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ABSTRACT

A rigorous dynamical definition for beyond GEO (xGEOQ) is the critical distance at which the secular contri-
butions from the lunisolar perturbations exceed those from Earth oblateness, known in astronomical parlance
as the Laplace radius. xGEO fundamentally represents a restricted four-body problem (R4BP), which can
be approached locally using the perturbed-Hamiltonian formulation or globally using techniques stemming
from the R3BP. Remote sensing, regardless of the phenomenology, must accommodate the complex dynamics
in this domain. A many-sided and detailed investigation of the resonant structure of xGEO space, aside
from its own particular significance, is of prime importance for space d omain awareness as such resonances
significantly a ffect th e gl obal st ructure of or bital phase sp ace. In contrast to the traditional LEO-to-GEO
domain, the predominant resonances in xGEQO are governed by octupolar perturbations to the classical von
Zeipel-Lidov-Kozai dynamics, among, hitherto, unstudied interactions with the lunar orbital and precession
frequencies. This paper combines the local picture provided by the perturbed-Hamiltonian formulation of
xGEQ astrodynamics with the global geometric dynamical portrait provided by semi-analytical, dynamical-
systems theory approaches to the restricted three-body problem, harnessing these in unique ways to probe for
the first time the high time-resolution details of the strongly chaotic orbital evolution of distant cislunar space
probes. This research uncovers the phase-space structure and connectivity of xGEQO, identifying both highly
stable ‘graveyard’ orbits, as well as chaotic-trajectory regimes that can most easily mask maneuvers. Results
yield improvements over current capabilities by discovering and exploiting the multiscale spatio-temporal,
dynamical structure of cislunar phase space from very distant, highly eccentric, Earth-bound satellites to
lunar mean-motion resonances and their invariant manifolds.

1. INTRODUCTION

As new transportation, communication, and logistic infrastructures are being planned and developed for
cislunar space in the Earth-Moon system, the need for improved space domain awareness (SDA) beyond the
geostationary belt (xGEQO) becomes paramount [1- Cislunar space refers to the orbital regimes about
the Earth out to and including the region around the surface of the Moon. A wide variety of dynamical
models are employed to approximate the vast diversity of cislunar trajectories. Whereas circumterrestrial and
circumlunar orbits are largely governed by the perturbed two-body problem (P2BP) [4], in which the effects
of the non-spherical gravity field and third-body perturbations on Earth or Moon satellites are often treated
in a perturbed-Hamiltonian formulation (see, e.g., [5-7  all other cislunar trajectories—including lunar
transfers, libration-point orbits (LPOs), Earth-Moon cyclers, stable and unstable mean-motion resonances
(MMRs), and a wealth of other exotic periodic and non-periodic orbits—are specific a pplications o f the
gravitational N-body problem [8-1  The mathematical model adopted in the latter case is the restricted
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three-body problem (R3BP), in which the spacecraft of negligible mass is simultaneously affected by the
terrestrial and lunar gravitational forces. This framework efficiently captures Earth-Moon orbital transfers
[8, 9], models the regions of the Lagrange equilibrium points (with Ly and L, demarcating the lunar Hill
sphere, approximately located at 51 and 69 Earth radii, respectively, in Figure 1), and has generally been
the most studied formulation of motion in cislunar space. Developing and maintaining a space object catalog
(SOQ) for cislunar space beyond GEO, however, will require significant improvements in our understanding of
the way objects behave in this complicated multi-body environment over orbital, decadal, and even centennial
timescales. Most studies to date have only focused on the orbital timescales of LPOs within the framework
of the circular, restricted, three-body problem (CR3BP) [15-17] or a hierarchy of more realistic, and more
complicated, dynamical models [18-21]. Of the myriad of trajectories uncovered by these fundamental
mathematical models, the distant retrograde orbits [22-24] and near-rectilinear halo orbits [18, 25-28] have
assumed a special significance. There is, however, a dynamical plethora of Earth-bound trajectories in xGEO
space that must be more deeply understood to enable robust cislunar SDA [29, 30]; see, e.g., Figure 1, which
highlights the orbital-element distributions of cataloged xGEO space objects.
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Fig. 1: A snapshot of the historic and current cataloged xGEO space objects in the planes of semimajor axis-ecliptic
inclination (a, ) (top panel) and semimajor axis-eccentricity (a, e) (bottom panel), where the colored circles correspond
to the osculating elements obtained from their latest TLE. The geocentric semi-major axis that distinguishes xGEO
from a dynamical perspective—the Laplace radius (r)—is indicated by the vertical line at a~7.7Re (q.v., Eq. 13
and Fig. 2). The approximate location of most principal lunar mean-motion (vertical dashed lines; Eq. 18) and
secular resonances (other curves; Eq. 10) are shown. Objects located between the delimiting periapsis and apoapsis
curves may enter the Moon’s Hill sphere (Eq. 21), inducing discontinuous jumps in orbital elements 4 la Tisserand’s
criterion (Eq. 22). Luna 3, highlighted by the *, is discussed further in [30]. Objects that reach the Earth-grazing
a(l — e) = Re curve may reenter the atmosphere. (www.space-track.org. Assessed 10 Mar. 2023)

For the investigation of the Earth’s magnetosphere and the interplanetary space outside of it, satellites with
orbits of high eccentricity, large inclination, and multi-day period are often used [31- Under the influence
of the Moon and the Sun, a highly eccentric orbit of a deep-space probe can become nearly circular or a
nearly circular orbit might become eccentric, while orbital inclination may also exhibit large shifts [37—

NASA’s eccentric Orbiting Geophysical Observatory (1964-054A), colloquially referred to as EGO, with an
initial semi-major axis of 12.7 Earth radii and an eccentricity of 0.918, is particularly interesting as it only
reentered in August 2020 (see Figure 10, discussed in §4), in contrast to earlier predictions that indicated
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a lifetime of only 16 years [37]. A more modern example is ESA’s International Gamma-Ray Astrophysics

Laboratory (INTEGRAL) satellite (72-hour period with e~0.9), which despite the longevity of its original
operational orbit (orbital lifetime greater than two centuries), will now come down in 2029 as its orbit was

modified via a series of four thruster burns [45].

For orbits where the semi-major axis is a substantial fraction of the Moon’s, several orbital revolutions may
be sufficient to lower the perigee height below the Earth if an unfavorable orbital configuration is chosen [46—
48]. Among the first and perhaps the most interesting of this class of very distant, highly eccentric satellites
was the Soviet space probe, Luna 3 (1959 Theta 1), which circumnavigated the Moon (passing through its
sphere of influence) and r eturned to t he Earth on a new elliptical t rajectory. Luna 3 t wice s uffered close
approaches with the Moon, and despite having an initial perigee height outside of the GEO belt, after only
11 revolutions, its eccentricity increased to the point that it became an Earth-crosser, plummeting back into
the atmosphere [30, 49]. The lunar flybys and subsequent orbital motion of Luna 3, and its dramatic crash,
are extremely interesting from the standpoint of astrodynamics; a satisfactory treatment of the problem,
however, was only given recently in [30].

The Interstellar Boundary Explorer (IBEX) and the Transiting Exoplanet Survey Satellite (TESS), two
modern Luna-3 like orbits, are distinguished by their high apogee distances and lunar MMR phasing [36,
50]. IBEX (2008-051A), with its nominal mission lasting only two years, had to change its operational
orbit for its extended mission to avoid violating altitude and eclipse mission constraints. Its nominal orbit
turned out to be chaotic and unpredictable beyond 2.5 years, as a result of significant, t hough hitherto
uncharacterized, lunar perturbations, and IBEX was subsequently placed in a novel 3:1 MMR with the

Moon (Pyr/3). Following suit, TESS (2018-038A) orbits in a 2:1 lunar MMR, (Py/2), which was established
using a lunar swing-by maneuver. Though not explicitly stated in its published orbit design [51], Russia’s

Spektr R (2011-037A) also seemingly orbits in or near the lunar 3:1 MMR, but with a significantly high
ecliptic inclination to further permit Kozai-Lidov oscillations [30, 52] and other secular-resonant phenomena.

Combining observations, theory, and simulation, this research casts light on the multiscale spatio-temporal
dynamics of geocentric and selenocentric orbits (governed by the P2BP), libration-point and other exotic
three-body orbits (governed by the R3BP) in a holistic fashion. This investigation combines the “global”
geometric dynamical portrait provided by semi-analytical approaches to the 3BP with the “local” picture
provided by more specialized P2BP methods focused on specific regions of phase s pace. T he scope of work
covers the wide range of orbital phase space relevant to both historic and current cislunar missions (see,
e.g., Figure 1) launched by the U.S. (e.g., AMPTE, Chandra X-ray Observatory, several EXPLORER series
satellites, ARTEMIS), Europe (e.g., XMM-Newton, Cluster IT), Russia (e.g., Prognoz, Spektr-R, ASTRON),
China (e.g., Chang’e, Longjiang), as well as the significant future x GEO missions scheduled or proposed by
over a dozen nations or organizations to be launched in this decade.

2. PHASE-SPACE STRUCTURE AND CONNECTIVITY OF CISLUNAR XGEO SPACE

2.1 Perturbed-Hamiltonian Formulation

Many physical systems can be modeled as having an underlying dynamical skeleton that organizes and gov-
erns how all the possible behaviors are related. The global properties of multidimensional, nearly integrable
Hamiltonian systems are determined by the relative location and size (widths) of the predominant resonances
[563, 54]. The dynamical environment occupied by artificial c elestial b odies is subject t o m otions t hat are
widely separated in frequency: the earthly day, the lunar month, the solar year, and various precession
frequencies originating from the gravitational action of the Sun on the Earth-Moon system. Primary among
these is the regression of the Moon’s line of nodes with a period of about 18.61 years, and a progression of the
lunar apsidal line with a period of roughly 8.85 years. The provision of frequencies in the Earth—-Moon—Sun
system gives rise to a diverse range of complex resonant phenomena associated with orbital motions. Reso-
nances affecting satellites in the traditional geocentric d omains, from low-Earth orbit (LEO) to GEO, have
had such thorough attention accorded to their study that the outstanding difficulties ar e th ought to be
solely in the final refinements [4 ]. The occurrence and nature of the secular resonances driving the long-term
dynamics of medium-Earth orbits (MEOs), for instance, depend chiefly on t he r egression of t he lunar line
of nodes [5]. These secular resonances, involving linear combinations of the satellite’s apsidal and nodal
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precession rates (w and Q, largely forced by Earth’s oblateness) and the rate of lunar node motion (Q@,
on account of the Sun’s gravitational action), occur in profusion so that the orbital phase space is densely
threaded by an exceedingly complicated web-like structure.

2.1.1 A Review of the Secular Resonances in MEO

Mathematically, in action-angle variables (J, ®), the 2.5 degrees-of-freedom (DOF), orbit-averaged Hamilto-
nian of the MEO problem loosely reads [qq.v., 5, 55]

H = Heeo(J) + eHip(J,P), ex1
= HEP + HE + HE + KO,

(1)

where HXP = —u2 /217 is the Kepler Hamiltonian (L = /uga), which depends only on the mean semi-
major axis, treated as a parameter in the averaged problem (i.e., the satellite’s mean anomaly M is a cyclic
variable and consequently @ is constant on average), H® is the classical orbit-averaged Hamiltonian for the
oblateness perturbation, and the lunar and solar perturbing Hamiltonians are developed as Fourier-Taylor
series of complicated structure (Kaula-like expansions [55]), e.g.,

2 2 2
H¢ == Z Z Z h§72p,m,is COS q)g72p,m,is7 (2)

m=0p=0s=0

whose arguments are combinations of the orbital phase and orientation angles of the satellite (w and ) and
the perturbers (i.e., ®(w, 2, Q¢)), and whose coefficients depend on the size and shape (semi-major axes and
eccentricities) of their orbits and the inclinations (i.e., h(a,e,1,ac, ec, ic))-

The extended autonomous Hamiltonian (without the Keplerian part), expressed in the Delaunay (G =
Lv/1—e€%2 H = Gceosi,g = w,h = Q) and appended canonical variables (T, 7), such that 7 = 0H /ol = Qc,
has the form

H(G,H.T,g,h,7; L) = Heee(G, H; L) + H1p (G, H, g, h, 73 L) + QcT, (3)
in which
Hieo(G, H; L) = HE + Mo + Her
Hip(G, H, g, h, 7 L) = HE + HE.
The secular perturbations due to Earth oblateness is described by

JoRZ 1k G? — 3H?
® 2ng Ug
H 1L o (5)

sec

where J5 is the second, zonal-harmonic coefficient of the geopotential, Rg is the mean equatorial radius of
the Earth, and ug denotes the Earth’s gravitational parameter. Secular perturbations due to the Moon and
the Sun are related to terms in their expansions in Eq. (2) with 2 —2p =0, m = 0, and s = 0:

< pe(3cos2eq +1)(2 — 3sin®ic) , G? H?
G,H;L) = L*(5-3=%)(1-355 ),
Haec(G Hi L) 1284203 (1 — e2)3/2 L2 G2

° po(2 —3sin?ic) _, G? H?
H;L) = L -3—=(1-3=
HSEC(Gﬂ bl ) 32/,1/3901%(1 . 6%)3/2 5 3L2 3G2 5

(6)

where g is Earth’s obliquity, ic is the Moon’s ecliptic inclination, and i@ is the Sun’s equatorial incli-
nation. The long-periodic lunisolar perturbations are connected with <I>§,2p’m,is # 0. A lunisolar secular
resonance occurs when a specific linear combination of the secular precession frequencies of the harmonic
angles appearing in Eq. (2) is zero. That is,

B5S ) is = (2 2p)0 + mQ + Q¢ ~ 0. (7)
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The mixed-reference-frame formalism of Eq. (2) permits us to consider the Moon’s ecliptic inclination i¢ as
roughly constant and the variation in Q¢, largely caused by the disturbing action of the Sun, as approximately
linear with a period of 18.61 years (¢ &~ —19.34 °/yr). It is quite fortuitous that under this (quadrupolar)
order of series truncation, the secular, long-period, and resonant lunar and solar perturbations depend only
upon the positions of their orbital planes and are not influenced by the positions of their perigees [38, 56-58].
Thus, the lunar apsidal progression (w¢ ~ 40.68 °/yr), can be ignored in the treatment of MEO dynamics.

The oblateness precession completely overshadows the lunisolar secular effects and other perturbing influences
in MEO, as shown in Figure 2, so that w and € have an essentially linear time dependence, with secular
rates § = 0HE /0G and h = 0HE_ /0H with HE_ in Eq. (5). In the Keplerian elements, the satellite orbital
evolution is given by the classical expressions,

® 2, ;

. .e WY¥bdcos7i—1 : @ ® COSi
= = Qx Q¥ = —_— 8
WA w A2 w 1= (8)

where 3
w® = ?W@JgRéa_Wz. (9)

2.1.2 Lunisolar Secular Resonances Beyond GEO

Several important theoretical strides [4, 5, 55, 59] have been made in understanding various aspects of the
secular chaos affecting the Earth’s satellites in the complex resonance environments from LEO to GEO.
Despite over sixty years of space activity, however, we know amazingly little about the multiscale dynamical
environment beyond the traditional geocentric regimes [29, 30]. Neglect of the lunisolar perturbations on the
secular frequencies of nodal and apsidal precession, for instance, sets an upper limit to the radius of orbit
for which the preexisting theory is valid (¢ < 5Re). At geosynchronous altitude, however, the lunisolar
perturbations are of the same order as the secular oblateness term [58, 60, 61], and must be included to
accurately map out the resonance web; the outstanding difficulties of which have yet to be overcome [4].
Beyond the Laplace radius—the geocentric distance where the perturbing gravitational effects are equal
(~7.7Rg; Figure 2), described below—the analysis must also be extended beyond quadrupolar gravitational
interactions (i.e, Hill’s approximation in the Legendre expansions in the ratio of semimajor axes) [56, 62, 63].
For the Sun, the effect of the third harmonic (parallactic, or octupole) term is negligible, while for the Moon,
the contribution of the octupole (I = 3) term becomes more important as the orbital radius increases [4, 44].
Thus, for the xGEO regime, the lunisolar secular resonances are characterized by the general relation,

O ing = (1= 2p)d +m(Q = Qc) — (I — 29)ix ~ 0, (10)
where the secular apsidal and nodal rates are now dominated by lunisolar perturbations. The lunisolar
precession can be obtained from Eq. (6) through the canonical relations g = 0HE® /0G and h = 0HES JOH :

sec

< ® 2 2 2

. co wt+w® [(5cos zl+6) S o < o 1 +3e?/2

wrwT = , Q207 = —(w" + w”) ———= cos/, 11
(R ( e (11)

where [58, 60, 64],

«_3pclosintie)2 5 o 3po 1 s
1VRa(1- )7 Vi ap— o)

Here, the orbital elements of the satellite, lunar, and solar orbits are all relative to the ecliptic.

(12)

The above analysis leads us naturally to a rigorous dynamical definition for xGEO as the critical distance at

which the secular contributions from the lunisolar perturbations exceed those from Earth oblateness. This is

known in astronomical parlance as the Laplace radius 1, [65] and is defined in the Earth-Moon-Sun context

by [64],

5w
w4+ w®

ri:a

.92

pe 1 —sin“ic/2 po 1

= 2ueJoR%/ ( + = ~ 7.7Ro. (13)
\ag (1-e2)3? " ad (1—e})??
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Figure 2 shows a graphical depiction of the Laplace radius and thus, our new dynamical definition of xGEO.
Beyond r, the effects of atmospheric drag are negligible, even for near Earth-grazers [37, 38, 41, 42, 66], and
solar radiation pressure (SRP) secular perturbations [qq.v., 64, 67] are several orders of magnitude smaller
than lunisolar, even for high area-to-mass ratio objects (4/m > 1 m?/kg). Therefore, xGEO fundamentally
represents a restricted four-body problem (R4BP), which can be approached locally using the perturbed
Hamiltonian formulation outlined herein or globally using techniques stemming from the R3BP.

,
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Fig. 2: Our proposed definition for xGEO based on the Laplace radius, rr,, beyond which the secular frequencies of
nodal and apsidal precession from lunisolar perturbations (Eq. 11) exceed those of Earth oblateness (Eq. 8). The
approximately constant rates of lunar apsidal progression (we ~ 40.68 °/yr) and nodal precession (Q¢ ~ —19.34 °/yr)
are also shown, together with the secular rates of solar radiation pressure (SRP) for both a low and high area-to-mass
(A/m) ratio object of reflectivity p [qq.v., 64, 67].

2.1.3 The Kozai-Lidov Secular Resonance

Until the advent of artificial satellites of the Earth (1957) and the Moon (1966), astronomical applications of
the problem of three bodies was largely limited by the principal traffic rules obeyed by most celestial bodies
of the Solar System. This conditioned their heliocentric orbits to be nearly coplanar and characterized
by only moderate eccentricities; accordingly, an expansion of planetary perturbations in ascending powers
of their orbital eccentricities or the inclination of their orbits to the invariable plane of the Solar System
constituted the usual avenue of approach [68]. The outstanding exception was the asteroids and comets [69],
many of their orbits were observed to be highly eccentric and inclined, with their motions, upon decades
of scrutiny, found to be subjected to a multitude of orbital resonances. With the launch of the Space Age,
similar dynamical situations, every bit as varied and rich as those in the asteroid belt, can occur in closer
proximity to our terrestrial abode [57].
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The dynamical system given by Eq. (1), for large planetocentric distances where the quadrupolar moment
from the equatorial bulge of Earth can be ignored, and under the approximation that the Moon’s orbital
plane coincides with the ecliptic, is mathematically equivalent to the system originally treated by Lidov
[67, 62] and Kozai [69], who discovered a phenomenon of the most far-reaching significance [52, 70]. The
CRABP (doubly-averaged) Hamiltonian (without the Keplerian part) takes the form

2

a

Hezik = —— <M§? + ,u§> [2 +3e2 -3 (1 — €2 + 5e?sin? w) sin? z] , (14)
8 \agy ag

where all angular elements are with respect to the ecliptic plane. This autonomous Hamiltonian system is

integrable and possesses three integrals, ¢o = a = constant (due to orbit averaging), and

c1 = (1—¢?) cos®i = constant, (15)

2
co = €? (5 — sin? 4 sin? w) = constant. (16)

Substituting the value of sin?s from Eq. (15) into Eq. (16) results in an alternate expression for ¢y as a

function of (¢, e,w),
2

e (e, c1,w) = €2 [5 - <1 - 112) sin> ] . (17)

Solutions can be visualized in the (w, X = 1/1 — e2) plane as isolines of the ¢y integral, for a given ¢;. These
flow plots, as originally presented by [62] and [69], are called von Zeipel-Lidov—Kozai diagrams [70].

There exist stationary solutions (w = 7/2 and w = 37/2) such that w = 0 above a critical inclination ici; ~
39.2°. Close to these fixed points, the argument of perigee librates on secular timescales exciting coupled
oscillations (Kozai-Lidov (KL) cycles) in eccentricity and inclination, according to Eq. (15). Qualitatively
different behaviors can occur when the octupole moment of the Legendre expansion is accounted for in the
secular dynamics [52]; orbits can reach extremely high eccentricities and undergo chaotic flips from prograde
to retrograde orientation. We thus expect that xGEO objects with ecliptic inclinations greater than 39.2°
(see, e.g., Figure 1) will be affected by octupolar perturbations to the KL dynamics (i.e., the eccentric KL
resonance), among other yet unstudied interactions with the lunar orbital and precession frequencies; e.g.,
nonlinear secular (Eq. 10) and mean-motion resonances (Eq. 18).

2.1.4 Lunar Mean-Motion Resonances.

While mean-motion resonances (commensurabilities of orbital periods) constitute one of the most important
and far-reaching aspects of dynamical astronomy [68], they have remained woefully underrated in Earth-
satellite dynamics in part because the orbits of most satellites thus far are too low to be affected by mean-
motion commensurabilities. “What are the Kirkwood gaps of cislunar space?” is a question of great current
interest for mission planners as we are locating our space-based assets, such as the IBEX and TESS [36, 50],
in predominant lunar MMRs that have hitherto only been treated in piecemeal. Also of special note is ESA’s
SMART-1 low-thrust spiraling trajectory to the Moon, which used a combination of multiple coast arcs and
weak lunar gravity assists on account of passage through lunar MMRs [71]. The effects of these resonances
were to raise the perigee and to rotate the orbit both in inclination and argument of perigee, enabling the
subsequent lunar capture [15].

Standard tools have been developed to calculate the width (strength) and location of mean-motion resonances
[72, 73]. A satellite with mean motion n = 4/ug/a is in resonance with the Moon with mean motion

ne = \/pe/ag when,

Dprphgj = (1= 2p + )M — (I — 2h + 5) Mg + (1 — 2p)i> — (I — 2h)dc +m(Q — Q¢) ~ 0
~(l—=2p+q¢n—(1-2h+j)ne =0, (18)

s the secular frequencies are enerﬁlly much smaller than the orbital frequencies (é, glﬁ),h,q, j € 22: A
k¢ lunar MMR thus occurs when the’satellite’s semi-major axis, assuming unperturbe eplerian motion,
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satisfies a ~ aj.p, where,

e\ 23
Apike = (k«) ac. (19)

The resonant motion imposes librations of ® around an equilibrium value, correlated to oscillations of the
semi-major axis a, though its value remains between limits (chaotic resonance zones) defined by the borders
(or separatrices) of the unstable periodic resonances. The approximate centers of many principal (low-order)
lunar MMRs are shown in Figure 1 in §1. While the perturbed-Hamiltonian formulation can permit the
calculation of the resonant half-width excursions in (a,e,) and a local characterization of the resonances,
the MMR problem is more amenable to semi-analytical and numerical techniques relying fundamentally on
the R3BP framework.

3. RESTRICTED MULTI-BODY DYNAMICAL-SYSTEMS THEORY

The simplest model that approximates the motion of real objects in cislunar space, the circular, restricted
three-body problem (CR3BP), has orbital solutions that display a surprising degree of complex transport
phenomena. This idealized mathematical model consists of a massless satellite, and two massive bodies (e.g.,
Earth and Moon) moving in circular orbits about their common center of mass; see Figure 3 (left).

The CR3BP dynamics for the satellite, much like the perturbed two-body approaches shown above, can be
formulated as a Hamiltonian with,

Herssp = 3((0e +y)° + (py —2)* +p2) + U, (20)

where, in standard re-scaled coordinates, p;, py, and p, are the momenta conjugate to the rotating frame z,
y, and z coordinates, respectively, and U is the effective potential in Figure 3.

Satellite

Forbidden Realm
(for given 3-body energy)

Exterior
Realm

Fig. 3: A satellite P, in the field of the Earth and Moon, in the zyz rotating frame, whose dynamics are governed
by the re-scaled effective potential U (with mass parameter p = uc/(ue + pe) = 0.01215) and a Coriolis force (left).
The connectivity of the three realms of phase (right) is given by the three-body energy, Eq. (20); this is between the
energies of L; and La. The region bounding the Moon realm is the Hill sphere (Eq. 21).

The Earth-Moon Lagrange points are the five stationary solutions or equilibria in the rotating frame, co-
orbiting with the Earth and Moon, where Lq, Lo, and L3 lie along the Earth-Moon line, and L, and L
form equilateral triangles with them. The Moon’s Hill region is a sphere between the points L; and Lo, in
which the motion of the satellite is dominated by the attraction of the Moon. A lunar encounter is defined
as r9 < rgi, approaching within one Hill radius,

1/3
THill =~ ag (%) / o 9.6R@; (21)

thus, a significant portion of xGEO orbital space is capable of experiencing a close encounter (Figure 1).
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The Lagrange points are in a sense the “seeds” that give rise to several continuous and interlocking families
of periodic orbits in the rotating frame, as shown in the stylized bifurcation diagram of Doedel et al. [11].
Note that many of these orbits spend much of their time far away from any Lagrange point, and some even
span much of xGEO space.

Associated with the collinear unstable Lagrange points (a.k.a., libration points), or their dynamical extensions
to periodic or quasi-periodic orbits [19], are stable and unstable manifolds, phase-space structures that
asymptotically approach or depart the Lagrange points (or their dynamical extensions). The libration-point
orbits (LPOs) most often treated in the literature— the Lyapunov and halo orbits—reside in the bottlenecks
in the three-body energy surfaces that partition the entire phase space into three main orbital realms [14]:
Earth realm, Moon realm, and exterior realm; see Figure 3 (right).

Taking a holistic phase-space point of view, the cislunar region beyond GEO is composed of intermingled
chaotic and quasi-periodic regions, as illustrated in Figure 4. Solutions of the R3BP form the global template
of motion in xGEQO. That is, solutions of the R3BP are to the xGEO formulation as Kepler’s solutions to the
2BP are to traditional near-Earth perturbation theory. In fact, for local dynamics in the R3BP, methods from
the perturbed 2BP, mentioned above, are useful. Unlike the 2BP, however, which has many mathematical
symmetries leading to many constants of motion and closed-form geometric and analytical descriptions of
the motion in terms of the conical orbital elements, the 3BP possesses only one constant of motion—the
Jacobi integral, a re-scaled version of the Hamiltonian function, Cy = —2 Hcrsgp. An approximation to the
Jacobi constant in orbital-element space with respect to the Moon is the Tisserand parameter (Tg ~ Cj),
defined as

Te = 2 4 2cosiy [ (1 — e2), (22)
a acg

which plays a role in dynamically limiting the range of chaotic motion a satellite is capable of, without a
maneuver, in the orbital elements (a, e, %), as in Figure 5.

Cislunar SDA in xGEO captures not only an unprecedented 2000+ volumetric expansion over GEO [3], but
also a dramatic change in the fundamental motion of space objects, as explicated herein. The nonlinear
astrodynamics in xGEO, encompassing secular, resonant, chaotic, close-encounter, and manifold dynamics,
is dramatically different t han t he weakly p erturbed t wo-body approach used for over a half century for the
detection and tracking of objects near Earth. Yet, to date, only the relatively short timescale dynamics of
LPOs and their associated invariant manifolds have been partially coupled with the cardinal questions and
problems posed by cislunar SDA. Lunar MMRs also significantly s hape c¢islunar d ynamics f orming stable-
unstable pairs, with corresponding intermingled chaotic and regular regions. The region of influence of
the unstable resonant orbits (also called the chaotic resonance zone) can be rigorously defined u sing the
separatrix of unstable resonant periodic orbits surrounding stable quasi-periodic regions ( forming the stable
resonance width), as detailed in [74]. Furthermore, the manifolds emanating from unstable MMRs can enable
rapid dynamical transfers between resonances through heteroclinic connections [10].

4. RESULTS & EXPECTED IMPACTS

4.1 Uncovering the Resonant Structures of xGEO

Despite the preexisting theory on the cislunar regime, the unequivocal consensus of the astrodynamics com-
munity is that the motion of a satellite in this environment is highly chaotic, subject to rapid developments
and unexpected changes in its orbital trajectory. These challenges are intensified w hen o ne c onsiders the
multiplicative complexity of remotely tracking multiple uncooperative space objects, each capable of fre-
quent and unexpected changes in their orbital patterns through maneuvers and other events. Moreover,
unlike the traditional geocentric orbits from LEO to GEO, where a satellite’s nearly periodic orbit varies
from sixteen to one rev/day, allowing for reliable updating of orbit estimates, the orbit periods for distant
cislunar satellites are measured in days or weeks. Thus, tracking opportunities will be proportionally less,
so the frequency and diversity of measurements needed for catalog updates will occur on longer timescales
and with the propagation of orbits spanning longer time intervals between state updates. This becomes
a critical issue as space objects enter periodic and pseudo-periodic orbits near the Earth-Moon Lagrange
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Fig. 4: Using action-angle variables, we obtain a global Poincaré section of stable resonance islands (horizontal bands
of families of closed curves, representing slices of KAM tori) and the chaotic sea (scattershot region) going between
them. Here, each point represents a trajectory. A resonant region, with various trajectories, is highlighted. The
chaotic trajectory, starting in this resonant region, traverses widely through cislunar space, without any maneuvers.
Note: all trajectories are shown in the rotating frame, and the connecting lines for the chaotic trajectory are just to
guide the eye.

points, or into MMRs or other seemingly elusive three-body phenomena, where gravitational attractions
traditionally considered perturbations can become dominant. Orbits in the Earth-Moon-Sun system beyond
the Laplace radius (Eq. 13) are most accurately described by the restricted four-body problem, with the
perturbed 2BP governing the local dynamics and the R3BP approaches governing global motions. Remote
sensing, regardless of the phenomenology, must accommodate the complex dynamics in this domain.

Merging the global geometric dynamical portrait provided by semi-analytical approaches to the 3BP with
the local picture furnished by more specialized perturbed 2BP methods will yield a much-needed integration
of the fragmented knowledge regarding the complex dynamics of cislunar space. This holistic approach is
demonstrated in Figure 5, underscroing the implications for understanding the multiscale astrodynamical
environment beyond the traditional geocentric regimes. Many cataloged xGEO objects exhibit strong Kozai-
Lidov effects, d epicted as t he b ackbone o f t he p hase s pace ( top p anel), w ith t heir m otions m odulated by
hitherto uncharacterized lunisolar perturbations to the underlying dynamical skeleton. There is no evidence
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Fig. 5: The historic and current cataloged xGEO space objects in the semimajor axis-eccentricity (a — e) space
(middle panel), superimposed on the atlas of MMRs, where each color corresponds to the two-line element (TLE)
time histories of individual objects. The contours of constant Tisserand parameter, shown in black, and the widths of
the predominant MMRs (gray) are both computed assuming that the objects and Moon are coplanar. The top panel
shows a local analysis, from the perturbed Hamiltonian formulation, of the lunisolar Kozai-Lidov secular resonance
(Eq 14) for the specific mean (orbit-averaged) semi-major axes, with the ephemerides of several actual xGEO objects
overlaid (> indicates initial TLE and o final). The bottom panel represents a global analysis, based on the R3BP
dynamical-systems formalism, of the predominant lunar 3:1 MMR region. (www.space-track.org. Assessed 10 Mar.
2023).
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of a secular change in the average value of their semi-major axes, hinting that their orbits are primarily
governed by purely secular perturbations [68], which induce a variation in eccentricity, causing it to oscillate
through a maximum value given by e? ~ 1—5/3 cos? 4o, depending on its ecliptic initial inclination, provided
that |cosig| < 4/3/5 [52, 70]. The middle panel also displays, through crude approximations, an atlas
of lunar MMRs in pseudo-action (a,e) space [72], indicating strong dynamical interactions among these
orbital commensurabilities and giving rise to chaotic transport (bottom panel). The ephemerides of many
cataloged objects in the Moon-crossing regions (see Figure 1) somewhat follow the contours of Earth-Moon-
satellite three-body energy (Tisserand curves), which are superimposed on the middle panel, demonstrating
significant unmodeled solar perturbations (i.e., the motion is fundamentally governed by the Earth-satellite-
Moon-Sun R4BP). A more accurate representation of the global phase space of lunar MMRs is evinced for
the 3:1 commensurability (bottom panel), where IBEX (2008-051A) and Spektr-R (2011-037A) are currently
located.

The planar circular restricted three-body problem (PCR3BP), utilizing Poincaré map, can be employed to
identify and map stable resonance widths and chaotic resonance zones onto the (a,e) plane [74] as shown in
Figure 6. These widths effectively encompass the trajectories of various spacecraft, including IBEX, TESS,
and Spektr-R, in contrast to the narrower semi-analytical resonance-width approximations traditionally
used as shown in Figure 5 (middle panel). Importantly, the PCR3BP proves capable of accurately capturing
the dynamics of even non-coplanar spacecrafts highlighting its utility in offering fundamental insights into
spacecraft dynamics in cislunar space.

(a/a,)*?, Satellite-Moon period ratio
0.16 0.25 0.35 0.46 0.59 0.72 0.85 1.00

o all-e)= Radius of earth (Earth grazing)

Eccentricity (e)

— Tisserand Curves
© BIPS 2:1 unstable resonance
O BIPS 3:1 unstable resonance

0.2 + Centers of resonance islands

N * Poincaré Map data points
Widths from Gallardo’s algorithm

¢ IBEX

o TESS

01 ‘ ¢ Spektr-R

0 p o0

03 04 05 0.6 0.7 0.8 0.9 1
Semi-major axis ratio (a/a) (NDU)

Fig. 6: TLEs of xGEO space objects are superimposed on PCR3BP widths which show larger stable resonance widths
and delienates the region of influence of unstable periodic resonant orbits. The CR3BP resonance widths correctly
capture the spread of space assets in the 2:1 and 3:1 stable resonance zones, namely IBEX, TESS, and Spektr-R

4.2 xGEO Orbit Parameterization and Predictions

The Joint Space Operations Center (JSpOC) maintains an up-to-date SOC of all trackable Earth-orbiting
objects, made publicly available in the form of two-line element (TLE) sets. Though widely used for decades,
there remain misunderstandings of the TLE usage, its accuracy, and limitations, as well as the limitations of
the simplified general perturbation theory used to produce them (SGP4) [75]. While no covariance information
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is provided, the estimated TLE positional accuracy at epoch is several hundred meters up to several km (1-
sigma) for LEO, a few km for MEO, up to tens of km for GEO, and dozens of km for highly eccentric orbits
[76, 77]. The TLEs provide Brouwer-Lyddane mean element, which can be converted to osculating elements,
and hence a state vector, by reconstituting the removed short-periodic terms with SGP4. A more accurate
initial state and an estimation of the initial covariance and object properties can be obtained by considering
a batch of historical TLEs, converted from mean to osculating elements, as pseudo-observations, and then
applying a batch least-squares differential corrector to this TLE window, using a high-precision numerical
propagator [78-81].

Accurate modelling and simulation capabilities, in concert with knowledge of relevant phase-space structures,
can be adapted to processes that support the ground- and space-based surveillance and maintenance of xGEO
to holistically improve cislunar SDA. Such investigations can enable observers to decide where and when data
should be obtained in future campaigns, for example, by providing stringent constraints through stability
analysis of the existing and predicted orbits. For full ephemeris numerical simulations, we leverage the
state-of-the-art IAS15 integrator in REBOUND [82] and ASSIST [83], adapting them to be highly parallelizable
for the efficient propagation of both the state dynamics and variational system for ensemble propagations.

A 30-day propagation of the orbit of TESS is shown Figure 8 under both the restricted Earth-Moon-Sun-
satellite and Earth-Moon-satellite ephemeris models in REBOUND. We note that for TESS, only the more
realistic 4BP physical model was able to reproduce the JPL Horizons ephemerides, indicating the limitations
of simplified phenomenological models (e.g., the CR3BP). A roughly two-year propagation of the orbit of
TESS is shown Figure 8 using ASSIST, compared to accurate Horizons data as well as TLEs. Figure 9 shows
decadal evolutions of Spektr-R, based solely on TLE data (as this object is not listed within JPL Horizons).
Spektr-R’s resonant transition is accurately captured; the underlying dynamical mechanism driving this
interesting behavior has yet to be fully identified and understood quantitatively.

‘ o  Horizons

GMAT — — ASSIST -+vevvee REBOUND M+S§ —-—=- REBOUND M‘

Fig. 7: Simulation of the evolution of TESS adapting a dynamical model in REBOUND [82, 84, 85] that contains both
the Moon and Sun as perturbers (cyan dotted curve) or only the Moon (red dashed-dotted curve). Orbit propagations
using GMAT [86, 87] (solid gray curve) and ASSIST [83] (dashed gray curve) are also shown for validation. The ephemeris
obtain from the JPL Horizons web-service is overlaid as purple circle.

A basic question we are trying to solve is whether we can increase the predictive accuracy for cislunar
objects, using only historical TLE data. There have been many interesting approaches to the TLE-based-
prediction problem over the past decade, but the work of [78] deserves special mention here. They apply
a batch least-squares differential correction toa T LE window, and fit an or bit to the st ate vectors derived
from successive TLEs using a high-precision numerical propagator. By propagating the fitted o rbit with
the same high-fidelity code, they are able to obtain a 10-fold improvement over individual T LEs propagated
with their associated analytic propagator (SGP4). We should note, however, that these propagations have
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Fig. 8: Simulation of the orbital evolution of TESS using ASSIST [83]. The ephemeris obtain from the JPL Horizons
web-service is overlaid as purple circle and TLEs as orange triangles.
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Fig. 9: Decadal simulations of the orbital evolution of Spektr-R using ASSIST [83]. The ephemeris obtain from the
TLEs as overlaid as triangles.

been carried out over month timespans; accurate orbit predictions based on TLEs over decadal timespans is
unprecedented, especially for distant xGEO space objects that are highly sensitive to initial conditions.

Figure 10 shows our recovery of the trajectory of OGO 1 (1964-054A), whose orbital lifetime was dramatically
mis-predicted in the late 1960’s [37]. Note the sparse observations during the operational lifetime of OGO,
missing data points in the catalog for the next ~30 years, and very dense TLEs starting in 2001 when
tracking was resumed. Using our developed tools and methodologies, TLE data was utilized to successfully
obtain more precise launch conditions of OGO, which, using REBOUND, we can completely recover its full
multi-decadal trajectory and August 2020 decay using solely the initial state at orbit injection (i.e., without
requiring further differential ¢ orrection).! O rbit i mprovement b ased o n k nowledge o f t he O GO’s secular
and resonant motion, rather than orbit determination on the TLE pseudo-measurements [78— is used to

INote that Earth oblateness has a negligible effect on the long-term evolution of the orbital parameters, but a very sharp short-
periodic effect very near perigee, with the magnitude of the ‘spike’ depending on the height and position of p erigee. Accordingly,

for our ephemeris modeling, we include all major sources of orbit perturbations, together with two-body regularization, to
prevent the development of computational inaccuracies during the close-approach portion of the orbit.
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obtain initial launch conditions that produced our ephemeris valid over the entire 56-year arc. The non-
negligible collision risks posed by this LEO-to-GEO transiting spacecraft motivates both theoretical study
and practical implementation.
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Fig. 10: The multi-decadal orbital evolution of NASA’s Orbiting Geophysical Observatory (1964-054A) obtained
using REBOUND, compared to TLEs. All angular elements are measured with respect to the ecliptic. This xGEO
satellite was launched on 5 September 1964 into a very distant, elongated orbit, making tracking and prediction
extremely challenging. Accordingly, 30 years of TLE data is missing from the public catalog. OGO 1 reentered 29
August 2020 in accordance with our prediction.

5. CONCLUSIONS AND OUTLOOK

Cislunar space, outside the confines of near-Earth satellite orbits, is p oised t o serve as a new high ground
for space operations, and, like its circumterrestrial counterpart, must be sustained against risk from debris
and other threats. It is precisely the distinctive and multi-faceted dynamical features of this regime that
complicates SDA efforts and represents significant challenges for space su stainability. The insights and con-
straints from Hamiltonian mechanics can aid in detection and tracking amidst this new dynamic topography.
Our investigations combine the local picture provided by the perturbed-Hamiltonian formulation of xGEO
astrodynamics with the global geometric dynamical portrait provided by semi-analytical, dynamical-systems
theory approaches to the restricted three-body problem, harnessing these in unique ways to probe for the
first t ime t he h igh t ime-resolution d etails o f t he s trongly c haotic o rbital e volution o f a 1l d istant cislunar
space probes. Such holistic dynamical mappings of cislunar space will not only ensure that future xGEO
satellites will have predictable behaviors over both the nominal (and possibly extended) mission timescales
(if warranted), thus avoiding an IBEX-like situation, but that the satellites and their rocket bodies (R/B)
will eventually meet their demise through atmospheric reentry (without the need to make future significant
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orbital adjustments, 4 la ESA’s INTEGRAL mission?). Future work will uncover the various constraints
and boundaries of each theoretical and computational approach, detailed herein, thereby unraveling their
inherent limitations and the precise domain in which they may be deemed valid.
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