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Abstract— In realistic time-chaotic flows, the time-dependent
separatrices are revealed by Lagrangian coherent structures
(LCS). The LCS surfaces organize complex flows, revealing
dynamical channels useful for weakly propelled mobile agents.
We propose a feedback control strategy to explicitly incorporate
LCS, which are in general evolving. Inanc et al. (2005) observed
that the fuel optimal trajectory in ocean flow seems to lie
on a moving LCS surface. We take this observation a step
further by explicitly incorporating the moving LCS location
into the control strategy. We have the vehicle track an LCS
surface, considering this a time-dependent boundary following
problem, with the aim of following lanes of fuel-efficient motion
delineated by LCS surfaces. We demonstrate this strategy in a
double-gyre flow and find that indeed a strategy using LCS
is feasible and uses less fuel than a naive direct targeting
approach.

I. INTRODUCTION
Inanc et al. [2], [6] observed that the fuel optimal trajectory

for a fully actuated point vehicle in ocean surface flow seems
to lie on a moving Lagrangian coherent structure (LCS),
which in this case is a moving curve. LCS are the time-
dependent analogs of stable and unstable manifolds [1], [4]
which have been shown in other contexts to delineate lanes
of fuel-efficient travel [3], [5]. Inspired by the observation
of Inanc et al., we take a next logical step and develop this
observation into a new control algorithm by explicitly includ-
ing information regarding the LCS location (and therefore the
lanes of fuel-efficient travel) into our control algorithm.

We suppose that optimal trajectory generation within a
moving medium can be divided into three main regimes.
Considering as a system parameter the available amount of
control, we define:

Uratio =
Umax

max{V (x, y, t)}
(1)

where V (x, y; t) is the velocity field and Umax is the amount
of velocity which can be produced by the control.

For Uratio � 1, one can ignore the velocity field; for
Uratio ≤ 0.5 the available control is too weak and the dom-
inant transport process is natural advection. An interesting
situation arises when 0.5 ≤ Uratio ≤ 1. In this regime the
control—together with the exploitation of the velocity field
surrounding the vehicle—can produce quasi-passive motion
optimizing the fuel consumption. Since this regime has not
been adequately explored in previous studies, we focus our
work on this Uratio range.
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We consider a double gyre flow as an exemplar of the
types of flow of interest. The 2D velocity field V (x, y, t) =
(u(x, y, t), v(x, y, t)) of the double gyre is defined analyti-
cally as:

u = −πA sin(πf(x)) cos(πy) (2)

v = πA cos(πf(x)) sin(πy)
df

dx
(3)

where f(x, t) = a(t)x2 + b(t)x, a(t) = ε sin(ωt), b(t) =
1 − 2ε sin(ωt), and where A is related to the amplitude of
the velocity, ε measures the amplitude of the oscillation of the
gyre (i.e. the shifting of the saddle (1, 0) during the motion)
and ω is the frequency of the system. We study this flow
over the domain [0, 2] × [0, 1] and we fix A = 0.1, ε = 0.1
and ω = 2π

10 .
The computation of LCS requires knowledge of the ve-

locity field for a future finite time. In real applications this
can be done by forecasting future conditions. In our case, we
have the analytical expression of the velocity field. The use
of LCS is of great interest because they provide clear overall
information about the characteristics of the flow which are
not obvious from the observation of the velocity field. For
a stationary velocity field the LCS are invariant manifolds
of, e.g., fixed hyperbolic points, but since the system is non-
autonomous the LCS are time-dependent.

Choosing a starting point and target point, we analyze
different control strategies considering as parameters the time
taken to reach the target and the control cost. In the trivial
case of these two points laying exactly on an LCS the optimal
trajectory is represented by the LCS itself and no control
action is required (as seen in Inanc et al. [2], [6]).

Fig. 1. This plot shows the position of an LCS (white dots) for two instants
of time. The instants of time were chosen in order to have the LCS on the
extreme position (on the left and on the right of (1, 0)). The white arrows
represent the direction of the flow while the green square is the target point.
The LCS fluctuate during the motion but they always stays in the shaded
region (recall ε = 0.1).
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Fig. 2. Schematic representation of the control strategies which are used. D(x, y, t) is defined in a different way for each method. rt and rlcs are the
distance of the particle from the target and the LCS respectively while rmax

t and rmax
lcs are the radius of influence of the target and the LCS. dt and dlcs

are unit vectors pointing to the target and the LCS respectively.

We consider the nontrivial case. We fix the point
(0.9, 0.05) as target site. As shown in Fig. 1 the lower
boundary of the domain surrounding the point (1, 0) behaves
as a moving saddle point: the flow is attracted along the
vertical direction and repelled along the horizontal one. This
guarantees that the LCS always stays in the vicinity of this
point providing an optimal path to follow in order to reach
(0.9, 0.05).

The following equations of motion incorporating the con-
trol law D(x, y, t) are used:

ẋ = Vflow + Vcontrol = V (x, y, t) + Umax ·D(x, y, t) (4)

where D is a vector which provides the direction for the
Umax control action. For this preliminary study we did two
hypothesis: first we treated the vehicle as a massless particle
without considering the interaction between the particle and
the flow; second we supposed Umax to be constant and so
the control was acting as input of velocity.

II. CONTROL STRATEGIES

The three control strategies considered will be labeled as
the Simple Advection method (SA from now on), the Naive
Control method (NC from now on) and the LCS method. In
Fig. 2 we show the logic of the three strategies.

In the SA method we simply drop the particle and observe
where it is advected. We define a certain radius of influence
of the target rmaxt and, if the particle comes within this
distance from the target, some control action is taken (via
the NC strategy) to drive the particle to the target. Note that
when D(x, y, t) = 0 there is no control action and so the
particle is simply advected (no fuel consumption).

For the NC method, we calculate at each instant of time
the direction D to the target. We orient our control action in
order to obtain a net velocity in the direction of the target. In
this case the control action is always present and the control
tries to reach the target by augmenting the velocity such that
the resultant velocity is pointing toward the target.

In the LCS method, we track an LCS surface, considering
it a time-dependent boundary following problem with the aim
of following lanes of efficient motion. We first give some
control input to the particle in order to jump onto the closest
LCS curve. When the particle is close to the LCS we turn the
control off and let the particle be advected by the flow. When
the particle eventually comes close enough to the target point
we again activate the NC control in order to jump on it.

From the description of the three methods it is possible to
make some preliminary observations. Clearly the SA method
works only if we drop the particle on an LCS or reasonably
close to it; the NC method is effective but needs more energy
because the control is always active; the LCS method should
combine the good properties of the former two providing
lower fuel consumption together with a reasonable time of
convergence (by convergence we mean the accomplishment
of the given task, i.e., reaching the target).

III. LCS CALCULATION

The LCS are defined as the ridge of the maximum Finite
Time Lyapunov Exponent (FTLE from now on) [1], [7]. The
FTLE (the maximum is understood) can be calculated as:

σTt0(x) =
1
|T |

ln

∥∥∥∥∥dφt0+Tt0 (x)
dx

∥∥∥∥∥ (5)
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Fig. 3. Steps needed to calculate LCS curves.

where φt+Tt0 (x) is the flow map which maps the particle
from its position x(t0) = x at time t0 to the position
x(t) = φt+Tt0 (x) at time t0 + T . The norm in eq. (5)
is ‖A‖ =

√
λmax(A∗A), where A∗ is the transpose of

the square matrix A and λmax(M) denotes the maximum
eigenvalue of the matrix M .

The FTLE measures the maximum linearized growth rate
(over a duration T ) of the distance between particle trajec-
tories starting near a reference particle trajectory at time
t0. If an (infinitesimal) circular blob of particles is placed
about the reference trajectory at time t0, then after a duration
T = t− t0, the blob will have expanded in some directions
and compressed in others to form an ellipse.

In order to calculate the FTLE field, or spatial distribu-
tion of FTLE, we use the software package MANGEN1.
MANGEN calculates the FTLE from an analytically or data-
defined velocity field. The FTLE field is a scalar function
σTt0(x, y) over a domain of initial conditions in the 2D plane
(i.e., (x, y) ∈ Ω ⊂ R2). The FTLE can be represented as a
surface in 3D space, (x, y, σTt0(x, y)).

Ridges of high σTt0(x) correspond to LCS surfaces [7] of
dimension 1, i.e., LCS curves. In general, for all 2D flows,
including time-chaotic ones, LCS are repelling curves for
T > 0 and attracting curves for T < 0. In our study,
we consider repelling curves because evidence suggests [2]
that repelling curves provide the energy efficient transport
alleyways.

In order to obtain the LCS curve from the FTLE field
we need to extract the ridge from the FTLE. This was
accomplished using a simple x-y scanning procedure. We cut
the FTLE in slices along the x and y direction and we look
for local maxima in these slices. Combining the information
coming from all the slices we are able to reconstruct the LCS
curve. The process of obtaining the LCS curve is summarized
in Fig. 3.

IV. RESULTS

Running numerical simulations we collected data regard-
ing the LCS and NC methods (SA method was of scarce in-
terest) for different values of Uratio in the domain [0.5, 1.5].
We show an example of the three control strategies in Fig. 4.
The results have been summarized in Control Cost vs Time

1http://www.mangen.info

plots (Figs. 5 and 6) where data for same initial condition x0

and varying Uratio were plotted together. The control cost
has been defined as

Control Cost = Umax ·∆t (6)

where ∆t is the total time the control is switched on.
Analyzing the results some conclusions can be drawn.

For small Uratio the NC method does not work because
the velocity field is too strong and the control is not able
to force the particle in the right direction. The NC method
results usually lay on a straight line. For small Uratio

Fig. 4. This figure shows the paths of three vehicles in a double-
gyre flow. The gray one is passively advected by the flow (SA method),
while the orange (LCS method) and white (NC method) vehicles are
attempting to go from a starting point (green triangle) to a target (green
square), by turning on or off an engine capable of producing a speed
comparable to the maximum speed of the flow itself, Umax. Under these
conditions, the white vehicle makes it to the target first, but uses more
than 10 times the fuel of the orange vehicle, which cleverly navigates
using Lagrangian coherent structures (LCS, red features). The non-intuitive
initial behavior of the fuel-efficient orange vehicle is a consequence of
the global properties of the flow. The vehicles are released at the same
time and are shown at an intermediate (top panel) and final time (bot-
tom panel). The full movie of the motion can be found on the web at
www.esm.vt.edu/∼sdross/movies/methods.mov
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Fig. 5. This plot shows Control Cost vs. Time curves for different initial position x0. DT is the dropping time used. For the smaller panels the legend
is the same as Fig. 6

there are some deviations because the control is not always
able to overtake the velocity field. Increasing the Uratio the
trajectory becomes a straight line.

The LCS method stays constant for different value of
Uratio because the majority of time is spent in simple
advection and so changing the control parameter does not
affect the time of convergence or the control cost much. In
some cases the LCS is even faster than the NC but this can
happen only for small Uratio.

Due to the fact the velocity field is a function of space and
time the results obtained for some initial conditions cannot
be generalized. We show different plots for different initial
conditions x0 in order to gain an overall point of view. In
some cases the LCS method is used by dropping the particle
with some time delay in order to optimize the results (by
waiting until an LCS came close to the initial condition). This
is an important point because the LCS act as separatrices of
the motion and if the particle ends up on one side of the LCS
versus another, we may lose the advantage of advection, as
the particle could be advected far from the target region.

Fig. 5 shows that the slope of the Cost vs. Time curves can
be either positive or negative. This depends on the direction
of the velocity field encountered during the motion and then
on the initial condition.

V. CONCLUSIONS
In this work, we show how LCS, providing useful in-

formation about a flow, can help in designing fuel efficient

trajectories. When the amount of control is limited and the
time is not the main constraint, the use of quasi-passive
strategies like the LCS method proposed here can provide
a fuel-optimal trajectory generation strategy. The explicit
incorporation of LCS locations could be used as a more
efficient way to initialize optimal control problems where
the choice of a good first guess can drastically reduce the
optimal control algorithm time.

In the more complex flows which we are currently con-
sidering, there is more than one identifiable LCS. This leads
to the need for advanced tools able to find the fuel-optimal
trajectories by using more than one LCS. Another aspect
to be considered in future work is the possibility of having

Fig. 6. Control Cost vs. Time
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multiple and perhaps moving targets. Further investigation
is also needed to optimize the control action (Umax 6=
constant), to take into account the interactions of the vehicle
with the flow. Finally, for many applications, for instance
aerial transport, it is important to extend these results to flows
in 3D where the LCS then become 2D sheets instead of 1D
curves.
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