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Abstract We present an experimental approach for esti-

mating finite-time Lyapunov exponent fields (FTLEs) in

three-dimensional multi-component or multi-phase flows.

From time-resolved sequences of particle images, we

directly compute the flow map and coherent structures,

while avoiding and outperforming the computationally

costly numerical integration. Performing this operation

independently on each flow component enables the deter-

mination of three-dimensional Lagrangian coherent struc-

tures (LCSs) without any bias from the other components.

The locations of concurrent LCSs for different flow ele-

ments (e.g., passive tracers, inertial particles, bubbles, or

active particles) can provide new insight into the inter-

penetrating FTLE structure in complex flows.

Finite-time Lyapunov exponents (FTLEs) are an increas-

ingly popular tool for describing mixing and transport in

complex flow fields (Haller 2001; Brunton and Rowley

2010). FTLEs provide a measure of the exponential rate of

divergence or convergence of Lagrangian particle trajec-

tories. They can be used both experimentally and numeri-

cally to describe a flow field, which may have a high

degree of spatiotemporal complexity (Haller 2001; Shad-

den et al. 2006, 2007). While FTLEs are primarily used to

describe single-phase flow behavior (Haller 2001, 2005;

Shadden et al. 2006), some works have attempted to

account for inertial particles by modeling the particles’

motion through simulations (Haller and Sapsis 2008; Tal-

lapragada and Ross 2008; Peng and Dabiri 2009). This

procedure can provide insight, but does not provide direct

information about the true observable inertial particle tra-

jectories. Often, the equations for inertial particle motion

make simplifying assumptions (e.g., the Maxey–Riley

equations; Maxey 1983) that can lead to significant dif-

ferences between the modeled and true motion. This brief

communication describes a method to directly determine

FTLEs from experimental data for inertial particles through

the use of particle tracking velocimetry (PTV) without any

a priori assumptions about particle motion.

FTLEs are computed via the Cauchy-Green deformation

tensor Cjk,

C ¼ rUt0þT
t0

� ��
�rUt0þT

t0
ð1Þ

where * denotes the matrix transpose, Ut0þT
t0

is the flow

map (diffeomorphism) of particle locations from time t0 to

t0 þ T , and T is the duration over which the FTLEs will be

computed and can be positive or negative, corresponding to

forward or backward FTLE, respectively. From the maxi-

mum eigenvalue of C, the FTLE field defined in the

measurement volume is,

rt0þT
t0
¼ 1

jT j ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax Cð Þ

p� �
ð2Þ

It is typical when computing FTLEs from experimental

data to use a numerical integration routine to numerically

advect artificial tracer particles to determine the flow map
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from the estimated velocity field (Shadden et al. 2006,

2007; Lekien and Ross 2010). While this can be effective

for single-phase flow, it neglects the fact that inertial par-

ticles, bubbles, or active particles may fail to follow the

bulk fluid motion or the fact that tracking individual par-

ticles can provide a direct measure of a short duration flow

map. Lagrangian tracking can provide a measure of the

flow map over longer times but is more prone to experi-

mental errors (Raben et al. 2014). While numerical routines

can be modified to estimate the inertial particle behavior

via modeling as mentioned above, this procedure does not

directly measure inertial particle trajectories. However,

using time-resolved PTV to obtain snap shots of the par-

ticle motion allows direct measurement of the particle flow

map while also allowing for parameterization of the par-

ticle flow map based on unique identifying characteristics,

such as size, shape, or color, providing, e.g., a one-

parameter family of particle flow maps with particle size as

the parameter. The concept of merging small flow map

snap shots to estimate a complete flow map was put forth

by Brunton and Rowley (2010) for results of fluid com-

putations and later adapted for experimental data as PTV

interpolation by Raben et al. (2014). Through this method

it is possible to simultaneously determine FTLEs for

multiple particle groups within the same measurement

volume and compare them to the bulk flow field. It has also

been shown that this method can provide high-accuracy

flow map computation results even when the particle

concentration drops below what is typically used for PIV/

PTV (Raben et al. 2014). While this work did not deter-

mine a lower limit for seeding, it did out perform all other

tested methods for very low particle concentrations. Ulti-

mately, seeding density in these multi-component envi-

ronments will depend on the type of flow and the interplay

of velocity time and length scales and the mean inter-

particle separation. The ability to resolve low seeding

density is an important feature; when the particles are

separated into groups, some groups will have smaller par-

ticle population densities requiring a method suitable to

provide high-resolution FTLE information with low-reso-

lution velocity information in order to properly determin-

ing the FTLE values.

To study the motion of inertial particles in an experi-

mental environment, data were collected in a vertical water

tunnel that was designed to generate homogeneous isotro-

pic grid turbulence, as described in Raben et al. (2012).

The Reynolds number for this facility, based on the

hydraulic diameter, was 8,738 with particles moving

roughly 2 voxels (within the volume of interest) per frame

pair. For this experiment, a bar thickness of the grid,

b ¼ 0:3175 cm, was used with the gap between bars equal

to the width of the bar. Overlapping bars created a square

lattice, which was located 8-cm upstream from the

measurement location. Two different types of particles

were added to the flow: 85� 20 lm-diameter silver-coated

hollow glass spheres that were tuned to be neutrally

buoyant and were used to act as flow tracers; solid glass

particles with diameters ranging from approximately

150–200 lm that were added downstream (top of the

tunnel) and had an approximate mass density of 2,600 kg/

m3. The vertical nature of the tunnel created opposing

motion as gravity pulled the negatively buoyant particles

down, while the bulk flow was moving mostly upward.

Time-resolved imaging techniques such as particle

image velocimetry (PIV) have made it possible to study the

Lagrangian motion of a flow field experimentally (Mathur

et al. 2007; Shadden et al. 2007). With the recent devel-

opment of volumetric image techniques (Elsinga et al.

2006), it is now possible to investigate particle trajectories

in a fully three-dimensional flow field. Because these

imaging techniques make no assumptions on particle

motion (e.g., must be a tracer following the bulk flow), they

can be effective in capturing non-flow tracer particle

motion (e.g., inertial particles) as well as bulk flow motion.

Time-resolved tomographic imaging was used to collect

information on the complete particle field as well as fully

resolve the three-dimensional fluid motion. A New Wave

Pegasus laser was used to illuminate all the particles in the

measurement volume. Three Photron FASTCAM APX-RS

high-speed CMOS cameras were used to simultaneously

image this light field, recording images at 250 Hz. These

images were reconstructed into a three-dimensional light

intensity distribution using the multiplicative algebraic

reconstruction technique (MART) using the Lavision

DaVis 8.1 software (Herman and Lent 1976; Elsinga et al.

2006).

Once the images had been reconstructed, the particles’

size and motion were determined. Particles were first

located in the volume using a simple thresholding method

and then sized using an intensity weighted pixel count. In

an effort to track the particles, a multi-component particle

tracking algorithm developed for single- and multi-phase

flows (Cardwell et al. 2011) was adapted to three-dimen-

sional data. The method performs the tracking by com-

paring a set of unique particle identifiers, such as size, peak

intensity, and proximity, and matches particles in consec-

utive images by minimizing a weighted function of these

parameters. This method has been shown to work well in

turbulent flows even with non-flow tracer particles (Car-

dwell et al. 2011).

Figure 1a shows a histogram of the particle sizes present

in the measurement volume. Due to factors such as camera

arrangement and the MART reconstruction algorithm

(Herman and Lent 1976), the particle size may be over-

estimated. As these factors should affect all particles

equally, and the concern here is not the exact particle size
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but rather their relative size, this should not affect the

results. For this study, the particle size distribution was

divided into two groups. The first group was composed of

the smaller particles, most likely silver-coated spheres,

which should follow the bulk fluid motion. The second

group was composed of the large particles, which were

primarily large glass particles that would tend not to follow

the bulk fluid motion. When computing the FTLE field, the

complete particle distribution was used as a control, as this

total group provides an estimate of the FTLE field that

would be found if no particle sizing procedure had been

applied to the data, and all the particles were (erroneously)

treated as flow tracers.

The FTLE field was calculated for each particle group

with an integration time of 0:211s (where s is a charac-

teristic timescale given by the hydraulic diameter divided

by the channel velocity) which is equal to 250 frame pairs.

For flows in two-dimensional domain, FTLE fields are

often characterized by the elevated ridges, or connected

lines with high FTLE values, which are referred to as

Lagrangian coherent structures (LCSs) and reveal hyper-

bolic or shear-dominated structures. In three-dimensional

domains, the loci of elevated values are two-dimensional

surfaces. Figure 1b, c shows iso-surface of high FTLE

values as proxies for true ridges for both the forward and

backward FTLE fields with the threshold set equal to one

over the integration time. For consistency, the threshold

was maintained constant between the two fields. Ridges in

the forward FTLE field reveal repelling surfaces where

particles are exponentially diverging away from one

another, while the backward FTLE shows attracting sur-

faces where particles are exponentially converging and

may be related to clustering cores for inertial particles.

From Fig. 1b, it can be seen that there is a significant

difference in the FTLE fields based on the particle size.

The iso-surface for the large particle group is dominated by

a large structure in the upper left of the domain. It could be

seen from the raw data that during this time, there was an

influx of larger particles that begin to spread throughout the

volume, which would explain the elevated FTLE values in

this region. For the small particle group, the iso-surface

shows a structure that extends from the lower right of the

domain up to the top. This structure could indicate that the

influx of large particles forced the flow tracers to be redi-

rected around the large particle cluster causing a diver-

gence in the small particle trajectories.

Figure 1c shows the backward FTLE, which will indi-

cate locations of particle clustering. Previous studies that

b Fig. 1 a Normalized particle diameter distribution within the

measurement volume. Iso-surfaces of the forward (b) and backward

(c) FTLE fields based on the different components in the flow
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have investigated particle clustering have used the second

invariant of the velocity gradient tensor, Q, sometimes

referred to as the Okubo–Weiss parameter, as an indicator

for where particles are likely to concentrate (Squires and

Eaton 1991; Eaton 1994; Guala et al. 2008; Haller and

Sapsis 2008), where Q is defined as,

Q ¼ 1

2
x2 � s2
� �

ð3Þ

with x and s representing vorticity and strain rate,

respectively. For scaling purposes, Q is often normalized

by the ensemble average of vorticity squared,

Q� ¼ Q= x2
� �

, as was done here. This produced normal-

ized values between �1:5 and 0:5 which is in agreement

with the literature for turbulent flow Guala et al. (2008).

When Q�\0, this indicates a region of high strain and low

vorticity, sometimes referred to as saddle-like regions,

since this classification, Eulerian in nature, is justified only

near stagnation points of steady flows (Basdevant and

Philipovitch 1994) [away from stagnation points, the cri-

terion has been shown to be incorrect (Haller and Yuan

2000)]. Only instantaneous flow structures can be identified

via Q�, which are not generally relevant to finite-time

transport as experimental flow fields are generally unsteady

(time dependent). Nonetheless, when particles are added to

the flow, the Q�\0 regions have been shown to correlate

with preferential particle concentration (Squires and Eaton

1991; Eaton 1994; Guala et al. 2008; Haller and Sapsis

2008). To illustrate regions where particles should cluster

according to the Q� criteria, Q� iso-surfaces are also given

in Fig. 1, showing the location of three standard deviations

away from the zero in the negative direction based on the

mean field. It can be seen from Fig. 1c that while there

exist some smaller regions of high backward FTLE

throughout the domain, the attracting LCS locations are

predominantly located near the location of higher negative

Q�.
Since the flow is time dependent, there is no reason to

expect perfect agreement between the Eulerian Q� field.

While Q� is computed a discrete locations in space for a

fixed time instant, the LCSs are computed using the tem-

poral evolution of the moving particles.

To further investigate the locations of particle cluster-

ing, Fig. 2 shows backward FTLE values on the center Z

plane for each of the two different particle groupings along

with the total particle collection, with a thick black line

representing the same iso-contour of Q� is included. In

addition, an iso-contour �1:5 times the standard deviation

and a zero contour are also included. It can be seen from

this figure that while there are some similarities in the

locations of the elevated backward FTLE values between

the different groups, there are also some important differ-

ences. Figure 2a shows the FTLE field for the total particle

group, which we note is not a superposition of the FTLE

field for the size-based groups. Elevated FTLE values are

seen in close proximity to the highly negative Q� values, as

Fig. 2 Contours of backward time FTLE values for the total location

of particles a, the large particle sizes b, and finally, the small particle

sizes, c. The thick line shows iso-contour for �3 standard deviations

(surface shown in Fig. 1b, c), while the thick line shows an iso-

contour for -1.5 standard deviations and the dashed line is the zero

iso-contour
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this will be a location where particles will cluster (Guala

et al. 2008). For the large particles, Fig. 2b, elevated values

are again seen near highly negative Q� but in a different

location from that seen with the total particle group. In this

case, the large particles appear to be more closely packed

around the region of highly negative Q�. The large particles

also have a lower maximum FTLE value, which may

indicate that their attraction to this region is not as strong as

some of the other particles groups.

For the small particles, Fig. 2c, it can again be seen that

the elevated FTLE values are located near the Q� iso-

contour. This particle group appears to have more scatter

than the other groups which is mostly due to the fact that as

flow tracers these particles are more susceptible to the

turbulent fluctuations in the volume and thus will have a

more spatially distributed structure. Again, because Q� is

an Eulerian field and ours is a temporally varying flow,

there is no expectation of perfect agreement with the LCS,

but it does help to illustrate the behavior. It can also be seen

from this figure that the average FTLE value appears

higher than that of the large particles which is in agreement

with previous numerical works (Bec et al. 2006).

Because of the variation in Stokes numbers between

the different particle groups, the FTLE fields that are

produced are different. The different Stokes numbers of

each particle group, and by extension their temporal

response, mean that the different particle groups will be

effected by different scales of the flow. The smaller

particles will be more directly influenced by small-scale

flow structures, while the larger particles will be more

ballistic and likely to respond to the large-scale features.

This increased temporal response in the smaller particles

will translate to more small-scale structure in the FTLE

field as the exponential divergence occurs more rapidly

(Fig. 2). Because these fields are generated from

Lagrangian information, it can be expected that they

will not be exactly the same as fields generated using

only Eulerian information, i.e., the Q� field. An impor-

tant aspect of the approach presented here is that it

enables the data to reveal the locations at which the

different FTLE fields, which are computed using parti-

cles with different sizes, do overlap. These different

fields are unique to each particle group and thus can

only be obtained, as introduced here, through computing

the FTLE fields separately through particle tracking.

These overlapping structures denote the inter-penetra-

tion of the FTLE fields, which subsequently can be used

to identify locations of global attraction (or repulsion in

the case of forward time FTLEs) for this range of par-

ticle sizes. Because inertial particles by definition will

not be perfect flow tracers, it is important to remember

that they will define a different FTLE field then their

flow tracer counterparts (Tallapragada and Ross 2008).

We posit that analyzing where these fields overlap can

potentially provide a novel parameter for describing the

dynamics of the flow field and may provide insight into

the stability of transport barriers which in turn adds to

their importance in describing the overall transport of

the field.

In summary, this work has shown that three-dimensional

FTLE fields can be calculated for inertial particles in

experiments through the use a non-flow tracer flow map

determination technique that uses particle tracking and

sizing information to directly measure the size-parameter-

ized families of flow maps. The use of particle tracking for

the direct calculation of the three-dimensional FTLEs is an

important advancement, as it is capable of uniquely

determining the flow maps for different groups of particles,

e.g., grouped by size in our experiment, but other param-

eterizations are possible. Using this method, it is possible

to directly measure inertial particle FTLE fields and

Lagrangian coherent structures without making assump-

tions about the underlying particle equations of motion.

This work also enables the calculation of inter-penetrating

FTLE fields for different particle groups. Inter-penetration

of FTLE fields from different particle groups may indicate

locations of global attraction or repulsion which would

increase our insight for multi-component and multi-phase

flow and transport processes.
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