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Experimental validation of phase space conduits of transition between potential wells
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A phase space boundary between transition and nontransition trajectories, similar to those observed in
Hamiltonian systems with rank-1 saddles, is verified experimentally in a macroscopic system. We present a
validation of the phase space flux across rank-1 saddles connecting adjacent potential wells, and we confirm
the underlying phase space conduits that mediate the transition. Experimental regions of transition are found to
agree with the theory to within 1%, suggesting the robustness of phase space conduits of transition in a broad
array of two or more degrees of freedom experimental systems, despite the presence of small dissipation.
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I. INTRODUCTION

Prediction of transition events and the determination of
governing criteria has significance in many physical, chem-
ical, and engineering systems where rank-1 saddles are
present. Some examples of such systems include ionization
of a hydrogen atom under an electromagnetic field in atomic
physics [1], transport of defects in solid-state and semiconduc-
tor physics [2], isomerization of clusters [3], reaction rates in
chemical physics [4,5], buckling modes in structural mechan-
ics [6,7], ship motion and capsize [8–10], escape and recap-
ture of comets and asteroids in celestial mechanics [11–13],
and escape into inflation or recollapse to singularity in cos-
mology [14]. The theoretical criteria of transition and its
agreement with laboratory experiment have been shown for
one degree-of-freedom (DOF) systems [15–17]. Detailed ex-
perimental validation of the geometrical framework for pre-
dicting transition in higher dimensional phase space (�4,
that is, for two or more DOF systems) is still lacking. The
geometric framework of phase space conduits in such sys-
tems, termed tube dynamics [11,12,18,19], has not been
demonstrated in a laboratory experiment. It is noted that
similar notions of transition were developed for idealized
microscopic systems, particularly chemical reactions [1,20–
22] under the terms of transition state and reactive island
theory. However, investigations of the predicted phase space
conduits of transition between wells in a multiwell system
have stayed within the confines of numerical simulations. In
this paper, we present a direct experimental validation of the
accuracy of the phase space conduits, as well as the transition
fraction obtained as a function of energy, in a four dimensional
phase space using a controlled laboratory experiment of a
macroscopic system.

In [23–25], experimental validation of global characteris-
tics of one DOF Hamiltonian dynamics of scalar transport has
been accomplished using direct measurement of the Poincaré
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stroboscopic sections using dye visualization of the fluid flow.
In [23,24], the experimental and computational results of
chaotic mixing were compared by measuring the observed
and simulated distribution of particles, thus confirming the
theory of chaotic transport in Hamiltonian systems for such
systems. Our objective is to validate theoretical predictions
of transition between potential wells in an exemplar exper-
imental 2 DOF system, where qualitatively different global
dynamics can occur. Our setup consists of a mass rolling
on a multiwell surface that is representative of potential
energy underlying systems that exhibit transition and escape
behavior. The archetypal potential energy surface chosen has
implications in transition, escape, and recapture phenomena
in many of the aforementioned physical systems. In some of
these systems, transition in the conservative case has been
understood in terms of trajectories of a given energy crossing
a hypersurface or transition state (bounded by a normally
hyperbolic invariant manifold of geometry S2N−3 in N DOF).
In this paper, for N = 2, trajectories pass inside a tubelike
separatrix, which has the advantage of accommodating the
inclusion of nonconservative forces such as stochasticity and
damping [7,10]. The semianalytical geometry-based approach
for identifying transition trajectories has also been considered
for periodically forced 2 DOF systems in [26,27]. Our analyti-
cal approach here focuses on identifying separatrices from the
unforced dynamics, and it generalizes to higher-dimensional
phase space [5,28]. Based on the illustrative nature of our
laboratory experiment of a 2 DOF mechanical system, and the
generality of the framework to higher degrees of freedom [19],
we envision that the geometric approach demonstrated here
can apply to experiments regarding transition across rank-1
saddles in three or more DOF systems in many physical
contexts.

II. SEPARATRICES in N DOF

To begin the mathematical description of the invariant
manifolds that partition the 2N -dimensional phase space, we
perform a linear transformation of the underlying conservative
Hamiltonian. This transformation involves a translation of the
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saddle equilibrium point to the origin and a linear change of
coordinates that uses the eigenvectors of the linear system.
The resulting Hamiltonian near the saddle has the quadratic
(normal) form

H2(q1, p1, . . . , qN , pN ) = λq1p1 +
N∑

k=2

ωk

2

(
q2

k + p2
k

)
, (1)

where N is the number of degrees of freedom, λ is the real
eigenvalue corresponding to the saddle coordinates (reactive
coordinates for chemical reactions) spanned by (q1, p1), and
ωk are the frequencies associated with the center coordinates
(bath coordinates for chemical reactions) spanned by the pair
(qk, pk ) for k ∈ 2, . . . , N .

Next, by fixing the energy level to h ∈ R+ and constant
c ∈ R+, we can define a codimension-1 region R ⊂ R2N in
the full phase space by the conditions

H2(q1, p2, . . . , qN , pN ) = h and |p1 − q1| ≤ c. (2)

This implies that R is homeomorphic to the product of a
(2N − 2) sphere and an interval I , that is, R ∼= S2N−2 × I ,
where the S2N−2 is given by

λ

4
(q1 + p1)2 +

N∑
k=2

ωk

2

(
q2

k + p2
k

) = h + λ

4
(p1 − q1)2. (3)

The sphere of R at the middle of the equilibrium region,
where p1 − q1 = 0

N 2N−2
h =

{
(q, p)|λp2

1 +
N∑

k=2

ωk

2

(
q2

k + p2
k

) = h

}
, (4)

corresponds to the transition state in chemical reactions (and
other systems with similar Hamiltonian structure [7,10,11]).

The following phase space structures and their geometry
are relevant for understanding transition across the saddle.

A. NHIM

The point q1 = p1 = 0 in the saddle projection corre-
sponds to an invariant (2N − 3) sphere, M2N−3

h , of periodic

and quasiperiodic orbits in R, and is given by

N∑
k=2

ωk

2

(
q2

k + p2
k

) = h, q1 = p1 = 0. (5)

This is known as the normally hyperbolic invariant manifold
(NHIM), which has the property that the manifold has a
“saddlelike” stability in directions transverse to the mani-
fold, and initial conditions on this surface evolve on it for
t → ±∞. The role of unstable periodic orbits in the four-
dimensional phase space (or more generally the NHIM in the
2N -dimensional phase space) in transition between potential
wells is acting as an anchor for constructing the separatrices
of transit and nontransit trajectories.

B. Separatrix

The four half-open segments on the axes, q1p1 = 0, corre-
spond to four high-dimensional cylinders of orbits asymptotic
to this invariant S2N−3 either as time increases (p1 = 0) or
as time decreases (q1 = 0). These are called asymptotic orbits
and they form the stable and the unstable invariant manifolds
of S2N−3. The stable manifolds, W s

±(S2N−3), are given by

N∑
k=2

ωk

2

(
q2

k + p2
k

) = h, q1 = 0, (6)

where ± denotes the left and right branches of the stable
manifold attached to the NHIM. Similarly, unstable manifolds
are constructed and are shown in the saddle space in Fig. 1 as
four orbits labeled M . These form the “spherical cylinders” of
orbits asymptotic to the invariant (2N − 3) sphere. Topolog-
ically, both invariant manifolds have the structure of (2N −
2)-dimensional “tubes” (S2N−3 × R) inside the (2N − 1)-
dimensional energy surface. Thus, they separate two distinct
types of motion: transit and nontransit trajectories. While a
transition trajectory, passing from one region to another, lies
inside the (2N − 2)-dimensional manifold, the nontransition
trajectories, bouncing back to their current region of motion,
are those outside the manifold.

For a value of the energy just above that of the saddle,
the nonlinear motion in the equilibrium region R is quali-
tatively the same as the linearized picture above [5,29,30].

FIG. 1. The flow in the region R can be separated into saddle × center × · · · × center. On the left, the saddle projection is shown on the
(q1, p1) plane. The NHIM (black dot at the origin), the asymptotic orbits on the stable and unstable manifolds (M), two transition trajectories
(T ), and two nontransition trajectories (NT).
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For example, the NHIM for the nonlinear system, which
corresponds to the (2N − 3) sphere in (5) for the linearized
system, is given by

M2N−3
h =

{
(q, p)|

N∑
k=2

ωk

2

(
q2

k + p2
k

)

+ f (q2, p2, . . . , qn, pn) = h, q1 = p1 = 0

}
,

(7)

where f is at least of third order. Here, (q2, p2, . . . , qN , pN )
are normal form coordinates and are related to the linearized
coordinates via a near-identity transformation. In the neigh-
borhood of the equilibrium point, since the higher-order terms
in f are negligible compared to the second-order terms, the
(2N − 3) sphere for the linear problem is a deformed sphere
for the nonlinear problem. Moreover, since the NHIMs persist
for higher energies, this deformed sphere M2N−3

h still has
stable and unstable invariant manifolds that are given by

WS
±
(
M2N−3

h

) =
{

(q, p)|
N∑

k=2

ωk

2

(
q2

k + p2
k

)

+ f (q2, p2, . . . , qn, pn) = h, q1 = 0

}
,

Wu
±
(
M2N−3

h

) =
{

(q, p)|
N∑

k=2

ωk

2

(
q2

k + p2
k

)

+ f (q2, p2, . . . , qn, pn) = h, p1 = 0

}
.

(8)

This geometric insight is useful for developing numerical
methods for globalization of the invariant manifolds using
numerical continuation [31].

Now, we briefly describe the techniques that can be used
to quantify and visualize the high-dimensional invariant man-
ifolds. For positive value of excess energy, one can use a
normal form computation to obtain higher-order terms of (7)
and (8). A brief overview of this approach is given in [32]
along with applications and results obtained using the com-
putational tool for the Hamiltonian normal form. Another
approach is to sample points on these manifolds since the
geometry of the manifold is known near the equilibrium point.
One would start by taking Poincaré sections and using normal
form theory that involves high-order expansions around a
saddle × center · · · × center equilibrium. For example, in 3
DOF, the NHIM has topology S3 and thus a tube cross section
on a 4D Poincaré section will have topology S3 for which it is
possible to obtain an inside and outside. If x = const defines
the Poincaré section, then one can project the S3 structure to
two transverse planes, (y, py ) and (z, pz). On each plane, the
projection appears as a disk, but because of the S3 topology,
any point in the (z, pz) projection corresponds to a topological
circle in the (y, py ) (and vice versa), and from this one can
determine which initial conditions are inside, and thus transit
trajectories, as has been performed previously [28,33].

(a) (b)

(c)

FIG. 2. (a) A typical experimental trajectory, shown in white, on
the potential energy surface where the contours denote isoheights of
the surface. This instance of the trajectory was traced by the ball
released from rest, marked by a red cross. Parts (b) and (c) show
the energetically accessible region projected on the configuration
space in white for �E < 0: �E = −100 (cm/s)2 and �E > 0:
�E = 100 (cm/s)2, respectively.

III. MODEL OF THE 2 DOF EXPERIMENTAL SYSTEM

The initial mathematical model of the transition behavior
of a rolling ball on the surface, H (x, y), shown in Fig. 5(b),
is described in [34]. The equations of motion are obtained
from the Hamiltonian, H(x, y, px, py ) = T (x, y, px, py ) +
V (x, y), where mass factors out and where the kinetic energy
(translational and rotational for a ball rolling without slipping)
is

T = 5

14

(
1 + H 2

y

)
p2

x + (
1 + H 2

x

)
p2

y − 2HxHypxpy

1 + H 2
x + H 2

y

, (9)

where H(·) = ∂H
∂ (·) . The potential energy is V (x, y) =

gH (x, y), where g = 981 cm/s2 is the gravitational accelera-
tion, and the height function is

H = α(x2 + y2) − β(
√

x2 + γ +
√

y2 + γ ) − ξxy + H0.

(10)

This is the analytical function for the machined sur-
face shown in Fig. 5(b) and the isoheights shown
in Fig. 2(a). We use parameter values (α, β, γ, ξ,H0) =
(0.07, 1.017, 15.103, 0.006 56, 12.065) in the appropriate
units [31].

Let M(E) be the energy manifold in the 4D phase
space given by setting the total energy equal to a constant,
E, i.e., M(E) = {(x, y, px, py ) ⊂ R4 | H(x, y, px, py ) =
E}. The projection of the energy manifold onto the (x, y)
configuration space is the region of energetically possible
motion for a mass with energy E, and is given by M (E) =
{(x, y) | V (x, y) � E}. The boundary of M (E) is the zero
velocity curve and is defined as the locus of points in the (x, y)
plane where the kinetic energy is zero. The mass is only able
to move on the side of the curve where the kinetic energy is
positive, shown as white regions in Figs. 2(b) and 2(c). The
critical energy for transition, Ee, is the energy of the rank-1
saddle points in each bottleneck, which are all equal. This
energy divides the global behavior of the mass into two cases,
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transition tube from quadrant 1 to 2 periodic orbit for excess energy, ΔE
(a)

(b) W s
1−2,U1

FIG. 3. (a) For a fixed excess energy, �E, above the critical
value Ee, the permissible regions (in white) are connected by a
bottleneck around the saddle equilibria. All motion from the well in
quadrant 1 to quadrant 2 must occur through the interior of a stable
manifold associated with an unstable periodic orbit in the bottleneck
between the quadrants, seen as a 2D configuration space projection of
the 3D energy manifold. We show the stable manifold (cyan) and the
periodic orbit (black) for an excess energy of �E = 100 (cm/s)2.
A trajectory crossing the U−

1 section inside the stable manifold will
transition (red) into the quadrant 2 well, while one that is outside
(blue) stays inside quadrant 1. The zoomed-in inset in the figure
shows the structure of the manifold and how precisely the separatrix
divides transition and nontransition trajectories. (b) In the (x, y, vy )
projection, the phase space conduit for imminent transition from
quadrant 1 to 2 is the stable manifold (cyan) of geometry R1 × S1

(i.e., a cylinder). The same example trajectories (red and blue) as in
(a) that exhibit transition and nontransition behavior starting inside
and outside the stable manifold, respectively, are shown in the 3D
projection and projected on the (x, y) configuration space. A movie
of a nested sequence of these manifolds can be found at Ref. [35].

according to the sign of the excess energy above the saddle,
�E = E − Ee:

Case 1. �E < 0—the mass is safe against transition and
remains inside the starting well since potential wells are not
energetically connected [Fig. 2(b)].

Case 2. �E > 0—the mass can transition by crossing the
bottlenecks that open up around the saddle points, permitting
transition between the potential wells [Figs. 2(c) and Fig. 3(a)
show this case].

Thus, transition between wells can occur when
�E > 0, and this constitutes a necessary condition. The
sufficient condition for transition to occur is when a trajectory
enters a codimension-1 invariant manifold associated with
the unstable periodic orbit in the bottleneck as shown by
nontransition and transition trajectories in Fig. 3(a) [18]. In
2 DOF systems, the periodic orbit residing in the bottleneck
has an invariant manifold that is codimension-1 in the energy
manifold and has topology R1 × S1, which is a cylinder or
tube [31]. This implies that the transverse intersection of these
manifolds with Poincaré surfaces-of-sections, U1 and U2, is
topologically S1, a closed curve [7,10,18]. All the trajectories
transitioning to a different potential well (or having just
transitioned into the well) are inside a tube manifold, for
example as shown in Fig. 3(b) [18,19]. For every �E > 0,
the tubes in phase space [or more precisely, within M(E)]
that lead to transition are the stable (and that lead to entry are
the unstable) manifolds associated with the unstable periodic
orbit of energy E. Thus, the mass’s imminent transition

(a) (b)

FIG. 4. Poincaré section, P − : U−
1 → U−

1 , of trajectories where
U−

1 := {(r, pr )| θ = π/4, pθ > 0}, at excess energy (a) �E =
100 (cm/s)2 and (b) �E = 500 (cm/s)2. The blue curves with a
cyan interior denote the intersection of the tube manifold (stable)
associated with the unstable periodic orbit with U−

1 . It should be
noted that these manifolds act as a boundary between transition and
nontransition trajectories, and may include KAM tori spanning more
than one well. The interior of the manifolds, int(·), denotes the region
of imminent transition to the quadrant 2 from quadrant 1. A movie
showing the Poincaré section for a range of excess energy can be
found at Ref. [36].

between adjacent wells can be predicted by considering where
it crosses U1, as shown in Fig. 4, relative to the intersection
of the tube manifold. Furthermore, nested energy manifolds
have corresponding nested stable and unstable manifolds that
mediate transition. To simplify analysis, we focus only on the
transition of trajectories that intersect U1 in the first quadrant.
This surface-of-section is best described in polar coordinates
(r, θ, pr, pθ ); U±

1 = {(r, pr ) | θ = π
4 , − sgn(pθ ) = ±1},

where + and − denote motion to the right and left of the
section, respectively [31]. This Hamiltonian flow on U±

1
defines a symplectic map with typical features such as KAM
tori and chaotic regions, shown in Fig. 4 for two values of
excess energy.

Based on these phase space conduits that lead to transition,
we would like to calculate what fraction of the energetically
permissible trajectories will transition from or into a given
well. This can be answered in part by calculating the transition
rate of trajectories crossing the rank-1 saddle in the bottleneck
connecting the wells. For computing this rate—surface inte-
gral of trajectories crossing a bounded surface per unit time—
we use the geometry of the tube manifold cross section on the
Poincaré section. For low excess energy, this computation is
based on the theory of flux over a rank-1 saddle [37], which
corresponds to the action integral around the periodic orbit at
energy �E. By the Poincaré integral invariant [38], this action
is preserved for symplectic maps, such as P ± : U±

1 → U±
1 ,

and is equivalent to computing the area of the tube manifold’s
intersection with the surface-of-section. The transition frac-
tion at each energy, ptrans(�E), is calculated by the fraction of
energetically permissible trajectories at a given excess energy,
�E, that will transition. This is given by the ratio of the cross
sections on U1 of the tube to the energy surface. The transition
area, to leading order in �E [37], is given by Atrans = Tpo�E,
where Tpo = 2π/ω is the period of the periodic orbits of small
energy in the bottleneck, where ω is the imaginary part of
the complex-conjugate pair of eigenvalues resulting from the

052214-4



EXPERIMENTAL VALIDATION OF PHASE SPACE … PHYSICAL REVIEW E 98, 052214 (2018)

(a) (b)

FIG. 5. (a), (b) Experimental apparatus showing the machined
surface, tracking camera, and the rubber coated steel ball.

linearization about the saddle equilibrium point [37]. The area
of the energy surface projection on U1, to leading order in
�E > 0, is AE = A0 + τ�E, where

A0 = 2
∫ rmax

rmin

√
14

5
[Ee − gH (r )]

[
1 + 4H 2

r (r )
]

dr (11)

and τ =
∫ rmax

rmin

√
14

5

[
1 + 4H 2

r (r )
]

[Ee − gH (r )]
dr. (12)

The transition fraction, under the well-mixed assumption
mentioned earlier, is given in 2 DOF by

ptrans = Atrans

AE

= Tpo

A0
�E

(
1 − τ

A0
�E + O(�E2)

)
. (13)

For small positive excess energy, the predicted growth rate is
Tpo/A0 ≈ 0.87 × 10−3 (s/cm)2. For larger values of �E, the
cross-sectional areas are computed numerically using Green’s
theorem; see Fig. 6(b).

As with any physical experiment, there is dissipation
present, but over the timescale of interest, the motion ap-
proximately conserves energy. We compare δE, the typical
energy lost during a transition, with the typical excess energy,
�E > 0, when transitions are possible. The timescale of in-
terest, ttrans, corresponds to the time between crossing U1 and
transitioning across the saddle into a neighboring well. The
energy loss over ttrans in terms of the measured damping ratio
ζ ≈ 0.025 is δE ≈ πζv2(�E), where the squared-velocity
v2(�E) is approximated through the total energy. For our
experimental trajectories, all starting at �E > 1000 (cm/s)2,
we find δE/�E 	 1, suggesting the appropriateness of the
assumption of short-time conservative dynamics to study tran-
sition between wells [7,10].

IV. EXPERIMENTAL SETUP

We designed a surface that has four wells, one in each
quadrant, with saddles connecting the neighboring quadrants
[shown in Fig. 5(b)]. The surface has four stable and five
saddle (four rank-1 and one rank-2) equilibrium points. Inter-
well first-order transitions are defined as crossing the rank-1
saddles between the wells. On this high-precision machined
surface, accurate to within 0.003 mm and made using stock
polycarbonate, a small rubber-coated spherical steel mass
released from rest can roll without slipping under the influence
of gravity. The mass is released from different locations on
the machined surface to generate experimental trajectories.

12 16
-80

-40

0

40

80

0 4 8

[40, 140]

FIG. 6. (a) On the Poincaré section, U−
1 , we show a narrow

range of energy [�E ∈ (40, 140) (cm/s)2] and label intersecting
trajectories as no transition (black) and imminent transition (red) to
quadrant 2, based on their measured behavior. The stable invariant
manifold associated with the bottleneck periodic orbit at excess
energy, �E = 140 (cm/s)2, intersects the Poincaré section, U−

1 ,
along the blue curve. Its interior is shown in cyan and includes the ex-
perimental transition trajectories. The outer closed curve (magenta)
is the intersection of the boundary of the energy surface M(�E)
with U−

1 . (b) Transition fraction of trajectories as a function of
excess energy above the saddle. The theoretical result is shown (blue
curve) and experimental values are shown as filled circles (black)
with error bars. For small excess energy above critical (�E = 0),
the transition fraction shows linear growth (see inset) with slope
1.0 ± 0.23 × 10−3 (s/cm)2 and shows agreement with the analytical
result (13). A movie of increasing transition area on the Poincaré
section, U−

1 , can be found at Ref. [39].

The mass is tracked using a Prosilica GC640 digital camera
mounted on a rigid frame attached to the surface as shown
in Fig. 5(a), with a pixel resolution of about 0.16 cm. The
tracking is done by capturing black and white images at 50
Hz, and calculating the coordinates of the mass’s geometrical
center. We recorded 120 experimental trajectories of about 10
s long, only using data after waiting at least the Lyapunov time
of ≈0.4 s [34] ensuring that the trajectories were well-mixed
in the phase space. To analyze the fraction of trajectories
that leave or enter a well, we obtain approximately 4000
intersections with a Poincaré surface-of-section, U1, shown
as a black line, for the analyzed range of energy. One such
trajectory is shown in white in Fig. 2(a). These intersections
are then sorted according to energy. The intersection points
on U1 are classified as a transition from quadrant 1 to 2 if the
trajectory, followed forward in time, leaves quadrant 1. A total
of 400 transition events were recorded.

V. RESULTS

For each of the recorded trajectories, we detect intersec-
tions with U1 and determine the instantaneous �E. Grouping
intersection points by energy [e.g., Fig. 6(a)], we get an
experimental transition fraction, Fig. 6(b), by dividing points
that transitioned by the total in each energy range. Despite the
experimental uncertainty from the image analysis, agreement
between observed and predicted values is satisfactory. In fact,
a linear fit of the experimental results for small excess energy
gives a slope close to that predicted by (13) within the margin
of error. Furthermore, the clustering of observed transitioning
trajectories in each energy range, as in Fig. 6(a), is consistent
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with the theory of tube dynamics. The predicted transition
regions in each energy range account for more than 99% of
the observed transition trajectories.

VI. CONCLUSIONS

We considered a macroscopic 2 DOF experimental sys-
tem showing transitions between potential wells and a dy-
namical systems theory of the conduits that mediate those
transitions [7,10,18]. The experimental validation presented
here confirms the robustness of the conduits between multi-
stable regions, even in the presence of nonconservative forces,
providing a strong footing for predicting transitions in a

wide range of physical systems. Given the fragility of other
structures to dissipation (for example, KAM tori and periodic
orbits), these phase space conduits of transition may be among
the most robust features to be found in experiments of au-
tonomous multiple DOF systems. Furthermore, this study lays
the groundwork for experimental validation for an N = 3 or
more DOF system, such as ship dynamics [8–10,40], buckling
of beams [7] and geodesic lattice domes, hanging roller pins,
isomerization, and roaming reactions [41,42].
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