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REGIONS OF INFLUENCE OF EXTERIOR MEAN-MOTION
RESONANCES IN THE EARTH–MOON SYSTEM: BIFURCATIONS,

SEPARATRICES, AND HETEROCLINIC PATHWAYS

Anjali Rawat*, Bhanu Kumar†, Aaron J. Rosengren‡, and Shane D. Ross§

The region beyond the Moon (within Earth’s Hill sphere) hosts a complex web of exterior
mean-motion resonances (MMRs) that govern the dynamics of natural and artificial bodies.
We examine exterior 1:n resonances using a Poincaré map at osculating orbit apogee, ex-
pressed in orbital elements. It reveals two stable asymmetric libration zones and a weak
unstable symmetric resonance zone embedded within a strong unstable symmetric region,
reflecting a bifurcation due to heightened instability. The region of influence is delineated
by separatrices of unstable resonant periodic orbits. Heteroclinic connections with interior
MMRs via L1-L2 tubes are explored, enabling exterior-interior transitions and vice versa.

INTRODUCTION

The dynamics of the region exterior to the Moon are fundamentally influenced by exterior mean-motion
resonances (MMRs). Quantifying the extent of the stable and unstable exterior MMRs across various semi-
major axis values proceeds towards the construction of a global dynamical map. Exterior resonances at high
energies (both stable and unstable) have orbits that pass between the Earth and Moon. However, purely
exterior unstable resonances at lower energies have the potential to reveal low-energy pathways for transport
between the interior and exterior realms1 and have not been widely studied for the Earth–Moon system.

The exterior region is notably more chaotic than the interior,2 exhibiting bifurcations into asymmetric res-
onant orbits that differ substantially from their interior counterparts. Although previous studies2 on exterior
MMRs in other celestial systems mention the existence of a separatrix, the region of influence of unstable
resonant periodic orbits is not quantified. Some studies compute the widths of exterior resonances using
Poincaré maps at apogee, but primarily consider low mass ratios3 (µ = 10−3) and restrict attention to the
libration widths of stable resonant islands, thereby neglecting the broader region of influence associated
with unstable resonant orbits. In addition, most investigations focus on partially exterior resonance fami-
lies,4 which arise only at low Jacobi constants and high eccentricities, while overlooking the purely exterior
low-eccentricity family and its potential to enable exterior-to-interior transfers at lower energies. Studies of
Neptune’s exterior resonances — with even lower mass ratios (∼ 10−5) — have produced extensive atlases of
resonance zones using Poincaré sections at perigee.5 However, for exterior resonances at higher mass ratios,
such as in the Earth–Moon system, Poincaré maps constructed at apogee experience weaker perturbations and
therefore tend to offer a clearer depiction of the underlying resonant dynamics.6 Purely exterior resonances
remain unexplored at higher mass ratios, and the regions of influence associated with unstable periodic reso-
nant orbits in both resonance zones — crucial for understanding chaotic transit through resonances — have
been largely overlooked.

Building on our exploration of resonance widths, chaotic zones, and heteroclinic connections for Earth–
Moon interior resonances,7 we extend the analysis to purely exterior resonances in the Earth–Moon planar
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circular restricted three-body problem (PCR3BP), with the intent of facilitating a global dynamical map.
Here, resonant orbits do not exist as stable-unstable pairs but as distinct asymmetric stable and symmetric
unstable orbits formed as a result of bifurcation. This study computes the region of influence for prominent
lunar MMRs, specifically the 1:3 and 1:4 resonances, using the PCR3BP, following the method of Koon et
al.8 By applying a Poincaré map at the apogee of osculating orbits, we delineate MMR regions in the plane
of semi-major axis and synodic argument of perigee (relative to the Earth–Moon line). Our Poincaré maps
reveal the 1:3 and 1:4 resonance “islands”, existing as two stable asymmetric libration zones and a weak
unstable symmetric libration zone, all embedded within a larger strong unstable symmetric resonance zone.
After computation of the unstable resonant periodic orbits by continuation methods, the corresponding stable
and unstable manifolds are visualized, forming the separatrix whose extent quantifies the region of influence
of symmetric unstable resonant orbits.

We quantify regions of influence of the unstable 1:3 and 1:4 resonances across a range of Jacobi constants
and project them onto the semi-major axis-eccentricity plane, overlaid with Tisserand curves. In addition,
we identify a variety of weak and strong heteroclinic connections linking interior resonant orbits (2:1 and
3:1) to the 1:3 exterior resonant orbit by leveraging the tube dynamics of L1–L2 Lyapunov orbits, thereby
demonstrating the existence of low-energy transfer pathways between interior and exterior regions. This com-
prehensive analysis, incorporating the full PCR3BP model, accurately delineates the true region of influence
of exterior resonances of the form 1:n. These findings inform potential low-energy routes for spacecraft tra-
jectories from the interior to exterior Earth–Moon realm — pathways that may, in turn, facilitate trajectories
beyond the Earth–Moon vicinity to nearby three-body regimes, such as the Sun–Earth libration points

PLANAR, CIRCULAR, RESTRICTED THREE-BODY PROBLEM

The planar circular restricted three-body problem (PCR3BP) models a massless spacecraft moving under
the gravitational influence of two primary bodies (e.g., Earth and Moon), viewed in a rotating reference frame
centered at the barycenter of the two primaries. Both primaries move in circular orbits with constant angular
velocity about their barycenter, and the spacecraft motion is coplanar with their orbits. In normalized units,
the distance between the primaries is unity, their combined mass equals one, the period of their orbit relative
to the barycentered inertial frame, i.e., the sidereal period Tm, is 2π. The system dynamics depend only on
the mass ratio µ = m2

m1+m2
, taken as µ = 1.2150584270571545× 10−2 for the Earth–Moon system.

We choose a coordinate frame rotating with the two massive bodies as in Fig. 1(a), centered at their
barycenter with m1 and m2 lying on the x-axis at (−µ, 0) and (1− µ, 0), respectively. The PCR3BP differ-
ential equations of motion for the spacecraft in normalized units are then
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(a) (b)Figure 1: (a) Non-dimensional barycentered co-rotating (x, y) frame. (b) The geocentric osculating
orbital elements showing inertial longitude of perigee (ϖiner) and synodic longitude of perigee (ϖ).
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where r1 =
√
(x+ µ)2 + y2 is the distance from the spacecraft to m1 and r2 =

√
(x− 1 + µ)2 + y2 is

the distance to m2. In general, we refer to a point in the 4-dimensional, phase-space manifold M as X .
This point can be written in terms of the rotating-frame Cartesian coordinates given above, X = (x, y, ẋ, ẏ).
Alternatively, in the geocentric part of M, one can use instantaneous (i.e., osculating), geocentric orbital
elements, e.g., X = (a, e, ℓ,ϖ) where a is the semi-major axis, e the eccentricity, ℓ the mean anomaly, and
ϖ the longitude of perigee with respect to the rotating frame positive x-axis, as depicted in Fig. 1(b).

Jacobi Constant and the Energy Manifold

The Jacobi constant is an integral of motion of the CR3BP equations and is proportional to the negative
of the Hamiltonian energy of the system. In other words, for an initial condition X ∈ M, this scalar value
remains constant along the trajectory. The formula we use for the Jacobi constant of the planar problem is *

C(x, y, ẋ, ẏ) = x2 + y2 + 2

(
1− µ

r1
+

µ

r2

)
−

(
ẋ2 + ẏ2

)
. (2)

Let MC be the energy manifold or energy surface given by setting the Jacobi integral (2) equal to a constant:

MC = {X ∈ M | C(X) = C = constant}. (3)

The surface MC can be considered as a 3-dimensional manifold embedded in the 4-dimensional phase
space M. Any PCR3BP trajectory starting in MC will remain therein for all time, so one can study PCR3BP
dynamics restricted to each 3D manifold MC separately. For the geocentric portion of MC exterior to the
Moon’s orbit, dimensionality can be further reduced by using a 2-dimensional Poincaré surface of section at
osculating orbit apogee.

Tisserand Parameter

The Tisserand approximation to the Jacobi constant in geocentric orbital elements in the CR3BP is

C(a, e, i) =
1

a
+ 2

√
a(1− e2) cos i+O(µ), (4)

which imposes dynamical bounds on the range of motion a non-maneuvering spacecraft is capable of, de-
picted using the geocentric, osculating orbital elements: semi-major axis (a), eccentricity (e), and inclination
(i). In the PCR3BP, the inclination is set to zero (i = 0). The terms of order µ, O(µ), will be ignored when
the Tisserand approximation is used to plot projections of MC onto (a, e) space, which appear as curves,
referred to as Tisserand curves.

Hill Region and Hill Radius

The projection of MC onto the position space (x, y) defines the Hill’s region,

HC = {(x, y) | x2 + y2 + 2 ((1− µ)/r1 + µ/r2) ≥ C}. (5)

with boundary ∂HC called the zero-velocity curve, where ẋ = ẏ = 0. For natural (i.e., propulsion-less)
trajectories, the spacecraft is restricted to remain within HC .

There are five distinct Hill’s region topologies, depending on C. In case 2 (C1 > C > C2), a bottleneck
opens at L1, allowing Earth–Moon transitions. In case 3 (C2 > C > C3), see Fig. 2(a), an additional
bottleneck opens at L2, permitting transitions from Earth realm to the exterior realm using L1-L2 Lyapunov
orbit tubes. This will be explored in the heteroclinic connections section. The region which lies outside
the shaded forbidden region is the exterior realm surrounding the Earth (and Moon), largely dominated by
exterior MMR geocentric orbits (with Earth the dominant mass), up to the Earth’s sphere of influence.

*We note that this definition differs from some authors, who add a constant value µ(1 − µ), so that the Jacobi constant of the L4,
L5 points is precisely 3. We adopt the convention in current use among the cislunar astrodynamics community.
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Figure 2: (a) Case 3 of the Hill’s regions HC in the Earth–Moon rotating (synodic) frame. (b) Poincaré
map P on a Poincaré section ΣC in the CR3BP. The unit vector Σ̂ gives the sense in which trajectories
are crossing ΣC .

Earth’s sphere of influence or Hill radius is given by,

RH ≈ ae 3

√
me

3(me +ms)
≈ 3.9034NDU (6)

where, ae is the semi-major axis of the Earth with respect to the Sun, me is the mass of the Earth and ms is
the mass of the Sun. We will see in our results that the exterior MMRs, largely lie within Earth’s Hill radius
with 1:4 marking the boundary.

THE POINCARÉ MAP AND KEY DYNAMICAL FEATURES

Surface of Section at Apogee

To study exterior MMRs, we use the Poincaré surface of section at apogee with crossings identified when
the geocentric mean anomaly ℓ (and true anomaly ν) are π. We choose an apogee surface of section as
apogee faces less perturbations in the exterior realm and produces a better picture of resonant dynamics.6

Our Poincaré section, parametrized by Jacobi constant C, is defined as,

ΣC = {X ∈ MC | ℓ = π}. (7)

In practice, to avoid numerical problems in detecting section crossings during propagation, we consider a
continuous function of the mean anomaly that is zero at ℓ = π. The Poincaré section so constructed is 2D,
and can be represented by two coordinates that can be interpreted in orbital-element space: the semi-major
axis a and the synodic longitude of perigee ϖ, the angle between perigee and the Moon’s location in the
rotating frame (see Fig. 1). As ϖ is an angular variable, ΣC has a cylindrical topology, i.e., (ϖ, a) ∈ S1 × I
where I ⊂ R, and S1 is the circle.

Poincaré Map on the Poincaré Section

Poincaré maps simplify the study of the PCR3BP by transforming a 4-dimensional phase space into a
more manageable 2-dimensional analysis, elucidating periodic, quasi-periodic, and chaotic behaviors, and
revealing the intricate manifold structures that govern the system’s dynamics.

The section ΣC represents a 2-dimensional surface transverse to the flow inside the energy manifold MC

(cf. Fig. 2(b)). Let x0 ∈ MC denote an initial state, not necessarily in ΣC . The Poincaré map P (x0) = s
corresponds to the first crossing of ΣC by the trajectory originating at x0 in a particular direction. In general,
we will consider Poincaré mappings of ΣC to itself,

P : ΣC → ΣC ,

s 7→ P (s).
(8)
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Figure 3: (a) PIP (q) and secondary intersection point (q̄, not a PIP). (b) A BIP q defining a local
boundary B between two regions R1 and R2. (c) Top and bottom boundary to a resonance region R1.

As described in Rawat et al,7 the “orbit” of a point s ∈ ΣC under P is the set of all the past and future
iterates of the point s under the map P . The orbits that have a finite sequence of points O(pn) = p1, . . . , pn,
are periodic orbits of P , i.e., sequence repeats after some definite iterate. This represents a continuous
periodic PCR3BP trajectory, a closed loop, within MC . These periodic orbits are referred to as fixed points
on the map, as the state returns to the initial point p1 ∈ Σ after n iterates Pn of the Poincaré map.

If a periodic orbit is of center-type, that denotes a stable resonant orbit. Its stable fixed point will have
quasi-periodic orbits of Pn surrounding it on the Poincaré Map. The extent of the largest invariant tori, in
semi-major axis gives the stable resonance width of that particular resonance. If a periodic orbit is of saddle-
type, it denotes an unstable resonant orbit. It will have attached stable (W s(pi)) and unstable (Wu(pi))
invariant manifolds, for i = 1, . . . , n, consisting of orbits of P which tend asymptotically toward O(pn)
forwards or backwards in time, respectively. It is known that for 2D Poincaré maps of 2 degree-of-freedom
Hamiltonian systems,9, 10 some periodic orbits O(pn) are related to a general idea of “resonance”, even
beyond just orbital dynamics applications.

A resonance zone — the region of influence of an unstable MMR — can be defined via the stable and
unstable manifolds of O(pn) which are 1-dimensional curves within the 2D Poincaré section ΣC . An inter-
section point of the stable and unstable manifolds of the saddle-type periodic orbit O(pn) = {p1, . . . , pn} is
termed a primary intersection point (PIP), denoted by q in Fig. 3(a). All past and future iterates of a PIP are
also PIPs.11 Intersections between stable and unstable invariant manifolds of the same periodic orbit mark
homoclinic points as they enable homoclinic transfers.

We use PIPs to define boundaries, sometimes called separatrices, and subsequently resonance regions. As
a matter of convention, for a boundary intersection point, BIP, we pick the PIP with the shortest arc-length
of the manifolds, measured from the fixed points to the intersection point, dividing the Poincaré section ΣC

into distinct regions R1 and R2, as illustrated in Fig. 3(b). As there are always two branches each for a stable
and unstable manifold, we can identify both a “top” and “bottom” boundary by choosing BIPs, q+ and q−

respectively. These boundaries enclose a closed resonance region, R1, as shown in Fig. 3(c).
Within our cylindrical Poincaré section ΣC , we can have multiple resonance regions. For our purposes,

we will quantify the resonance zones by measuring the maximum/minimum extent in semi-major axis of
the stable and unstable manifold when followed forward and backwards respectively, from the BIP to the
unstable fixed points, both at the top/bottom boundary.

Unless constrained by other barriers within ΣC such as rotational invariant curves (RICs)12–14 — quasi-
periodic KAM tori that block transport along semi-major axis in the cylindrical phase space of ΣC — there
can be intersections between stable and unstable manifolds of different periodic orbits. Such intersections are
denoted as heteroclinic points and enable heteroclinic transfers.

UNSTABLE PERIODIC ORBITS AND MANIFOLDS

To understand the structure of unstable resonant orbit families and the heteroclinic dynamics induced by
them, one needs to compute the corresponding periodic orbits as well as their stable/unstable manifolds.
A mean-motion resonance denoted as k:km is characterized by the ratio of orbital periods where k and km
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denote coprime positive integers representing the number of spacecraft and Moon geocentric orbits completed
with respect to an Earth-centered inertial frame. In this paper, we study exterior resonances, where k < km.
To compute a family of k:km unstable periodic orbits in the Earth–Moon PCR3BP, we start with an orbit state
from the Earth Kepler problem having semi-major axis a such that (a/am)

3/2
= (km/k), where am = 1

in non-dimensional units. For strong unstable resonant periodic orbits, the initial longitude of periapsis ω̄
and true anomaly ν are both taken as 0; for weak unstable orbits, the initial values are ω̄ = π and ν = 0
(strong and weak instability will be discussed later). This orbit will be symmetric about the x-axis and
will also be periodic in the rotating Kepler problem (i.e., PCR3BP with µ = 0). Thus, the method of
perpendicular x-axis crossings can be used to numerically continue this Keplerian orbit to the true value of
µ = 1.2150584270571545×10−2 for the Earth–Moon system; see, for example, Section 2.6.6.2 of Parker and
Anderson15 for details of this method. The same method is then used to continue the resulting PCR3BP orbit
through the rest of its orbit family, using the perpendicular orbit x-intercept as the continuation parameter.

Once the periodic orbits in a family k:km have been computed, the computation of their stable/unstable
manifolds is carried out using techniques developed by the second author.?, 16–18 In particular, we compute
the intersection of these manifolds with the previously mentioned apogee Poincaré surface of section ΣC .
Such sections, utilizing osculating orbital elements, have been used by, e.g., Ross and Scheeres13 and Howell
et al.19 as well; they have better transversality to the PCR3BP flow as compared to other commonly used
sections such as y = 0. When using such a section in the exterior realm, the periodic orbit intersection
points with the section are period-k fixed points of the Poincaré map P . This is because such an k:km orbit
passes through apogee k times during one period, which takes approximately km lunar sidereal periods. This
implies that all resonant orbits of the form 1:n are period-1 fixed points of the Poincaré map P . The portions
of the periodic orbit stable/unstable manifolds lying in the chosen Poincaré section will correspond to 1D
curves. Intersections of the 1D manifold curves will provide the geometry (e.g., PIPs, BIPs, homoclinic
points, heteroclinic points) as discussed previously.

EXTERIOR RESONANCE AND KEY DYNAMICAL FEATURES

An exterior mean-motion resonance is denoted by the ratio k:km, where k < km and each denote co-
prime positive integers representing the number of spacecraft and Moon geocentric orbits completed with
respect to an Earth-centered inertial frame, respectively. Expressed in terms of the inertial-frame period of the
spacecraft, T , and the sidereal period of the Moon, Tm, we have an approximate relationship, T/Tm ≈ km/k,
within the context of the CR3BP.

In terms of the Poincaré map and section pair described above, (P,ΣC), a resonant orbit is a period-k orbit
which takes approximately km sidereal lunar periods. For exterior resonances of the form 1:n, the resonant
orbit will always be a period-1 fixed point on the map.

Poincaré Map Computation at Apogee

To compute the Poincaré map at the osculating orbit’s apogee for a given Jacobi constant, initial conditions
are selected along the negative x-axis (x < −1, y = 0), positioned beyond the radius of the Moon. A
sufficiently broad range of ẋ values is chosen, from which corresponding values of ẏ are derived using Eq. 2.
Crossings are specifically recorded at the apogee because, in the exterior region, the spacecraft is minimally
perturbed by lunar influences at apogee, offering more robust identification of Poincaré section crossings and
clearer insight into resonant dynamics.6

The resulting Poincaré map, exemplified in Fig. 4 at a Jacobi constant C = 3.25, shows multiple stable
islands, distinctly two separate asymmetric 1:3 and small 1:4 resonance islands, surrounded by an extensive
chaotic sea within which are embedded unstable resonant orbits. The underlying structure of the chaotic sea
for unstable resonant orbits is revealed by following the methodology of unstable orbit determination and
manifold computation mentioned in the previous section. We identify a weak unstable resonant orbit with
its “quasi-separatrices”20 surrounding the two stable asymmetric islands embedded within the separatrices
of a larger strong unstable resonant orbit. The features of the identified structures will be discussed ahead.
Furthermore, no trajectories are observed below a certain critical semi-major axis, clearly demarcating the
boundary imposed by the energy surface.
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1:4 Stable resonant quasi-periodic orbit (left) 1:4 Stable resonant quasi-periodic orbit (right)

Figure 4: Poincaré Map for C=3.25 showcasing 1:3 and 1:4 exterior resonances with stable and un-
stable manifolds emerging from two symmetric strong and weak unstable resonant orbits surrounding
two asymmetric stable resonant orbits.

Additionally, Poincaré maps computed using the surface section defined by y = 0 and ẏ < 0 further
illuminate resonance structure by revealing the order of resonance. For instance, see Fig. 5, while the apogee
section for the stable asymmetric 1:3 resonance demonstrates a single island, the y = 0 section presents two
islands for ϖ < π, matching the resonance order, 2. Similarly, the y = 0 section for the stable asymmetric
resonance of 1:4 manifests three islands, again corresponding to its resonance order, despite the apogee
section still displaying only a single island in 4. The number of isolated islands in the apogee map indicates
the numerator (k) of the resonance, whereas the island count on the y = 0 surface reveals the resonance
order |km − k|. Utilizing this methodology we can identify the stable resonances on the given map to be 2:5,
3:8, 1:3, 2:7 and 1:4 exterior resonances. This can be further verified by computing the theoretical relation
a = (km/k)2/3 which should be close to the semi-major axis of the resonance center.

Asymmetric stable orbits – 1 : n type

Poincaré sections typically reveal two major categories of stable islands: symmetric and asymmetric. Sym-
metric resonances have at least one resonant center located at either ϖ = π or ϖ = 0, exemplified by res-
onances such as 2:5, 3:8, and 2:7, arranged in ascending semi-major axis order. Conversely, asymmetric
resonances possess resonant centers located at values of ϖ distinct from 0 or π. It is well-established that
resonances of type 1 : n in the exterior region are inherently asymmetric,2 forming pairs of disconnected
stable islands without symmetry around either axis. Fig. 4 highlights dominant asymmetric islands, notably
those associated with the 1:3 resonance, accompanied by smaller emerging islands related to the 1:4 reso-
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Figure 5: Poincaré Map at y = 0 for C=3.25 showcasing 2:5, 3:8, 1:3, 2:7 and 1:4 exterior resonances
showcasing the order of resonance

nance, along with trajectories of their quasi-periodic orbits in rotating frame. These asymmetric orbits emerge
through bifurcations involving stable and weakly unstable orbits, as elaborated in the next section.

Standard differential correction techniques relying on orbital symmetry8, 15 are inadequate for comput-
ing asymmetric stable resonant periodic orbits. The second author thus very recently developed a suitable
methodology21 to calculate such asymmetric orbits; its use for computation of asymmetric resonant orbits is
work in progress.

Strong and weak unstable resonant periodic orbits

As previously discussed, a strong unstable resonant periodic orbit can be computed by starting with a semi-
major axis defined by the required resonance ratio and a configuration where initial longitude of periapsis
and true anomaly are both 0, and continuing it along µ for the Earth–Moon system. Similarly, weak unstable
resonant orbits can be computed by starting with a configuration with initial longitude of the periapsis at
π and true anomaly at 0. Starting with a near-circular orbit in each MMR weak unstable periodic orbit
family, we find that the very low-eccentricity orbits in such families are actually stable and belong to the
apocentric libration zone;3 however, upon decreasing the perigee on the side 180 degrees opposite from the
Moon (thus increasing eccentricity), the stable orbit family very quickly undergoes a bifurcation where the
non-trivial planar stable eigenvalue pair passes through 1 and becomes mildly unstable. The resulting orbits
are the symmetric weak unstable resonant orbits. As the Jacobi constant does not reach an extremum at this
bifurcation, it must also generate22 an additional pair of asymmetric periodic orbit families, which are the
asymmetric stable resonant orbits described earlier.

The separatrices of 1:n unstable exterior resonances exhibit a notable contrast to interior resonances, with
more complex and richer chaotic dynamics. Two asymmetric stable islands are enclosed between the quasi-
separatrices of a symmetric weak unstable resonant orbit. This entire structure is embedded within the sep-
aratrices of a symmetric strong unstable orbit, which also defines the region of influence of unstable mean
motion resonance. The quasi-separatrices of the weak unstable orbits are not the separatrices of the whole
resonance region. They are contained inside the libration zone, at least for lower eccentricities, but eventually
they start intersecting the separatrices of the strong unstable orbits and get scattered.

The structure of separatrices varies markedly with the Jacobi constant. For instance, in the 1:3 resonance
at the chosen Jacobi constant (Fig. 4), the weak unstable orbit’s quasi-separatrices are single-lobed and
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remain distinct from the strong unstable orbit’s separatrices even after prolonged iterations, indicating limited
chaotic transport. Conversely, the 1:4 weak unstable resonant orbit exhibits multi-lobed quasi-separatrices
with turnstiles intersecting the strong unstable separatrices at multiple points, revealing complex heteroclinic
interactions within a single MMR. As detailed in subsequent results, such separatrix structures significantly
evolve with changing Jacobi constants, with lower Jacobi constants (higher energies) exhibiting enhanced
interaction and chaotic mixing between weakly and strongly unstable manifolds compared to higher Jacobi
constants (lower energies).

DIRECT IDENTIFICATION OF RESONANCE ZONES

The Poincaré map at apogee reveals stable resonant orbits as fixed points surrounded by stable quasi-
periodic librational tori. These stable islands appear in the midst of a chaotic sea which is not featureless
but has embedded unstable resonant orbits and their corresponding separatrices that govern chaotic dynamics
and can quantify the region of influence of a particular MMR. The dynamics of motion into and out of the
resonance region are determined by lobe dynamics not addressed here,8 but documented elsewhere.23–27

As described in Rawat et al,7 the resonance widths are given by the extent of outermost invariant tori of
stable islands in the (ϖ, a) plane. The influence of the resonance region extends beyond the outermost stable
resonance librational torus regions to the “separatrix”, the boundary formed by the intersection of stable and
unstable manifolds. Particularly in the case of exterior resonance we see a rich and complex structure of the
quasi-separatrices of weak unstable resonant orbits embedded within separatrices of strong unstable resonant
orbits which are characterized by complex lobe structures that change form with Jacobi constants.

The region of influence of the resonance—the resonance zone—is defined by spread in semi-major axis
of the separatrices of the strong unstable resonant orbit. The BIP of the separatrices is identified. Following
the stable and unstable manifold forward and backward respectively, from the BIP to the strong unstable
fixed point and noting down the maximum extent of the top boundary and the minimum extent of the bottom
boundary in semi-major axis gives us the resonance zone. This is depicted in Fig. 6; an improvement of the

*

*

*

1:4 strong resonance zone
1:4 weak resonance zone
1:4 strong unstable manifold
1:4 strong stable manifold
1:4 weak unstable manifold
1:4 weak stable manifold
1:4 unstable resonance fixed points
BIPs

Figure 6: Schematic for identification of resonance zones using a Poincaré map at apogee for C = 3.35
showcasing 1:4 strong and weak resonance zones.

9



definition in Rawat et al,7 as the extent of the boundary defined by the BIP would correctly denote the region
of influence of unstable resonant orbits, as it also incorporates lobes. The region of influence of the weak
unstable resonant orbits can also be defined using its quasi-separatrices in the same manner but are not the
separatrices of the whole resonance region as they are contained inside the libration zone, at least for lower
eccentricities. Eventually they start intersecting the outer separatrices and get scattered chaotically as seen in
Fig. 7.

Poincaré maps are systematically computed over a range of Jacobi constants, specifically spanning from
C = 1.5 to C = 3.57. Select illustrative maps for the interval C = 3.15 to C = 3.35 are presented in
Fig. 7. For lower values of the Jacobi constant, specifically below C = 3.20, the asymmetric stable islands
associated with the 1:3 resonance remain notably small. At these higher energies, the quasi-separatrices
of the 1:3 weakly unstable orbit extensively intersect with the outer separatrices of the strongly unstable 1:3
resonant orbit, covering substantial regions within phase space. An analogous scenario is observed for the 1:4
resonance, where stable islands remain small up to around C = 3.25. Below this critical value, intersections
between quasi-separatrices and separatrices of weak and strong unstable resonant orbits, respectively, again
become pronounced, significantly expanding the weak unstable resonance region’s domain of influence.

Analyzing these Poincaré maps becomes increasingly complex due to the chaotic interplay of intersecting
manifolds. Nevertheless, certain characteristic structures remain discernible. Specifically for C = 3.25, see
Fig. 7, separatricies of 1:3 strong resonant orbit are plotted for more iterations to show that it features self-
intersecting, multi-lobed turnstiles. Such intricate turnstile structures complicate calculations of transport
phenomena and the quantification of lobe areas, critical for understanding mass exchange between different
dynamical regions.

Fig.7 illustrates, as an example, how the position of the BIPs associated with the strongly unstable 1:4
resonant orbit varies in terms of the semi-major axis with changes in the Jacobi constant. This variation has
direct implications for the resonance zone widths, as will be discussed in subsequent sections.

Furthermore, a notable structural evolution is observed in the 1:2 stable resonance island between C = 3.10
and C = 3.15, where a 1/4-type bifurcation occurs. This bifurcation significantly modifies the stable islands’
configuration within phase space, aligning closely with the predictions described by Greene’s criterion con-
cerning the breakup of invariant tori.28

Both 1:3 and 1:4 weak unstable periodic orbits belong to single continuous families – 1:3 weak unstable
family ranges from C = −0.56 up to C = 3.37, 1:4 weak unstable family ranges from C = −0.35 up to
C = 3.57. However, the strong unstable periodic orbits for both MMRs are contained across three separate
families – low eccentricity (Family 1), mid eccentricity (Family 2) and high eccentricity (Family 3) family.

The low eccentricity family that stay purely in the exterior realm and exist only for higher Jacobi constant
values or lower energies – C = 3.13 to C = 3.57 for 1:4 strong unstable resonance and C = 3.09 to
C = 3.36 for 1:3 strong unstable resonance. The high eccentricity family whose orbit enters the region
between the Earth and Moon and exist for lower Jacobi constant values or higher energies – C = 1.50 to
C = 2.81 for 1:4 strong unstable resonance and C = 1.50 to C = 2.84 for 1:3 strong unstable resonance.
There is yet another resonance zone that describe mid-eccentricity family where the orbit enters the Moon
realm but not the interior region. This exists for mid Jacobi constants values and has highly unstable orbits
with monodromy matrix eigenvalues on the order of several thousands – C = 2.82 to C = 3.11 for 1:4 strong
unstable resonant orbits and C = 2.86 to C = 3.08 for 1:3 strong unstable resonant orbits.

While the resonances are identified and depicted in (ϖ, a) space, we would also like to depict them in the
(a, e) plane, as this helps us visualize the resonance widths and resonance zones globally for different Jacobi
constants. The Poincaré section points, which are actually 3-dimensional points (a, e,ϖ) for each C, can be
projected into the (a, e) plane as in Fig. 8. Tisserand curves are an approximation to the projection of an
energy surface MC onto the (a, e) plane. This approximation does not perform well in the exterior regime.

A key characteristic unique to exterior resonances, observed clearly in the (ϖ, a) plane, is the distinct
curvature of the resonance islands. Unlike interior resonance islands, which typically align straight along
semi-major axis, these exterior islands exhibit a downward tilt from either sides. When represented in the
(a, e) plane, these data points deviate noticeably from the theoretical Tisserand approximation curve, exhibit-

10



BIP BIP

BIP

BIP

Figure 7: Poincaré sections ΣC along with manifolds of 1:3 and 1:4 weak and strong unstable resonant
orbits for 3.15, 3.25, 3.30, and 3.35. Variations in the structure of separatrices and variation in the
location of BIP for 1:4 strong resonant orbit is shown as Jacobi constant increases.

ing finite width in eccentricity. This indicates that trajectories sharing an identical semi-major axis possess a
continuum of eccentricities governed by the longitude of perigee, reaching minimum eccentricity at ϖ = π
and increasing as ϖ moves toward 0 or 2π. Fig. 8 showcases this observed phenomenon by viewing the
Poincaré map in (a, e,ϖ) space and projecting it into three distinct planes.

The Poincaré section points are projected onto the (a, e) plane, marking weak and strong resonance zones
for the 1:3 and 1:4 resonances. Figs. 9, 10, 11 and 12 show the resonance zones for 1:3 strong, 1:3 weak, 1:4

Figure 8: Poincaré Map at l = π for C=3.25 viewed in (a, e,ϖ) space and projected onto (ϖ, a),(a, e)
and (ϖ, e) planes. Cyan color represents bands of constant values of semi-major axis.
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Family=3, C=2.20 ,T=18.70 NDU,           = 0.81,      = 3.62

Family=2, C=3.00 ,T=19.48 NDU,           = 0.74,      = 

Family=1, C=3.20 ,T=19.53 NDU,           = 0.33,      = 10.51

Figure 9: Resonance zones for 1:3 strong unstable resonant orbits for C = 1.50 to C = 3.34 in
increments of 0.02, shown in the (a, e) plane. Three different families are observed. Manifolds and
unstable orbits in rotating frame are plotted for mean Jacobi constant for each family.

strong and 1:4 weak unstable resonances, respectively. For strong unstable resonance zones, three different
families are depicted, marked distinctly by different semi-major axis of unstable resonant orbits. For weak
unstable resonance a single continuous family is shown. Poincaré maps for near mean Jacobi constant of a
family along with separatrices of unstable resonant orbit and the trajectory of the unstable resonant orbit is
depicted as insets. Since the Poincaré map projected on (a, e) plane has a certain width as illustrated in Fig.
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C=3.20 ,T=18.92 NDU,           = 0.33,      = 1.63

Figure 10: Resonance zones for 1:3 weak unstable resonant orbits for C = 1.50 to C = 3.34 in
increments of 0.02, shown in the (a, e) plane. This belongs to a single family. Manifolds and unstable
orbits in rotating frame are plotted for mean Jacobi constants of Fig. 9.
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Family=1, C=3.34 ,T=25.32 NDU,           = 0.38,      = 4.38

Figure 11: Resonance zones for 1:4 strong unstable resonant orbits for C = 1.50 to C = 3.50 in
increments of 0.02, shown in the (a, e) plane. Three different families are observed. Manifolds and
unstable orbits in rotating frame are plotted for mean Jacobi constant for each family.

4, the exact position of the BIPs in the (a, e) plane lies enclosed within the resonance zone boundary.
The time period, stability parameter and the mean eccentricity for the unstable orbit shown in the insets is

computed. The stability parameter is given by the expression, ν = 1
2 (λ + 1/λ), where λ is the eigenvalue

corresponding to stable or unstable manifold. For strong unstable resonant orbits of both 1:3 and 1:4 unstable
resonance, the mid-eccentricity family is the most unstable, with stability parameters varying in the range
of thousands. For the low-eccentricity and high-eccentricity family the stability parameter increases as they
approach the Jacobi constant range of the mid-eccentricity family. For weak unstable resonant orbits of both
1:3 and 1:4 unstable resonance, the range of stability parameter values is very less and varies proportionally
to the width of the resonance zone, with more unstable towards the middle and less unstable at the top and
bottom values of the Jacobi constant. The time period varies minimally across all resonance zones of a
particular resonance.

The resonance zones are broader for lower Jacobi constants and taper towards the bottom as Jacobi constant
increases for both strong and weak unstable resonances. For the low-eccentricity family in both 1:3 and 1:4
strong resonance zones we observe a funnel type shape. This is because the position of the BIP changes as
we move across those Jacobi constant values as seen in Fig. 7. At higher Jacobi constants the lobes formed
by the separatrices are small and do not intersect, while at lower Jacobi constant values, the lobes are very
large and intersect at BIPs corresponding to a wider semi-major axis range.

The resonance zones of 1:3 and 1:4 resonance occupy a very large area of exterior regime. Taken together,
the 1:3 and 1:4 resonance regions span approximately 735,511 km (≈ 2 NDU) in semi-major axis, depicting
how they predominantly occupy the exterior realm.

All the 1:3 and 1:4 resonance zones are overlapped onto a single (a, e) plane, as shown in Fig. 13. There
is considerable overlap between the weak and strong unstable resonance zones which is also evident from the
(ϖ, a) plane, see Fig. 7. This overlap gives rise to multiple heteroclinic connection between the weak and
strong unstable resonant orbit of the same as well as different MMRs. The weak unstable resonance zone
is always enclosed within the strong unstable resonance zone, indicating that the region of influence of the
strong unstable resonance is always more dominant.
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Figure 12: Resonance zones for 1:4 weak unstable resonant orbits for C = 1.50 to C = 3.50 in
increments of 0.02, shown in the (a, e) plane. This belongs to a single family. Manifolds and unstable
orbits in rotating frame are plotted for mean Jacobi constants of Fig. 11.

Progress in discerning the influence of specific predominant resonances, such as the 1:3 and 1:4 MMRs
in the exterior regime, through the PCR3BP, contributes to advancing our understanding of these lunar reso-
nances and in the formation of a global cislunar dynamical map.

Figure 13: Resonance Zones for 1:3 and 1:4 strong and weak, C = 1.50 to C = 3.56 in increments of
0.02, shown combined in the (a, e) plane.
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HETEROCLINIC CONNECTION BETWEEN EXTERIOR AND INTERIOR RESONANCE USING
L1 AND L2 TUBES

As described in the previous section, several heteroclinic connections exist between 1:3 and 1:4 unstable
resonant orbits because of considerable overlap of their resonance zones that enable inter-resonance transfers.
However, more intriguing and of practical use to satellite dynamics are transfers between interior and exterior
realms, at energies sufficiently low for the L1 and L2 bottlenecks to open.

As first noticed in Koon et al. 200029 and elaborated upon in 20011 and 2003,30 intersections between
“lobes” related to invariant manifold of unstable MMR periodic orbits and “tubes” associated with L1 Lya-
punov orbits can be used to design low-energy trajectories between Earth orbits and lunar orbits (also recently
used by Hiraiwa et al. 202431 and Rawat et al. 20247). Similar analogies can be drawn for intersections be-
tween “lobes” related to invariant manifolds of exterior unstable MMR periodic orbits and “tubes” associated
with L2 Lyapunov orbits to design low-energy trajectories between exterior orbits, lunar orbits and even
interior orbits.

The L2 Lyapunov orbit stable and unstable manifolds each have two branches: one extending toward the
Moon realm and one toward the exterior realm. Similarly, both manifolds of the L1 Lyapunov orbit have two
branches: one extending toward the Earth realm and one toward the Moon realm. These manifolds serve as
co-dimension-one separatrices within the constant energy surface MC , partitioning transit and non-transit
trajectories. Trajectories inside these tubes execute transit orbits, (Earth-to-Moon)/(Exterior-to-Moon) or
their time-reversed counterparts (Moon-to-Earth)/(Moon-to-Exterior). 14(a)) showcases only those branches
of tubes that enable transfer from exterior to interior. The apogee cut of the stable manifold tube in the exterior
and the perigee cut of the unstable manifold tube in the interior are depicted (black curves) to help visualize
further results Trajectories that originate externally enter the lunar domain via the stable manifold tube of the
L2 Lyapunov orbit and subsequently exit through its corresponding unstable manifold tube. Within the lunar
region, a sophisticated interplay emerges, characterized by the intermingling of the unstable manifold tube of
the L2 Lyapunov orbit and the stable manifold tube of the L1 Lyapunov orbit, as illustrated in Fig. 14(b).

To systematically analyze this manifold intermingling, we construct a Poincaré section at the plane x =
1− µ, tracking the first crossing of the unstable manifold of L2 in the negative ẋ direction when propagated
forward and the stable manifold of L1 in the positive ẋ direction when propagated backwards , as shown
in Fig. 14(c)). At a Jacobi constant of C = 3.10, the resulting map clearly displays a substantial overlap
between these manifold tubes, highlighting a significant region facilitating transit from the exterior to interior
via the L2 and L1 gateways.

(a)

(b)
(c)

Figure 14: Tube dynamics at C = 3.10 with L1 and L2 Lyapunov orbit stable and unstable manifolds
in exterior, moon and Earth realm. The apogee cut in the exterior and the perigee cut in the Earth
realm are depicted using black curves. Insets: (b) showcases intersection of stable L1 manifold tube
and unstable L2 manifold tube at x = 1− µ, (c) showcases L1-L2 cuts in phase space.
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Figure 15: Exterior realm Poincaré section ΣC at apogee for C = 3.10 with L2 Lyapunov orbit
stable manifold cut. Insets showcase intersection of unstable manifold of 1:3 strong and weak unstable
resonant orbits with the L2 Lyapunov stable manifold tube.

Fig. 15 showcases Poincaré map at apogee (ΣC) for C = 3.10, stable and unstable manifolds of 1:3 and
1:4 unstable resonant orbits along with the first cut of the L2 Lyapunov orbit stable manifold. This cut denotes
an “exit” from ΣC in the exterior realm. All trajectories entering it must emerge in an “entrance” in the Moon
realm, as illustrated in Figure 14(a),(b). The tube starts from a resonance region of 1:2 and wraps around the
Poincaré map along the semi-major axis. We can clearly see numerous places where the stable manifold tube
intersects the unstable manifolds of the 1:3 strong and weak resonant orbit, marking heteroclinic connection
between L2 Lyapunov and 1:3 unstable resonant orbit. Segments of these unstable manifolds residing inside
the L2 stable manifold cut mark transit trajectories. The segment corresponding to minimum stretching is
chosen to explore heteroclinic connections (see insets of Fig. 15).

Similarly, Fig. 16 showcases a Poincaré map at perigee in the interior region for C = 3.10, stable and
unstable manifolds of 2:1 and 3:1 unstable resonant orbits along with the first cut of the L1 Lyapunov orbit
unstable manifold. The region inside the cut would mark the “exit” at the Earth realm for the trajectories
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Figure 16: Interior/Earth realm Poincaré section ΣC at perigee for C = 3.10 with L1 Lyapunov orbit
unstable manifold cut. Insets showcases intersection of unstable manifold of 2:1 stable resonant orbit
with the L1 Lyapunov orbit unstable manifold tube.
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coming from the Moon or exterior realm. The segment of stable manifold of 2:1 resonant orbit inside the cut
and corresponding to minimum stretching is chosen to explore heteroclinic connections between 1:3 and 2:1
unstable resonant orbits (see insets of Fig. 16).

To determine if a heteroclinic connection exists between the interior and exterior regions, it is necessary to
confirm intersections between the chosen unstable manifold segment of 1:3 unstable exterior resonant orbit
and the chosen stable manifold segment of 2:1 unstable interior resonant orbit within the overlapping region
of the L1 and L2 tubes on the x = 1 − µ surface of section. Subsequently, the exterior unstable manifold
segment is propagated forward, and the interior stable manifold segment is propagated backward in time
until they pierce the x = 1 − µ section. Fig. 17 shows that initially compact manifold segments evolve into
extended curves due to further stretching. A clear intersection between exterior unstable and interior stable
manifold segments can be seen inside the overlap region of L1 and L2 tubes.

The unstable manifold, significantly stretched, lacks sufficient points to fully capture its shape, resulting
in an abrupt transition from the overlapped region onto the L2 boundary passing through the interior stable
manifold. This indicates another heteroclinic connection, albeit less clearly defined and requires interpolation
techniques. The trajectory corresponding to the clearly defined heteroclinic connection between the 1:3 strong
and 2:1 resonant orbit is illustrated in Fig. 17 (right). We identify that this is a strong unstable exterior resonant
orbit as its perigee faces towards the moon.

Precisely determining intersection points demands a high degree of numerical precision. Consequently,
points on the unstable manifold (1:3 unstable resonant orbit) and stable manifold (2:1 unstable resonant or-
bit) nearest to each other are selected to represent the transfer trajectory. The point on the unstable manifold
is integrated backward in time, while the point on the stable manifold is integrated forward until both trajec-
tories reach close enough to their respective unstable orbits. The total transfer time is computed to be ≈ 9.5
days. Theoretically, exact convergence to these fixed points would require infinite propagation time due to
asymptotic behavior. Operationally, a trajectory is deemed a viable transfer when it approaches sufficiently
close to the periodic orbit.

A similar result is see in Fig.18, for the exterior 1:3 weak and interior 2:1 resonant orbit. For the first cut,
we again have atleast two heteroclinic connections – one prominently seen and the other hidden due to lack
of points and more stretching. The trajectory for the prominent heteroclinic connection between 1:3 weak
and 2:1 resonant orbits is shown on the right for which the transfer time is computed to be ≈ 7 days. We
identify that this is a weak exterior resonant orbit as it has its perigee facing away from the moon.

Exterior to interior heteroclinic connections are explored between 1:3 strong and weak unstable and 2:1
unstable resonant orbit for C = 3.15 in a similar manner, as seen in Fig. 19. For C = 3.15 the L2 Lyapunov
orbit tube starts only from the middle of the 1:3 resonance zone and similarly wraps around the phase space.
For higher Jacobi constants the starting point of the tube will keep on rising in semi-major axis and it will no
longer intersect some of the visible resonant orbit manifolds.
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Figure 17: (Left) A heteroclinic connection is found at the overlap of L1-L2 tubes. (Right) Transfer
trajectory from 1:3 strong unstable resonant orbit to 2:1 unstable resonant orbit.
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Figure 18: (Left) A heteroclinic connection is found at the overlap of L1-L2 tubes. (Right) Transfer
trajectory from 1:3 weak unstable resonant orbit to 2:1 unstable resonant orbit.

The overlap region of the L1 and L2 stable and unstable manifold cut at x = 1− µ drastically diminishes,
signifying a notably reduced likelihood of transport between the exterior and interior domains (see subsec-
tions of Fig. 19). Overlaying the stable and unstable manifold segments of 2:1 and 1:3 unstable resonant
orbits at x = 1 − µ reveals no heteroclinic connection as they just graze through each other. Attempts were
made to identify intersections for the second cut of tubes, but they do not intersect, revealing no overlap
region. This establishes that if there were transport from exterior to interior realms at C = 3.15, it should
have occurred in the first cut only.

Transfers were also explored from 1:3 to 3:1 unstable resonant orbits, which showed similar behavior with
two heteroclinic connection points at C = 3.10 for both 1:3 strong and weak unstable resonant orbits, and no
heteroclinic connection for either at C = 3.15.
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Figure 19: Exterior realm Poincaré section ΣC at apogee for C = 3.15 with L2 Lyapunov orbit stable
manifold cut. Subsections showcases intersection of enclosed segments of unstable manifold of 1:3
strong and weak unstable resonant orbits on x = 1 − µ section. The L1-L2 window is very small and
no heteroclinic connection is found.
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DISCUSSION AND FUTURE WORK

Poincaré sections at apogee provide a detailed depiction of the rich and complex dynamical structure of the
realm exterior to the Moon predominantly occupied by MMRs, highlighting both stable islands and chaotic
regions, all depicted in easy-to-visualize geocentric orbital elements. Our results highlight the pronounced
impact of exterior resonances of the form 1 : n, particularly 1:3 and 1:4 resonances, with a special focus on
the expansive unstable resonance zones defined by the complex web of its stable and unstable manifolds.

Analysis of unstable resonant periodic orbits has identified the chaotic regions generated by quasi-separatrices
of weak unstable resonant orbits embedded within separatrices of strong unstable resonant orbit, which inter-
sect for lower Jacobi constants. Specifically, we have quantified the extent of resonance zones associated with
the 1:3 and 1:4 exterior MMRs across three strong unstable orbit families, and depicted them in useful (ϖ, a)
and (a, e) planes. Employing these newly established resonance zones for a wider range of MMRs facilitates
the formation of an atlas of MMRs, enabling enhanced determination of whether space assets reside in stable
or unstable orbital regimes.

Additionally, our study demonstrates the potential for heteroclinic connections between 1:3 unstable exte-
rior and 2:1 and 3:1 unstable interior resonant orbits within feasible time scales (≈ 7-9.5 days) for C = 3.10,
while no such connections exist for C = 3.15. This examination of MMRs using a global dynamics approach
(using the CR3BP as a model) enhances our understanding of the intricate dynamics of cislunar space, with
implications for mission analysis, mission design, cislunar SDA and operations, and Oterma type transfers.

Future research directions will focus on refining methodologies to precisely determine resonance widths
and resonance zones, moving beyond qualitative assessments. Additionally, we aim to explore the influence
of 3-dimensionality (e.g., inclination), a significant factor contributing to the presence of secular resonances.
Further investigation will involve studying chaotic transport across resonances through analysis of lobe dy-
namics and flux across chaotic regions. Moreover, we intend to map all prominent resonances in the interior
and exterior region to have a global dynamical map of cislunar space up to the Earth’s Hill sphere.
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