

solutions and or sets in phase space that will provide an understanding of the (phase space)

structure of the system.

One way of identifying underlying structure is to study the (local) expansion and con-

traction in phase space. This approach has a general appeal because it can be applied to

1
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time-dependent systems while the method of invariant manifolds of fixed points is limited to

time-independent systems. We apply the method of finite-time Lyapunov exponents (FTLE)

and Lagrangian coherent structures (LCS), which is a systematic tool to identify codimen-

sion one hyperbolic sets that provide a framework of transport barriers that partition the

phase space. In chapters 3 and 4 we review of the theory of FTLE and LCS and outline

our new method of the partial FTLE, which we demonstrate with two examples, a forced

damped pendulum and Rayleigh-Bénard convection. In chapter 5 we apply the method of

partial FTLE and LCS to create a framework for separating neutrally buoyant particles in a

two dimensional Stokes flow. This problem also acts as a test bed for the general problem of

identifying transport barriers that are related to interesting physical phenomena. In chap-

ters 6 - 8 we apply the method of LCS to the much more challenging problem of identifying

atmospheric transport barriers (ATBs). Our motivation to study ATBs is to explain the

rapid temporal changes, hereafter referred to as punctuated changes, in the concentration

of atmospheric Fusarium spores. Fusarium is one of the most important genera of fungi on

the planet. Some species of Fusarium are important pathogens of plants and animals. We

show that punctuated changes in the spore concentrations are to a high degree of probability

caused due to the movement of atmospheric LCS.

The method of FTLE and LCS which relies on local expansion and contraction in

phase space can identify repelling and attracting codimension one sets, but it does not

necessarily partition the phase space into sets between which transport is minimum. In the

last decade there has been substantial interest and work in applying probabilistic methods

drawn from ergodic theory that can identify the so-called almost-invariant sets. As opposed

to the method of FTLE and LCS, the almost-invariant set (AIS) approach does not rely

on long time computations of trajectories. However the AIS approach is limited to time

independent or periodic systems. The relationship between the two approaches has not been

well understood so far for general time-dependent systems. Chapter 9 reviews the theory of

almost invariant sets. We then take two examples of two dimensional time-periodic flows,

the double-gyre flow and the lid driven wide cavity flow, to compute and compare the
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almost invariant sets with the transport barriers identified by LCS. Based on these examples

we make a connection between the geometric and probabilistic approaches by identifying

stretching with the second moment of a probability density function. Using this we devise

a new method to compute the FTLE that does not rely on a linearized flow, which is a

drawback with the standard method of computing FTLE. We then apply this method to the

atmospheric flow to identify coherent sets, the time-dependent analogues of AIS.

Our specific contributions to the literature are

• We give a definition of the partial FTLE, its relation to the FTLE, its uses and limi-

tations, in chapter 4.

• We apply the method of partial FTLE and LCS to identify transport barriers in phase

space that cause the segregation of neutrally buoyant particles in a two-dimensional

fluid flow, in chapter 5.

• We compute the FTLE for isobaric flows in the lower atmosphere and identified the

ATBs in chapter 8. We use these transport barriers to identify a statistically significant

sensitivity of the punctuated changes in the concentration of Fusarium to the movement

of ATBs.

• We devise a new set-based definition for the FTLE and applied it to find transport

barriers and coherent sets in the atmospheric flow, in chapter 9. Through numerical

examples we showed that this approach is also a bridge between the geometric and

probabilistic methods for phase space transport in chapter 9.



Chapter 2

Review of theory

This chapter provides a review of the mathematical concepts, in varying rigor, that have

been used throughout the thesis. While serving the purpose of providing a review, as well

as consistent definitions and notations, this chapter will also serve to connect the concept of

transport barriers with the large body of scientific and mathematical literature on hyperbolic

systems and Lyapunov exponents. This background information will help to clearly set the

stage for the computational methods of finding transport barriers in flows, that we have used

in this thesis.

The first section of this chapter reviews hyperbolic systems from a geometrical point of

view of expansion and contraction in the tangent space and proceeds to give the definition

and properties of Lyapunov exponents, following the work of Pesin and others [51], [18]

and [81]. This forms the theoretical backbone for the computation of finite-time Lyapunov

exponents and Lagrangian coherent structures that act as transport barriers. An alternative

point of view that has emerged in recent years uses probabilistic methods from ergodic theory

that find almost invariant sets, an optimal collection of sets that do not mix significantly,

with other sets. One of the aims of the thesis is to relate the two methods at least in the

case of simple flows. The second section therefore reviews the theory of Markov operators

and the method of almost invariant sets.

4
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While the background theory is self contained, certain liberties were taken in reviewing

the mathematics. Where possible we have avoided excessive rigor and proofs often without

explicitly stating so since we deal with physically intuitive systems. For a rigorous treatment

of the background mathematical theories, the reader is referred to the references provided

throughout the chapter.

2.1 Geometric approach to dynamical systems

The basic objects of study in (finite-dimensional) dynamical systems are the set of smooth

flow maps φtt0 on a differentiable manifold M

φtt0 : M 7→M (2.1)

and the associated vector field defined by ordinary differential equations

ẋ = f(x, t) (2.2)

where x ∈ M and f : M × R 7→ M is a smooth function. φtt0 takes a point on M at time

t0 and maps it to another point on M at time time t. The explicit dependence on t0 is

necessary for time dependent systems. We will suppress this explicit dependence on initial

time t0 and final time t in the notation to avoid clutter, and instead use just φ. We will

use the notation φtt0 when necessary to highlight any specific properties for time dependent

systems. The vector field f generated by φ is related to it by

f(x, s) =
d

dt
(φtt0(x))|s (2.3)

Linearization. Every smooth flow (2.1) induces a natural linear map between the cor-
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responding tangent spaces defined by

dφ : TxM 7→ Tφ(x)M (2.4)

where TxM is the tangent space at x ∈ M and t0 is some initial time. The associated

linearization of the vector field is

δẋ = Aδx (2.5)

where A = Df(x,t)
Dx

. The linearization of the vector field (2.5) describes how a small perturba-

tion δx(t0) at time t0 about a reference trajectory that passes through x at time t0 evolves.

Let Φ(x, t0, t) be the fundamental solution matrix of the tangent linearization (2.5). Using

equations (2.3) and (2.4), we get

dφtt0(x) = Φ(x, t0, t) (2.6)

Solutions of the linearization of the vector field and the linearization of the flow map φ

are both equivalent. One of the main aims of this thesis is to identify the special sets of

trajectories about which perturbations experience the strongest growth. Such sets would

then have the property of repelling (some) trajectories in their neighborhood. Similarly the

repelling sets for time reversed flow will be attracting sets in the forward time flow. This

idea can be defined more precisely by the concept of hyperbolicity.

Definition 2.1.1. The flow map φ is said to be hyperbolic if the tangent space at every x ∈M

admits an invariant splitting TxM = Es
x ⊕ Eu

x such that for vectors vs ∈ Es
x and vu ∈ Eu

x

there exist constants µs and µu such that
∥∥dφtt0(vs)∥∥ ≤ Cµ

(t−t0)
s ‖vs‖ and

∥∥dφ−t+t0t0 (vu)
∥∥ ≤

Cµ
(t0−t)
s ‖vu‖. The stable Es

x and unstable Eu
x subspaces are invariant under the action of

the flow, i.e., dφtt0(E
s
x) 7→ Es

φtt0
(x)

and dφtt0(E
u
x) 7→ Eu

φtt0
(x)

.

The definition essentially says any arbitrary perturbation around a reference trajectory

is a linear combination of exponentially growing and exponentially contracting perturba-

tions. From the practical viewpoint of computations, the growth of a perturbation around
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a reference trajectory can be quantified using the eigenvalues of the matrix A in equation

(2.5). While hyperbolic systems have been extensively studied a modification of the above

definition can allow us to study systems which are only partially hyperbolic [51], by allow-

ing the existence of a center subspace Ec
x. Vectors vc ∈ Ec

x do not grow or contract at

an exponential rate. In this case the tangent space has an invariant splitting of the form

TxM = Es
x ⊕ Eu

x ⊕ Ec
x, where ⊕ stands for the direct product.

2.2 Lyapunov exponents

Definition 2.2.1. The linear propagator L(x, t1, t2) is defined as the linear transformation

that takes solutions of the linearized vector field (2.5) at time t1 to solutions at time t2.

L(x, t1, t2) = Φ(x, t1, t2)Φ−1(x, t0, t1) (2.7)

with Φ(x, t0, t0) = In, the identity matrix. Therefore

L(x, t0, t) = Φ(x, t0, t) (2.8)

Definition 2.2.2. The maximal Lyapunov exponent generated by L is defined as

σ1(x) =lim sup
t→∞

1

t
log ‖Φ(x, t0, t)‖ (2.9)

The quantity σ1(x) measures the maximum growth of a perturbation about a refer-

ence trajectory averaged over time, t → ∞. The maximal Lyapunov vector, defined to be

along the direction of asymptotic maximal stretching, is invariant under the flow. Hence if

ξ1(x, t0) is the maximal Lyapunov vector at time t0 then the linear propagator maps it to

ξ1(φ(x, t0, t), t) the Lyapunov vectors at t [51], [81], [24].

ξ1(φ(x, t0, t), t) = L(x, t0, t)ξ1(x, t0) (2.10)
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If the Lyapunov vector is determined at one time instant, then the linear propagator deter-

mines it for all time. This important property of the linear propagator has to be satisfied

when the Lyapunov exponent is determined numerically. For almost all time t almost every

vector in S1 = TxM grows asymptotically at a rate σ1. The only vectors that do not grow

at a rate σ1 are those that are linearly independent of ξ1. These vectors form a subspace

S2 ⊂ S1. Continuing thus one can form a filtration of subspaces at each point x ∈M

Sn ⊂ Sn−1 ⊂ ... ⊂ S2 ⊂ S1 = TxM = Rn (2.11)

with Sk\Sk+1 = ξk(x). Let the first n1 Lyapunov exponents be positive, the next n2 Lyapunov

exponents be zero and the next n3 Lyapunov exponents be negative, with n1 + n2 + n3 = n.

Then the stable subspace of linearized flow is Es
x =

⋃k=n1

k=1 ξk(x), the center subspace is Ec
x =⋃k=n1+n2

k=n1+1 ξk(x) and the unstable subspace is Eu
x =

⋃k=n
k=n1+n2+1 ξk(x) and these subspace are

invariant by the property of the linear propagator and Lyapunov vectors (2.10). This makes

the Lyapunov exponents an ideal tool to identify exponentially expanding and contracting

subsets in phase space. However to apply this tool to time dependent systems, such as

atmospheric flows, where the flow is not even known very well even for a few days into the

future, one needs the finite-time Lyapunov exponent, which is reviewed in chapter 3.

2.3 Probabilistic approach to dynamical systems

One associates a statistical approach with systems containing a very large number of elements

and uncertainties. However since the pioneering work of Ulam and Neumann[77] it has been

understood that even one dimensional deterministic systems can generate densities of states

that are amenable to a probabilistic treatment. In chapter 9 we will present some results on

the relationship between probabilistic and geometric approaches with simple examples. Our

motivation for this line of investigation is also to overcome the limitation of linearization

imposed by equation (2.4). This section reviews Markov operators which play a central role
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in the probabilistic approach and some preliminary definitions of measure spaces.

2.3.1 Markov operators

A detailed treatment of measure spaces, Lebesgue integration and Lp spaces is available in

the textbooks by Royden [55] and Rudin [56]. We review only the pertinent theorems here

without defining all the mathematical machinery and refer the reader to these books for

further details. The basic mathematical object in the probabilistic approach is a measure

space denoted by the triplet (X,B, µ) where X is a set and B is the σ-algebra of measurable

sets on X and µ is a measure. We are interested in the case where X is finite, µ is the

Lebesgue measure and B is the σ-algebra of Lebesgue measurable sets.

Definition 2.3.1. A function f : X 7→ R is said to be measurable if the set {x : f(x) ≤ α} ∈

B for each α.

Definition 2.3.2. A measurable function f on X is said to belong to Lp = Lp(X) space is∫
|f |p dµ <∞. Putting p = 1, L1 space is the space of Lebesgue integrable functions.

Lp spaces are linear, i.e. if f1, f2 ∈ Lp then α1f1 + α2f2 ∈ Lp for some constant α1 and

α2.

Definition 2.3.3. Let (X,B, µ) be a measure space. A linear operator P : L1 7→ L1 is called

a Markov operator if it satisfies the following properties :

• Pf > 0 for f > 0 and f ∈ L1.

• ‖Pf‖ = ‖f‖, where the norm is the L1 norm.

Properties 2.3.1. For f ∈ L1, we will write f = f+ − f− where f+(x) = max {f(x), 0}

and f−(x) = max {−f(x), 0} then

• (Pf)+ ≤ Pf+
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• (Pf)− ≤ Pf−

• ‖Pf‖ ≤ ‖f‖

The last property is the property of contraction, i.e., ‖P nf‖ = ‖P (P n−1f)‖ ≤ ‖P n−1f‖.

Definition 2.3.4. A function f ∈ L1 is said to be a fixed point of the Markov operator P if

Pf = f .

Definition 2.3.5. A measure ν is said to absolutely continuous with respect to the measure

µ, if ν(B) = 0 whenever µ(B) = 0, for B ∈ B. We write ν << µ.

Theorem 2.3.1. [Radon-Nikodym] Let ν << µ. Then there exists a function f ∈ L1

such that for every B ∈ B, ν(B) =
∫
B
fdµ. Further every f ∈ L1 generates a measure

ν << µ in this manner. Moreover f is unique, [55].

The Radon-Nikodym theorem is valid only for σ-finite algebras. A σ-algebra B is called

σ-finite if there exist sets Xn such that X =
⋃∞
k Xk with each µ(Xk) < ∞. Since all the

problems we consider in this thesis are flows in Rn with the standard Borel σ-algebra, the

requirement of σ-finiteness is taken care of. Henceforth we assume σ- finiteness without

stating so.

An intuitive example of absolutely continuous measures and the Radon-Nikodym theo-

rem is that of the mass and volume of a body. Mass and volume are measures of a physical

body. Assuming there are no point masses, mass is absolutely continuous with respect to

volume. If density (mass/volume) is finite, then the density function is Lebesgue integrable

and the mass can be obtained from the volume and density using the Radon-Nikodym theo-

rem. This example can be a useful physical analogy for the specific systems that we consider

later.
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2.3.2 Perron-Frobenius operator

Now going back to flows on manifolds, we can extend the definition of φ the flow map to

φ : B 7→ B such that φ(B) = {φ(x) : x ∈ B} with B ∈ B and X = M .

Definition 2.3.6. A measurable function or transformation φ on (X,B, µ) is non singular

if µ(φ−1(B)) = 0 whenever µ(B) = 0 for B ∈ B

The definition for non-singular transformation allows the shrinking of phase volumes,

but not the shrinking of phase volumes to zero. Now let f ∈ L1 and f ≥ 0 and φ : M 7→M

be a non singular transformation. Using the Radon-Nikodym theorem we define a measure

ν

ν(B) =

∫
φ−1(B)

fdµ (2.12)

If µ(B) = 0 then µ(φ−1(B)) = 0 and the Lebesgue integral of f over a set of zero measure is

zero, i.e., ν(B) = 0. This makes ν << µ. Therefore by the Radon-Nikodym theorem there

exists a function denoted by Pf ∈ L1 such that

∫
B

Pfdµ = ν(B) =

∫
φ−1(B)

fdµ (2.13)

The same result can be obtained for any (not necessarily non-negative) function f ∈ L1,

by writing f = f+ − f−, where f+ and f− are both non negative. The Raydon-Nikodym

theorem ensures the uniqueness of P . It can be easily verified that P is a Markov operator.

Definition 2.3.7. Let (X,B, µ) be a measure space. If φ : X 7→ X is a nonsingular trans-

formation the unique operator P : L1 7→ L1 defined in equation 2.13 is called the Perron-

Frobenius operator for the flow φ, [38].

Continuing with the analogy of the mass, density and volume of a physical body, the

Perron-Frobenius operator describes the evolution of the density f or how the mass spreads.

While this is a useful analogy, we have to note that the density that we will use later is a
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probability density function. Up to now we have reviewed the mathematical machinery of

Lyapunov exponents and the Perron-Frobenius operator. These will be revisited in chapter

3 and chapter 9 to define finite-time Lyapunov exponents, Lagrangian coherent structures

and almost invariant sets respectively.



Chapter 3

Finite-time Lyapunov exponents

While Lyapunov exponents are very useful to study the sensitivity of trajectories, they have

one major drawback; they are an asymptotic quantity requiring information of the flow for a

very long time and in theory for all time. In many natural flows such as atmospheric flows,

the flow is not known very well even for a few days into the future. Therefore one needs

a modified version of the Lyapunov exponent that can quantify exponential stretching and

contraction for finite-time scales. An intuitive and perhaps obvious definition of a finite-time

Lyapunov exponent (FTLE) would replace the time t → ∞ in (2.9) with a finite-time T .

Despite the obvious nature of this definition, the definition and properties of FTLE and their

role in determining transport barriers have been understood only in the last decade in the

works of Wiggins, Haller, Marsden and Lekien [35], [30], [65] and [41].

The abstract definition of Lyapunov exponents for flows does not specify the norm to

be used. However any norm that is used to compute the Lyapunov exponent has to satisfy

the properties of the linear propagator, namely equation (2.10). The works of [81] and [35]

showed that the norm obtained from the singular value decomposition (SVD) of Φ(x; t0; t)

is particularly well suited for the computation of the finite-time version of the Lyapunov

exponents. Haller, Marsden and Lekien used the spectral values of Φ(x; t0; t) obtained from

its SVD, but approached it from a more geometrically intuitive approach of finding the

13
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principal stretches. We review this approach to defining the FTLE and its properties.

3.1 Definition and properties of FTLE

For simplicity we consider a flow φtt0 on Rn. Consider a reference trajectory passing through

the point x and a perturbed trajectory passing through the point x + δx at time t0. The

flow φtt0 maps these points to φtt0(x) and φtt0(x + δx) at time t and the perturbation grows

to δx(t0 + t).

Expanding φtt0(x + δx) in a Taylor series about the point x we get

δx(t0 + t) = φtt0(x)− φtt0(x + δx) =
dφtt0
dx

δx(t0) +O(
∥∥δx2(t0)

∥∥) (3.1)

The norm or magnitude of δx(t0 + t) can be found using the standard inner product on Rn.

‖δx(t)‖ =

√〈
dφtt0
dx

δx(t0),
dφtt0
dx

δx(t0)

〉
=

√〈
δx(t0),

(
dφtt0
dx

)∗ dφtt0
dx

δx(t0)

〉
(3.2)

where ∗ denotes the transpose. This frames the problem of finding the FTLE in terms of

the Cauchy-Green deformation tensor, defined by

C =

(
dφtt0
dx

)∗(
dφtt0
dx

)
(3.3)

The maximum growth of a perturbation is therefore given by the maximum principal stretch,

i.e., by the maximum eigenvalue of C.

max ‖δx(t)‖ =
√
λmax(C) ‖δx(t0)‖ ξ1(x, t0) (3.4)

where ξ1(x, t0) is the eigenvector of C associated with λmax. The growth in the perturbation

depends on the initial point x, initial time t0 and the evolution or integration time T = t−t0.



15

Definition 3.1.1. The maximum FTLE is defined as

σ(x, t0, T ) =
1

T
log
(√

λmax(C)
)

(3.5)

One can define the entire spectrum of FTLE σ1 > σ2 > ... > σn. The corresponding

eigenvectors [ξ1ξ2...ξn] form an orthonormal basis for the tangent space at x(t0). Any initial

perturbation δx(t0) is a linear combination of these eigenvectors

δx(t0) = δx1(t0)ξ1 + ...+ δxn(t0)ξn (3.6)

and the evolution of the perturbation can be described by the FTLE spectrum

δx(t) = δx1(t0)eσ1T ξ1(φ(x, t)) + ...+ δxn(t0)eσnT ξn(φ(x, t)) (3.7)

We have avoided the case of multiplicity of eigenvalues of C in the definition of FTLE. In

this case the definitions remain essentially the same, but see [51] for further details.

The FTLE and the finite-time Lyapunov vectors computed from the SVD of Φ are invariant

for the finite-time T . Figure 3.1 explains the invariance of expanding and contracting sub-

spaces. These are the local Eu
x and Es

x in the tangent space TxM for an arbitrary trajectory.

A standard examination of the SVD of Φ will make this clear.

Φ(x, t0, t) = U(x, t0, t)ΣV∗(x, t0, t) (3.8)

U(x, t0, t) and V(x, t0, t) are the left and right singular vectors of Φ respectively and Σ is

the diagonal matrix of the singular values.

C = Φ(x, t0, t)
∗Φ(x, t0, t) = V(x, t0, t)Σ

2V∗(x, t0, t) (3.9)

Let s ∈ [t0, t] then,

U(x, t0, s) = L(x, t0, s)V(x, t0, t) (3.10)
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u2

u1

v1

v2

L (x, t 0 , s )v1

L (x, t 0 , s )v2

Figure 3.1: The invariance of the singular vectors for the finite-time T = t− t0.

and

U(x, s, t) = L(φ(x, t0, s), s, t))V
∗(x, s, t) (3.11)

The claim is that U(x, t0, s) = V(x, t0, s). This is easy to verify by taking the composition

of the linear propagators L(x, t0, t) = L(φ(x(t0, s), s, t) ◦ L(x, t0, s) to get

U(x, t0, t) = L(φ(x, t0, s), s, t)L(t0, s,x)V(x, t0, t) = L(φ(x, t0, s))U(x, t0, s) (3.12)

But V(x, t0, s) = L(φ(x, t0, s))U(x, t0, s) which verifies the claim. Therefore the FTLE and

the associated singular vectors defined by the SVD of Φ have the properties of Lyapunov

exponents defined in chapter 2; maximum expansion and invariance under the action of the

flow for a finite time T = t− t0.
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3.2 Computation of FTLE

3.2.1 Finite difference method

In general the FTLE is dependent on the initial position x, initial time t0 and T . Therefore

to understand stretching and contraction of trajectories, one would have to compute a FTLE

field, which in practice can only be computed at a finite number of points in the domain.

The deformation tensor Φ can be computed using finite differences. The value of the FTLE

at nodal points in the finite difference grid then represents the stretching of a neighborhood

which is the size of a cell. The size of the grid can be chosen depending on the scales

of interest in the flow. A schematic figure illustrating the finite difference method in two

dimensions is shown in figure 3.2.

(x i (t0) , y j (t0))

(x i (t0) , y j +1 (t0))

(x i (t0) , y j − 1(t0))

(x i+1 (t0) , y j (t0))(x i− 1(t0) , y j (t0)) (x i (t) , y j (t))

(x i (t) , y j +1 (t))

(x i (t) , y j − 1(t))

(x i+1 (t) , y j (t)) (x i− 1(t) , y j (t))

Figure 3.2: Finite difference method : A reference point (in black) and four neighboring particles are
integrated for a finite time T .

In finite difference notation the gradient of the flow map is :

dφ

dx
=

 xi+1,j(t0+t)−xi−1,j(t0+t)

xi+1,j(t0)−xi−1,j(t0)

xi,j+1(t0+t)−xi,j−1(t0+t)

yi+1,j(t0)−yi−1,j(t0)

yi+1,j(t0+t)−yi−1,j(t0+t)

xi,j+1(t0)−xi,j−1(t0)

yi,j+1(t0+t)−yi,j−1(t0+t)

yi,j+1(t0)−yi,j−1(t0)

 (3.13)
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3.2.2 An example - double gyre flow

We illustrate the method with the example of a time dependent double gyre flow [41],

a two dimensional time dependent flow, frequently encountered in large scale ocean flow

and analytical models of Rayleigh-Bénard convection cells. It is defined by the stream

function ψ(x, y, t) = A sin(πf(x, t)) sin (πy), with f(x, t) = a(t)x2 + b(t)x, a(t) = ε sin(ωt)

and b(t) = 1− 2ε sin(ωt) over the domain [0, 2]× [0, 1]. The velocity field is given by

u = −πA sin(πf(x)) cos (πy) (3.14)

v = πA cos(πf(x)) sin(πy)
df

dx
(3.15)

The flow is a periodic array of cells in which the streamlines are concentric circles. We chose

a representative set of parameter values; A = 0.1, ω = 0.2π and ε = 0.25. The centers of

the cells oscillate with a frequency ω on the horizontal axis. The FTLE field for this flow

is shown in figure 3.3(a). When the FTLE field is viewed as a surface the regions of high

FTLE become topographic ridges as shown in figure 3.3(b)

(a) FTLE field (b) FTLE field as a surface

Figure 3.3: FTLE field for the double-gyre flow for an integration time of T = 10.

The ridge can be extracted easily in this example by setting a threshold on the FTLE

value. Loosely speaking, a ridge is the set of points whose FTLE value is locally high. The

ridges in the FTLE field are shown in red in figure 3.4. A more precise definition of a ridge

is given in the next section.
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Figure 3.4: Ridges in FTLE field for the double-gyre flow shown in figure 3.3.

3.3 Lagrangian coherent structures

3.3.1 Definition of LCS

The leading FTLE gives the time averaged rate of stretching in a neighborhood around a

reference trajectory. It is intuitively clear that regions of the phase space separated by locally

high values of FTLE will stretch and separate. The sets with high FTLE act as repelling

barriers in the flow. This intuitive idea of barriers is formalized by the concept of Lagrangian

coherent structures (LCS) due to Lekien, Shadden and Marsden [65] [41].

Definition 3.3.1. LCS are codimension one ridges in the scalar FTLE field σ(x, t0, t).

Ridges can be defined precisely by appealing to differential geometric quantities as in

[20].

Definition 3.3.2. Let σ(x) be the FTLE scalar field defined over the domain, a smooth

n dimensional manifold M . Let λi, 1 ≤ i ≤ n the eigenvalues of ∇2σ ordered such that

λi ≤ λj for 1 ≤ i ≤ j ≤ n. Let vi be the corresponding eigenvectors (column vectors). Let

V = [v1,v2, ...,vn−1]. A point x lies on a ridge or is said to be a ridge point if V∇σ = 0

and λn−1 ≤ 0.

The above definition is not easy to work with for n ≥ 3. In two dimensions, ridges have

an intuitive analogy to topographic ridges. Applying this analogy to a two dimensional FTLE
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(a)κ1 = 0, κ2 < 0 (b)κ1 < 0, κ2 < 0 (c)κ1 > 0, κ2 < 0

Figure 3.5: The three types of ridges and the corresponding conditions on the principal curvatures. For
all three cases σ(x, y) > 0

field, we reformulate the definition of a ridge in a modified form. Let κ1(x, y) ≥ κ2(x, y) be

the eigenvalues of the Hessian of the FTLE field, ∇2σ. These eigenvalues are the principal

curvatures of the two dimensional surface σ. A point (x, y) lies on a ridge, or is a ridge point,

if κ2(x, y) < 0 and σ(x, y) > 0. Three types of ridges which satisfy these criteria are shown

in figure 3.5.

The definitions and the computational procedure reviewed so far are for repelling LCS.

The same definitions and computational procedure can be used with a small modification to

find attracting LCS. By finding the FTLE in backward time, from t0 to t with t < t0, one

can find repelling LCS in backward time which act as attracting LCS in forward time.

3.3.2 Flux across the LCS

The flux across a ridge in the FTLE field is negligible. An expression for the actual flux

across a ridge has been derived in [65] and [41]. The main results are reviewed here.

Definition 3.3.3. For all t let l(x, t) be a function defined by the following conditions :

• l(x, t) = ‖x− xq‖ where xq is a point on the LCS closest to x.

• l(x, t) 〈x− xq,n(xq, t)〉 ≤ 0 where n(xq, t) is the unit vector normal to the ridge at xq
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and 〈, 〉 is the inner product on M.

The function l(x, t) gives the signed distance of a point to the LCS. Points on either

side of the LCS have opposite signs of l(x, t). More precisely the above two properties of the

LCS hold in a neighborhood of the LCS. By definition the LCS are zero level sets of l(x, t).

dl(x, t)

dt
=

∂l

∂x
· ∂x

∂t
− ∂l

∂xq
· ∂xq
∂t

(3.16)

∂l

∂x
= ∇l =

x− xq
‖x− xq‖

= n(xq, t) (3.17)

dl

dt
= ∇l.

(
dx

dt
− dxq

dt

)
(3.18)

The flux across LCS, γ is given by

γ =

∫
LCS

(
dl

dt

)
l=0

ds (3.19)

where the integration is along the LCS.

Along the LCS

(
dl

dt

)
l=0

=
〈t,∇σ〉
〈 n,∇2σn〉

〈
t,
∂l

∂t
−An

〉
+O

(
1

t− t0

)
(3.20)

where A is the Jacobian of the flow vector field. The first term on the right approaches zero

for well defined ridges. This result shows that LCS are minimum flux barriers and in most

applications the flux across LCS approaches zero.

A subtle point has to be made clear here. If xq is a point on a FTLE ridge, then points

in a small neighborhood on either side of it do not cut through the points on the ridge during

the finite time t− t0. The intuitive interpretation of the results in [65] and [41] estimate the
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relative velocity of a moving LCS and the underlying flow field. If this relative velocity is

zero then the LCS is a material surface and hence an invariant manifold.

3.3.3 An example to show the limitation of LCS

Repelling (attracting) LCS have been interpreted as the time dependent analogues of stable

(unstable) manifolds. However one has to be careful with such an interpretation. We give a

simple example to illustrate what could go wrong.

Example Consider a flow on R2 = (x, y) given by

 ẋ

ẏ

 =

 −1 0

0 1

 x

y

 (3.21)

The above flow is hyperbolic since its tangent space admits an invariant splitting into

stable and unstable subspaces. The solution of the above equation x(t) = x(t0)e−(t−t0)

and y(t) = y(t0)et−t0 . If (x1(t0), y1(t0)) and (x1(t0) + δx(t0), y1(t0) + δy(t0)) are two close

by initial conditions then the growth of the perturbation is δx(t) = δx(t0)e−(t−t0) and

δy(t) = δy(t0)et−t0 . This stretching is independent of the initial conditions, all sets in the

phase space have the same rate of stretching and contraction. The Lyapunov exponents (and

the FTLEs) are 1 and -1 respectively for all initial conditions. There are no ridges in the

FTLE field and hence no LCS. In the example of the linear system, stable and unstable man-

ifolds of the fixed point exist but there is no repelling nor attracting LCS. This is true for

all linear time independent systems. A Nonuniform rate of expansion of sets in the domain

M is a necessary condition for the existence of ridges in the FTLE field, i.e., the existence

of LCS.



Chapter 4

Partial FTLE and partial LCS with

examples

Lagrangian coherent structures are an excellent way to visualize flow patterns and minimal

flux barriers in flows. However many problems in which the theory of LCS is sought to be

applied tend to be high dimensional systems. LCS cannot be easily visualized if the flow is in

more than three dimensions, though one can visualize it in slices as for example in the planar

elliptic restricted three body problem, [26]. Even for three dimensional flows performing

sensitivity computations over a three dimensional grid of points can be computationally

expensive. Moreover only a lower dimensional subset of the full domain could be of interest

or the flow in some of the dimensions could be slowly evolving. For example in atmospheric

and ocean flows reviewed in chapter 7, the vertical component of the fluid is at least an order

of a magnitude less than the horizontal component of the velocity. For such cases it is useful

to restrict LCS computations over a subspace of the domain. We refer to a sensitivity field

restricted to a subspace of the domain, as a partial LCS denoted by LCSp. The question is

whether LCSp are slices of the codimension-one LCS, i.e., are they the intersection of the

LCS with a subset of a subspace of the domain? In this section it is shown that the general

answer is negative. We also present results on the partial LCS of two examples.

23
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4.1 Partial finite-time Lyapunov exponents

First it is observed that the asymptotic Lyapunov exponents have the desired partial LCS

property. Let ξ(x, t0) ∈ TxM be an arbitrary vector. ξ(x, t0) can be expressed as a linear

combination of Lyapunov (basis) unit vectors ξj(x, t0).

ξ(x, t0) =
n∑
j=1

kjξj(x, t0) (4.1)

or in vector notation

ξ(x, t0) =



k1ξ1(x, t0)

.

.

.

knξn(x, t0)


(4.2)

Let Φ((x), t0) be the the fundamental solution matrix for the linearized flow. As stated in

the previous section, the induced linear flow over the tangent space equation (2.4), maps the

Lyapunov vectors at time t0 to Lyapunov vectors at time t.

ξ(φ(x, t)) = Φ(x, t0)ξ(x, t0) = Φ(x, t0)[k1ξ1(x, t0), ..., knξn(x, t0)]∗ (4.3)

= [k1ξ1(φ(x), t)eσ1(t−t0), ..., ξn(φ(x), t)eσn(t−t0)]∗ (4.4)

Using the notation of the filtration of sets in (2.11) ξ1 ∈ S1 and S2 = span{ξ2, ..., ξn}. Since

S2 is spanned by only n−1 vectors it follows that S2 is a set of zero measure. So almost every

vector in TxM and in particular ξ(x, t0) grows at an asymptotic rate of eσ1 . In the asymptotic

limit the ‘partial’ Lyapunov exponents have the exact value of the Lyapunov exponents at

every x ∈M .

lim sup
t→∞

1

(t− t0)
log

(
‖ξ(φ(x, t0), t)‖
‖ξ(x, t0)‖

)
= σ1 (4.5)
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because lim
t→∞

1
(t−t0)

log k1 = 0, for k1 6= 0. This is true for any vector except those chosen from

the subspace S1\S2, which has zero measure. Therefore once could choose perturbations

in any subspace as long as k1 6= 0. This property is implicitly used in the literature on

computing Lyapunov exponents. For example the method of finding Lyapunov exponents by

Swinney et. al [80] measures the growth of an arbitrary perturbation and averages it for a

long enough time to find the Lyapunov exponent.

In equation (4.5) the asymptotic nature of the Lyapunov exponent plays a critical role.

In the case of the case of finite-time Lyapunov exponents, the relation between partial LCS

and the true LCS depends on the time scale T = t−t0. The SVD of Φ(x, t0, t) or dφ(x,t0,t)
dx

gives

n singular vectors U and V that form an orthogonal basis for Tφ(x,t0,t) and TxM respectively.

Every vector ξ(x, t0) ∈ TxM = Rn can be expressed as a linear combination of the column

vectors of V.

ξ(x, t0) =
n∑
j=1

kjvj(x, t0, t) = [v1(x, t0, t), ...,v2(x, t0, t)]K (4.6)

K being a diagonal matrix with Kjj = kj. Now without loss of generality it can be assumed

that the diagonal matrix Σ is arranged such that Σ2
11 ≥ Σ2

22 ≥ ... ≥ Σ2
nn making v1 the

singular vector, correspond to the maximum eigenvalue of Σ2. Again applying the induced

linear map Φ over the tangent space and using the SVD of Φ

Φ(x,, t0)ξ(x, t0) = UΣV∗V(x, t0)K = UΣK (4.7)

The growth in magnitude of the arbitrary vector in time T = t− t0 is

‖ξ(φ(x, t0, t))‖ =
√
〈ξ(φ(x, t0, t)), ξ(φ(x, t0, t))〉 =

√
(UΣK)∗UΣK =

√
KΣ2K (4.8)

On a finite-time scale T = t− t0 the maximum Lyapunov exponent will not be the same
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as the partial exponents because of the scalars kj. The partial FTLE spectrum is given by

(σj)p =
1

T
ln
√

Σ2
jjK

2
jj (4.9)

Even the direction of maximum growth is dependent on the values of Kjj and T . So in general

the partial FTLE is only a measure of sensitivity to perturbations in specific directions and

the ridges in the partial FTLE field are not slices of the true LCS. However in some special

cases the ridges in the partial FTLE field are suggestive of the true LCS. Two such cases are

considered here.

• Dissipative systems : Dissipative systems with a global attractor are a special case

where the partial LCS can be relatively computationally inexpensive and have the

property of dynamical barriers. An example of such a system is presented in chapter

5 in detail. Here we provide a brief description of the method of partial LCS in a two

dimensional dissipative flow.

Consider a two dimensional dissipative flow φ : R2 7→ R2. Now suppose that y = 0,

i.e., the x axis is the global attractor. The gradient of the flow map (and the induced

linear map over the tangent space) in finite difference notation is given by

dφ

dx
=

 φx,x φx,y

φy,x φy,y

 =

 xi+1,j(t0+t)−xi−1,j(t0+t)

xi+1,j(t0)−xi−1,j(t0)

xi,j+1(t0+t)−xi,j−1(t0+t)

yi,j+1(t0)−yi,j−1(t0)

yi+1,j(t0+t)−yi−1,j(t0+t)

xi+1,j(t0)−xi−1,j(t0)

yi,j+1(t0+t)−yi,j−1(t0+t)

yi,j+1(t0)−yi,j−1(t0)

 (4.10)

Since y = 0 is the attractor, the second row converges to zero. Setting the second row

and second column of dφ
dx

to zero

dφ

dx

dφ

dx

∗
=

 φ2
x,x + φ2

x,y 0

0 0

 (4.11)

The maximum Lyapunov exponent is completely determined by the just the first term.

A similar result is used to compute the partial LCS for the motion of inertial particles
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in a fluid, in chapter 5.

• Flows with ‘layers’ : An example is atmospheric flow. The movement of air at a height of

100m above the ground has a layered profile. The wind velocity tangential to the ground

is at least an order of magnitude more than the vertical velocity for pressure levels.

Moreover the flow has vertical rigidity, i.e., that is the air at closely spaced heights

moves with almost the same horizontal velocity. Meteorological data too shows only a

small variation in the tangential velocities for variations in vertical height. Therefore

transport barriers can be studied using a partial LCS in the horizontal direction only.

In the following sections two examples of partial LCS are shown.

4.2 Partial FTLE for a perturbed pendulum

First we take a simple example of a periodically forced pendulum with dissipation. Though

this example does not have a global attractor nor is it a ’layered’ flow, it provides a good

starting point to study the partial FTLE since we can easily compute the true LCS for

verification. Consider the vector field on R2

ẋ = y (4.12)

ẏ = − sin (x)− εy sin (ωt) (4.13)

In the absence of the term εy sin (ωt) which introduces both periodic forcing and dissipation,

the system reduces to the simple pendulum with two saddle type fixed points at (0,±π)

and a center type fixed point at (0, 0), with the vector field being periodic with period

2π. The heteroclinic trajectories connecting the saddles at (0,±π) form a separatrix in the

phase space. In this case the heteroclinic trajectories are also the LCS due to the high

exponential separation of the periodic trajectories from the non periodic trajectories around

this trajectory. The addition of a small forcing and dissipation (small ε) breaks down the
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heteroclinic trajectory and leads to a heteroclinic tangle in a small neighborhood of the

original heteroclinic trajectory, [79], formed by the transversal intersection of the stable and

unstable manifolds of saddle points. The stretching in phase space is high in a neighborhood

of the heteroclinic tangle [79] and [78]. We choose ω = 1 and ε = 0.1 and use the ODE45

integrator in Matlab for the simulation, with a grid size of 0.1 on the domain [−4, 4]× [−4, 4].

The FTLE field is shown in figure 4.1 for various initial times. The regions of high FTLE

shown in red are the LCS.

The gradient of the the flow map φ for this flow is the same as in equation (4.10). The

variation of the final position in the x subspace with respect to variations of initial positions

in only x is given by φx,x. Similarly φx,y is the variation of the final position in the x subspace

with respect to variations of initial positions in the y subspace only, φy,x is the variation of

the final position in the y subspace due to variation in the x subspace only and φy,y is the

variation in of the final position in the y subspace due to initial variation in the x subspace

only. The corresponding partial FTLEs denoted by σxx, σxy, σyx and σyy are given by

σxx =
1

T
log
√
φ2
x,x

σxy =
1

T
log
√
φ2
x,y

σyx =
1

T
log
√
φ2
y,x

σyy =
1

T
log
√
φ2
y,y. (4.14)

More precisely the σxx = 1
T

log
√
λmax(φ∗x,xφx,x). But we have omitted this because the sub

matrices φx,x, φx,y, φy,x and φy,y are single numbers and so partial FTLE formulae in eq 4.14

are still correct.

The partial FTLEs are plotted in figure 4.2 - 4.5 at various instants of time.
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(a)t = 0 (b)t = 0.5π

(c)t = π (c)t = 2π

Figure 4.1: FTLE field for different initial times. ε = 0.1, ω = 1 and integration time, T = 1.

On comparing the partial FTLEs with true FTLE field, the actual values of the partial

FTLEs do not match with value of the true FTLE. This is obviously true because the

maximum rate of expansion need not be in either the x or the y direction. However what we

are interested in is the ridge structure of the FTLE field, i.e., the location of ridges in the

FTLE field and the partial FTLE fields. Comparing the locations of the ridges in the partial
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(a)t0 = 0 (b)t0 = 0.5π

(c)t0 = π (c)t0 = 2π

Figure 4.2: Partial FTLE σxx field for different initial times. ε = 0.1, ω = 1 and integration time, T = 1.

FTLE fields it can be seen that all the four partial FTLE identify the main transport barrier

very effectively. In particular the partial FTLE σx,y in figure 4.3 has a ridge structure that is
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(a)t0 = 0 (b)t0 = 0.5π

(c)t0 = π (c)t0 = 2π

Figure 4.3: Partial FTLE σxy field for different initial times. ε = 0.1, ω = 1 and integration time, T = 1.

closest to the actual FTLE field σ in figure 4.1. This can be understood from the unforced

and undamped pendulum equation in which the periodic trajectories move in a clockwise
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(a)t0 = 0 (b)t0 = 05π

(c)t0 = π (c)t0 = 2π

Figure 4.4: Partial FTLE σyx field for different initial times. ε = 0.1, ω = 1 and integration time, T = 1.

direction and the trajectories beyond the heteroclinic trajectories eventually move away to

infinity in the x direction. In a neighborhood of the heteroclinic trajectory a small variation
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(a)t0 = 0 (b)t0 = 0.5π

(c)t0 = π (c)t0 = 2π

Figure 4.5: Partial FTLE σyy field for different initial times. ε = 0.1, ω = 1 and integration time, T = 1.

in the initial y position can either lead to a periodic trajectory or a trajectory that goes to

infinity, i.e., a large variation in the final x is produced. In the case of the damped and forced

pendulum, the flow does not change significantly enough in terms of the flow map. Hence
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σx,y is the closest in structure to σ.

4.3 Partial LCS from data in Rayleigh-Bénard convec-

tion

The second example we consider is a three dimensional flow described by velocity data rather

than ODEs. The velocity data is from a numerical simulation of spatiotemporal chaos in

Rayleigh-Bénard convection (RBC) given by the buoyancy-driven convection of a thin layer

of fluid heated uniformly from below. RBC is a canonical pattern-forming system which

produces important insights into the dynamics of non-equilibrium systems [48], [49], [3]. The

governing equations for Rayleigh-Bénard convection are the well-known Boussinesq equa-

tions, a set of nonlinear partial differential equations which yield the fluid velocity, pressure,

and temperature as a function of time. It is now possible to solve these equations numeri-

cally for convection domains with the precise conditions of experiment using a geometrically

flexible and highly efficient, parallel, spectral element method, [49]. In the simulations a no-

slip condition is imposed at all the walls and the lateral sidewalls are considered perfectly

conducting. The data that we used in our study was generated by Paul and Tiwari [50].

The domain for the problem is a circular container of diameter 12 non dimensional units

and height 1 non dimensional unit. The numerically generated data contains the velocities

u, v and w at intervals of 1 non dimensional time unit. The velocities are specified on a

uniform grid of size 0.1 non dimensional units. For finding the FTLE, we chose an initial

grid of points that were spaced at intervals of 0.05 units in the horizontal direction and

at intervals of 0.1 units in the vertical direction. We used a Runge-Kutta (RK4) algorithm

to integrate the trajectories of the particles starting on this uniform grid. When particles

enter the interior of a cell, we interpolated the velocity field from the nodal points of the

grid. For this purpose we used a bicubic interpolation in the horizontal direction and cubic

interpolation in the vertical direction. The temporal interpolation between the time units
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was also cubic. We chose these specific interpolation methods to preserve smoothness of the

velocity field. The total integration time was 0.1 time units.

Figure 4.6 shows the FTLE field for time, t = 0 at heights ranging from z = 0.1 to

z = 0.9. The velocity at z = 0 and z = 1.0 is zero because of the no slip boundary condition.

(a)z = 0.1 (b)z = 0.2 (b)z = 0.3

(a)z = 0.4 (b)z = 0.5 (b)z = 0.6

(a)z = 0.7 (b)z = 0.8 (b)z = 0.9

Figure 4.6: FTLE field for initial time, t = 0 and integration time, T = 0.1 plotted at height varying from
0.1 to 0.9.

Figure 4.7 suggests that transport barriers are primarily barriers to motion in the horizontal

plane. We can obtain the same transport barriers by considering a 2 × 2 submatrix of the
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Figure 4.7: Extracted ridges from figure 4.6 form 2-dim surfaces that act as transport barriers. The z-axis
is scaled 10 times in the figure.

deformation gradient. The sub-matrix of interest measures the variation in final position in

the horizontal plane due to variations in initial position in the horizontal plane. The partial
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deformation gradient is (
dφ

dx

)
partial

=

 φx,x φx,y

φy,x φy,y

 (4.15)

(a)z = 0.1 (b)z = 0.2 (b)z = 0.3

(a)z = 0.4 (b)z = 0.5 (b)z = 0.6

(a)z = 0.7 (b)z = 0.8 (b)z = 0.9

Figure 4.8: Partial FTLE field for initial time, t = 0 and integration time, T = 0.1 plotted at height
varying from 0.1 to 0.9.

Comparing figures 4.8 and 4.6 suggests that the ridges in the partial FTLE field identify

the transport barriers.



Chapter 5

Application of partial LCS to

segregation of neutrally buoyant

inertial particles in a fluid

5.1 Introduction

It is a commonly observed phenomenon that finite sized particles with inertia in an incom-

pressible fluid do not behave as point like tracers. The motion of inertial particles can be very

non trivial even in simple looking two dimensional flows. Some examples of this non trivial

motion are preferential concentration, clustering and separation of particles as observed in

numerous studies [64, 75, 66]. The inertial dynamics of solid particles can have important

implications in natural phenomena, e.g., formation of rain clouds [21] by coalescence around

dust particles and formation of plankton colonies in oceans [1]. Similarly, the inertial dy-

namics of reactant particles is important in chemically active flows such as coalescence type

reactions [46] and mixing sensitive reactions. Inertial particle dynamics are the key to many

methods of separation of particles in micro scale flows. References [34, 14],[17], [42] are a few

38
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examples of such applications.

A study of the inertial particle dynamics from a geometric phase space point of view

began in the last decade with the works of Babiano, Cartwright, Wiggins and Haller. Babi-

ano and Cartwright rely on a simplified equation of motion of inertial particles that shows

sensitive dependence of trajectories on initial conditions. They use the strain tensor of the

fluid flow field to identify regions where particles could cluster. However the strain tensor of

the fluid flow alone does not explain why particles that start at the same location could end

up clustering in different locations of fluid. In [32] and [31] Haller used a reduced order equa-

tion for the asymptotic motion of inertial particles. The reduced order equation is a small

perturbation of the ambient velocity field, with the order of perturbation being defined by

the size of the particles. Attracting and repelling LCS in this perturbed flow were shown to

attract or repel inertial particles. However instabilities were observed that make the particle

trajectories deviate from the small perturbation approximation. In this chapter we show that

the framework of transport barriers identified by LCS can explain the exponential separation

of particles in a simple flow. We further show that such a framework can be used to segregate

particles by size in a sample flow.

5.2 Review of the governing equations of motion of a

spherical particle

The history of the equations of motion of a spherical inertial particle is rich and goes back

to the works of Stokes, Basset, Boussinesq and Oseen. We start with a more recent result on

the equation of motion of a spherical particle by Maxey and Riley, [45]. The full details of

the derivation of the equation can be found in [45]. Here we only present a brief review of the

equation to set the context for the simplified equation of motion used in [9], [32], [31] and
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our work [71].The governing equation of motion of an spherical particle in a fluid is given by

ρp
dv

dt
= ρf

Du

Dt
+ (ρp − ρf )g −

9νρf
2a2

(v − u− a2

6
∇2u) (5.1)

−ρf
(
dv

dt
− D

Dt
(u− a2

6
∇2u)

)
−9ρf

2a

√
ν

π

∫ t

0

1√
t2 − τ 2

d

dτ
(v − u− a2

6
∇2u)dτ

where v is the velocity of the solid spherical particle, u the velocity field of the fluid, ρp

the density of the particle, ρf , the density of the fluid, ν the kinematic of the viscosity of

the fluid, a, the radius of the particle and g the acceleration due to gravity. The term on

the right hand side are the force exerted by the undisturbed flow on the particle, the force

of buoyancy, the Stokes drag, the added mass correction and the Basset-Boussinesq history

force respectively. It is assumed that the disturbance flow due to the motion of the spherical

particles is of a sufficiently low Reynolds number so that the resulting force on the sphere

can be treated as due to an unsteady Stokes flow. Eq (5.1) is valid under the following

restrictions.

a(v − u)/L << 1 (5.2)

a/L << 1(
a2

ν

)(
U

L

)
<< 1

where L and U/L are the length scale and velocity gradient scale for the undisturbed fluid

flow. We are interested in the case where the particles are of an intermediate size, that is

they are small enough that a2 can be neglected but large enough that a cannot be neglected.

Next we assume that the relative acceleration of the particles is not very large so as to ignore

the Basset-Boussinesq terms [9]. Lastly we assume that the spherical particles are neutrally

buoyant, i.e ρp = ρf . For further simplicity we assume that the fluid flow is inviscid and two
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dimensional. The resulting simplified equation is

dv

dt
=
Du

Dt
− St−1(v − u)− 1

2
(
dv

dt
− Du

Dt
) (5.3)

where St = 2a2U
9νL

, is the particle Stokes number. The derivative

Du

Dt
=
∂u

∂t
+ (u · ∇)u (5.4)

is the acceleration of a fluid particle along the fluid trajectory whereas the derivative

dv

dt
=
∂v

∂t
+ (v · ∇)v (5.5)

is the acceleration of a solid particle along the solid particle trajectory. Strictly speaking

these are not equal. We can relate them by

Du

Dt
=
du

dt
+ (u · ∇)u− (v · ∇)u (5.6)

Substituting (5.4) and (5.5) into (5.3), and setting w = (v − u), the relative velocity of the

particle with respect to the surrounding fluid, the evolution of w becomes

dw

dt
= −(J + µI) ·w (5.7)

and the change in the particle position is given by

dr

dt
= w + u (5.8)

where J is the gradient of the undisturbed velocity field of the fluid, u, and µ = 2
3
St−1 is a

constant for a particle with a given Stokes number St.
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Equations (5.7) and (5.8) can be rewritten as the vector field

dξ

dt
= F(ξ) (5.9)

with ξ = (r,w) = (x, y, wx, wy) ∈ R4. Eq (5.9) defines a dissipative system with constant di-

vergence −4
3
µ. The subspace w = 0 is a global attractor for the system for time independent

flows. For general time dependent flows, it has been shown by Haller [32] that an exponen-

tially attracting slow manifold exists for general unsteady inertial particle motion as long as

the particle Stokes number is small enough. Despite the existence of a global attractor and

in the case of time dependent flows, the existence of a globally attracting slow manifold, the

convergence to this attractor is not exponential. There exist subsets of the domain, where

a component of the relative velocity can grow. This can be seen by diagonalizing equation

(5.7).

dwd

dt
=

 −λ− µ 0

0 λ− µ

 ·wd

±λ are the eigenvalues of the Jacobian J of the fluid velocity field. The two eigenvalues add

up to zero because a two dimensional inviscid fluid flow is conservative. If µ is less than λ

then one component of the relative velocity grows exponentially. Even for particles of the

same size (same µ) small initial differences in the relative velocity can grow exponentially if

the particles visit subsets of the fluid domain where the stretching of fluid elements is high.

This suggests that there exist distinguished codimension one hyperbolic sets that produce

exponential separation of particles. To make the subsequent discussion more concrete we

first consider a simple two dimensional flow in the next section.
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5.3 Two dimensional cellular flow

We use a two dimensional incompressible cellular flow as an example to show the idea of

partial LCS and transport barriers that can segregate inertial particles. Such cell flows have

been studied extensively in ocean flows (the double gyre flow), and have possible applications

to flows in air ducts and micro fluidic devices [69] and [70].The flow is defined by the stream

function

ψ(x, y, t) = A cosx cos y (5.10)

The velocity field is given by,

u = −A cosx sin y (5.11)

v = A sinx cos y (5.12)

The streamlines of the flow form a periodic array of cells within which they are concentric

circles. The fixed points of the flow are (nπ,mπ), (±π/2,±π/2) where n and m are integers.

The fixed points (nπ,mπ) are centers while the fixed points (±π/2,±π/2) are saddles. The

heteroclinic trajectories connecting two saddle type fixed points are the fluid LCS. Stretching

is higher than vorticity in a subset close to the heteroclinic trajectory will experience high

stretching, the size of the subset depending on the value of A. For A = 100 this subset

is shown in blue in figure 5.2. In this subset one component of the relative velocity of the

particles can grow exponentially, a feature that can be exploited to produce trajectories

sensitive to initial conditions.

5.4 Sensitivity of particle dynamics to initial relative

velocity using partial LCS

The phase space for the dynamics of an inertial particle is R4. The flow map φ : R4×R 7→ R4

is defined by φ(x(t0), y(t0), wx(t0), wy(t0), t) = (x(t), y(t), wx(t), wy(t)). The gradient of the
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flow map is a 4× 4 matrix given by

Φ =



dx(t)
dx(t0)

dx(t)
dy(t0)

dx(t)
dwx(t0)

dx(t)
dwy(t0)

dy(t)
dx(t0)

dy(t)
dy(t0)

dy(t)
dwx(t0)

dy(t)
dwy(t0)

dwx(t)
dx(t0)

dwx(t)
dy(t0)

dwx(t)
dwx(t0)

dwx(t)
dwy(t0)

dwy(t)

dx(t0)

dwy(t)

dy(t0)

dwy(t)

dwx(t0)

dwy(t)

dwy(t0)

 (5.13)

or in a concise form as

Φ =

 φr,r φr,w

φw,r φw,w

 (5.14)

However, because the system is dissipative and the global attractor is the x − y subspace,

initial perturbations evolve in such a way that the perturbations in the w subspace converge

to zero. Therefore φw,w converges to zero. If the initial perturbation in the w subspace is

zero, then the relative velocity is always zero for a time independent flow. Therefore φw,r is

zero. φr,r is the gradient of the fluid flow itself. The fluid flow itself has a LCS, which we

term as LCSf , which are the heteroclinic trajectories of the cell flow. So the sensitivity of the

inertial particle trajectories is primarily due to the initial perturbations in the w subspace.

The LCS for the the four dimensional flow is a 3D manifold. However since the 2× 2 matrix

φr,w is enough to study the sensitivity of the inertial particle trajectories, we can restrict our

attention to the LCS in the 2D subspace w. Initial perturbations are of the form

δξ(t0) = [0, 0,∆wx,∆wy]
∗ (5.15)

where ∆wx,∆wy are the perturbations in the relative velocity subspace. The evolution

of the perturbation is given by

δξ(t) = U−1(t0, t)e
(t−t0)
√

Σ2(t0,t)U(t0, t)δξ(t0) (5.16)
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where U(t0, t) is obtained from the singular value decomposition of Φ

Φ = U(t0, tf )Λ
1/2(t0, t)V(t0, t) (5.17)

where Λ(t0, t) is the diagonal matrix of the eigenvalues of Φ∗Φ. The growth of perturbation

in the xy plane is given by the first two components of δξ(t). One can choose a finite time,

T = (t− t0), such that the evolution of the initial perturbation comes arbitrarily close to the

xy plane, i.e., the last two components of δξ(t) approach zero. In this way the sensitivity of

the final spatial location of the particles to initial relative velocity can be computed.

From the point of view of computations this means that one can work with only a 2×2

matrix φr,w which is evaluated numerically using finite differences as

φr,W =

 xi,j,k+1,l(t0+T )−xi,j,k−1,l(t0+T )

∆Wx(t0)

xi,j,k,l+1(t0+T )−xi,j,k,l−1(t0+T )

∆Wy(t0)

yi,j,k+1,l(t0+T )−yi,j,k−1,l(t0+T )

∆Wx(t0)

yi,j,k,l+1(t0+T )−yi,j,k,l−1(t0+T )

∆Wy(t0)

 (5.18)

A heuristic reason is provided to justify that ridges in φ(r,w) are partial LCS, LCSp =

w∩LCS. Since the eigenvalues of ΦΦ∗ and Φ∗Φ are the same, we will use the right Cauchy

Green tensor ΦΦ∗ writing which explicitly gives

ΦΦ∗ =

 φr,rφ
∗
r,r + φr,wφ

∗
r,w φr,rφ

∗
w,r + φr,wφ

∗
w,w

φw,rφ
∗
r,r + φw,wφ

∗
r,w φw,rφ

∗
w,r + φw,wφ

∗
w,w

 (5.19)

But φw,w, φw,r converge (non uniformly) to zero since w = 0 is the global attractor.

ΦΦ∗ ≈

 φr,rφ
∗
r,r + φr,wφ

∗
r,w 0

0 0

 (5.20)

The sub matrix φr,r is zero for every r = (x, y), except in a small neighborhood of the

LCSf , which in our case are the heteroclinic trajectories of the cell flow. Hence φr,wφ
∗
r,w

gives the partial LCS, LCSp for r sufficiently far away from the heteroclinic trajectories.
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Further by the smoothness of the solutions of the system (5.9) for the cell flow, varying the

initial position r of the inertial particles smoothly gives the full LCS. Mathematically

LCS =
(⋃

r∈B1

LCSp

)
∪
(⋃

r∈B2

LCS
)

(5.21)

where B1 is the open subset in the fluid flow that excludes the LCSf and B2 is the interior

of the complement of L1. Then the partial particle FTLE for a finite time T = t− t0 on B1is

σ(x, y,Wx,Wy) =
1

|T |
ln
√
λmax(φ∗r,wφr,w) (5.22)

5.5 Partial LCS for inertial particles in the two dimen-

sional cellular flow

We applied the computational procedure of the previous sections to the calculation of partial

FTLE field specifically the partial FTLE from φr,w, to first the simple case of points starting

on the heteroclinic trajectory. In this case the ridges in the FTLE field should have a symme-

try about the heteroclinic trajectory. We took a grid of initial conditions in a subset of the

relative velocity subspace, (wx, wy) ∈ [−100, 100] × [−100, 100] with a uniform grid size of

0.5 non dimensional units. The initial starting position is along the heteroclinic trajectory as

shows in figure 5.1(a). The Stokes number of the particles is St = 0.1. We used the ODE45

function in Matlab to integrate equations (5.7) and (5.8).

The FTLE field for these corresponding starting positions is shown in figure 5.1(b -

l). The ridges in the partial FTLE field shown in this figure are not a slice of the LCS.

This is because the partial FTLE field is computed on the heteroclinic trajectory, the fluid

LCS, where the final position of the particles are sensitive to variation of initial position.

Nevertheless the small variations in initial velocity effectively play this role by perturbing the

particle trajectories from heteroclinic trajectory. The smooth variation of the partial FTLE
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(a)initial positions of particles (b)(x = 0, y = π/2) (b)(x = 0.1π/2, y = π/2)

(d)(x = 0.2π/2, y = π/2) (e)(x = 0.3π/2, y = π/2) (f)(x = 0.4π/2, y = π/2)

(g)(x = 0.5π/2, y = π/2) (h)(x = 0.6π/2, y = π/2) (i)(x = 0.7π/2, y = π/2)

(j)(x = 0.8π/2, y = π/2) (k)(x = 0.9π/2, y = π/2) (l)(x = π/2, y = π/2)

Figure 5.1: Partial FTLE field for integration time, T = 0.48 plotted at varying positions in the fluid
domain. For (b)-(l) wx is on the horizontal axis and wy on the vertical axis.
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field with variation in initial position along the heteroclinic trajectory shows that the partial

FTLE field can be used to identify transport barriers which do not change in non smooth

way with variation of initial position.

We are interested in identifying transport barriers sufficiently far away from the hetero-

clinic trajectory as otherwise the sensitivity would be entirely due to transport barriers in the

fluid domain itself. To this end we choose an initial starting point of (x, y) = (3π/8, 3π/8)

and St = 0.1. This point is chosen because it lies in the middle of a region of the fluid

domain where the fluid flow is such that the relative velocity of the particles can grow in one

direction according to equation (5.10). This region is shown in blue in figure 5.2. A sample

Figure 5.2: Region of instability (in blue) where perturbations in initial relative velocity can grow.

trajectory of an inertial particle of St = 0.1 is also shown whose initial relative velocity was

(wx, wy) = (−10,−10). The particle’s trajectory cut’s across streamlines as one of the com-

ponents of it’s initial relative velocity first grows. Eventually the relative velocity converges

to zero.
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Once again we chose St = 0.2 and a grid of initial conditions in the relative velocity

subspace, (wx, wy) ∈ [−100, 100]×[−100, 100] with a uniform grid size of 0.5 non dimensional

units and integration time of 0.048. The partial FTLE field is shown in figure 5.3.

Figure 5.3: Partial FTLE field for integration time, T = 0.48 for St = 0.2.

The ridges in the partial FTLE field partition the velocity subspace into sets whose

final positions in the fluid domain are significantly different. Figure 5.4 shows only the ridges

in the partial FTLE field and how this partitioning works to separate particles that start at

(x, y) = (3π/8, 3π/8). Three sample sets in the relative velocity subspace for this purpose.
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(a)Ridges of partial FTLE partition the relative velocity subspace

(b)Final position of particles after T = 0.048.

Figure 5.4: Three sample sets are chosen in partitioned relative velocity subspace. The initial position of
all the particles is at (x, y) = (3π/8, 3π/8), shown by a X in (b). The initial relative velocity of the particles
belong to the sets of their respective colors in (a).
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5.6 A partial FTLE framework for segregation of iner-

tial particles by size

In the previous section we showed how the partial LCS partitions the velocity subspace into

sets of distinct fates in the fluid domain, by acting as transport barriers. We seek to exploit

this transport barrier property to segregate particles by Stokes number. First we observe that

the partial FTLE field depends on the Stokes number via equation (5.7). Thus we can expect

that the FTLE field will be different for particles of different Stokes numbers or diameters.

For example the partial FTLE field for particles of St = 0.1 starting at (x, y) = (3π/8, 3π/8)

is shown in figure 5.5.

Figure 5.5: Partial FTLE field for integration time, T = 0.48 for St = 0.1.

By comparing this with the partial FTLE field for St = 02., we observe that there are

subsets in relative velocity subspace which are sandwiched between the ridges of the two

different sized particles as shown in figure 5.6.

In particular we choose a set shown in grey subset, Sg, of the velocity subspace because

it extends from close to zero relative velocity to a large magnitude of relative velocity.

From the phase space partitioning property of the ridges in partial FTLE field, that was
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Figure 5.6: Ridges in partial FTLE field for integration time, T = 0.48 and initial (x, y) = (3π/8, 3π/8).
Blue ridges are for St = 0.1 and red ridges are for St = 0.2.

shown in section 5.5, particles with St = 0.1 and St = 0.2 whose initial relative velocities

(wx, wy) ∈ Sg lie in partitions of w whose final positions in the fluid are significantly different.

We can expect that particles with St = 0.1 and St = 0.2 that start with relative velocity in

Sg at the initial location (x, y) = (3π/8, 3π/8), will be segregated after time T = 0.048. This

segregation is shown in figure 5.7.

The initial relative velocity is just enough to kick the red particles into the adjacent cell,

while it is not so for the blue particles. This is clearly seen in figure 5.7(b) - (c). Moreover

once segregated in 5.7 (c) at T = 0.012 they remain segregated till T = 0.048 and beyond

because relative velocity of most of the particles converges to zero by this time.
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(a)T = 0.001 (b)T = 0.006 (b)T = 0.012

(d)T = 0.017 (e)T = 0.022 (f)T = 0.027

(g)T = 0.032 (h)T = 0.037 (i)T = 0.042

(k)T = 0.048

Figure 5.7: Segregation of particles by Stokes number - red particles have St = 0.2 and blue particles have
St = 0.1.
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5.7 Contribution to literature

The dynamics of inertial particles in a fluid flow can exhibit sensitivity to initial relative

velocity. We demonstrated that ridges in the relative velocity sensitivity field at each spatial

point effectively partition phase space into sets of different particle fates, i.e., inertial particles

initially located on either side of a ridge will evolve to different spatial locations after a

short time. The phase space location of these ridges depends on the Stokes number, and by

implication the size of the inertial particles of interest. This dependence can be exploited

to make particles of different sizes cluster in different regions of the fluid and thus separate

and segregate them.We used this method to achieve segregation using a simple test model

of two-dimensional flow: cellular flow. By injecting a mixture of inertial particles of different

sizes into the fluid at a common relative velocity range that is sandwiched between the ridges

of different Stokes number, the particles are segregated by size in a short time.

Though we have based our results on only cellular flow, the methodology presented

only requires that the underlying flow has a (coarse) spatial partition, i.e., separatrices in

the fluid flow partition the fluid domain into distinct non mixing sets. These requirements

ensure that segregated particles do not remix. The method does not rely on any other flow

characteristic or specific stream function. In future work, the approach employed here can

be adapted to segregate non-neutrally-buoyant particles, and to segregate particles by other

characteristics, e.g., density and shape, with a goal of designing flows that can fractionally

separate particles for a range of inertial parameters.

Another interesting point that emerges from this chapter is that we have directly com-

puted a partitioning of the phase space based solely on time averaged stretching in phase

space, without using the stable and unstable manifolds of fixed points. This avoids the

computationally expensive method of numerically generating accurate stable and unstable

manifolds starting from a fixed point. This method could be used in lieu of the method of

stable and unstable manifolds for nonlinear autonomous systems.



Chapter 6

Atmospheric transport barriers in the

lower atmosphere - introduction and

motivation

Many aerosols (e.g, spores, seeds, dust particles as well as chemical pollutants generated by

human activity) can be transported across very large distances sometimes on a continental

scale in the troposphere. The atmosphere serves as a medium of transport as well as a

reservoir for many of these particles. Several studies show the existence of such long range

transport of dust, trace chemicals and biota in the atmosphere [19] [47], [4], [52], [67], [54]

and [36]. Isard and Gage [36] is an excellent resource that documents many instances of the

long range transport of various plant pathogen and insects. In our work we are interested

in the punctuated changes in the concentration of the spores of a genus of fungi, Fusarium.

By punctuated changes we mean a sudden (temporal) change in the concentration at a

particular location. This is explained with an example later in section 6.2. Our motivation

to study this problem is to apply the concept of dynamical (moving) transport barriers that

can partition the atmosphere into sets of different composition. Such transport barriers have

earlier been used to study the dispersal of pollutants in Monterey Bay [12] and the splitting

55
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of the ozone hole over Antarctica [40]. In this thesis we seek to apply the dynamical concepts

outlined in earlier chapters to identify transport in the lower atmosphere and correlate them

with experimental measurements of Fusarium collected with autonomous unmanned aerial

vehicles (UAVs) performed by David Schmale’s group at Virginia Tech’s Kentland farm

(37◦11′,−80◦35′), [61] and [74].

In this chapter we provide a brief review of the process of atmospheric transport of

spores, present our hypotheses on the role of atmospheric transport barriers (ATBs) in

punctuated changes in concentration of spores in the lower atmosphere and provide a statis-

tical framework to test the hypotheses concerning the puntuated changes of Fusarium in the

atmosphere. For long range transport the large scale flow structure of the atmosphere plays a

critical role as compared to short time gusts and small scale turbulence. Chapter 7 provides

a review of this large scale flow and will serve as the theoretical background for the use of

isobaric trajectories in our study. In chapter 8 we present our computational methodology

for computing the trajectories of particles, the FTLE field and extracting the ridges in the

FTLE field to identify LCS and the results of said computations. We also present the results

of the statistical testing of the hypotheses on the role of ATBs in punctuated changes of

spore concentrations.

6.1 Atmospheric transport of spores

The transport of plant spores can be categorized into three stages [36] - (1) emission and

ascent into the planetary boundary layer (PBL), (2) long range transport in the PBL and

(3) deposition of spores into a new habitat. Figure 6.1 illustrates these three stages schemati-

cally. In the first stage, that of emission and ascent, spores (or any passively moving particles)

have to cross a thin boundary layer that can extend in height up to 50 m, called the sur-

face boundary layer (SBL). The SBL is the lowest ‘layer’ of the atmosphere and being in

contact with the ground, it has very strong vertical gradients in wind speed, temperature
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Figure 6.1: Long range transport of plant pathogen spore.

and humidity. The flow in this layer is highly turbulent because of the surface effects [82]

and [33]. The motion of spores in this layer can seem random and indeed the Fokker-Planck

equation is one way to describe their motion in this layer [10]. Above the SBL is the PBL, a

well-mixed layer in which the turbulence due to the surface forcing decreases. The height of

the PBL extends from 50m to 3 km above the ground. There is a large day-night variation

in the height of the PBL, with the top of the PBL dropping to as little as 300 m during

night. Some authors classify the SBL to be the lowest part of the PBL [33]. Above the PBL

is the free atmosphere, where the flow of air is along constant pressure surfaces. Once spores

manage to cross the SBL and enter the PBL they can be transported over long distances.

The first and third stages have received considerable attention in terms of developing

computational models, for example in the works of Aylor [8], [5], [10] and Schmale [60] and

[63] and other co-workers. The second stage, that of long range transport has usually been

studied using a few sample trajectories [6], [15] and [27]. However, studying individual trajec-

tories cannot explain punctuated changes in the composition of the atmosphere. Moreover,
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such studies rely on arbitrarily long computations in time, which can lead to many uncer-

tainties in trajectory computations. We propose a geometric framework of transport barriers

in this chapter, a framework that utilizes short time computations of trajectories and the

resulting FTLE field and verify this with experimental measurements of the fungi in the

genus Fusarium in the atmosphere.

6.1.1 Atmospheric transport of Fusarium

Microbes belonging to the genus Fusarium were selected by the Schmale group for studying

the role of ATBs in the long range atmospheric transport. Fusarium was chosen as a good

test candidate because -

• The genus Fusarium is common in the atmosphere, [44].

• Many members of the genus cause important diseases in plants and animals.

• Reliable methods for collecting Fusarium have been developed.

• Data collected by the Schmale group using unmanned air vehicles (UAVs) has shown

that the lower atmosphere is teeming with Fusarium [44].

Autonomous unmanned air vehicles (UAVs) were used by the Schmale group to collect

colonies of Fusarium from the lower atmosphere (height 100 m above ground) at Kentland

farm, from 2006 to March 2010. More than 100 flights were conducted. The UAVs carried

collection plates containing a Fusarium selective medium on the wings. The collection plates

were incubated in the laboratory and the colonies allowed to develop. Figure 6.2 shows one

of the UAVs and collection plates after the colonies (i.e. viable spores that grew on the

plates) developed. The number of colonies in the collection plates were counted and used to

compute the concentration of spores in the atmosphere. All the experimental work of piloting

the UAVs, collection, culturing of spores and identification of individual strains was done by

Schmale’s group.
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(a)

(b)

Figure 6.2: (a) UAV and (b) petri plates showing white colonies of Fusarium cultured from an individual
sampling mission. Figures from [57].

6.1.2 Calculation of spore concentration

The spore count obtained experimentally has to be converted to a form that is independent

of total flight time and flight speed. One way to do is this to obtain a spore count per

unit time per unit volume sampled, which is enough for identifying punctuated changes. An

alternative way is to estimate the concentration (number/volume) of the spores, which is

a useful quantity in aerobiology. We use the method given in [7] and [59] to estimate the

concentration of spores from the number of spores and other parameters of the flight. The

UAVs used for collection of Fusarium were flown in a circular flight path at a nearly constant

speed. Due to the circular path the relative velocity of the air with respect to the UAV is

approximately the same as the speed of the UAV. This is because the upwind and downwind
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contributions of the wind speed cancel each other. Let the number of spores sampled in a

flight be denoted by Np, the average air speed by U , the flight time by Tf , the radius of the

petri plates on the volume of air sampled be denoted by r and the volume of air sampled by

the UAV by V = UTfπr
2, the concentration of spores by C. To obtain the concentration C

from Np and V we use the formulas given in [7] and [59] -

C =
Np

EppV
(6.1)

Epp =
0.99

1 + 0.268S−1.527
(6.2)

where Epp is the efficiency of collection of spores of the petri plates and S the Stokes number

of the spores. The Stokes number of the spores is calculated using the formula S = UτR/2r

and τR = vs/g where U is the airflow speed in the free upstream approaching the sampler,

τR the particle relaxation time, vs the settling speed of the spores in still air and g the

acceleration due to gravity. We used a value of vs = 1.3 mm/s which is the average value of

the experimentally determined range of settling speeds of a particular variety of Fusarium

spores [59] that are representative of those sampled. The final concentration is converted

to number of spores per 1000 m3 of air. The concentration of the spores collected from

100 flights is shown in figure 6.3. A punctuated change in the concentration of atmospheric

Fusarium (in general any tracer) is a high magnitude in the temporal gradient of the tracer

at a particular location, i.e. a rapid change in the concentration of the tracer. The mean

value of the spore concentrations shown in figure 6.3 is 1915 /1000 m3 and the standard

deviation is 4776.0 /1000 m3. We arbitrarily define a high concentration to be 3350 spores

per 1000 m3, which is approximately the mean plus half a standard deviation. We define a

punctuated change to be a change in the concentration by at least 30%. We exclude changes

in concentration which are within the low concentration regime. This is because the genus

Fusarium is relatively abundant in the atmosphere [44] and small fluctuations within the

low concentration regime are possible due to small scale inhomogeneities in the atmosphere.
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Figure 6.3: Concentration of spores (number/1000 m3 ) is on the y-axis for samples from a 100 flights
conducted between 2007 and 2010.

6.2 Hypotheses on the role of dynamical transport bar-

riers in punctuated changes

An example of a punctuated change in the concentration of atmospheric Fusarium sampled

at Kentland Farm is shown in figure 6.4. The figure shows two punctuated changes, one a

rapid increase in the concentration of Fusarium from 30 April 2007 to the morning of 1 May

2007 and the second a rapid decline from the morning to late afternoon of 1 May 2007.

The punctuated changes in the concentration of Fusarium imply that we are sampling

masses of air that have significantly different composition that have not mixed. We seek to

explain this in terms of transport barriers.
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Figure 6.4: An example of a punctuated change in the concentration of atmospheric Fusarium. The y-axis
shows the concentration of viable Fusarium spores in spores/m3 and the x-axis shows the date and time in
UTC. One of the samples shown in red color contained the NIV strain.

6.2.1 Punctuated changes are caused by the movement of atmo-

spheric transport barriers

To examine the role of transport barriers we are interested in punctuated changes of the

concentration Fusarium in the air, which are shown in figure 6.4. This sample is of particular

interest. An analysis of the specific strains of Fusarium, observed in the two samples collected

on 1 May at 14:00 and 15:00 UTC, showed the presence of a mycotoxin genotype called

NIV [62]. This is a genotype that was not detected in the wheat fields of Virginia. About

a thousand samples were collected from six states; Virginia, North Carolina, New York,

Kentucky, Pensylvania and Maryland [58]. Of these the NIV strain was present in only some

of samples from New York and North Carolina. The wheat farms at which the NIV strain

was observed are hundreds of kilometers away from Blacksburg. Therefore the sample set

from 29 April 2007 to 2 May 2007 presents us with a very good case of punctuated change

in the atmospheric concentration of Fusarium that was not due to emission of spores from

local farms.
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We hypothesize that moving atmospheric transport barriers are responsible for the

punctuated changes in the concentration of Fusarium in the air. The hypothesis is schemat-

ically illustrated in figure 6.5. In the figure 6.5, the red curves are atmospheric transport

Kentland Farm

Kentland Farm

Kentland Farm

(a) t1 (b) t2 (c) t3

Figure 6.5: Movement of repelling ATBs with time and the punctuated changes.

barriers (repelling LCS) and the yellow colored set of air contains Fusarium. The (locally)

repelling LCS repel the air mass around them. At time t1, when the first sample is collected,

no Fusarium is detected. This air is pushed away by a repelling LCS between times t1 and

t2 and the Fusarium containing mass of air is sampled at time t2. Another repelling barrier

pushes away the Fusarium laden air mass between t2 and t3. At t3 no Fusarium is detected

in the sampled air.

Another alternative hypothesis to explain punctuated changes shown in figure 6.6 is

Kentland Farm
Kentland Farm

Kentland Farm

(a) t1 (b) t2 (c) t3

Figure 6.6: Movement of attracting ATBs with time and the punctuated changes.
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using the attracting LCS. The (locally) attracting LCS acts as an atmospheric highway

to which tracers stick for a long time (many days). Blobs of air get stretched along the

attracting LCS quickly. Whenever the air in the attracting LCS is sampled, it has a distinct

composition compared to the air on points that are on either side of it and sufficiently far

from it. Thus the alternative hypothesis is that a punctuated change is caused by the passage

of an attracting LCS over the sampling point.

We combine the role of the repelling and attracting LCS in one hypothesis on the

punctuated changes -

Hypothesis 6.2.1. H1 Punctuated changes in the atmospheric concentration of Fusarium

is caused by the movement of an atmospheric transport barrier (attracting or repelling LCS)

over the sampling point, between the two sampling times.

The hypothesis H1 only says that punctuated changes imply the passage of an LCS

and not the converse. The null hypothesis is -

Hypothesis 6.2.2. H0 Punctuated changes in the atmospheric concentration of Fusarium

are NOT caused by the movement of an atmospheric transport barrier (attracting or repelling

LCS) over the sampling point between the sampling time intervals.

6.2.2 Hypothesis testing

To test the hypothesis of the previous section, we need a statistical framework of hypothesis

testing. The data available is a time series of the concentration of spores against which we

compute the atmospheric LCS. The representative velocity of air on the 900 mb isobaric

surface is 10 m/s. The distance traveled by a parcel of air in an hour is 36 km. If the

temporal spacing between the samples is very large, say a week, then a significant change in

spore concentration can occur because the sampled air masses will be too far away from each

other and can have very different compositions, even without the existence of any repelling

transport barrier. This requires that to measure punctuated changes, we need to define a
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maximum time interval over which we measure the changes in the spore concentration. We

set this to be 24 hours to capture any day-night effects and because it is on the order of the

time scale of motion. So if a sample is not followed by another sample in a time less than 24

hours, we cannot use it to measure punctuated changes. Out of the samples collected from 100

flights we have samples from 74 flights which satisfy this criteria. A change in concentration

is considered a punctuated change if the absolute value of the change in concentration is more

than a preset value C > Cmin and the percentage change in the concentration |∆C/C| > rmin,

where rmin is the minimum ratio of the change in concentration to original concentration.

These criteria are necessary to rule out any small spatial and temporal fluctuations in the

spore concentration. Using the time series graph of the spore concentration in figure 6.3,

we have set rmin = 0.3, which rules out the small changes in concentration. The criteria

we used are heuristic and classify only a few concentration changes as punctuated changes.

These conservative criteria are also partly necessary because of the approximations in the

computation of trajectories of air parcels and the collection of aerial samples at virtually

just one location.

We can categorize the change in concentrations as (1) punctuated change or (2) NOT

a punctuated change. For each change in concentration, we can determine whether an at-

mospheric transport barrier has passed within the vicinity of the sampling point, Kentland

farm, or not. Therefore our variables are categorical. A categorical variable is one for which

the measurement scale consists of a set of categories [2]. In our case this set of categories

consists of two values, Yes and No. Contingency tables are a good way to describe bivariate

categorical data [2]. To explain the use of contingency tables and correlation we first define

our variables precisely. Our random variables are ∆CP , a punctuated change in concentra-

tion, and L, the passage of a transport barrier over Kentland farm. These variables can take

the categorical values Yes and No. The correlation between the two variables can be studied

by the 2×2 contingency table shown in table 6.1 The statistical correlation between the two
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Table 6.1: Contingency table

Punctuated change has occurred (∆Cp)
LCS passed over Kentland farm (L) Yes No

Yes n1 n2

No n3 n4

tables can be measured by the φ coefficient defined by

φ =
n1n4 − n2n3√

(n1 + n2)(n3 + n4)(n2 + n4)(n1 + n3)
(6.3)

if the denominator is not zero, with n’s as in table 6.1. If any of the sums in the denominator of

equation (6.3) is zero, then φ is defined to be 0, i.e., the variables are statistically independent.

We use the phi-coefficient as a test of our hypothesis. If φ = 1 then the two variables,

the passage of LCS and punctuated changes in the concentration of atmospheric Fusarium

are perfectly correlated. However our hypothesis H1 does not imply a two way correlation

between the passage of LCS and punctuated changes in the concentration of Fusarium. Hence

we do not expect the value of φ to be close to 1.

Besides the degree of correlation, one can glean further understanding of the two vari-

ables by two other ratios called sensitivity and specificity. If one were to use the movement of

atmospheric transport barriers as a diagnostic tool to predict the occurrence of punctuated

changes in atmospheric Fusarium, then in table 6.1, the number of true positives is n1, the

number of false positives is n2, the number of false negatives is n3 and the number of true

negatives is n4. The specificity s1 is defined as

s1 =
n4

n4 + n2

(6.4)

A specificity of 1 means that the LCS diagnostic test does not produce any false positives,



67

i.e., the test is very specific. The sensitivity s2 of a test is defined as

s2 =
n1

n1 + n3

(6.5)

A sensitivity of 1 means that the LCS diagnostic test identifies all punctuated changes in the

concentration of atmospheric Fusarium. The results of the hypothesis testing are provided

in chapter 8.



Chapter 7

Review of results from geophysical

fluid dynamics

Geophysical fluid dynamics is the study of large scale naturally occurring fluid flows on Earth.

The key aspect of this is scales of motion; only large scale motion is studied. This excludes

various problems and phenomena such as river flow, small scale turbulence in the atmosphere

and the upper ocean and cloud formation. The distinguishing features of geophysical fluid

dynamics are rotation of the planet and stratification due to density differences. The influence

of rotation and stratification leads to many peculiar phenomena but also allows various

simplifications of the equations of motion.

In rapidly rotating homogenous fluids, the Coriolis force imparts vertical rigidity to

the fluid. Particles in a vertical column evolve such that the vertical alignment persists over

long period of time. The most famous example of this phenomena are the so called Taylor

curtains; a dye released in a rotating fluid forms vertically coherent sheets or curtains. In the

atmosphere such perfect vertical coherence is not observed because the rotation of the earth

is not fast enough and the density of the fluid is not perfectly homogeneous. Nevertheless

it is well established that vertical coherence persists for short time scales [33], [82] and [13].

Stratification arises because of density differences in the oceans and the atmosphere due

68
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to for example warm and cold masses of air and fresh and saline waters. The gravitational

force tends to vertically stack the fluid in horizontal layers of decreasing density. This vertical

stacking is stable to small perturbations [43], however large perturbations that are persistent

over long periods of time can cause mixing and convection. The appropriate choice of scales of

motion, shows that the evolution of trajectories in the atmosphere is along isobaric surfaces

along with vertical rigidity of columns of air. This is also supported by meteorological data

and by some computations. The choice of scales of motion is heuristic and more of an art than

a science. In what follows we reproduce a standard simplified derivation of the primitive and

homogenous geostrophic equations of atmospheric flow. Much of this follows the textbooks

by Cushman-Roisin and Beckers [13], Zdunkowski and Bott [82] and Majda [43]. We omit

many of the rigorous proofs for the simplifications which can be found in [43].

7.1 Governing equations of motion

The governing equations of motion are mass conservation and momentum conservation. Aug-

mented with the Coriolis force these equations lead to the Boussinesq approximation and

with further simplification using scaling arguments lead to the primitive and geostrophic

equations. The equations are derived in cartesian coordinates. The loss of accuracy due to

the lack of curvature terms is negligible for length scales of a few hundred kilometers. Al-

ternatively and more commonly these equations can be thought of as describing phenomena

in a cartesian projection such as the Lambert conformal projection. Let x, y and z be the

regular cartesian coordinates and u, v, and w be the velocities in the respective directions

at a particular tangent point on the sphere. Gravity acts in the downward z direction. The

angular velocity of the earth about the North-South axis is Ω, the latitude is denoted by ϕ

and longitude by λ. A schematic representation of the coordinates is shown in figure
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Figure 7.1: Coordinate system for the governing equations.

Mass balance gives the standard continuity equation.

dρ

dt
=
∂ρ

∂x
+∇ · (ρv) = 0 (7.1)

where the vector v is the velocity. In local coordinates the equation is

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (7.2)

where ρ is the density of the fluid. Employing the usual notation of τij for the components of

the stress tensor, p for pressure and g for acceleration due to gravity, momentum conservation
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augmented by the Coriolis forces leads to a modified version of the Navier Stokes equation.

ρ
du

dt
+ (f∗w − fu) = −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

(7.3)

ρ
dv

dt
+ fu = −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

(7.4)

ρ
dw

dt
− (f∗u) = −∂p

∂z
− ρg +

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

(7.5)

where f = 2Ω sinϕ and f∗ = 2Ω cosϕ are the Coriolis and reciprocal Coriolis parameters

respectively. Further simplification of the above equations is possible through the so called

Boussinesq approximation. In the atmosphere the density of air varies from a maximum at

ground height to nearly zero at very high altitudes. However most of this variation is due to

hydrostatic pressure. Further within the troposphere where most of the weather phenomena

and long range transport occur, the fluctuations in density are less than 5% [82]. Hence one

can assume the density of the fluid can be expressed as a sum of a mean density, ρ0 and a

variation ρv.

ρ = ρ0(x, y, z) + ρv(x, y, z, t) (7.6)

with |ρv| << ρ0. The density ρ0(x, y, z) is the temporal mean density of the air at a given

point. The mean is for a time duration on the order of a day. Plugging this into the mass

balance equation (7.2) we get

ρ0

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ ρv

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+

(
∂ρv
∂t

+ u
∂ρv
∂x

+ v
∂ρv
∂y

+ w
∂ρv
∂z

)
= 0 (7.7)

The spatial variations of ρv are much smaller than the spatial variation of the velocity which

makes the third set of terms in (7.7) smaller in magnitude than those in the second set of

terms. The second set of terms are much smaller than the first because of the assumption

|ρv| << ρ0. Thus the first term is the dominant one and will be the only one retained. This
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converts the mass balance equation to volume conservation.

ρ0

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0 (7.8)

Air is a Newtonian fluid, i.e., the stress tensor and velocity gradient are linearly related.

Using the index notation where u1 = u, u2 = v, u3 = w, x1 = x, x2 = y and x3 = z,

τij = µ
∂ui
∂xj

(7.9)

In the x and y momentum equations of (7.3) neglecting ρv in comparison to ρ0, using

volume conservation and putting kinematic viscosity ν = µ
ρ0

one obtains simplified x and y

momentum equations.

du

dt
+ f∗w − fv = − 1

ρ0

∂p

∂x
+ νx

∂2u

∂x2
+ νx

∂2u

∂y2
+ νz

∂2u

∂z2
(7.10)

dv

dt
+ fu = − 1

ρ0

∂p

∂y
+ νx

∂2v

∂x2
+ νx

∂2v

∂y2
+ νz

∂2v

∂z2
(7.11)

Here the viscosity is not due to molecular motion, which on the geophysical scales is a very

small number. The viscosity νx is the eddy viscosity in the horizontal direction and νz is the

vertical eddy viscosity. These terms are due to the sub grid scale turbulence whose primary

effect is dissipation. The difference in the horizontal and vertical eddy viscosities is due to the

difference in length and velocity scales of the horizontal and vertical motion. The values of

the eddy viscosity, νz are typically around 0.02 m2/s while the values of νx are around 1 m2/s.

The horizontal viscosity νx in particular is susceptible to the grid size of the meteorological

models and can vary significantly from one data set to another.

In the z- momentum equation ρv can be neglected on the left hand side of the equation,

but not on the right hand side of the equation. On the right hand side after plugging ρ =

ρ0 + ρvthe term ρ0g gives rise to hydrostatic pressure. Pressure p can be decomposed into a
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hydrostatic component p0 and a component pv that varies around p0.

p = p0(x, y, z) + pv(x, y, z, t) (7.12)

p0 = P0 − ρ0gz (7.13)

where P0 is the hydrostatic pressure at the ground height. Plugging dp0
dz

= −ρ0g into the z -

momentum equation gives

dw

dt
− f∗u = − 1

ρ0

∂pv
∂z
− gρv

ρ0

+ νx
∂2w

∂x2
+ νx

∂2w

∂y2
+ νz

∂2w

∂z2
(7.14)

Equations (7.10) and (7.14) are the so-called Boussinesq equations.

7.2 Scales of motion

The Boussinesq equations can be further simplified in the context of geophysical flows by

arguments of scales of motion. Table 7.1 lists the scales of motion in the atmosphere

Table 7.1: Scales of atmospheric flows

Variable Scale variable Scale value
x, y L 100 km
z H 1 km
t Tx, Tz 12 hours

u, v U , V 10 m/s
w W 0.1 m/s

The velocity and length scales are the same in both the horizontal directions. Atmo-

spheric flows have a much bigger horizontal domain compared to vertical domain and much
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larger horizontal velocities than vertical velocities. The scaling relations are stated as

1

Ω
. Txy ∼ Tz (7.15)

H

L
� 1 (7.16)

U

ΩL
. 1 (7.17)

P
ρ0L

ΩU
. 1 (7.18)

ΩU

g ρv
ρ0

� 1 (7.19)

νzU
H2

ΩU
. 1 (7.20)

Eq.(7.19) states that the pressure gradient is almost of the same scale as the Coriolis term.

For example, the typical value of lateral pressure gradient close to the ground in mid latitudes

is about 0.01 Pa/m, typical wind speeds are around 10 m/s and the mean density of air is

1.2 kg/m3, P
ρ0L

= 8.3× 10−3 m/s2 and ΩU = 7.28× 10−4 m/s2. The next two relations can

be verified by choosing some typical values of the variables, for example the eddy viscosity is

νe = 10−2 m2/s, ρv = 5× 10−2ρ and g = 9.81 m/s2 give ΩU
g ρv
ρ0

= 1.5× 10−3 and
νeU

H2

ΩU
= 0.0138.

7.3 Homogeneous Geostrophic equations

The scale relationships (7.15) - (7.20) will be used to simplify the Boussinesq equations. The

z-momentum equation (7.14) in terms of the scaling variables is

W

Tz
+ U

W

L
+ U

W

L
+W

W

H
− ΩU = − P

ρ0H
− gρv

ρ0

+ νx
W

L2
+ νx

W

L2
+ νz

W

H2
(7.21)

The dominant term on the left-hand-side LHS of (7.21) is ΩU . The first term W
Tz

can be

eliminated because W
Tz

. ΩW and W � U making W
Tz
� ΩU . Next U

L
. Ω and W � U

making U W
L
� ΩU . Thus the second and third terms on the LHS in (7.21) are negligible



75

when compared to ΩU . Finally W
H
∼ 1

Tz
∼ Ω. Thus W W

H
� ΩU . This eliminates all the

terms on the LHS of equation (7.21) except the Coriolis term. On the right-hand-side RHS

of equation (7.21) νx
W
L2 � νz

W
H2 , thus eliminating the third and the fourth terms. Using

equation (7.20) νz
W
H2 . ΩU and using ΩU � g∆ρ

ρ0
it follows that ΩU and νz

W
H2 can be

neglected in comparison with g∆ρ
ρ0

. This leaves us with hydrostatic approximation

− ∂pv
∂z
− ρvg = 0 (7.22)

This is the so called Primitive approximation in geophysical fluid dynamics. Next some non

dimensional numbers are reviewed that take advantage of the scaling relationships .

The temporal Rossby number, RoT = 1
ΩT

, is the ratio of the magnitude of acceleration to

the Coriolis force. Typically RoT . 1. The Rossby number Ro = U
ΩL

, is the ratio of advection

(velocity) to the Coriolis force. Typically Ro . 1. The Eckman number Ek = νe
ΩH2 is the

ratio of viscous forces to Coriolis force. Typically Ek � 1. For conditions where RoT � 1,

Ro � 1 and Ek � 1 and ρv � 1, following similar scaling arguments as for z-momentum

equation, the x and y momentum equations (7.10) and the primitive equation reduce to

fu = − 1

ρ0

∂p

∂y
(7.23)

−fv = − 1

ρ0

∂p

∂x
(7.24)

0 = −∂p
∂z

Differentiating the second equation with respect to z and assuming the continuity of partial

derivatives of p one gets

∂u

∂z
= 0 (7.25)

∂v

∂z
= 0 (7.26)

which is the so called Taylor-Proudman result. Essentially (7.25) and (7.26) say that the
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atmosphere has vertical rigidity, i.e., at a particular latitude and longitude the horizontal

velocity does not change significantly with altitude and each vertical column of air moves

coherently. The two equations (7.23) - (7.24) imply that pressure acts as a stream function

with the horizontal velocity being orthogonal to the lateral pressure gradient. Therefore

isobars become streamlines and the fluid trajectories are restricted to isobaric surfaces.

The Taylor-Proudman equations (7.25) and (7.26) have some important implications to

our problem of finding dynamical transport barriers in the atmosphere. The most important

result is that the motion of air parcels is restricted to two dimensional isobaric surfaces. This

greatly simplifies trajectory computations. Vertical rigidity means that transport barriers on

a two dimensional isobaric surface can be extended vertically upwards to different isobaric

surfaces. Further the transport barriers will be the same on closely spaced isobaric surfaces.

This allows us to use the concept of partial FTLE and reduce the problem of computing two-

dimensional transport barriers in the atmosphere to computing one dimensional transport

barriers on a two dimensional isobaric surface. From now on, we treat the atmospheric flow

as foliated by two-dimensional isobaric surfaces.

The derivation of (7.25) and (7.26) assumes Ro � 1 and RoT � 1 which is not

always true. These numbers can sometimes assume values close to 1 which give rise to non

zero vertical velocity. However meteorological data indicates that the vertical velocity is

negligible. For example typically w ≤ 0.05 m/s in the PBL while the horizontal velocity is

about 15 m/s. This suggests that we can ignore the vertical motion almost everywhere. More

importantly the vertical velocity of interest is the rate of change of pressure. This is because

an isobaric pressure surface too rises and falls in height and the deviation of the vertical

velocity from zero is usually due to this. The assumption of isobaric flow is also supported

by meteorological data where the typical vertical velocity between isobaric surfaces is less

than 0.03 Pa/s. In 24 hours an air packet can move about 26 KPa or 26 mb, roughly the

difference between two pressure levels in the data provided by NOAA and described in

chapter 8.
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7.4 Orographic flow

One point that needs clarification is that the derivation of the homogeneous geostrophic

equations (7.23) - (7.25) ignores the irregular topography of the planet and instead assumes

a perfectly spherical earth. The flow over topographic barriers, called orographic flow is

shown in figure 7.2. A packet of air, shown by a red circle, acquires a high vertical velocity.

Hill

P1

P2

z(t0)

z(t1)∆ h1

∆ h2

Figure 7.2: Orographic flow above a barrier.

The vertical height from the mean sea level increases from z(t0) to z(t). But the isobaric

surface P1 too climbs the hill and its height from the ground increases as well. So the parcel

of air still lies on the isobaric surface. The kinetic energy of an air packet determines whether

the packet of air rises or flows around the barrier. If the topography rises too rapidly and to

a great height, then the higher pressure surfaces that are close to the ground initially can

intersect the barriers, and the flow is no longer isobaric. To avoid this pitfall we choose an

isobaric surface that is always above the height of the mountains in Eastern United States,

coupled with the requirement that this surface be just above the PBL, i.e., roughly 100 m -

400 m above the ground. We have chosen the 900 mb pressure surface for our computations
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as it satisfies these criteria. Spores were collected by UAVs at a height of 100 m from the

ground at Kentland farm, which roughly corresponds to the 900 mb pressure surface.

7.5 Role of advection and diffusion in transport

The generic combined advection diffusion of a substance whose concentration is c(x, y, z, t)

is given by,
∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
= Dx

∂2c

∂x2
+Dy

∂2c

∂y2
+Dz

∂2c

∂z2
(7.27)

where Dx, Dy and Dz are the coefficients of diffusion in x, y and z directions respectively.

For the atmosphere Dx = Dy. Using the scaling relationships (7.3), advective transport in

the horizontal direction scales like U∆c
L

and diffusion scales like Dx∆c
L2 . The ratio of advective

to diffusive transport is given by the Peclet number, Pe.

Pex =
UL

Dx

(7.28)

For the atmosphere the dissipation is the strongest very close to the ground, but decreases

above the PBL. The horizontal diffusion coefficient Dx is the order of νx and can take

values between 1-10 m2/s. This gives Pe ≥ 105. In the vertical direction the ratio of vertical

advection to diffusion is given by

Pez =
WH

Dz

(7.29)

Dz is on the order of νz and typically has values of 0.01 m2/s above the PBL. This gives

a Peclet number of 100 in the vertical direction. For such large Peclet numbers, the role of

diffusion both horizontally and vertically can be completely ignored.



Chapter 8

Computational results of ATBs using

LCS

In this chapter we apply the method of FTLE and LCS to identify transport barriers. The

main result of this chapter is that punctuated changes in the concentration of AFAs are

governed by the movement of atmospheric transport barriers computed using the method of

LCS. Our results also show that these transport barriers cannot be easily identified by just an

Eulerian description such as the velocity field. Obviously there is no simple low dimensional

model to describe the flow of air in the lower atmosphere. So we used meteorological data from

National Oceanic and Atmospheric Administration (NOAA) to perform our computations.

We begin with a brief description of the data and coordinate system of the velocity field.

8.1 Meteorological data set

Due to the growing interest in meteorological data, numerical weather prediction and cli-

mate studies, the National Climatic Data Center (NCDC), along with the National Cen-

ters for Environmental Prediction (NCEP) and the Geophysical Fluid Dynamics Labora-

79



80

tory (GFDL), initiated the National Oceanic and Atmospheric Administration (NOAA)

Operational Model Archive and Distribution System (NOMADS) project. The NOMADS

project utilizes observational data from radar stations, weather balloons and data from

satellites as inputs for its meteorological models. The North America Mesoscale, NAM-

218 gridded output data model is the most comprehensive model with data given on a

grid of 614 × 428 points spaced at about 12.5km that covers North America. The model

contains 66 variables on 42 levels in the vertical direction. The data is available at http:

//nomads.ncdc.noaa.gov/data.php#hires_weather_datasets. We are interested in the

isobaric flow data, specifically the data on an isobaric surface of pressure 900 mb. As ob-

served in chapter 7, the flow over long ranges is approximately isobaric and the 900 mb

isobaric surface is a sufficient approximation to understand the flow structure in the PBL

over eastern United States.

The velocity data in the NAM-218 data is given as horizontal velocity components u

and v. The velocities u and v lie on a plane, given by the Lambert conformal projection, a

projection method for mapping the earth to a plane. The projection method is schematically

explained in the figure 8.1. The method projects the points given by their latitude and

X

Y

(a) Tangent cone (b) ‘Unrolled’ cone (c) Coordinate axes

Figure 8.1: Schematic of Lambert conformal conic projection, from [72] and [73]. (a) Projection of points
on the sphere to a cone tangent at a reference latitude λ0. (b) Unrolled cone is the Euclidean domain. (c)
Schematic of a coordinate frame on the the projection. The origin is at an arbitrary latitude and longitude
and the axes are not parallel to latitudes and longitudes.

http://nomads.ncdc.noaa.gov/data.php#hires_weather_datasets
http://nomads.ncdc.noaa.gov/data.php#hires_weather_datasets
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longitude (φ, λ) on the sphere (earth) to (x, y) which are coordinates parametrizing a cone

that is tangent to the sphere along a specific latitude φ0 using the formula, [72],

r = R cotφ0

(
tanπ/4− φ/2
tanπ/4− φ0/2

)sinφ0

x = r sin (sinφ0(λ− λ0))

y = −r cos (sinφ0(λ− λ0)) (8.1)

whereR is the radius of the earth and λ0 is a reference longitude. The origin of the coordinates

(x, y) is the apex of the cone and does not correspond to any physical latitude on the planet,

with the y axis lying on the longitude given by λ0. In the case of the NAM-218 model the

latitude at which the cone is tangent is λ0 = 35◦ North of the equator and the reference

longitude is −95◦ west. We translated the origin of the coordinates for our computations to

Kentland farm (37◦11′,−80◦35′). The velocities remain unchanged.

8.2 Computational Method

8.2.1 Advection, FTLE computation and ridge extraction

We take an initial grid of 401 × 401 points with a uniform spacing of 5 km, centered on

Kentland farm. These particles are advected using a RK4 algorithm with a relative tolerance

of 10−6. The size of the time step varies adaptively between half a minute to ten minutes.

To integrate the velocities and find the trajectories, we need a smoothly defined velocity

field. The velocity data we have is defined only every 3 hours and at discrete points spaced

at 12.5 km intervals. Therefore we interpolate the data both temporally and spatially. To

this end we use a bicubic interpolation spatially to find the velocity in the interior of a cell

defined by the NAM-218 data grid points and a cubic interpolation temporally to find the

velocity between the 3 hour intervals. We used these specific interpolation methods since

they produce a continuous and smooth velocity field while a linear interpolation may not
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produce a smooth velocity field. Bicubic and tricubic interpolation methods have been used

in earlier works by Lekien and others [39] [12] [65].

An integration time of 24 hours was chosen. We chose this for two reasons; (1) to satisfy

the thumb rule of the scales of motion in table 7.1; and (2) to account for the effects of the

day-night cycle in the velocity field. The FTLE field σ(x, y) obtained by advecting particles

for 24 hours will rule out any influence of a day-night cycle. The FTLE field is obtained by

finite differences described in section 3.2. Technically this is a partial FTLE field since we are

ignoring any sensitivity to variation of initial height of particles. However due to the vertical

rigidity of the atmospheric flow, we are ignoring this sensitivity to height. In section 8.3.2 we

show some results of FTLE computations on different isobaric surfaces to demonstrate the

validity of our assumption of isobaric flow and vertical rigidity. Figure 8.2 shows a sample

FTLE field obtained for particles starting at 21:00 UTC, on 15 May 2007 and integrated

for 24 hours on a 900 mb pressure surface. The regions of high FTLE are shown in red.

The ridges in the FTLE field in this case cannot be obtained by just setting a threshold for

the value of σ. Moreover the FTLE field has many small ridges which are not significant

as transport barriers on large spatial scales. To overcome these issues, we used a heuristic

Figure 8.2: Sample FTLE field. The x- and y-axis are in kilometers with the origin centered on Kentland
Farm, shown by a circle in the center of the figure.
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algorithm that uses the definition of ridges from section 3.3.1. Assuming that the principal

curvatures at every point in the FTLE field are given by κ1(x, y) and κ2(x, y) with κ1 > κ2,

we used three criteria to determine if a point (x, y) in the FTLE field lies on a ridge.

• σ(x, y) ≥ σmin > 0

• κ1(x, y) + κ2(x, y) < 0

• κ2(x, y) < κ2max < 0

For a ridge that looks like figure 3.5(c), the second condition says that the mean curvature

should be negative, i.e., the saddle surface should be more concave than convex. We used

σmin =0.04/hr and κ2max = −0.001. For the chosen minimum σmin =0.04/hr, a line element

would be stretched to a length of ≈ 13 km which is about the grid spacing of the NAM data

set. As an example, we applied the heuristic criteria on ridge curvature and height to the

sample FTLE field shown in 8.2 to extract the FTLE ridges as shown in 8.3.

Figure 8.3: Ridges extracted from the sample FTLE field shown in figure 8.2.
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8.3 Atmospheric LCS results

We first demonstrate that the atmospheric LCS indeed act as transport barriers. We take

two sample sets (green and black colored sets) shown in figure 8.5 on either side of a repelling

LCS and integrate them forward for 24 hours and plot their positions every 3 hours.

(a) 12:00 May 1st 2007 (b) 15:00 May 1st 2007

(c) 18:00 May 1st 2007 (d) 21:00 May 1st 2007

Figure 8.4: LCS act as transport barriers. Repelling LCS are in red and attracting LCS are in blue.
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(e) 00:00 May 2nd 2007 (f) 03:00 May 2nd 2007

(g) 06:00 May 2nd 2007 (h) 09:00 May 2nd 2007

(i) 12:00 May 2nd 2007

Figure 8.5: LCS act as transport barriers. Repelling LCS are in red and attracting LCS are in blue.



86

The black and the green sets are repelled from each other by (red) repelling LCS. The

black set encounters an attracting LCS (blue) in figure 8.5 (f) and gets stretched along

the attracting LCS. The attracting LCS now acts as a pipeline that carries the black set.

The area of the black set seems to decrease significantly, indicating that the height between

consecutive isobaric surfaces is increasing.

8.3.1 Atmospheric LCS and punctuated change in AFAs on May

1st 2007

We computed the repelling and attracting LCS on a 900 mb pressure surface for more than

200 initial instants of time. Of these, 74 computations correspond to times when samples were

collected to measure changes in atmospheric concentration of Fusarium. We show only some

representative and important images of these LCS computations. However all the computa-

tional results are used in the hypothesis testing to determine the relationship of atmospheric

transport barriers to punctuated changes in the atmosphere. The LCS results for the punc-

tuated changes on 1 May 2007 are shown first. The time series graph of spore concentration

for this time period shown initially in chapter 6, is repeated here in figure 8.6.

Figure 8.6: An example of a punctuated change in the concentration of atmospheric Fusarium. The y-axis
shows the concentration of viable Fusarium spores in spores/1000m3 and the x-axis shows the date and time
in UTC.
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(a) 15:00 30 April 2007 (b) 18:00 30 April 2007

(c) 12:00 1 May 2007 (d) 15:00 1 May 2007

(e) 18:00 1 May 2007 (f) 21:00 1 May 2007

Figure 8.7: Forward time FTLE field. Red indicates regions of high stretching and blue indicates regions
of low stretching.



88

Figure 8.7 shows the forward time FTLE field for an integration period of 24 hours and

initial instants of time shown in the figures. The black circle is of radius 25 km centered

Kentland Farm. For the first two samples collected on 30th April, the samples were collected

from one side (eastern side) of a repelling LCS in 8.7(a) and (b). The repelling LCS pushes

away the low spore concentration air. The air containing a high concentration of spores which

was sampled at 14:00 and 15:00 hours on 1 May 2007, is pushed away by another repelling

LCS in figures 8.7(e) and (f). The movement of repelling LCS caused first a steep rise in the

spore concentration, quickly followed by a steep fall; two punctuated changes.

Figures 8.8 and 8.9 show the backward time FTLE field. The red sets are attracting

sets in forward time. It is seen that the punctuated changes in the spore concentration are

associated with the passage of the attracting LCS as well around Kentland farm.

(a) 15:00 30 April 2007 (b) 18:00 30 April 2007

Figure 8.8: Backward time FTLE field. Red indicates regions of high contraction and blue indicates regions
of low contraction in forward time.
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(a) 12:00 1 May 2007 (b) 15:00 1 May 2007

(c) 18:00 1 May 2007 (d) 21:00 1 May 2007

Figure 8.9: Backward time FTLE field. Red indicates regions of high contraction and blue indicates regions
of low contraction in forward time.
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We track three sets of air that pass Kentland farm at approximately the same time as

the sampling times and see that the LCS act as invariant transport barriers as shown in

figure 8.10 and 8.11. The figures show the repelling LCS in red and the attracting LCS in

blue. The black set is sampled at 15:00 on 30 April, the green set is sampled at 15:00 on 1

May 2007 and the grey set is sampled at 18:00 on 1 May 2007. The green set is laden with

Fusarium while the black and grey sets have only a small concentration of spores.

(a) 15:00 30 April 2007 (b) 18:00 30 April 2007

(c) 12:00 1 May 2007 (d) 15:00 1 May 2007

Figure 8.10: Motion of three sample sets.

The action of the attracting LCS is clearly seen again in 8.11(c) and (d) where the green

and grey sets are stretched along the attracting LCS.
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(a) 18:00 1 May 2007 (b) 21:00 1 May 2007

(c) 00:00 2 May 2007 (d) 03:00 2 May 2007

Figure 8.11: Motion of three sample sets.

8.3.2 Vertical rigidity - Comparison of FTLE field on different

isobars

All the FTLE computations so far have been on a 900 mb isobaric surface. The computations

will become physically irrelevant if the flow, despite being isobaric, varies significantly on

closely spaced pressure surfaces. We present numerical results that clearly show that the

FTLE computations are insensitive to small finite changes in the initial pressure. This is

also a validation of the assumption of vertical rigidity. We compute the forward time FTLE

field on a 875 mb pressure surface and on an 925 mb pressure surface for an integration time
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(a) 00:00 1 May 2007, 875 mb (b) 00:00 1 May 2007, 925 mb

(c) 00:00 1 May 2007, 900 mb

Figure 8.12: Vertical rigidity of the FTLE field.

of 24 hours for various initial times on 1st May 2007. Figure 8.12 shows that the FTLE is

qualitatively the same on the 875 mb, 900 mb and 925 mb isobaric surfaces. The differences

are indicative of the fact that the flow is not perfectly isobaric. As was pointed out in section

7.3 a parcel of air has a vertical velocity of about 0.03 Pa/s. On average the parcel of air can

rise or fall by 26 mb in 24 hours, that is, reach an adjacent pressure level in the NAM data.

As the FTLE field on closely spaced pressure levels is almost the same, we have confidence

that we do not make a significant error in the computation of transport barriers by assuming

an isobaric flow.
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8.3.3 Hypothesis Testing

We compute the forward and backward LCS on a 900 mb pressure surface for all the samples

that are spaced within 24 hours of another sample. We test the hypothesis H1 separately for

repelling and attracting LCS. Thus we have two hypotheses to test.

Hypothesis 8.3.1. H11 Every punctuated change in the atmospheric concentration of Fusarium

is caused by the movement of a repelling LCS over the sampling point, between the two sam-

pling times.

Hypothesis 8.3.2. H12 Every punctuated change in the atmospheric concentration of Fusarium

is caused by the movement of an attracting LCS over the sampling point, between the two

sampling times.

The null hypotheses for each of the two hypotheses is that the movement of the repelling

(attracting) LCS is uncorrelated to the punctuated changes in the spore concentration.

The contingency tables for H11 and H12 are shown below.

Table 8.1: Contingency table for hypothesis H11.

Punctuated change has occured (∆Cp)
Repelling LCS passed over Kentland farm (L) Yes No

Yes 15 24
No 1 34

The correlation between the repelling LCS and punctuated changes using equation (6.3)

is

φ11 = 0.4318. (8.2)

The sensitivity of the test is 0.9375 and the specificity of the test is 0.5862. From this we can

infer that almost every punctuated change can be identified by the movement of
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Table 8.2: Contingency table for hypothesis H12.

Punctuated change has occured (∆Cp)
Attracting LCS passed over Kentland farm (L) Yes No

Yes 6 10
No 10 48

a repelling LCS. The correlation φ11 is however not close to 1, because the test has a low

specificity, i.e many repelling LCS cross the sampling point without causing any punctuated

changes.

The correlation between the attracting LCS and punctuated changes using equation

(6.3) is

φ12 = 0.2026. (8.3)

The sensitivity of the test is 0.3750 and the specificity is 0.8275. The low sensitivity means

that punctuated changes occur without the passage of attracting LCS over the sampling point

but the high specificity means that whenever an attracting LCS does pass the sampling point,

the chance of a punctuated change occurring is high.

We can combine both the hypotheses into a single hypothesis H1 as in section 6.2.2

for which the contingency table is given in table 8.3. The correlation for hypothesis H1 is

Table 8.3: Contingency table for hypothesis H1.

Attracting or Repelling Punctuated change has occured (∆Cp)
LCS passed over Kentland farm (L) Yes No

Yes 15 28
No 1 30

φ = 0.3794 with a sensitivity of 0.9365 and specificity of 0.5172. The low correlation of the

attracting LCS as well as its low sensitivity to punctuated changes means that it is not a
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reliable diagnostic tool to study punctuated changes. Even though correlation of the repelling

LCS to punctuated changes is also not very high to be claimed to be statistically significant,

the sensitivity of the hypothesis H11 is very high. A quick inspection of the data shows that

the low correlation of the repelling LCS to punctuated changes in spore concentration is

because of the high number of false positives n4.

To summarize the results of the hypothesis testing, punctuated changes in the spore

concentrations are due to the movement of a repelling LCS, though the movement of every

repelling LCS does not cause a punctuated change. There are two reasons for this, (1) the

chaotic nature of atmospheric flow ensure that many trajectories have a high local repulsion

and (2) we did not discriminate between repelling ridges of high and low magnitude above

a threshold. It is possible that punctuated changes can depend on the FTLE value of the

repelling LCS, which we have not accounted for in this thesis. On the other hand the move-

ment of attracting LCS usually causes a punctuated change though every punctuated change

is not caused by the movement of an attracting LCS. It must be noted that the punctuated

changes in spore concentration that we studied are the ones due to long distance transport

and not due to local emission by infected plants, whose correlation, if any, to the movement

of transport barriers is not investigated here.

8.4 Contribution to literature

In this chapter we have outlined a geometric framework of atmospheric transport barriers

that determine punctuated changes in the concentration of a tracer in the atmosphere. We

identified these transport barriers with attracting and repelling LCS that can be obtained

from trajectory computation using meteorological data in an equation-free manner. Analyz-

ing the FTLE field for the days that the aerial samples were collected on, we found that

punctuated changes in spore concentrations can be governed by the movement of repelling

LCS. While the concept of transport barriers and in particular those identified by LCS have
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been applied in earlier works to study transport in the upper atmosphere [40] and lobe dy-

namics in hurricanes [76], our work is the first instance of the application of LCS to study

meso-scale transport and punctuated changes of a measured tracer in the lower atmosphere.



Chapter 9

Set oriented methods and LCS

In chapter 2 we reviewed both the geometric approach of stretching and the probabilistic ap-

proach to dynamical systems using finite-time Lyapunov exponents and the Perron-Frobenius

operator. The method of FTLE and LCS has found applications in time-dependent systems

especially time-dependent fluid flows in the last decade. Also in the last decade, a differ-

ent approach has been taken to study mixing and barriers in flows, using the probabilistic

approach to identify so called ‘almost invariant sets’ in a flow, optimally selected sets that

do not mix significantly with the rest of the phase space domain. This approach has been

advanced in the works of Dellnitz [16] and Froyland [23]. This has raised the question of how

the almost invariant sets are related to FTLE, [25]. The recent application of this approach

to study mixing in a lid driven cavity flow in [68] and [29] has further generated interest

in this question. In this chapter we will present some numerical results of comparison be-

tween the AIS approach and LCS approach. Once we identify the qualitative relationship we

apply this to obtain a new method of computing LCS which will also have a probabilistic

interpretation.

97
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9.1 Review of almost invariant sets

We define an invariant set, using the notation we used of the flow map and σ-algebra of the

(domain) set X outlined in chapter 2.

Definition 9.1.1. A subset B ⊂ X is said to be invariant, if φtt0(B) ⊂ B for all time t. For

discrete flow maps S : X 7→ X, a set B ⊂ X is invariant if Sn(B) ⊂ B for all n, where

Sn = S ◦ S ◦ ...S (n times), where ◦ denotes function composition.

If the flow map or the discrete map are non invertible, then the definition is true only

for t ≥ 0 and n ≥ 0. Usually one is interested in a subset B that is maximally or properly

invariant, i.e. an invariant set B that does not contain a proper subset that is invariant.

Maximal invariance implies B = φtt0(B). We first redefine an invariant set in terms of the

Perron-Frobenius operator.

Definition 9.1.2. The characteristic function of a set B is defined by XB(x) = 1 if x ∈ B

and XB(x) = 0 is x /∈ B.

Definition 9.1.3. Let (X,B, µ) be a measure space and φtt0 : X 7→ X be a nonsingu-

lar transformation. A measure ν is said to be invariant under the flow φtt0 : X 7→ X if

ν(φ−1)(B) = ν(B) for every B ∈ B.

If B is a properly invariant set then define the measure ν(A) =
∫
X
XBµ(A) for any

A ∈ B. Then the measure ν is invariant.

Theorem 9.1.1. Let (X,B, µ) be a measure space and φtt0 : X 7→ X be a nonsingular trans-

formation. Let P be the Perron-Frobenius operator associated with φ. Consider a probability

density function f ∈ L1. Then a probability measure ν given by ν(B) =
∫
B
fdµ is invariant

if and only if f is a fixed point of P [38].

The proof follows from a direct application of the Radon-Nikodym theorem and can be

found in [38]. Taking f = 1
µ(B)
XB, a uniform probability density function on the set B, then
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since f = Pf , we get Pf = 1
µ(B)
XB from which the invariance of B follows. It is easily seen

that if an invariant measure exists, then the maximum eigenvalue of P is 1 [28], [16], [38].

The examples that we study in this chapter are flows on R2. In practice the domain is

discretized into a finite number of boxes, say {B1, B2, ..., Bn}, the probability density function

is approximated as a sum of simple functions on the discretized domain f =
∑N

i=1 ciXBi
and the Perron-Frobenius operator P becomes a matrix (linear operator) between finite

dimensional vector spaces, called a stochastic transition matrix. The entries of the matrix P

are determined by a Monte-Carlo simulation [16] and [23]. Each box in the domain contains

a fixed a number of points (initial conditions), which are integrated from a time t0 to t. The

final position of the points gives the matrix P as -

Pij =
µ(Bi ∪ φ−1(Bj))

µ(Bi)
(9.1)

The theorems from Markov chains that are used to prove this in [16] and [23]require a time

reversible a operator P. This is achieved by creating a reversible Markov operator Pr given

by

Pr =
P + P

2
(9.2)

where P is the time reversed analogue of P . Its elements are given by

P =
ujPji
ui

(9.3)

where uj and ui are components of the first left eigenvector of P . For a conservative flow in

which the domain is uniformly discretized, P = P ∗, the transpose of P .

9.1.1 Partitioning the domain into two almost invariant sets

Now we are interested in sets that are not perfectly invariant under the flow, but almost so;

i.e., we allow a subset of non-zero measure to leak out.
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Definition 9.1.4. A set B ∈ B is said to be almost invariant if

ρµ(B) =
µ(B ∪ φ−1(B))

µ(B)
≈ 1 (9.4)

Intuitively Prf ≈ f or Prf = λf giving rise to an eigenvalue problem. The first (max-

imum) eigenvalue is still 1 and the eigenvector is the invariant measure, which makes the

whole domain as the largest invariant set. It was shown in [16] [23] that the left eigenvector

corresponding to the second eigenvalue gives the ’second most’ almost invariant set, the in-

variance being higher if the second eigenvalue of P is closer to 1. For computational reasons

we will make use of the singular vectors of Pr instead of the eigenvectors as was done in

[22]. This is because the singular value decomposition is well conditioned and less sensitive

to small changes in the matrix Pr introduced due to the discretization. It should be noted

that Pr is self adjoint since Pr = 0.5(P + P ∗) = P ∗r . From the spectral theorem, [53], [37],

the SVD of Pr is unique. The SVD of Pr is

Pr = UΣV ∗ = P ∗r = V ΣU∗ (9.5)

which gives U = V . Next Pr is a normal matrix, i.e., P ∗r Pr = PrP
∗
r . So again from the

spectral theorem Pr has a unitary eigen-decomposition and and the left eigenvectors of Pr

are given by

Pr = Y ∗ΛY (9.6)

with Y ∗ = Y −1 From the equations (9.6) and (9.5) we get U = Y , i.e. the left singular

vectors and left eigenvectors of Pr are the same.

The problem of partitioning the phase space domain X into a given number of sets

between which transport is minimal is a difficult one [16]. But partitioning the domain into

two almost invariant sets is an easier problem. First we note that the singular vectors V ∗

form an orthonormal basis for Pr. The first singular vector V ∗1 , associated with the singular

value 1, is the stationary distribution and is positive. Since V ∗2 ⊥V ∗1 we can infer that V ∗2 has
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both positive and negative parts. From the definition of a Markov operator the Pr(V
∗

2 )+ > 0

and Pr(V
∗

2 )− < 0. So the sets on which the positive and negative parts of the second singular

vector V ∗2 are supported are almost invariant sets and partition the domain X into two parts.

9.1.2 Stretching and the Perron-Frobenius operator

Our motivation here is to examine the relationship between the almost invariant sets and

the FTLE field defined by stretching. A theorem in [38] relates the deformation gradient dφ
dx

with the Perron-Frobenius operator.

Theorem 9.1.2. Let (X,B, µ) be a measure space and φtt0 : X 7→ X be a nonsingular

transformation and f : X 7→ R a probability density function. Then for every B ∈ B,

∫
φ−1(B)

f(φ(x))dµ =

∫
B

fJ−1(x)dµ

where J is the determinant of the deformation tensor J = dφ
dx

and J−1 = dφ−1

dx
. The

proof is obtained by change of variables and is given in [38]. Applying the Radon-Nikodym

theorem one obtains Pf(x) = f(φ−1(x))J−1(x). So if J = 1 we get Pf = f , making f

an invariant probability density function. The Cauchy Green tensor is obtained from the

deformation tensor dφ
dx

. The square root of the eigenvalues of C are the eigenvalues of dφ
dx

.

However we cannot directly use this relation between stretching and the Perron-Frobenius

operator to relate almost invariant sets and LCS in a flow. This is because theorem 9.1.2

uses only the determinant of the deformation tensor and not the individual eigenvalues. If

the flow preserves the Lebesgue measure, such as in Hamiltonian systema J = 1 everywhere

despite the existence of expansion and contraction in the domain of the flow.
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9.2 Coherent sets and stretching in time dependent

flows

We seek to measure the stretching and deformation of a set without relying on computing the

stretching of line elements as was done by the FTLE method in chapter 3. Instead we develop

the analogy between the Radon-Nikodym theorem and the Perron-Frobenius operator with

the evolution of a physical mass or blob in a two-dimensional Euclidean setting and arrive

at a heuristic measure of stretching and FTLE. We discuss some issues with extending

the method of almost invariant set (AIS) to time dependent flows and the issues with the

computation of FTLE and its application to finding sets that do not mix significantly with

other sets which have motivated the work in the rest of the chapter.

We define coherent sets and mixing in general time-dependent flows in a physically

intuitive manner. We define a δ-interior set of B by Bδ = {x : Nδ(x) ⊂ B} where Nδ(x)

denotes the neighborhood of radius δ around x, i.e. all points of B that are at least a distance

of δ from the boundary of B. If the size of this δ interior does not decrease under the action

of the flow then the set has not mixed with the rest of the domain and it is coherent. More

precisely µ(φ(Bδ))
µ(Bδ)

≈ 1. In figure 9.1 sets B1 and B2 are advected by a flow φ. Set B1 is coherent

since µ(B1δ) ≈ µ(φ(B1δ)) while B2 is not coherent since µ(B2δ) >> µ(φ(B2δ)). Mixing has

φ(B 1 )

φ(B 2 )

φ(B 2δ)

φ(B 1δ)

B 1δ

B 2δ
B 2

B 1

Figure 9.1: Concept of coherent sets in time dependent flows. B1 is coherent and B2 is not.
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traditionally been considered to be produced due to stretching and folding of sets and this

has often been quantified using entropy measures that relied on computing the stretching of

line elements. Stretching and folding decrease the ratio µ(φ(Bδ))
µ(Bδ)

. The definition of coherent

sets here is based on this intuition.

9.3 Issues with the methods of AIS and FTLE in time

dependent flows

We observe that f is a probability density function and Pf is the evolution of the probability

density function under the action of the flow. If f is supported on a subset B, then the set

is almost invariant if Pf ≈ f . This method has a physical meaning in terms of mixing; the

almost invariant sets do not mix significantly with the rest of the domain. But this method

of identifying almost invariant sets cannot be extended to time dependent flows, or to even

flows that are almost periodic without first knowing what the approximate time period is.

The problem is illustrated in figure 9.2. Sets B1 and B2 in figure 9.2 advected by the flow

B 1

B 2

B 3

B 4
φ(B 4 )

φ(B 3 )

φ(B 2 )

φ(B 1 )

Figure 9.2: None of the sets B1, B2, B3 and B4 are almost invariant.

φtt0 do not distort and mix with each other or the rest of the domain. However there is no

‘overlap’ between φ(B1) and φ(B2) and B1 and B2 respectively because the flow ‘translates’

them. So the sets B1 and B2 cannot be identified by the second eigenvalue-eigenvector of P .
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Sets B3 and B4 clearly have distorted and mixed partially with each other and the rest of

the domain.

It becomes even more difficult to extend the definition of almost invariant sets to flows

in which the domain is ‘leaky’. An example is the atmospheric flow where the meteorological

data is well defined over North America, but very coarsely defined over the rest of the globe.

Particles that exit the domain of the data are either lost or have to tracked using very coarse

data. For a leaky domain the first eigenvalue of P is not 1 and the criteria of the second

eigenvalue being close to 1 can become problematic.

The method of FTLE has the drawback that it uses the linearized flow equation (3.1)

rewritten here,

δx(t0 + t) = φtt0(x)− φtt0(x + δx) =
dφtt0
dx

δx(t0) +O(
∥∥δx2(t0)

∥∥).

The evolution time T = t − t0 has been selected in a subjective fashion depending on the

problem. However this time has to be such that the second order terms O(‖δx2(t0)‖) do not

grow to be too large. Usually this is accomplished by selecting a very small δx and either by

keeping the time of evolution T small as we did in this thesis or rescaling the perturbation as

it grows very large. To compute LCS at n points uniformly spaced in the domain, we evolve

a grid of n initial points. For the method of rescaling we need 2n perturbed trajectories for

each of the n reference trajectories. This quickly becomes computationally expensive as we

increase n.

Another issue with the method of LCS is that it often identifies too much structure

in the flow. One may not be interested in the small spatial scale repelling and attracting

structures in the flow. In complex flows like the atmosphere almost every trajectory can

have small localized expansion around it, but there could exist a collection of sets that has

not stretched significantly. To the best of our knowledge there is no definition or method to

identify such sets from the FTLE field.



105

9.4 Computation of FTLE using the covariance of prob-

ability density functions

We developed a novel method to compute the FTLE that will not use the linearized equa-

tions of the flow, or the stretching of individual line elements. The method of computing

FTLE using the SVD of the Cauchy-Green tensor essentially computes the deformation of

a neighborhood under the action of the flow φtt0 as shown in figure 9.3. The FTLE for the

a

a2
a1

a

B

φ(B )

Figure 9.3: Deformation of a blob under the flow

reference trajectory in this case is σ = 1
T

log
(
a1

a

)
where T is the time of evolution of the

trajectory. For simplicity we assume the flow is in R2. We can treat the evolution of the set B

as the evolution of two random variables X1 and X2 defined by a probability density function

f(x1, x2) which is initially f = 1
µ(B)
XB, i.e., a uniform probability density over the set B and

zero every where else. The covariance matrix of f is defined by Iij = E[(Xi−Xim)(Xj−Xjm)]

where X1m and X2m are mean values of the random variables X1 and X2 and E[·] denotes

the expectation E[Xi] =
∫
xif . Under the action of the flow φ, f is mapped to Pf where P

is the associated Perron-Frobenius operator.

Definition 9.4.1. Let I0 be the covariance matrix of f and I the covariance matrix of Pf

and let λmax(I) denote the maximum principal moment of inertia of I. Then the FTLE

denoted by σI is defined by -

σI =
1

T
log

(
λmax(I)

λmax(I0)

)
(9.7)
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We note that the covariance matrix is the same as the area moment of inertia for the

set B and measures the deformation or distortion of the set. The definition of σI avoids the

linearization of the flow and the measurement of the stretching of line elements which can

be computationally expensive. Further it is a set-oriented method and directly computes the

deformation of a set instead of inferring it from the deformation of line elements.

A probability density function f is almost invariant under the flow φtt0 if Pf ≈ f . This

difference has been measured by the second eigenvalue and eigenvector of P . Another way to

view the difference is in terms of stretching measured by second moments of the probability

density functions. In figure 9.4, the set B1 is not stretched significantly and remains almost

invariant while the set B2 is stretched and is not invariant. The inequality of f and Pf

is captured by the second moments or the covariance matrix of f and Pf . We use this

φ(B 1 )

B 1 B 2

φ(B 2 )

(a) (b)

Figure 9.4: Stretching and almost invariant sets - set B1 is almost invariant while the set B2 is not.

relationship between stretching defined by the covariance matrix and almost invariance to

extend the definition of almost invariant sets to time dependent flows.

Definition 9.4.2. A probability density function f supported on a set B is almost coherent

if Pf supported on φ(B) has almost the same covariance as f . Then B is almost coherent.

This definition of coherence captures the essential feature of a coherent set - it does

not mix or spread significantly in the domain. This definition also can identify non-mixing

translating sets of the type shown in figure 9.2. Computationally we divide the domain
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into boxes with a fixed number of initial points. The covariance matrix is calculated for

each box about the mean of each of the boxes. While the covariance based definition of

coherent sets can be applied to time-dependent flows, it suffers from the drawback of the

covariance being non linear in the variables Xi. Thus one cannot pose the problem of finding

an optimal combination of the boxes that will minimize the covariance as an eigenvalue

problem. Compared to the standard method of computing the FTLE, by line stretching,

this method does not rely on a linearized flow and hence one can use larger box sizes or

integration times to heuristically find coherent sets. We see the covariance based method as

a bridge between the geometric approach of measuring line stretching and the probabilistic

approach of almost invariant sets.

9.5 Examples

We apply the method of almost invariant sets, the method of the FTLE described in chapter 3

and the method of computing the FTLE described in the previous section to three examples.

The first two are periodic flows and the third is the atmospheric flow on a 900 mb isobaric

surface.

9.5.1 Lid driven cavity flow

The first example we consider is the lid driven cavity flow in which mixing has been recently

studied by the method of almost invariant sets in [29] and [68]. The model has been exten-

sively studied in [11] and is considered here as the first example because of its physically

simple piecewise steady velocity field. The flow is described by the stream function

ψ(x, y) =
2∑

n=1

UnCnfn(y) sin
(nπx

a

)
(9.8)
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defined on the domain [0, a]× [−b, b] for time 0 ≥ t ≥ τf/2. where

fn =
2πy

a
cosh

(
nπb

a

)
sinh

(nπy
a

)
and

Cn =
a2

2nπ2b

[
a

2nπb
sinh

(
2nπb

a

)
+ 1

]−1

For time τf/2 ≥ t ≥ τf , the sign of the velocity term U1 is changed. This reflects the

streamlines about x = a every after a time τf/2. The streamlines of the flow are shown in

figure [fignum].

Using specific symmetry arguments given in [11], a specific ratio of the magnitudes of

the terms U2/U1 along with a fixed value of the period of the flow τf is found such that it

generates three period-3 fixed points in the domain [0, a]× [−b, b]. The specific values of the

constants that we borrowed from [11] are U1 = −1 and U2 = 0.841298 and τ ∗f /2 ≈ 4.740202

for the domain [0, a]× [−b, b] = [0, 6]× [−1, 1].

A perturbation of the time period of the flow from the critical value of τ ∗f /2 ≈ 4.740202

destroys the fixed points. The method of almost invariant sets was used in [29] and [68] to

study mixing for different values of the perturbed time period. Since our main interest here

is to compare the method of AIS and LCS, we have chosen a single case, a specific value of

half time period τf/2 = 4.848 for our study.

We divided the domain into 4800 boxes each box containing a 100 points and found the

time reversible Perron-Frobenius matrix Pr, by integrating a total of 480,000 initial points

for a period equal to τf . Figure 9.5 contains 120× 40 boxes which are the discretized finite

approximation of the infinite dimensional space of Lebesgue integrable functions. Each box is

a basis vector for the finite dimensional vector space. The second singular value is 0.99255639

and the second left singular vector U2 of Pr is shown in figure 9.5, .

The sign of the eigenvector is positive in roughly half the domain and negative in

the other half. By the property of the Markov operators 2.3.3, the positive and negative
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Figure 9.5: Second eigenvector u2.

eigenvectors are invariant under the action of the Perron-Frobenius operator. Therefore the

zero contour in the figure 9.7 forms the boundary of the almost invariant sets as shown in

figure 9.6.

Figure 9.6: Zero contour of the second eigenvector showing the boundary of the almost invariant set.

We performed the FTLE computation for the same system for different integration

times that are multiples of the period τf , the results of which are shown in figure 9.7.

The third method we used was the computation of the LCS and coherent sets using the

covariance based method. For this we used the same discretization of 4800 boxes, with each

box containing a 100 points, as was done in the case of the AIS approach. The results of this

are shown in figure 9.8.
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(a) T = τf (b) T = 2τf

(c) T = 3τf (d) T = 4τf

(e) T = 5τf

Figure 9.7: FTLE for integration time T for the lid driven cavity flow.

Comparing the results in figures 9.7 and 9.8 we find that the covariance approach of

computing the FTLE agrees with the standard approach of computing the FTLE, using

line stretching. This agreement is in the structure of the FTLE field only and not in the

exact values of the FTLEs. As expected the FTLE computed from the covariance approach

is higher. Comparing the FTLE obtained from either of the two methods with the AIS in

figure 9.5, it is immediately obvious that an arbitrary threshold can be set in the FTLE field

to partition the domain into sets that stretch less and those that stretch more, as shown in

figure 9.9. Even after setting an arbitrary threshold, the sets of low stretching do not match

very well with the AIS shown in figure 9.6.

However one needs to be careful with the comparison of the almost invariant sets
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(a) T = τf (b) T = 2τf

(c) T = 3τf (d) T = 4τf

(e) T = 5τf

Figure 9.8: The covariance based FTLE for integration time T for the lid driven cavity flow.

(a) FTLE < 0.2 (b) Covariance based FTLE < 1.2

Figure 9.9: Almost invariant sets obtained by setting a threshold for the FTLE obtained by the method
of (a) line stretching and (b) covariance.

with the FTLE field, because of the interpretation of invariance. We computed the first

6 singular values and vectors of the discretized Perron-Frobenius operator. The values are
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λ2 = 0.99255639, λ3 = 0.98292780, λ4 = 0.9516905, λ5 = 0.9473769 and λ6 = 0.94344106,

with the corresponding singular vectors u3 to u6 shown in figure 9.10.

(a) u3, λ3 = 0.98292780 (b) u4, λ4 = 0.9516905

(c) u5, λ5 = 0.9473769 (d) u6, λ6 = 0.94344106

Figure 9.10: Higher eigenvectors u3 to u6.

The eigenvalues measure the invariance of a set, and since they are close to each other

in magnitude, one can obtain other almost invariant sets that are slightly less invariant than

those obtained from the second eigenvector. Linear combinations of the eigenvectors can

produce a family of almost invariant sets that can be hard to distinguish from each other.

The zero contours of the eigenvectors u2 to u6 are shown in figure 9.11. Let u+
n and u−n

denote the nonnegative and negative parts of nth eigenvector, i.e., un = u+
n − u−n . Consider

the vector f = u+
2 +u+

3 +u−4 +u+
5 +u+

6 . Then f is non negative over the domain and from the

properties of the Markov operator 2.3.3, Pf > 0. Then the support of f is almost invariant.

From figure 9.11, it is seen that the support of u4 contains the support of u2, u3, u5 and

u6 and hence the support of f is at least λ4 = 0.9516905 invariant. We can only conjecture

that the ridges of the FTLE field capture a particular linear combination of the eigenvectors

of P .
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Figure 9.11: Zero contours of eigenvectors u2 to u6.

9.5.2 Double gyre flow

The lid driven cavity flow in the previous section is not only piecewise smooth, but piecewise

time independent. We return to the example of the double gyre flow which is time dependent

but periodic, to apply the method of AIS and compare it with the FTLE field. The double

gyre flow is defined by the stream function ψ(x, y, t) = A sin(πf(x, t)) sin (πy), with the

variables A, f , a, b and ω defined as in section 3.2.2. The parameter values chosen are

A = 0.25, ω = 2π and ε = 0.25. The time period of the flow is τ = 1. We chose these particular

parameter values to compare our results with [25] in which the same values were chosen for

computing the almost invariant sets. The FTLE fields obtained for an integration period

T = 10, using the methods of line stretching and the covariance are shown in figure 9.12.

The FTLE field using the line stretching method was computed using a grid of points initially

spaced uniformly at a distance of 0.001. For the covariance based method we discretized the

domain into 80000 square boxes of size 0.005 each containing 625 points. Using the same

discretization for the Perron-Frobenius operator P of the flow, we found the eigenvalues

of P to be λ2 = 0.99974084 λ3 = 0.99954927, λ4 = 0.99874607, λ5 = 0.99811312 and

λ6 = 0.99714149. The eigenvalues for this problem are very closely spaced and here we find
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(a)FTLE obtained from line stretching.

(b)FTLE field obtained from covariance method

Figure 9.12: FTLE field for the double gyre flow for an integration time of T = 10.

that the eigenvectors from u2 to u6 shown in figure 9.13 have a similar structure. It has been

pointed out in [22] that in problems where there exists a cluster of eigenvalues close to 1,

the computation of the eigenvectors are sensitive to the discretization of the domain. From

the point of view of physical applications, the almost invariant sets obtained from any of the

eigenvectors u2 to u6 are the same.
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(a) u2, λ3 = 0.99974084

(a) u3, λ3 = 0.99954927 (b) u4, λ4 = 0.99874607

(c) u5, λ5 = 0.99811312 (d) u6, λ6 = 0.99714149

Figure 9.13: The eigenvectors, u2 to u6, of the Perron-Frobenius operator for the double gyre flow.

Comparing the almost invariant sets in figure 9.13 with the FTLE fields in figure 9.12 we

can only infer that the regions of low stretching are approximately the same as the almost

invariant sets given by the eigenvectors u2 to u6 and once again conjecture that a linear

combination of the eigenvectors will produce an almost invariant set that can be identified

by the regions of low stretching in the FTLE field.
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9.5.3 Atmospheric flow

We now apply the covariance based method of computing the FTLE to the atmospheric flow,

a time dependent aperiodic flow, defined by the meteorological velocity data. We took the

velocity data for May 1st 2007 on a 900 mb pressure surface in a domain that is 1200 km

× 1200 km centered around Kentland farm. We discretized the domain into 14400 square

boxes each of size 10 km and containing 81 points spaced at intervals of 1 km. We integrated

the 1.44 million points for a time period of 24 hours. The covariance based FTLE is shown

in figures 9.14 and 9.15.

(a) 00 : 00 (b) 03 : 00

(c) 06 : 00 (d) 09 : 00

Figure 9.14: Covariance based FTLE field on 1st May 2007 for an integration time T = 24 hours for initial
starting times (a) - (d).
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(a) 12 : 00 (b) 15 : 00

(c) 18 : 00 (d) 21 : 00

Figure 9.15: Covariance based FTLE field on 1st May 2007 for an integration time T = 24 hours for initial
starting times (a) - (d).

Comparing with the FTLE field obtained from the line stretching method we see that

the main ridges in the FTLE field are the same, but the covariance based FTLE does not

have many small spatial scale ridges unlike in the FTLE field. The movement of the transport

barrier over Kentland farm is clear from figure 9.14(f). We can obtain the coherent sets by

setting a threshold (of 0.14/hr) on the covariance FTLE field as shown in figure 9.16. For a

FTLE value of 0.14/hr, the covariance matrix of an initially square box of size 10 km would

evolve to have a maximum radius of gyration of 27 km in 24 hours, approximately the radius

of the ‘sampling circle’.
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(a) 15 : 00 30 April 2007 (b) 15 : 00 1 May 2007

Figure 9.16: Coherent sets separated by regions of high FTLE (in red).

(a) 00 : 00 (b) 03 : 00

Figure 9.17: Covariance based FTLE field on 1st May 2007 for an integration time T = 24 hours for initial
starting times (a) - (b) and box size of 20 km.

Since we do not rely on the tangent linearization, we can choose a larger box size. For

example the covariance based FTLE field for a box size of 20 km is shown in figures 9.17

and 9.18.



119

(a) 06 : 00 (b) 09 : 00

(c) 12 : 00 (d) 15 : 00

(e) 18 : 00 (f) 21 : 00

Figure 9.18: Covariance based FTLE field on 1st May 2007 for an integration time T = 24 hours for initial
starting times (a) - (f) and box size of 20 km.
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Comparing the FTLE field computed using the different box sizes, it can be seen that

the main ridges can still be detected by increasing the box size. We consider this to be the

main advantage of covariance based FTLE; we can choose the size of the sets of interest

without the constraint of linearization.

9.6 Contribution to literature

In complex flows stretching and folding can be high making the tangent linearization invalid

after a short integration period. The covariance based method of computing the FTLE is

the first instance of finding finite-time Lyapunov exponents that does not use the linearized

equations of a flow making it more general in scope of application. The covariance matrix can

be geometrically interpreted as a measure of stretching in phase space as well as have a prob-

abilistic interpretation. This bridges the gap between geometric and probabilistic methods

of studying phase space transport.



Chapter 10

Conclusion

Until recently time-dependent (or aperiodic) systems have not been easy to study using

the traditional tools of nonlinear dynamical systems, such as Poincare maps and method

of invariant manifolds. The tangent linearization for time dependent systems has attracted

extensive interest over many decades in the mathematics community which led to many

new insights and results on Lyapunov and other spectra and generalized stable and unstable

manifold theorem. However the restrictive nature of these results precluded their application

to real world natural and engineering systems which cannot be characterized by smooth flows

for infinite time. Starting in the 90’s the easily applicable, equation free, computational

method of LCS emerged in the works of Wiggins, Haller, Marsden, Lekien and Shadden.

The work in this PhD thesis is a small step in the direction of extending and applying these

methods to high dimensional and complex time dependent flows.

Our focus throughout the thesis has been on partitioning the phase space using codimension-

one sets that act as barriers to transport. We exploited this framework of transport barriers

in two problems. The first problem we applied this framework to was for the dynamics of

inertial particles in a two dimensional fluid flow. We showed that the repelling LCS can be

used to segregate particles with different Stokes number. The second problem we studied

is the role of transport barriers in the motion of pathogen spores in the lower atmosphere.

121
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We showed that a statistically significant relationship exists between punctuated changes in

spore concentrations and the passage of the repelling LCS over the sampling point. We view

this as a significant contribution to the problem of tracking the spread of plant pathogens in

the atmosphere, one that can aid in the development of new dynamical systems based tools

to study advective transport of tracers in the atmosphere.

We also investigated the theoretical considerations behind the computation of the

FTLE. We defined the partial LCS and used it to identify transport barriers in the first

problem on segregation of inertial particles. FTLE computations are often done for a small

integration time period, to ensure the validity of the tangent linearization. This can be prob-

lematic since the structure of transport barriers can often emerge only for long integration

times. To over come this we used the idea of quantifying the covariance of a probability den-

sity function or analogously the covariance of the support of the density function to define

a FTLE that does not rely o linearization. We used the covriance based idea of stretching

to make a heuristic connection between the geometric FTLE method and the probabilis-

tic almost-invariant set method with two examples; the lid-driven wide cavity flow and the

double-gyre flow. Using the FTLE we then defined coherent sets as the time-dependent

analogs of almost-invariant sets and used the definition to identify large scale coherent sets

in the lower atmosphere.

Some immediate future lines of research that can be followed from this thesis include

• Extension of the concept of atmospheric LCS to three dimensional transport barriers

which will account for possible variations in transport due to three dimensional features

of the flow that effect the trajectories of air masses for long integration periods. This

will have to simultaneously account for the fact that the linearized equations will be

not be valid for long integration periods.

• Integration of the computation of LCS into a near real-time forecast scheme to predict

punctuated changes and spread of pathogens via the atmosphere.
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• Development of possible control strategies that will use the LCS to manipulate the

motion of inertial particles in Stokes flows.

• Development of a method to compute the FTLE using measure theoretic methods

which exist for the computation of Lyapunov exponents for ergodic systems. This will

enable the computation of a large finite time FTLE field using only a short time of

integration and the global information of all the short time trajectories.
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