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STABLE, LOW-ENERGY PROGRADE
EARTH-MOON CYCLER ORBITS

Shane D. Ross* and Michael Roberts-Tsoukkas†

We present a new class of low-energy, prograde Earth-Moon cycler orbits; natural
periodic trajectories that alternately orbit the Earth and Moon, without requiring
propulsion. Unlike previously studied cycler orbits, these orbits are fully ballis-
tic, prograde, and include stable orbits. Their geometry enables potential use in
space situational awareness, communications, search-and-rescue, and infrastruc-
ture development. A systematic method is introduced to design families of these
cyclers with specified Earth and Moon orbit counts, revealing resonant and highly
maneuverable regimes that offer new opportunities for cislunar mission design.

INTRODUCTION

Earth-Moon cycler orbits, sometimes called lunar cyclers, are trajectories that periodically travel
between Earth and the Moon, providing a regular and efficient means of transportation for space-
craft, supplies, or potentially humans. They are particularly attractive for applications in space
domain awareness (SDA), communications, position-navigation-timing (PNT), and infrastructure
development, especially if deployed in constellations.

Several Earth–Moon cyclers have been developed in the literature, including the Arenstorf cy-
clers,1 the Aldrin cycler,2 and various other families.3–9 To our knowledge, however, the orbits
presented here are the first natural (i.e., ballistic) Earth–Moon cyclers that alternately encircle both
the Earth and the Moon in a prograde, temporary-capture fashion and exhibit stability. Leiva and
Briozzo10, 11 identified a single unstable orbit resembling one of the classes presented here, but did
not identify the continuous families of unstable and stable cyclers we report.

In this work, we present a new class of low-energy, prograde Earth-Moon cycler orbits that are
fully ballistic and, remarkably, include stable families. These orbits alternately encircle the Earth
and the Moon in the rotating frame, repeating this pattern with fixed geometry and period. To our
knowledge, this is the first demonstration of stable, prograde, natural cyclers that exhibit temporary
capture around each primary.

More importantly, we develop a systematic geometric method to construct families of such or-
bits, characterized by the number of synodic circuits about the Earth (k1) and the Moon (k2). These
(k1, k2)-cyclers form a one-parameter family with stable sub-families, each of which can be repre-
sented as a continuous curve in (x,C) space, where x is a perpendicular Earth-Moon line crossing
and C is the Jacobi constant.12

Figure 1 shows representative examples of stable prograde cyclers. Their proximity to chaotic
regions in phase space, demonstrated below, implies high maneuverability, and several exhibit res-
onance with the synodic period of the Moon. For instance, the 45-day period of the (1, 1)-cycler is
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Figure 1: Examples of stable prograde Earth-Moon cyclers, shown in the Earth-Moon rotating
(synodic) frame, in non-dimensional units. One day tick marks are shown. The Earth is near
the origin and the Moon near 1 on the x-axis. Both bodies are shown to scale.

close to the 2:3 resonance with the Sun-Earth synodic period, yielding periodic Sun-Earth-Moon-
spacecraft alignments.

This work builds upon the theoretical foundation of the Global Orbit Structure Theorem by Koon
et al.,13 which proved the existence of unstable periodic orbits near a homoclinic-heteroclinic cycle
connecting the L1 and L2 Lyapunov orbits. While constructive, the theorem did not specify the
size of the neighborhood in which it held, leaving open the possibility of stable orbits beyond its
scope. We revisit a key assumption of the theorem: that the stable and unstable manifold tubes of
the L1 and L2 Lyapunov orbits enclose all trajectories transitioning between the Earth- and Moon-
dominated regions. Our results show that stable cyclers reside within this region, but beyond the
reach of prior unstable constructions.

PLANAR CIRCULAR RESTRICTED THREE-BODY MODEL

The planar circular restricted three-body problem (PCR3BP) is the simplest model that captures
the qualitative features of spacecraft dynamics in cislunar space.14 It describes the motion of a
massless spacecraft in a rotating frame defined by two primary bodies (e.g., Earth and Moon) that
revolve in circular orbits around their barycenter. All motion is confined to the Earth-Moon plane.
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Figure 2: Geometry of the planar circular restricted three-body problem (PCR3BP) in the
non-dimensional co-rotating (x, y) frame, showing Earth (E), Moon (M ), & spacecraft (S/C).
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We adopt normalized units: the Earth-Moon distance (i.e., average semi-major axis am = 384,400
km) is 1, the total mass of the primaries (m1 + m2) is 1, and the orbital period of the Earth and
Moon relative to the inertial barycentric frame (the sidereal period Tm = 27.321661 days) is 2π.
The only system parameter is the mass ratio µ = m2/(m1+m2), for which we use the Earth-Moon
value,

µ = 1.2150584270572× 10−2.

We center the rotating frame at the barycenter, placing Earth and Moon at (−µ, 0) and (1 − µ, 0),
respectively, along the x-axis. The equations of motion for the spacecraft in these units are,

ẍ− 2ẏ = −∂Ū

∂x
= x− (1− µ)

x+ µ

r31
− µ

x− 1 + µ

r32
,

ÿ + 2ẋ = −∂Ū

∂y
= y − (1− µ)

y

r31
− µ

y

r32
,

(1)

where the distances from the spacecraft to Earth and Moon are given by,

r1 =
√
(x+ µ)2 + y2, r2 =

√
(x− 1 + µ)2 + y2,

and the effective potential function is,15

Ū(x, y) = −1
2(x

2 + y2)− 1− µ

r1
− µ

r2
. (2)

A point in the four-dimensional phase space M is denoted by X = (x, y, ẋ, ẏ), or alternatively by
instantaneous (i.e., osculating) geocentric orbital elements X = (a, e, ℓ, g), where a is semi-major
axis, e eccentricity, ℓ mean anomaly, and g the longitude of perigee relative to the rotating x-axis.

Jacobi Constant, Energy Manifolds, and Hill’s Region

The Jacobi integral C is a conserved scalar quantity along any trajectory of the PCR3BP equations
(1),

C(x, y, ẋ, ẏ) ≡ −2Ū(x, y)− (ẋ2 + ẏ2). (3)

We follow the convention in the cislunar astrodynamics community, omitting the additive constant
µ(1− µ) used by some authors to normalize C(L4) = C(L5) = 3.

Each constant-C trajectory lies on a three-dimensional energy surface MC embedded in M,

MC = C−1(C) ≡ {X ∈ M | C(X) = C}. (4)

The projection of this surface onto the configuration space (x, y) defines the Hill’s region,

HC = {(x, y) | x2 + y2 + 2 ((1− µ)/r1 + µ/r2) ≥ C}. (5)

with boundary ∂HC called the zero-velocity curve, where ẋ = ẏ = 0. For natural (i.e., propulsion-
less) trajectories, the spacecraft is restricted to remain within HC .

There are five distinct Hill’s region topologies, depending on C. Our interest is primarily in cases
2 and 3 (see Figure 3). In case 2 (C1 > C > C2), a bottleneck opens at L1, allowing Earth–Moon
transitions. In case 3 (C2 > C > C3), an additional bottleneck opens at L2, permitting transitions
to the exterior realm.
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Figure 3: Four cases of the Hill’s regions HC in the Earth-Moon rotating (synodic) frame,
illustrating changes in admissible motion as the Jacobi constant C varies.

The shaded region outside the Hill’s region is where motion is inadmissible due to the Jacobi
constant constraint, sometimes denoted the forbidden realm. The small oval region on the right is
the Moon realm, consisting largely (but not entirely) of selenocentric orbits (Moon is the dominant
mass). The large near-circular region on the left is the Earth realm surrounding the Earth, consisting
largely of geocentric orbits (Earth is the dominant mass). The region which lies outside the shaded
forbidden region is the exterior realm surrounding the Earth (and Moon), and also largely consists
of geocentric orbits (Earth is the dominant mass).

The values of C which separate these five cases are denoted Ci, i = 1, 2, 3, 4 which are the values
corresponding to the equilibrium points, Ci = C(Li); note C4 = C5. For case 2, where the Jacobi
constant lies between C1 and C2, a bottleneck is open around the Lagrange point L1, and spacecraft
orbits going between the Earth realm and Moon realm are energetically possible. For case 3, the
Hill’s region contains a neck around both L1 and L2 and the spacecraft can transit from the Earth
realm to the exterior realm and vice versa.
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POINCARÉ SURFACES OF SECTION AND CYCLER CLASSIFICATION

To characterize Earth-Moon cyclers, we define four Poincaré sections in the rotating frame,

U−
1 = {(x, ẋ) | y = 0, x < −µ, ẏ(x, ẋ;C) < 0}, in the E realm;

U+
1 = {(x, ẋ) | y = 0, x > −µ, ẏ(x, ẋ;C) > 0}, in the E realm;

U−
2 = {(x, ẋ) | y = 0, x < 1− µ, ẏ(x, ẋ;C) < 0}, in the M realm,

U+
2 = {(x, ẋ) | y = 0, x > 1− µ, ẏ(x, ẋ;C) > 0}, in the M realm,

where ẏ(x, ẋ;C) denotes that ẏ is obtained from the Jacobi constant equation (3). See Figure 4. We
also define U1 = U−

1 ∪ U+
1 and U2 = U−

2 ∪ U+
2 .

Definition of (k1, k2)-Cyclers

We define a periodic (prograde) Earth-Moon cycler by the number of times it crosses the sections
U−
1 and U+

2 during each cycle.

Definition 1. A (k1, k2)-cycler is a periodic solution of (1) that crosses section U−
1 exactly k1 times

and section U+
2 exactly k2 times before repeating. Here, k1, k2 ∈ Z+.

For instance, the trajectories shown in Figure 1 are (k1, 1)-cyclers for k1 = 1, 2, 3. The definitions
of U−

1 and U+
2 ensure that these crossings correspond to prograde motion: U−

1 selects Earth-bound
crossings with ẏ < 0, and U+

2 selects Moon-bound crossings with ẏ > 0.

Forbidden

  Realm

M Realm

E Realm L1 L2

 +-

 +-

Figure 4: Location of the four Poincaré sections in the Earth (E) and Moon (M ) realms.
Arrows indicate the sign of ẏ, i.e., ascending or descending crossing. L1 and L2 are shown for
reference.
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MANIFOLD TUBES

For each Jacobi constant C < C1, there exists a unique planar Lyapunov periodic orbit about
the L1 libration point. This orbit is of saddle type and thus possesses both stable and unstable
two-dimensional invariant manifolds with cylindrical geometry, denoted W s

L1,p.o.
and W u

L1,p.o.
, re-

spectively.

Each of these manifolds has two branches: one extending toward the Earth realm and one toward
the Moon realm. We indicate these using an additional superscript, e.g., W s,E

L1,p.o.
and W s,M

L1,p.o.
.

These manifolds serve as co-dimension-one separatrices within the constant energy surface MC ,
partitioning transit and non-transit trajectories.

As an example, we label by TM,[E] the three-dimensional solid tube of trajectories currently in
the Earth realm that originated in the Moon realm, bounded by the cylindrical surface W u,E

L1,p.o.
. This

unstable manifold surface is therefore the boundary ∂TM,[E].

Trajectories inside these tubes execute transit orbits: either T[E],M ∪ TE,[M ] (Earth-to-Moon) or
their time-reversed counterparts T[M ],E ∪TM,[E] (Moon-to-Earth). Figure 5 illustrates the geometry
of the L1 manifold tubes as projected onto configuration space, up to their first intersection with the
Poincaré sections U−

1 and U+
2 .

Manifold Tube Intersections: Tube Dynamics

To construct Earth-Moon cyclers with a specific number of Earth realm crossings, k1 = 1, we
seek an overlap of the interior of the stable and unstable manifold branches W s,E

L1,p.o.
and W u,E

L1,p.o.
;

i.e., the intersection T[E],M ∩TE,[M ] on the Poincaré section U−
1 . This intersection only exists if the

first cuts of both manifolds on U−
1 overlap; otherwise, only cyclers with k1 ≥ 2 are possible.

L1

 +  +

-

Figure 5: Projection of the L1 periodic orbit manifold tubes onto configuration space, con-
necting the Poincaré sections U−

1 and U+
2 . The energy considered is in the case 3 regime (see

Figure 3).
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Figure 6: Identification of the critical Jacobi constant Cu1
1 for the emergence of k1 = 1

symmetric cyclers. (a) Manifolds do not overlap. (b) Tangency occurs at xu1
1 ≈ −0.768. (c)

For C < Cu1
1 , initial conditions which correspond to Earth-Moon (1, k2)-cyclers, if they exist,

must be within the shaded region, the intersection of the interior of W u,E
L1,p.o.

and W s,E
L1,p.o.

.
Symmetric cyclers will be in the subset Su1

k1
, the thick line along {ẋ = 0}.

As C decreases further below C1, the manifold cross-sectional areas on U1 increase approxi-
mately proportionally to ∆C = C1 − C for small ∆C.16 At a critical Jacobi constant Cu1

1 , the
first cuts become tangent along the symmetry line {ẋ = 0}, at a location denoted xu1

1 . This tan-
gency marks the first possible emergence of symmetric (1, k2)-cyclers. See the sequence near this
tangency in Figure 6. Note that due to the time-reversal symmetry of the equations of motion, the
stable and unstable manifolds appear as symmetric about the line {ẋ = 0}.

For C < Cu1
1 , the shaded intersection region in Figure 6(c) contains initial conditions where

k1 = 1 cyclers are theoretically possible. All initial conditions in this shaded region of the Poincaré
section are such that when numerically integrated backward in time they transit to the M realm, and
when integrated forward in time, they also transit to the M realm.

Symmetric Cyclers

To simplify the analysis, we restrict attention to symmetric cyclers; those with initial conditions
along the line {ẋ = 0}. For general k1, we define the corresponding symmetry-reduced subset of
U1 as Su1

k1
,

Su1
k1

≡ U1 ∩ {ẋ = 0} ∩ int(W
s,E(k1)
L1,p.o.

) ∩ int(W
u,E(k1)
L1,p.o.

), (6)

where W
s,E(n)
L1,p.o.

denotes the n-th cut of the stable manifold with U2, and W
u,E(n)
L1,p.o.

denotes the n-th
cut of the unstable manifold with U2. Note that Su1

k1
could be disconnected set.

Even for C > Cu1
1 , such intersections may still exist, but only after several revolutions (k1 ≥ 2)

around the Earth. We compute the Jacobi constant Cu1
k1

and intersection point xu1
k1

for up to three
U−
1 crossings, tabulated in Table 1.

A parallel construction applies for the Moon side, using the M -branches of the L1 manifold tubes
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Table 1: Jacobi constants and x-locations where cyclers with k1 crossings of the U−
1 Poincaré

section.
k1 Cu1

k1
xu1

k1

1 3.151763728314920 −0.767856324800
2 3.129751730201047 0.723754610150
3 3.188341092440989 −0.332153924455

and the Poincaré section U2. We define the Moon-side symmetry-reduced region for k2 crossings
as,

Su2
k2

≡ U2 ∩ {ẋ = 0} ∩ int(W
s,M(k2)
L1,p.o.

) ∩ int(W
u,M(k2)
L1,p.o.

), (7)

where W
s,M(n)
L1,p.o.

denotes the n-th cut of the stable manifold with U2, etc. The corresponding values
of (Cu2

k2
, xu2

k2
) are given in Table 2.

For categorization, we count the number of crossings of U−
1 . But for symmetric cyclers, the Earth

realm perpendicular crossings can occur on either U−
1 or U+

1 . Similarly, we count the number of
crossings of U+

2 , but the Moon realm perpendicular crossings can occur on either U−
2 or U+

2 . In
Broucke (1968)’s symmetric orbit classification,12 the orbits we identify correspond to classes 2, 3,
or 5, depending on their crossings.

Table 2: Jacobi constants and x-locations for symmetric cyclers with k2 crossings of the U+
2

Poincaré section.
k2 Cu2

k2
xu2

k2

1 3.1833333078762 1.0016252150
2 3.1840565764573 0.8611415325
3 3.1845534633380 1.0110341410

Interestingly, while Cu2
k2

increases monotonically with k2, the Earth-side bounds Cu1
k1

are not
monotonic.

GENERATING SYMMETRIC PERIODIC EARTH-MOON CYCLERS

The value Cu1
k1

is where the L1 Lyapunov orbit’s stable and unstable manifolds—Earth realm
branch—first intersect along the section U1, tangential to the line {ẋ = 0} (see Figure 6b). Simi-
larly, Cu2

k2
is the corresponding intersection value for the Moon realm branch along section U2.

For a given (k1, k2), the theoretical upper bound Jacobi constant for a symmetric (k1, k2)-cycler
is,

C(k1,k2) ≡ min
{
Cu1
k1
, Cu2

k2

}
. (8)

For C < C(k1,k2), we take the set Su1
k1

⊂ U1 and flow it forward under the PCR3BP dynamics
until it intersects Su2

k2
⊂ U2. Let this map be denoted P . The set

Γu2 ≡ P (Su1
k1
) ∩ Su2

k2

will be at most a discrete set of points, which correspond to initial conditions along symmetric
(k1, k2)-cyclers. Each such point is flowed back to U1 to define Γu1 = P−1(Γu2). Given the
numerical discretization of Γu1 , we apply differential correction to refine approximate initial condi-
tions into a true cycler periodic orbit; one that closes within a specified tolerance.
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Differential Correction (Fixed Jacobi Constant)

Let xg0 ∈ Γu1 be an initial guess. To satisfy the fixed Jacobi constant C, we determine ẏg0 from,

C(xg0, 0, 0, ẏ
g
0) = C. (9)

By the implicit function theorem, we will refer to ẏg0 as a function of xg0 and C, denoted ẏg0(x
g
0, C).

We exploit the time-reversal symmetry about the x-axis,

sx : (x, y, ẋ, ẏ, t) → (x,−y,−ẋ, ẏ,−t), (10)

to ensure periodicity. Because cyclers are symmetric, their midpoint also lies on the x-axis with
ẋ = 0.

Starting from t = 0, we integrate our initial guess forward to the first crossing of the neighbor-
hood of Su2

k2
at time t1. To ensure symmetry, we require a perpendicular x-axis crossing,

y(t1) = 0, ẋ(t1) = 0. (11)

This reduces the boundary-value problem to a single unknown, x0. We apply Newton–Raphson
iterations to correct x0, updating ẏ0 to maintain C, until |ẋ(t1)| < ε for a small tolerance ε ≪ 1.

The differential correction loop is as follows.17

1. Integrate to half-period. From the current (suppose the n-th) guess (xg0(n), 0, 0, ẏ
g
0(n)),

integrate both the trajectory and state transition matrix Φ(t1, 0) to the first intersection with
the neighborhood of Su2

k2
. Record the crossing t1, state at crossing (x1, y1, ẋ1, ẏ1), and matrix

Φ(t1, 0), with entries Φij .

2. Check symmetry. If |ẋ1| < ε, stop.

3. Compute correction. From differential correction15 and the constraint to keep the Jacobi
integral (3) constant, compute the update δx0 needed to remove ẋ1,

δx0 = ẋ1

(
ẏ1

ẍ1 Φ21

)[
1− Φ24

Φ21

1

ẏg0(n)

∂Ū

∂x
(0)− ẏ1

ẍ1

1

Φ21

(
Φ31 − Φ34

1

ẏg0(n)

∂Ū

∂x
(0)

)]−1

, (12)

where ẍ1 is computed via the equations of motion (1), and ∂Ū/∂x(0) is evaluated at the
initial location.

4. Update guess. Apply the correction and re-enforce the Jacobi constant, to obtain the (n+1)-
th guess from the n-th guess,

xg0(n+ 1) = xg0(n) + δx0, ẏg0(n+ 1) = ±
√

− 2 Ū
(
xg0(n+ 1), 0

)
− C .

Here the sign in ẏg0(n+ 1) is chosen appropriate for Su2
k2

. Return to Step 1.

With ε = 10−8 (about 10−5 m/s), convergence is typically reached within n = 5 iterations, and we
then have a periodic cycler orbit of period T = 2t1 with initial x-value x0 along the x-axis with the
targeted Jacobi constant C.
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Stability of Cycler Periodic Orbits

Stability is determined by the monodromy matrix, M = Φ(T, 0), the state transition matrix after
one period. Since this is a symmetric orbit, we can obtain M from the last calculated state transition
matrix for the half-period, Φ(T/2, 0), from the algorithm above, since t1 = T/2. This is more
efficient and reduces errors due to numerical integration. As a property of state transition matrices,
we have,

M = Φ(T, 0) = Φ(T, T/2)Φ(T/2, 0), (13)

where, using a result from Barden (1994)18 for symmetric periodic orbits*, we have,

Φ(T, T/2) = GΦ(T/2, 0)−1G, (14)

where G = diag(1,−1,−1, 1) encodes the sx symmetry (10).

Since the PCR3BP is a Hamiltonian system, M has a double eigenvalue 1, and determinant of 1,
and the stability is determined by the remaining two eigenvalues,15, 20 which have the form λ and
1/λ. We measure stability with the stability parameter21, 22 which we define as,

ν = 1
2(λ+ 1/λ). (15)

The orbit is linearly stable if |ν| < 1, and unstable otherwise. We note that when ν ≤ −1 or ν ≥ 1,
both λ and 1/λ are real, and when −1 < ν < 1, λ and 1/λ = λ̄ are complex conjugates on the unit
circle.

Generating Cycler Families via Continuation

When one periodic orbit is found on a given energy manifold MC , the theory of Hamiltonian
systems guarantees the existence of a continuous one-parameter family of periodic orbits nearby.15

Let (x(0), C(0)) denote the initial solution in a cycler family, parameterized by an arc-length
variable s. Then the full family F(k1, k2) can be represented as a parametric curve in (x,C) space,

F(k1, k2) ≡ {(x(s), C(s)) | s ∈ [smin, smax]} . (16)

To compute the one-parameter family of (k1, k2)-cycler orbits, we apply pseudo arc-length con-
tinuation23, 24 in combination with the differential correction method described above. This ap-
proach allows us to systematically trace the family of symmetric (k1, k2)-cyclers while simultane-
ously monitoring their stability.

Note that the endpoints of the family, smin and smax, may correspond to physically inadmissible
solutions, such as orbits that collide with the Moon’s surface. We take the Moon’s radius to be
Rm = 1,740 km.

COMPUTED CYCLER FAMILIES

Using the procedures described above, we compute symmetric (k1, k2)-cycler families for several
combinations of k1 and k2, as shown in Table 3. For each family, we report several values of the
Jacobi constant, beginning with the theoretical upper bound C(k1,k2) from (8). The value Cmax

(k1,k2)
denotes the maximum Jacobi constant at which the cycler family first emerges; by construction,
Cmax
(k1,k2)

< C(k1,k2). Additionally, C(k1,k2) is bounded above by C1, so C(k1,k2) < C1. The midpoint

*Based on an earlier result of Yakubovich and Starzhinskii (1975)19
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Table 3: Earth-Moon prograde (k1, k2)-cycler periodic orbits.
k1 k2 C(k1,k2) Cmax

(k1,k2)
Cs

(k1,k2)
T stable
(k1,k2)

∆pm (km)

1 1 3.1517637283600 3.151175879916394 3.151175879508174 10.29206921007976 0.13
2 1 3.1297495000000 3.129389531092325 3.129389531088256 19.44043166795154 4.23
3 1 3.1833333078762 3.161796247265416 3.161784147013429 14.78849241668140 253.70
3 2 3.1840565764573 3.182762785398336 3.182762663084288 17.90058010350006 42.08
3 3 3.1845534633380 3.183379082936385 3.177224018696528 18.14546057589189 2041.34

of the largest stable sub-family—where the stability parameter ν = 0 (corresponding to λ = ±i)—
is denoted Cstable

(k1,k2)
and satisfies Cstable

(k1,k2)
< Cmax

(k1,k2)
. The associated period of this representative

stable orbit is T stable
(k1,k2)

, and the ‘size’ of the largest stable subfamily is given by the range of perilune
distances, ∆pm, in kilometers (using the length scale am = 384,400 km). The basin of stability for
each periodic orbit can be approximated by the width, in perilune altitude, of the largest surrounding
resonant torus. However, this quantity is reported only for the (3,1)-cyclers.

(1,1)-Cyclers

The stable sub-family of (1, 1)-cyclers is extremely narrow, with a perilune width of only about
0.1 km. Notably, the midpoint of this stable sub-family (illustrated in Figure 1) has a period T stable

(1,1)
of 44.7538 days. This is within 1% of the 2:3 Earth–Moon synodic resonance, where the synodic
period of the Moon (full moon to full moon) is 29.530588 days. Such near-commensurability
implies a nearly repeating Earth–Moon geometry, which may be advantageous for certain mission
architectures.

(2,1)-Cyclers

The stable sub-family of (2, 1)-cyclers is slightly wider than that of the (1, 1)-cyclers, though still
relatively narrow. A representative orbit is shown in Figure 7, depicted in both the rotating frame,
where it appears as a closed loop, and the Earth-centered inertial frame, where it does not. This is
because the stable period T stable

(2,1) is not an integer multiple of 2π, but approximately 3.09× 2π.

a b

Figure 7: The stable (2,1)-cycler seen (a) in the rotating frame and (b) in the inertial frame.
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Figure 8: (a) The family of (3,1)-cyclers parameterized by perilune distance. Notice there is a
stable window between perilune distances of about 750 km to 1000 km. All orbits look like the
inset, which is the same as in Figure 1. (b) A zoom-in on the stable window is shown, as well as
local Poincaré sections on U2 for a sampling of orbits, showing the surrounding resonant tori,
with an estimate (in km) of the size of the ‘basin of stability’ given by the width of the largest
torus, beyond which is a chaotic region. Two bifurcations are labeled at the points where the
family enters the stable window. More bifurcations are visible in the Poincaré sections.

(3,1)-Cyclers

Figure 8 illustrates the stability characteristics of the (3,1)-cycler family, parameterized by per-
ilune altitude, from 0 km (lunar surface) to over 15,000 km. Panel (a) reveals a prominent stability
window spanning perilune altitudes from approximately 750 km to 1,000 km. Within this interval,
the cycler orbits exhibit a consistent spatial structure, represented by the trajectory shown in the
inset, also featured in Figure 1.

Panel (b) provides a detailed view of the stable window, including local Poincaré sections on the
U2 surface (near the Moon) for several representative cyclers. These sections display well-defined
resonant tori that enclose the stable periodic orbits. The numerical values beneath each Poincaré
inset plot indicate the estimated width (in km) of the corresponding basin of stability, defined as the
largest torus extent before the onset of chaotic motion. The bottom left Poincaré section reveals that
even when the orbit in question is outside the window of stability, and thus linearly unstable, it may
have global stability properties, such as being surrounded by a stable torus.

Two primary bifurcation points are marked, delineating the entry and exit of the family into the
stable window. Additional bifurcations, indicative of further subtle dynamical transitions within
the stable window, are also discernible in the provided Poincaré sections. Notably, several of these
correspond to classical branching ratios of 1/4 and 1/2, as described by Greene’s criterion for the
breakup of invariant tori.25
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Table 4: Earth-Moon prograde (k1, 1)-cycler periodic orbits.

k1 ∆C(k1,1) ∆Cmax
(k1,1)

∆Cstable
(k1,1)

T stable
(k1,1)

(TU) T stable
(k1,1)

(days) ∆pm (km)

1 3.657738e-02 5.878484e-04 4.082197e-10 10.292069 44.753800 0.13
2 5.859161e-02 3.599689e-04 4.069189e-12 19.440432 84.534335 4.23
3 1.272710e-02 1.381776e-02 1.210025e-05 14.788492 64.305944 253.70

(k1,1)-Cyclers

A summary of the parameters for the Earth-Moon (k1, 1)-cyclers is provided in Table 4. These
cyclers, described above, are also shown in Figure 1. The following positive quantities are defined
for convenience,

∆C(k1,1) ≡ C1 − C(k1,1), ∆Cmax
(k1,1)

≡ C(k1,1) − Cmax
(k1,1)

, ∆Cstable
(k1,1)

≡ Cmax
(k1,1)

− Cstable
(k1,1)

. (17)

All (k1, 1)-cyclers necessarily have Jacobi constants less than C1 = 3.188341105401253. In fact,
for the examples presented here, they also satisfy C(k1,1) < C2 = 3.172160450399808, but remain
greater than C3. This places them within the energy regime where escape from the Earth-Moon
system is energetically possible, corresponding to Case 3 in Figure 3.

(3,2)-Cyclers

The (3,2)-cycler family features two distinct windows of stability. The larger of these spans
approximately 40 km in perilune altitude, as shown in Figure 9. Panel (a) illustrates the variation
of the stability parameter across the family, marking the stable regions, while panel (b) shows a
representative orbit from the broader stable window. Interestingly, the period of these stable orbits
closely matches the 2:5 Earth-Moon synodic resonance. In fact, this resonance is satisfied exactly by
two nearby unstable family members, which exhibit stability indices on the order of 10 to 100. This
family is also notable in that a member orbit was previously identified by Leiva and Brizzolara,11

who demonstrated that a perturbed version of the orbit persists even under solar perturbation.

a b

Figure 9: The (3,2)-cycler family, showing (a) stability parameter vs. perilune altitude and (b)
a representative orbit from a stable sub-family, shown in the rotating frame in units of km.
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Figure 10: (a) The family of (3,3)-cyclers parameterized by perilune distance and Jacobi con-
stant. Notice there are five stable windows. All orbits look very similar to the bottom right
inset. (b) Another representation of the family in terms of the initial x condition and Jacobi
constant. The non-dimensional x0 value corresponds to perigee, and is along U−

1 .

(3,3)-Cyclers

The (3,3)-cycler family exhibits five distinct stability windows. The largest of these spans per-
ilune altitudes from approximately 4,200 km to 6,200 km, as shown in Figure 10(a), which corre-
spond to perigee altitudes of about 112,400 km to 113,500 km (about 3× the distance of geosyn-
chronous orbit). The family terminates at both ends in collision with the lunar surface. Two smaller
stable windows appear near Cmax

(3,3), and highlighted in insets. In fact, for all (k1, k2)-cycler families
examined, we observe a stable region near Cmax

(k1,k2)
, likely due to the generic bifurcation structure

that gives rise to such periodic orbits.26

CONCLUSION

We have presented a new class of fully ballistic, prograde Earth-Moon cycler orbits that repeat-
edly encircle both the Earth and Moon with episodes of temporary capture. These orbits form
discrete families parameterized by the number of circuits around each body in the rotating frame
and include large, previously unreported stable subfamilies.

A key contribution is not only their discovery, but also the development of a systematic geo-
metric construction method—based on intersecting tubes of transit orbits—to initialize differential
correction and continuation, a step not previously demonstrated for Earth-Moon cyclers.

We explored several, but certainly not all, (k1, k2)-cycler families, identifying stable subfamilies
with far-side perilune altitudes ranging from 750 km to over 6,000 km. For these stable orbits, we
demonstrated that their basins of stability can be approximated by the perilune width of the largest
surrounding resonant torus. Anecdotally, we find that the basin width is comparable to the width of
the stable subfamily itself, a relationship we intend to investigate further.

Our results reveal multiple families of periodic orbits exhibiting distinct windows of linear sta-
bility, intricate resonance structures, and rich bifurcation behavior. Notably, stable cyclers near
synodic resonance conditions such as 2:3 and 2:5 synodic ratios—as seen in the (1,1) and (3,2)
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families, respectively—highlighting their potential for repeatable Sun-Earth-Moon geometries in
mission design. Furthermore, there is evidence that these orbits will persist under common pertur-
bations. The (3,3)-cycler families feature five distinct stable windows, including the largest stable
subfamily identified, with a perilune width exceeding 2,000 km, making them especially promising
for robust operational use.

Because these cycler orbits lie near or within large chaotic zones in phase space, the domain of
low-energy cislunar orbits,27, 28 they offer enhanced maneuverability (to reach other regions of cis-
lunar space) with relatively small control inputs, making them attractive for agile mission concepts.

Given their wide range over cislunar space, these cycler orbits open new avenues for cislunar
mission architectures, including constellations for cislunar space domain awareness, search-and-
rescue, repeatable lunar proximity operations, navigation infrastructure, and communication relays.

Future work will extend these results to non-symmetric cyclers, three-dimensional orbit families,
and models that include perturbations such as lunar eccentricity and solar gravity. Low-energy
cycler development will extend to the exterior realm, meaning up to the edge of the Earth’s sphere
of influence, with relevance for other mission concepts such as asteroid capture.29 Applications in
spacecraft deployment, transfer planning, and long-term monitoring strategies are also anticipated,
particularly those requiring agile, low-energy maneuvering. As a whole, low-energy cycler families
offer a new dynamical foundation for mission architectures in the emerging cislunar space economy.
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