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Several studies of new methods for space mission trajectory design have shown that low fuel consumption
(measured as low ∆V ’s) can be achieved at the expense of a long time of flight by taking advantage of
N -body effects and repeated gravity assists1,4,8,11,13. The trajectories for the Hiten2,3 and SMART-11,14

missions to the Moon are examples of missions constructed using these nonlinear astrodynamic effects.
The flight time required for some low ∆V missions can be prohibitively long. In the present study, we

seek insight into the trade-off between ∆V and flight time for an example problem. We study trajectories
from an Earth orbit to the Moon using the planar, circular, restricted three-body model. Our goal is to use
as much knowledge of the phase space structure as possible and compare results with two key earlier studies.

Bollt and Meiss5 considered the transfer from a circular Earth orbit of radius 59669 km to a quasi-
periodically precessing ellipse around the moon, with a perilune of 13970 km. Their method takes advantage
of the fact that long trajectories in a compact phase space are recurrent. Starting with a long unperturbed
chaotic trajectory that eventually reaches the target, they use small well chosen ∆V ’s to cut recurrent loops
from the trajectory. They find a transfer (see Figure 1(a)) that achieves ballistic capture requiring 749.6
m/s, 38% less total velocity boost than a comparable “patched-conics” Hohmann transfer, but requiring a
transfer time of 748 days. Schroer and Ott15 considered this problem with the same initial and final orbits,
but found a transfer requiring only 377.5 days, and using roughly the same total ∆V , 748.9 m/s.
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Figure 1: Trade-off between fuel and time optimization. (a) The transfer from a circular earth orbit of radius 59669

km to precessing lunar orbit of perilune 13970 km found by Bollt and Meiss5 is shown in the rotating frame. The ∆V is 749.6

m/s and the time of flight is 748 days. (b) A transfer between the same initial and final orbits, using a ∆V of 860.1 m/s, but

requiring a flight time of 65 days. (c) The ∆V vs. time of flight plot for several “chaotic” trajectories to the moon, compared

with the Hohmann transfer designed using a “patched-conics” approach. As can be seen, a trajectory of one-fifth to one-tenth

of the flight-time of some previous fuel optimized trajectories can be achieved using only about 100 m/s more ∆V .
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Using the method of Ref. 15, together with methods for achieving ballistic capture9,10, we find a set of
transfers for which we plot the ∆V vs. the time of flight in Figure 1(c). Figure 1(b) shows an example
trajectory with a flight time of 65 days and a total ∆V of 860.1 m/s. This transfer takes one-tenth of the
time as the transfer obtained in Ref. 5 using only slightly more fuel.

This method of determining the ∆V vs. time of flight trade-off has been applied to only one three-body
system thus far. As a continuation of this work, we will adapt the method to missions in N -body systems
(N ≥ 4) systems, such as a mission to orbit multiple moons of Jupiter8,11, e.g., the recently proposed Jupiter
Icy Moons Orbiter7. The development of sophisticated control technology for this mission would not only
make it possible to consider a realistic mission for orbiting three of Jupiter’s planet-size moons – Callisto,
Ganymede and Europa – one after the other, it would also reduce fuel costs compared to the previously
proposed Europa Orbiter mission12,17. Furthermore, the rest of the outer solar system could be opened up
to detailed exploration in later missions using this approach6.

A transfer of this type is sensitive to thruster maneuver implementation errors and perturbations due
to unmodeled dynamics, thus autonomous navigation and control capability may be necessary. The first
step toward the design of robust missions is the trajectory correction maneuver problem, in which errors are
modeled and an optimal control algorithm corrects for those errors16. We will incorporate this method in a
future study, providing a computational design tool to make low ∆V trajectories more feasible for missions.
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