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Abstract This work presents two new methods for

computing finite-time Lyapunov exponents (FTLEs) from

noisy spatiotemporally resolved experimentally measured

image data of the type used for particle image velocimetry

(PIV) or particle tracking velocimetry (PTV). These new

approaches are based on the simple insight that the particle

images recorded during PIV experiments represent

Lagrangian flow tracers whose trajectories lend themselves

to the direct computation of flow maps, and related quan-

tities such as flow map gradients and FTLEs. We show that

using this idea we can improve the reliability and accuracy

of FTLE calculation through the use of either direct path-

line flow map (PFM) calculation, where individual particle

pathlines over a fixed period of time are used to determine

the flow map, or particle tracking flow map compilation

(FMC), where instantaneous tracking results are used to

estimate small snapshots of the flow map which are then

compiled to describe the complete flow map. Comparisons

of the traditional velocity field integration (VFI) method

for computing FTLE fields with these new methods show

that FMC produces significantly more accurate estimates of

the FTLE field for both synthetic data and experimental

data especially in cases where the particle number density

is low. This is because the VFI estimates particle motion

while PTV directly measures particle motion and therefore

generates a more accurate flow map. Overall, our results

suggest that VFI is not always a reliable approach when

applied to noisy experimental PIV data. For cases where

particle loss between frames is minimal, the PFM can also

produce better results, but the final field is susceptible to

error due to the unstructured nature of the raw flow maps.

When comparing the ability to match the true separatrix of

a flow, FMC is shown to be a far superior method. The

separatrix from FMC has an 80 % overlap with the true

solution as compared to approximately 25 % for the PFM

and only 1 % for the VFI method. FMC shows a significant

advantage when the particle seeding is low, which is par-

ticularly relevant for applications to environmental or

biological flows where adding seed particles is not always

practical, and investigation of Lagrangian flow structures

must rely on naturally occurring flow tracers.

1 Introduction

Finite-time Lyapunov exponents (FTLEs) can provide

information on the mixing and transport mechanisms in a

flow (Brunton and Rowley 2010; Shadden 2011), and they

are applicable in both turbulent and laminar flows (Haller

2001). FTLEs are a measure of the exponential rate of

divergence or convergence of Lagrangian particle trajec-

tories over a finite time. The calculation of FTLEs has been

used previously in both experimentally (Shadden et al.

2007; Peng and Dabiri 2009) and computationally gener-

ated (Haller 2001; Wilson et al. 2009) flow fields.

The ridges or high-magnitude locations in FTLE fields

are referred to here as Lagrangian coherent structures

(LCSs). Ridges can be defined precisely by appealing to

differential geometric quantities (Shadden et al. 2005).

S. G. Raben � P. P. Vlachos (&)

Department of Mechanical Engineering,

Virginia Tech, Blacksburg, VA, USA

e-mail: pvlachos@vt.edu

S. G. Raben

e-mail: sraben@vt.edu

S. D. Ross

Department of Engineering Science and Mechanics,

Virginia Tech, Blacksburg, VA, USA

e-mail: sdross@vt.edu

123

Exp Fluids (2014) 55:1638

DOI 10.1007/s00348-013-1638-8



According to Haller (2011), LCS is defined more restric-

tively as hyperbolic material surfaces with extreme finite-

time normal repulsion or attraction. This eliminates spuri-

ous LCS such as those due to shear or stretching. Thus, it is

more correct to consider ridges of FTLE as candidate LCS,

and while they provide insight into the Lagrangian skeleton

of the flow, further criteria must be satisfied to classify a

candidate LCS as a hyperbolic LCS. Nevertheless, FTLE

ridge features can be used to determine the underlying

transport structure in complex flow fields (Holmes et al.

1996; Lekien and Ross 2010; Senatore and Ross 2011),

revealing mixing barriers that inhibit transport, or when

there is a high density of rapidly moving LCS, regions of

increased mixing (Shadden et al. 2005; Tallapragada and

Ross 2008; Peng and Dabiri 2009).

While the calculation of LCS from FTLE fields has been

used to better understand fluid dynamics behavior both

numerically (Haller and Yuan 2000; Lekien and Ross

2010; Tallapragada and Ross 2013) and experimentally

(Shadden et al. 2006; Shinneeb et al. 2006; Mathur et al.

2007; Charonko et al. 2013), their application has been

limited. Part of the limitation is due to the high computa-

tional cost in calculating the FTLE fields. Currently, in

order to calculate these fields, artificial flow tracers are

numerically advected in time to determine the flow map for

a flow field (Haller 2002). Determining this flow map using

conventional methods is computationally costly (Brunton

and Rowley 2010) and can yield incorrect values near

boundaries (Ruiz et al. 2010). Additionally, methods have

been developed for decreasing the computation cost of

determining and tracking the motion of LCSs for a given

flow field (Lipinski and Mohseni 2010).

The current work aims to efficiently and accurately

calculate flow maps and the associated FTLE fields from

experimentally measured particle image data of the type

used for particle image velocimetry (PIV) or particle

tracking velocimetry (PTV). Both are techniques for non-

invasively measuring a fluid flow experimentally where

flow tracers are added to a flow to probe the fluid’s motion

(Adrian 1991, 2005; Raffel et al. 1998). When properly

matched with the experimental flow conditions, these

particles are assumed to act as perfect flow tracers (Raffel

et al. 1998), with zero response delay to the flow fluctua-

tions, i.e., similar to the numerical particles that are arti-

ficially added to the flow during the numerical calculation

of the flow maps.

Previous work has shown that the computational cost

can be decreased when investigating successive FTLE

fields from a single data set by reducing the number of

redundant particle integrations (Brunton and Rowley 2010)

by numerically integrating particle trajectories over small

time intervals to create short snapshots of the flow map. By

using compositions of these flow map snapshots, FTLE

fields over different initial and final integration times can

be computed quickly and efficiently (Brunton and Rowley

2010). This procedure allows for different time intervals to

be linked together providing a flow map at varying time

intervals with reduced computational cost and has been

shown to work with experimental data (Green et al. 2011).

While this approach reduces the computational cost, it is

still expensive and moreover does not take advantage of the

flow map information contained in experimental flow fields

derived from particle images, i.e., the Lagrangian motion

of the particle flow tracers. When PIV or PTV images are

acquired, they inherently contain information about the

flow map over a short-time snapshot, i.e., the discrete

particle motion from one frame to the next. This simple

insight suggests that if properly extracted and compiled,

these measured particle trajectories can be used to more

accurately and directly measure the flow map, and there-

fore the FTLE/LCS field, from experimental PIV data.

This work presents a new method for FTLE calculation

by simply measuring the flow map directly from the flow

tracer particles present in the field. Compared with the

conventional velocity field integration (VFI) method, this

new method offers an alternative that is better suited for

use with particle image data because it exploits information

already inherent in the recorded images to deliver increased

accuracy and robustness. A previous study has looked at

using particle tracking information to compute FTLEs, but

this method still required a numerical integration step

(Voth et al. 2002). While this study claimed poor perfor-

mance of the tracking-based method, improvements in the

tracking procedure as well as the overall methodology will

increase the performance of these methods. By measuring

the motion of each of these particles from one time instant

to the next, through the use of PTV, a direct measure of the

flow map can be produced. This new procedure, illustrated

in Fig. 1, eliminates the need for costly numerical inte-

gration. In addition, using PTV also has the additional

benefit of better resolving near-wall flows (Kahler et al.

2012), which can increase the accuracy of the FTLE/LCS

near boundaries.

Two different forms of particle tracking can be utilized

in order to determine the required flow maps for a given

field. The first form is to use direct pathline flow map

calculation (hereinafter referred to as PFM), where the

pathline for individual particles located in the images is

constructed over a series of consecutive frames throughout

the entire time of interest. The second method is to use the

particle tracking between two adjacent frames and then

combine these successive flow maps via interpolation. A

compilation of this fashion was first proposed for numerical

data by Brunton and Rowley (2010). The advantage of

PFM is that the particle pathlines are direct measures of the

flow map as they provide the exact path of a given particle
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for a specific location. The disadvantage to this method is

that experimentally it can be challenging to follow a par-

ticle over an extended period of time. Particles can be

‘‘lost’’ due to improper matching in the tracking algorithm,

or in the case of planar PIV/PTV, they can be lost due to

out-of-plane motion. Using tracking information only

between two frames has the advantage over PFM that it can

provide a higher density of successfully tracked particles.

When limited to only two frames, the tracking algorithm

will not be as heavily influenced by losses and when

properly compiled should provide a very good estimate of

the true flow map.

The following provides a detailed analysis of using both

Lagrangian particle tacking and instantaneous particle

tracking for flow map determination of FTLE fields from

experimental data. First, a synthetic data set was created to

test the methods as well as perform error analysis. This was

followed by a demonstration of the methods on an exper-

imental data set of a vortex ring.

2 Flow map determination

This section will describe the two newly developed meth-

ods for flow map estimation which are based on direct

particle tracking of the flow tracer images, as well as the

classical velocity field integration approach, that is based

on numerical integration of trajectories of artificial fluid

elements based on cross-correlation-based PIV velocity

measurements and is used here as a benchmark for

comparison.

2.1 Flow map computation using particle tracking

methods

This work uses a multicomponent particle tracking algo-

rithm that has been developed for single and multiphase

flows (Cardwell et al. 2010). The process works by

calculating unique particle identifiers such as particle size,

shape, and maximum intensity and uses this information to

parametrically track the particles. By changing the relative

weighting of these factors, along with the interparticle

distance of the possible matched particles, the algorithm

can be tuned to work in highly turbulent flows with parti-

cles that may not follow the flow. Even nonflow tracers can

lead to informative FTLE analysis (Tallapragada and Ross

2008; Peng and Dabiri 2009). When the particles follow the

flow path, the algorithm can also use information produced

from PIV to more efficiently predict particle motion and

pair the particles. Using this method has shown great

improvements in both the probability to match particles

and in the accuracy of those matches (Cardwell et al.

2010). However, there are several other efficient PTV

methods that can also be used to produce accurate PTV

velocity field estimations (Ohmi and Li 2000; Mikheev and

Zubtsov 2008; Ohmi and Panday 2009).

2.1.1 Flow map compilation from instantaneous tracking

Because two-frame tracking results are direct measures of

incremental flow maps over the interframe time, i.e., the

particle motion between frames, it is possible to achieve

more accurate measurements of the total flow map by

combining these results together. This method was first

proposed for numerical results by Brunton and Rowley

(2010). They proposed that the complete flow map could be

calculated from a compilation of small time step flow maps

as in,

Ut0þT
t0
¼ IUt0þT

t0þðk�1ÞDt
� � � IUt0þ2Dt

t0þDt Ut0þt
t0

ð1Þ

where Ut0þT
t0

is the flow map calculated from time t0 to time

t0 ? T, etc., Dt is the time step between successive frames,

and T = kDt. Because these flow maps are computed on a

discrete grid, interpolation, I , is needed to compile the

flow maps. Evaluating small time step flow maps consec-

utively allows for the total flow map to be computed. As

Fig. 1 Flow chart showing the

common procedure for

computation of the FTLEs from

experimental data and our novel

procedure denoted with the red

dashed line
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the tracking results are obtained on an unstructured grid,

they must be interpolated onto the points coincident with

the compiled flow map at a given time step. To this end, a

thin-plate smoothing spline, which provides a high-accu-

racy interpolation while reducing the effects of noise in the

tracking results, was used (Karri et al. 2009). Particle

tracking results are inherently nosier than their PIV coun-

terparts, and while no smoothing was applied to the

tracking field directly, the smoothing spline helped to

suppress any noise in the field. For a given location in the

flow map, 50 closest tracks centered about the given

location were used in the interpolation. This number was

chosen in an effort to balance the competing effects of

having sufficient information to produce a proper interpo-

lation and not over-smoothing the data due to the inclusion

of distant points in the interpolation. While the results

presented here use a rectilinear flow map, this procedure is

still valid if the initial flow map grid was on an unstruc-

tured mesh (Lekien and Ross 2010). A flow chart illus-

trating the traditional procedure along with the newly

proposed method for calculating FTLE fields is shown in

Fig. 1.

2.1.2 Flow map computation from particle pathline

calculation

Particle pathlines were constructed from the instantaneous

PTV results by linking particle locations from the final

position in time step t to initial particle positions in time

t ? Dt. Only complete paths over the entire time of inter-

est, excluding any broken or short-time particle paths, were

used for computation of the FTLE field. Particle pairing

can fail, thus terminating a trajectory, due to a number of

factors including, but not limited to, out-of-plane motion

and incorrect pairing with the previous step of the tracking

procedure. This process produces a flow map that is reg-

ularly sampled in time, but irregularly sampled in space. In

order to perform the FTLE computation, the flow maps

were first interpolated onto a rectilinear grid. Again, a thin-

plate spline using the 50 closest particles was used to

perform the interpolation. After interpolation, the FTLE

was computed using the method described in the ‘‘FLTE

computation’’ section below.

2.2 Flow map computation using a velocity field

integration method

To perform the VFI, the software package ‘‘Newman’’ was

used (Du Toit 2010). Newman determines the flow map by

numerically integrating a grid of massless tracer particles

evenly spaced through the field. In cases where particles

may leave the velocity field domain, their trajectory is

terminated. For the synthetic case, the flow field is such

that flow tracers never leave the domain, and for the

experimental data, the grid of massless particles was inset

into the velocity field to help minimize this problem. To

perform this integration, a Runga–Kutta 4–5 with an

adaptive time step algorithm with tunable absolute and

relative initial tolerances was used. For the synthetic data

results, the absolute and relative tolerances were set to

10-12 and 10-14, respectively, with an initial time step set

to 10-7. For the experimental vortex ring data, the absolute

and relative tolerances were set to 10-10 and 10-9,

respectively, with an initial time step of 10-3. After this

numerical integration, the FTLE is computed using the

method described below.

3 FTLE computation

Computation of FTLEs begins first by computing the right

Cauchy–Green deformation tensor, Cjk, which is given by,

C ¼ ðrUt0þT
t0
Þ� � rUt0þT

t0
ð2Þ

where * denotes transpose and Ut0þT
t0

is the flow map

generated by either particle integration or particle tracking.

Next, the largest eigenvalue, kmax, from the deformation

tensor is identified and used to yield the forward FTLE

field r at each point in the flow field at time t0 as in

rt0þT
t0
¼ 1

jTj ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmaxðCÞ
p

� �

ð3Þ

4 Synthetic data

In order to test this method on a field with a known solu-

tion, the double-gyre flow field was selected (Solomon and

Gollub 1988a, b). This flow field is a standard test case in

the FTLE/LCS literature (Shadden et al. 2005; Brunton and

Rowley 2010; Lekien and Ross 2010; Tallapragada and

Ross 2013) as well as in the fluids community as it is a

close approximation to the flow field found in 2D Ray-

leigh–Benard convection (Solomon and Gollub 1988a, b).

This field can be most easily thought of as a pair of

counterrotating vortices confined on all sides as shown in

Fig. 2. The time dependence of this flow is controlled by

the asymmetric expansion and contraction of the vortices

inside the domain. The flow field is described by the stream

function:

WðtÞ ¼ A sin pf ðtÞð Þ sinðpyÞ ð4Þ

where
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f ðtÞ ¼ aðtÞx2 þ bðtÞx ð5Þ
aðtÞ ¼2 sinðxtÞ ð6Þ
bðtÞ ¼ 1� 2 2 sinðxtÞ ð7Þ

This formulation is valid over the domain of x from 0 to

2 and y from 0 to 1. The velocity field is given by

u ¼ �pA sinðpf Þ cosðpyÞ ð8Þ

v ¼ pA cosðpf Þ sinðpyÞ df

dx
ð9Þ

where A is the scaling parameter for the magnitude of the

velocity and e determines how far the vortices grow and

shrink. The original formulation of this comes from Solo-

mon and Gollub (1988a, b), while this specific derivation

was performed by Shadden et al. (2005). It is important to

note that this solution does not satisfy the Navier–Stokes

equations but rather is an approximation of a time-varying

flow field with fixed boundaries. If e = 0, then the flow

becomes time independent. When e = 0, then e provides a

measure of how much the separation line between the gyres

moves in the x-direction over a period of 2p/x. For the

work herein, e was set to 0.25, x was set to p/5, and A was

set to 0.1. For results pertaining to these data, the spatial

domain is normalized using the characteristic length, L, of

the domain x, y = 1.

4.1 Artificial image generation

To generate images simulating an experimental environ-

ment, the benchmark velocities must be integrated at finite

locations so that these locations can be used to simulate

particles as would typically be seen in PIV/PTV experi-

ments. To perform this integration, 30,000 random tracers

were seeded throughout the domain and their trajectories

were integrated using MATLABs ode45 solver, which is a

Runga–Kutta-based numerical differential equation solver

that is fourth-order accurate with a fifth-order check. The

equations were integrated using a time step that would

allow for 500 evenly spaced realizations over one complete

period of the flow, 2p/x. Because the particle locations

were randomly distributed in space, the gradient calcula-

tions used radial basis functions that allow high-accuracy

derivative estimation on unevenly sampled and unstruc-

tured domains (Karri et al. 2009).

From this larger set of particles, randomly sampled subsets

were extracted to generate images with specified seeding

densities. Each seeding density was simulated ten times (with

a different subset of particles) in an effort to produce statisti-

cally significant results. The seeding densities chosen for the

simulations were 500, 1,000, 2,500, 5,000, 7,500, 10,000, and

20,000 particles per image. The image size was 1,024 by 512

pixels, which produced seeding concentrations of

0.001–0.038 particles per pixel for the 500 and 20,000 particle

cases, respectively. For comparison, in a typical PIV experi-

ment there are approximately ten particles in a 32 by 32 pixel

window corresponding to a seeding density of 0.01 particles

per pixel (Raffel et al. 1998; Adrian and Westerweel 2011).

The image generation was performed using the Gaussian

approximation for light scatter from a particle illuminated

from a thin sheet of laser light (Brady et al. 2009). The

laser light distribution was also assumed to be Gaussian

with the highest intensities at the center of the light sheet.

As in an actual experiment, the particles were assumed to

be nonuniform in size, with diameters assumed to contin-

uously vary from 2 to 15 pixels.

4.2 PIV and PTV procedure

The PIV processing was performed using an in-house-

developed code1 employing the robust phase correlation

technique (Eckstein and Vlachos 2009a, b) in conjunction

with the multigrid discrete window offset method (Scarano

and Riethmuller 1999) and image deformation (Scarano

2002). The initial window size was determined using the �
rule, which suggests that the window size should be four

times larger than the maximum particle displacement

within. The second effective window resolution was 16 by

16 pixels with a 4 by 4 grid resolution, creating 75 %

overlap between interrogation windows and producing a

constant total of 8,001 vectors for all of the different par-

ticle seeding cases. Two iterations were performed at each

window size for a total of four passes. To improve the

window deformation procedure, outliers in the intermediate

results were removed using the universal outlier detection

(UOD) (Westerweel and Scarano 2005) and then smooth-

ing was performed. For the final pass only, the UOD was

applied.

In order to increase the accuracy and robustness of the

PTV results, PIV information was used to predict the most

likely location of particles in future frames. A weighting of

75 % was given to the PIV estimation while 25 % was

based on the previous tracking information as this code can

Fig. 2 Vector field snapshot of the double-gyre flow field

1 PRANA software is freely distributed as open source http://

sourceforge.net/projects/qi-tools/.
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use previous tracks to better estimate a particle’s future

position. A two-pass median validation was also used to

remove erroneous tracks (Duncan et al. 2010). After these

tracks were removed, the new estimate on the next particle

position was determined by a weighted average of its

surrounding neighbors. Once these new estimates were

established, the tracking algorithm was rerun to find more

accurate matches. Lagrangian particle tracks were acquired

by linking the instantaneous particles tracked in successive

frames using the termination locations from the first frame

as the starting location of particles in the second frame.

5 Experimental data

In order to test this method on experimental flow fields,

data from a laminar vortex ring in a semi-infinite domain

were chosen (Stewart 2012). These data provided a good

test bed for the present work as previous studies have

predicted the geometry of the FTLE/LCS from vortex rings

(Shadden et al. 2006; Olcay et al. 2010). The experimental

setup consisted of a piston-cylinder arrangement with the

fluid being ejected into a semi-infinite domain. The stroke-

to-diameter ratio (L/D) for the piston-cylinder was 1.2,

which produced a circulation-based Reynolds number of

approximately 1,800.

To measure the fluid motion, neutrally buoyant hollow

glass spheres with average diameters of 85 microns were

added to the fluid. These particles were illuminated by a

Nd:YAG dual head laser (New Wave Pegasus) firing at a

constant rate of 500 Hz. The images were captured using

an IDT XS-3 CMOS camera with a resolution of 1,280 by

1,024 pixels and a magnification of 63 microns per pixel,

providing a resolution of 2.9 diameters in the vertical

direction and 6.1 diameter along the length. The spot

diameter of the particles in the images was between 2 and 4

pixels. For more information on the experimental setup, see

the work of Stewart (2012).

The PTV data were computed using the multiparametric

particle tracking method (Cardwell et al. 2010). Particles

were identified using a dynamic thresholding method with

a lower pixel intensity limit of 50 (these were 8-bit images

with a maximum intensity value of 255). After identifica-

tion, the particles were sized using a least-squares Gaussian

method (Brady et al. 2009) with the diameter assigned at 4

standard deviations. Hybrid PIV–PTV tracking was used to

increase the efficiency of the PTV algorithm. The multi-

parametric tracking algorithm used a combination of par-

ticle size, intensity, and estimated position to determine the

optimal particle match. Position estimation was performed

using both previous track information and PIV results. The

PIV was processed using the same in-house code utilizing

robust phase correlation (RPC) (Eckstein and Vlachos

2009a, b) as the synthetic images (Eckstein and Vlachos

2009a, b). Due to the high shear rate produced by the

vortex, window deformation was also performed (Scarano

2002). An initial PIV window size of 32 by 32 pixels was

selected. This window size was held constant for three

iterations to allow the window deformation to converge

(Scarano 2002). A final window size of 16 by 16 pixels was

used and again allowed to converge over three iterations,

resulting in a total of six passes. Because the deformation

method can be very sensitive to outliers in the intermediate

results, outliers were identified using the UOD method and

smoothed, while only outlier detection was applied to the

final output field (Westerweel and Scarano 2005). Once the

data were fully processed, the PIV results were filtered

using proper orthogonal decomposition (POD) (Sirovich

1987) preserving 95 % of the fluctuating energy. This step

helped to reduce any noise that may have been present in

the data.

6 Results and discussion

6.1 Synthetic data

Figure 3 shows the benchmark FTLE field computed at

t0 = 0 over one full period, T = 2p/x, of the double gyre.

We consider this FTLE field the benchmark against which

our methods should be compared. The dominant feature of

this field is the ridge located in the center extending to the

upper left. This ridge is the primary separatrix and will

serve as a criterion to determine the effectiveness of the

different methods to accurately resolve the FTLE field.

For brevity, only the 500, 5,000, and 20,000 particle

cases will be shown in the following example figures,

although all cases are included in the analysis. Figure 4

provides a qualitative comparison between three FTLE

fields calculated using different methods from a set of 500

particles. Figure 4a was generated using VFI, Fig. 4b using

PFM, and Fig. 4c using FMC. For the VFI method,

massless tracer particles were placed at every pixel, which

produced a grid eight times finer than the PIV field. For the

Fig. 3 Resulting FTLE field from using the benchmark flow field.

This field will be used as the basis of comparison for the synthetic

data analysis
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FMC method, the massless particles were placed at every

fourth pixel, which when using the 50 closest tracks pro-

duced an average window size of 95, 29, and 19 pixels for

the 500, 5,000, and 20,000 particle cases, respectively.

These correspond to the average window sizes relative to

the characteristic length, L, of 19 %, 5.7 %, and 3.7 %, for

the double-gyre flow field. For this seeding density, the PIV

results contain a large amount of noise due to the small

number of particles in each interrogation region, and as a

result, the VFI also contains a large amount of error. While

increasing the window size would improve the PIV results,

the reduction in resolution would still yield compromised

results (Olcay et al. 2010). Finite-time Lyapunov exponent

fields can handle high error in the velocity field over a

limited duration (Haller 2002), but long-duration errors can

strongly distort the field (Olcay et al. 2010; BozorgMag-

ham et al. 2013). For the PFM, there are a small number of

pathlines due to the low seeding density. As a result, the

FTLE field appears to be under-resolved, leading to a

diffused and difficult-to-discern ridge. Unlike the VFI at

this seeding density, the PFM resolves the separatrix that is

present in the benchmark solution, although the ridge

appears to have a reduced peak value and is broader than in

the benchmark. For the FMC, even with this low seeding

density, the method returns a field that is sufficiently

similar to that of the solution. Some discrepancies can be

seen which again are most likely due to the limited number

of tracks used during the flow map interpolation. This field

is able to capture not only the main separatrix but also

some of the smaller ridges seen in the FTLE field.

Figure 5 shows results from the case with a seeding

density of 5,000 particles where Fig. 5a, b, c corresponds to

the VFI, PFM, and FMC methods, respectively. With an

increased number of particles, the VFI does an improved

job at resolving the field. The method, however, does

struggle to capture the attachment of the separatrix to the

lower wall. This inability stems from the limitation of

resolving the velocity near the boundaries of the domain

and the poor performance of the VFI method at these near-

wall locations. While increasing the domain of the double

gyre would separate these important trajectories for the

near-wall region, it would not change the fact that PIV

coupled with VFI will struggle to resolve near-wall

behavior. Because the measured velocity from PIV is, in a

sense, an average of all the particle velocities in the

interrogation region, it is difficult to properly measure the

velocity near a wall or near a location with zero velocity

(Kahler et al. 2012). For the PFM, the field also shows

improved estimation of the benchmark solution. Again,

error in the flow map due to the discrete locations of the

tracks appears as spurious ridges in the FTLE field. For the

FMC method, the error in the tail of the separatrix appears

to be gone, and the noise that was seen in the previous case

appears to be diminished.

Fig. 4 FTLE results for the 500 particle case where a, b, and

c represent velocity field integration of the PIV data, direct pathline

flow map calculation, and the particle tracking flow map compilation

method, respectively

Fig. 5 FTLE results for the 5,000 particle case where a, b, and

c represent velocity field integration of the PIV data, direct pathline

flow map calculation, and the particle tracking flow map compilation

method, respectively
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Finally, Fig. 6 shows the results for the seeding density

case of 20,000 particles where again Fig. 6a, b, c corre-

sponds to the VFI, PFM, and FMC methods. This case is

noteworthy as it is most similar to the seeding density that

would be found in an ideally seeded PIV/PTV fluid

experiment. Again, for the VFI it can be seen that the

secondary structures appear to be well resolved (the mul-

tiple fingerlike structures in the right side of the image)

while the main separatrix is still not fully captured. This

shows that even with highly seeded data, VFI results can-

not adequately capture the near-wall features due to the

limitations of PIV measurements in this region. While

decreasing the PIV window size would help improve the

PIV resolution near the wall, PIV will inherently still

struggle to resolve the near-wall velocities (Kahler et al.

2012). Assuming that adequate seeding density is achieved,

particle tracking does not have this problem and performs

better at resolving these velocities (Kahler et al. 2012). For

consistency between cases, the window size was held

constant, but it can be assumed that as the resolution is

increased, the VFI field should approach the benchmark

field. For the PFM case, again the separatrix appears to be

captured, but the noise is still significantly affecting the

resolution of the FTLE features. However, the FMC result

shows good agreement with the benchmark solution. The

separatrix appears to be well resolved with little noise

present in the field. However, it is worth noting that in

Figs. 5c and 6c thin hairlike structures, which are spurious

random ridges in the FTLE field, appear, which are not

present in the benchmark solution.

For a quantitative analysis of these results, the normal-

ized average error and normalized root-mean-squared

(RMS) error were calculated using the following formulas:

Normalized average error =
1

N

X

N

i¼1

rðiÞMeasured � rðiÞSolution

rðiÞSolution

�

�

�

�

�

�

�

�

ð10Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

rðiÞMeasured � rðiÞSolution

rðiÞSolution

� �2

v

u

u

t

ð11Þ

where r is calculated from t0 to t0 ? T for all of the cases

using the solution r as a benchmark for comparison and the

index i labels the pixel locations for which the FTLE is

calculated. The normalized average error, Eq. (10), weights

each point equally, while the normalized RMS error,

Eq. (11), places increased emphasis on points with larger

deviations from the solution. Both of these equations are

important as the average error Eq. (10) provides an error

metric for the entire field while the RMS error Eq. (11) will

place more emphasis on the high values, or the location of

what is most likely the separatrix. These values were

computed for each of the ten cases at each seeding density.

Figure 7 shows the average of all of these cases for each

seeding density with the uncertainty bars showing the one

standard deviation value computed from the ten cases. For

the average error, Fig. 7a, it can be seen that the error

decreases as the seeding density is increased. The VFI

consistently contains higher error than the other methods

reaching a minimum value of 0.136 for the 20,000 particle

case. Direct particle pathline flow map calculation reaches

a minimum average error of 0.0733 at the 10,000 particle

case. There is an increase in the error for the PFM method

in the 20,000 particle case to a value of 0.1085. This

increase is due to the fact that as the seeding density

increases, and the interparticle distance decreases, there is

an increased likelihood that particle mismatch could occur

which would introduce error into the flow map and there-

fore the FTLE field. For the FMC method, the error con-

tinues to decrease as the seeding density is increased,

reaching a minimum at the 20,000 particle case of 0.0579,

which is the lowest value compared to any of the other

cases. The variance between the cases at a given seeding

density also diminishes as the seeding density increases.

For the 5,000 particle case and above, the variance is less

than 2.5 % of the error on average.

For the normalized RMS error, as shown in Fig. 7b, the

error in the FTLE field for the different cases again

Fig. 6 FTLE results for the 20,000 particle case where a, b, and

c represent velocity field integration of the PIV data, direct pathline

flow map calculation, and the particle tracking flow map compilation

method, respectively
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deceases and levels off as the particle number reaches the

5,000 particle case. Again for the highest seeding density,

the FMC method has the smallest RMS error of 0.1432.

The VFI consistently has the highest RMS error with very

large values at the lower seeding densities. The PFM

method does well throughout the seeding densities until the

20,000 particle case where the error again rises as seen in

the normalized average error. It can be understood from

these results that the FMC proves, under these imaging

conditions, to be a superior method when compared to VFI

and comparable to PFM.

The FTLE difference calculations shown above may

lead one to infer that the PFM method is almost always

delivering the best results, however, which would be mis-

leading since Figs. 4, 5, and 6 clearly show that it fails to

properly resolve the FTLE structure and is only producing

comparable results in a spatially averaged sense, where

one-point spatial FTLE is weighted equally with the next.

Therefore, in addition to investigating the total FTLE field

errors, we also investigated the ability of the given methods

to properly determine the separatrix seen in the benchmark

solution. To this end, the amount of overlap between the

benchmark separatrix and the calculation method was

computed. This analysis is similar to that completed by

Olcay et al. (2010) with their analysis of the sensitivity of

LCS identification on the flow field resolution. Figure 8

shows the benchmark separatrix (solid gray line) along

with the separatrix from the three methods (colored lines)

for the seeding density of 500 particles. For this study, the

separatrix was defined as the region above a threshold

value of 0.40, or about 75 % of the maximum value, which

contained all of the primary ridge information. As these

fields should produce the same results, a constant threshold

was used. Here, the FMC method clearly shows the best

agreement with the benchmark solution. While the PFM

produces FTLE values close to that of the benchmark and

thus performs well in a statistical sense when we calculate

overall errors, here it can be seen that the separatrix is not

well resolved and little overlap occurs.

Figure 9 shows the overlap for the seeding density of

5,000 particles. Again, because of the poor near-wall

interpolation and velocity resolution, the separatrix is not

clearly defined for the VFI. It has been shown that PTV

methods have better near-wall performance (Kahler et al.

2012), which contributes to these methods performing

Fig. 7 Normalized average (a) and root-mean-squared (RMS)

(b) error for all three of the methods tested

Fig. 8 Separatrix analysis for the case of 500 particles. The solid

gray line represents the separatrix from the benchmark solution

Fig. 9 Separatrix analysis for the case of 5,000 particles. The solid

gray line represents the separatrix from the benchmark solution
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better than the VFI method. For the PFM method, the

separatrix appears noisy and not well resolved. The FMC

method still shows strong overlap with the benchmark

solution throughout the length of the separatrix. For the

final 20,000 particle case, Fig. 10, the results have a similar

appearance. The increased noise in the PFM can be seen in

the noisy separatrix values while the FMC maintains a

good correlation with the benchmark.

Figure 11 shows the overlap percentages for all of the

cases and methods. Overlap was calculated by determining

the number of FTLE pixel values above the given threshold

that occupied the same position as those in the benchmark

solution. It can be seen from this figure that the FMC

consistently does a better job at resolving the separatrix

than the other methods. The VFI is not able to capture the

separatrix due to the sharp near-wall flow gradient and

near-wall integration. The PFM performs better than VFI

method but underperforms when compared to the FMC

method. Also, the increased error that is present in the PFM

when increasing the seeding density from 10,000 to 20,000

leads to decreased overlap for the highest seeding density

case.

Another method for measuring the performance of these

methods is to use the Hausdorff distance (Dubuisson and

Jain 1994). Hausdorff distances have been used in the

imaging community for pattern recognition (Zhao et al.

2005). The Hausdorff distance computes the minimum

distance between all of the points in two different sets and

then returns the largest of these minimum distances as

given by

dHðX; YÞ ¼ max sup
x2X

inf
y2Y

dðx; yÞ; sup
x2X

inf
y2Y

dðx; yÞ;
� 	

ð12Þ

where sup is the supremum and inf is the infimum. This

metric helps to describe quality of a match between the two

sets; the closer to zero, the better. For the purpose of this

study, each set will be composed of the largest continuous

section of the FTLE above the threshold used in the pre-

vious overlap analysis and will be compared to the

benchmark solution location above the same threshold. The

use of only the largest continuous section is appropriate

since, without a priori knowledge, this would be chosen as

the dominant feature of the field. The results are normal-

ized using the characteristic length, L. The result of this

comparison is shown in Fig. 12. It can be seen from this

figure that the FMC method significantly outperforms the

other two methods. While qualitatively it could be seen that

the FMC was producing a strong match with the solution,

the Hausdorff distance allows for a more quantitative

comparison. Again, it can be seen from this figure that the

PFM improves as the seeding density is increased but then

digresses as the seeding density is increased to 20,000. The

Fig. 10 Separatrix analysis for the case of 20,000 particles. The solid

line represents the separatrix from the benchmark solution

Fig. 11 Percentage overlap between the measure and true separatrix

for the different methods

Fig. 12 Hausdorff distance for all three methods compared with the

solution
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FMC shows continuous improvement as the seeding den-

sity increases, reaching its smallest value of 0.0082 at a

seeding density of 20,000.

6.2 Experimental data

Figure 13 shows the velocity field along with the nondi-

mensional vorticity for the laminar vortex ring experi-

mental case. As typically seen with a vortex ring, the field

has maximum vorticity in the two counterrotating cores of

the vortex ring cross section. The seeding density was

measured from the particles used during the matching of

the particle tracking; it was 0.0172 particles per pixel,

which is similar to the 0.0191 particles per pixels seen in

the 10,000 particle case for the synthetic data. Some noise

in the velocity field can be seen in the wavy pattern present

in the vorticity magnitude inside the vortex ring. Noise in

the velocity field can become amplified when derivatives

are calculated (Etebari and Vlachos 2005); thus, the vor-

ticity field may show noise that is not immediately apparent

in the velocity field.

Calculating the forward-time FTLE fields for all three

methods yields the results shown in Fig. 14. These results

show the FTLE field calculated using 75 frames. The VFI

method produces a strong separatrix around the vortex core

along with smaller noisier features in the far field. The

shape of the separatrix is to be expected as it represents the

boundary between fluid parcels that entrained into the

vortex and those that are simply swept around the vortex.

The PFM method, Fig. 14b, fails to capture the separatrix

around the vortex ring. In experimental data, particles can

be lost during the particle tracking process for a number of

Fig. 13 Velocity field with the corresponding vorticity field magni-

tude calculated from PIV data for the experimental laminar vortex

ring

Fig. 14 Results for the experimental data from a laminar vortex ring.

a, b, and c show the FTLE results for the velocity field integration of

the PIV data, direct pathline flow map calculation, and the particle

tracking flow map compilation method, respectively
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reasons, with the most notable being the out-of-plane

motion. This loss of particles reduces the number of

complete particle pathlines that can be used to calculate the

FTLE and therefore produces a field with poor resolution

of the separatrix. Figure 14c shows the results from the

FMC method. This field also shows a strong separatrix,

similar to the VFI method, but with a smoother shape and

less noise in the far field. By comparison, this method

produces an FTLE field around the vortex ring that most

strongly resembles the fields that are seen in the literature

(Shadden et al. 2006; Olcay et al. 2010).

To better illustrate the relationship between the separa-

trix and the vortex ring vorticity field, Fig. 15 shows the

vorticity field overlaid with the separatrix from the VFI and

FMC methods. Again, it can be seen that the FMC method

appears less susceptible to noise in the velocity field as it

produces a smoother separatrix. While the FMC method

has less ‘‘structure’’ in front (right side) of the vortex, this

is attributed to noise and it is not actually present in the

flow field.

7 Conclusions

This work presents two new methods for computing flow

maps, and flow map derived quantities such as FTLE fields,

based on PFM and FMC, and compares them against the

traditional VFI of velocity field data. The focus is on

application to noisy fluid measurements using PIV- or

PTV-generated data where we take advantage of the fact

that the flow map information is inherently contained in the

Lagrangian motion of the particle flow tracers. Using this

fundamental principle, we show that the FTLE fields can

be calculated with increased accuracy directly from the

measured particle trajectories.

We show that FMC produces the most accurate esti-

mates of the FTLE field for both synthetic data and

experimental data. For cases where particle loss between

frames is minimal, the PFM method can produce reason-

able results but can also be significantly affected by the

unstructured nature of the data on which the flow maps are

based upon. Prior to this study, it could have been assumed

that a method capitalizing on direct measurement of the

particle pathlines present in the field would produce the

highest accuracy results. However, this work clearly shows

that this is not the case as the FMC method outperforms the

PFM method at low and high seeding densities. When

comparing the ability to resolve the true separatrix of a

flow field, the FMC was shown to be far superior with an

average overlap percentage of 80 % as compared to *25

and *1 % for the PFM and VFI, respectively.

The FMC method shows advantage over the other

methods, which becomes significantly apparent when the

particle seeding is low. This can be particularly important

for applications to environmental or biological flows

where adding seed particles is not practical and investi-

gation of Lagrangian flow structures must rely on natu-

rally occurring flow tracers to produce the flow map.

These results also demonstrate that when analyzing

experimental data, it is advantageous to use the FMC for

the computation of FTLE/LCS over VFI. The method not

only produces strong measures of the FTLE field but also

outperforms VFI of data with near-wall flow fields. FMC

is also more computationally cost effective as each

snapshot of the flow map only needs to be interpolated

once whereas VFI can require multiple iterations. The

FMC method also requires far fewer flow tracers (16

times less for the synthetic data) and thus fewer com-

putations than the VFI procedure.

Fig. 15 Separatrix overlaid with the nondimensional vorticity field

for the velocity field integration (a) and the particle tracking flow map

compilation (b)
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In future studies, an optimization of the interpolation

radius should be undertaken. Using information such as

seeding density and the spatial scales of interest in the flow,

the interpolation radius used for the FMC method might be

better optimized to further improve the results. Addition-

ally, optimization of the massless flow tracers could also be

undertaken. A procedure has been developed for numerical

data (Lekien and Ross 2010), but it requires multiple

computations of the flow map with refined grids, which can

be computationally very costly. Future studies may be able

to take advantage of information in the velocity snapshots

such as the variation of strain rate and rate of rotation to

optimize particle placement prior to the flow map com-

putation. A procedure such as this should improve accuracy

without being too computationally expensive.

Future work should also investigate these methodologies

on three-dimensional data sets. While not shown here, the

methods described are directly applicable to three-dimen-

sional data. This approach should increase the efficiency of

the tracking-based methods as extension to 3D will

increase the number of possible matches in the tracking

procedure while numerically integrating velocity fields in

3D will become significantly more computationally

expensive. Finally, it should be noted that the majority of

previous works have used FTLE/LCS primarily in a qual-

itative fashion. Improving the accuracy and robustness of

these measurements would enable a more quantitative use

and objective comparisons of future investigations.
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