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Samuel Gillooly Raben 

Abstract 
Time varying flow structures are involved in a large percentage of fluid flows although there is still 

much unknown regarding their behavior.  With the development of high spatiotemporal resolution 

measurement systems it is becoming more feasible to measure these complex flow structures, which in 

turn will lead to a better understanding of their impact.  One method that has been developed for studying 

these flow structures is finite time Lyapunov exponents (FTLEs).  These exponents can reveal regions in 

the fluid, referred to as Lagragnian coherent structures (LCSs), where fluid elements diverge or attract.  

Better knowledge of how these time varying structures behave can greatly impact a wide range of 

applications, from aircraft design and performance, to an improved understanding of mixing and transport 

in the human body. 

This work provides the development of new methodologies for measuring and studying three-

dimensional time varying structures.  Provided herein is a method to improve replacement of erroneous 

measurements in particle image velocimetry data, which leads to increased accuracy in the data.  Also, a 

method for directly measuring the finite time Lyapunov exponents from particle images is developed, as 

well as an experimental demonstration in a three-dimensional flow field.  This method takes advantage of 

the information inherently contained in these images to improve accuracy and reduce computational 

requirements.  Lastly, this work provides an in depth look at the flow field for developing wall jets across 

a wide range of Reynolds numbers investigating the mechanisms that contribute to their development. 
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1. Introduction 

1.1. Motivation 
Time varying flow structures are an important part of fluid mechanics.  They play important roles in 

the transport, mixing and development of a large number of fluid flow environments.  However, while 

their importance is relatively well known, their behavior is not fully understood.  The difficulty in 

understanding these structures is partially limited by a lack of accurate measurement methods capable of 

studying such flow environments.  This work provides novel methodologies to improve investigations of 

these time varying structures, a demonstration in a fully turbulent three-dimensional flow field, as well as 

a study of the development region of turbulent wall jets. 

1.2. Objective and Structure of the Dissertation 
The objective of this work is to provide improved measurement methodologies for detecting and 

studying time varying flow structures in both two-dimensional and three-dimensional flow fields.  To 

accomplish this effort, four separate studies were undertaken which resulted in the four main chapters of 

my dissertation.  This section provides a brief discussion of the work performed in each of the chapters. 

Experimental data can often be affected by erroneous measurements, which in some cases can 

misrepresent the true results.  Proper orthogonal decomposition (POD) is a method that can be used to 

replace these erroneous measurements and improve the accuracy of the data set.  Chapter 2 provides the 

methodology as well as a demonstration for applying “Gappy” POD to experimental data.  This method 

has shown that when sufficient information is provided, high accuracy reconstruction can be achieved to 

out perform methods typically used for data reconstruction. 

The use of finite time Lyapunov exponents (FTLE) is one method to investigate complex time 

depended flow structures.  The method is performed by determining the flow map for a given field, which 

describes the motion of a fluid element or particle over a fixed period of time.  Chapter 3 provides a novel 
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methodology for directly determining the FTLE field from the information that is inherently contained in 

experimental particle image data.  Through the use of particle tracking, this method removes the 

requirement of numerical integration for the determination of the field’s flow map.  This method is not 

only more computationally efficient in comparison to conventional techniques, but is also shown to 

produce improved accuracy when particle seeding is reduced.   

Chapter 4 demonstrates the use of particle tracking for determining flow maps on inertial particles in 

a turbulent three-dimensional flow field.  Through the use of tomographic imaging, neutrally buoyant 

flow tracers as well as inertial particles were simultaneously imaged.  Using a similar methodology to that 

described in Chapter 3, this work demonstrates the ability to determine the flow maps, and thus the FTLE 

field for inertial particles and shows a difference in behavior between the different types of particles.  This 

work also compares the behavior of the inertial particles as denoted by the FTLE fields with standard 

methods that have been used previously to describe particle behavior in turbulent environments.   

In the final chapter, the development region for a wall jet was studied for a wide range of Reynolds 

numbers.  Although wall jets are utilized in many engineering applications, few studies have investigated 

their behavior in the development region.  The majority of previous studies have focused their attention 

on the fully developed region where self-similar behavior exists and scaling with streamwise location and 

Reynolds number becomes more simplistic.  This work however, focuses on the development region of 

the wall jet and investigates the effect of momentum transfer from the core of the jet on the different 

scaling parameters that are used to describe wall jets.  This work also provides new scaling relationships 

as a function of Reynolds number in the development region. 

The following chapters are presented in journal format with the second Chapter accepted into archival 

publication in Measurement Science and Technology.  The remaining chapters have been or are in the 

processes of being submitted for publication. 
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2. Adaptive gappy proper orthogonal decomposition for particle image 

velocimetry data reconstruction 
By Samuel G. Raben, John J. Charonko, Pavlos P. Vlachos 

The following is article that has been published Measurement Science and Technology  

2.1. Abstract 
This work presents a novel method for replacing erroneous measurements in Digital Particle Image 

Velocimetry (DPIV) data using an adaptive reconstruction with gappy Proper Orthogonal Decomposition 

(POD).  Previous studies have shown that gappy POD can be used to replace erroneous data with high 

accuracy.  Conventional gappy POD methods employ a spatially constant number of modes for 

reconstructing the missing information across the entire field.  In contrast, the method presented herein 

proposes a locally adaptive criterion that allows for determination of the optimum number of POD modes 

required for the reconstruction of each replaced measurement.  This reconstruction produces higher 

accuracy results using more POD modes than with previous POD methods.  The new method was 

compared against commonly utilized techniques for DPIV vector replacement, namely Kriging, 

bootstrapping, and basic interpolation, as well as previously presented POD reconstruction techniques.  

The results showed that the adaptive gappy POD reconstruction provides higher accuracy and robustness. 

Keywords: DPIV, Proper Orthogonal Decomposition, Outlier Replacement. 

2.2. Introduction 
Proper Orthogonal Decomposition (POD) is a method for producing reduced order representations of 

high order systems.  It has been shown that this method can also be useful in reconstructing missing data 

from incomplete datasets (Everson and Sirovich 1995; Venturi and Karniadakis 2004).  Properly 

calculated, these reconstructions have been shown to produce superior estimations of the missing data, 

even when compared to spatial interpolation techniques such as Kriging (Venturi and Karniadakis 2004; 
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Gunes, Sirisup et al. 2006; Venturi 2006; Druault and Chaillou 2007).  However, these gappy POD 

methods are subject to several practical limitations.  When applied to experimental data, where the true 

solution is not known a-priori, it is difficult to determine a convergence criterion based on the 

eigenspectrum of the modes.  Moreover, the convergence of the reconstruction is based on the whole field 

of data, without any consideration to the spatial variations present (Venturi and Karniadakis 2004). In 

addition, the method can be impractical because of excessive computational cost (Murray and Ukeiley 

2007; Lee and Mavris 2010), and its accuracy can be limited if assumptions are made about the data as a 

whole (Gunes, Sirisup et al. 2006).  This work aims to develop a novel gappy POD implementation for 

improving the estimation of the individual replacement values, improve on the accuracy of these 

reconstructions and reduce the computational costs. 

Everson and Sirovich first proposed the idea of using POD to reconstruct missing or “Gappy” data in 

1995 (Everson and Sirovich 1995).  Images were reconstructed using two different methods: first, the 

reconstruction was based on information from the complete solution; and second, the reconstruction was 

independent of the “true” solution.  Neither of these reconstruction methods, however, provides a 

criterion for determining the optimum reconstruction. Venturi and Karniadakis showed that the use of an 

iterative POD reconstruction with gappy data (“Gappy POD”) provides a more accurate reconstruction 

with a larger number of resolved POD modes than with previous methods (Venturi and Karniadakis 

2004).  It is important to note that their method depended on knowledge of the “true” field in order to 

determine an “optimal ” reconstruction, which renders its direct implementation impractical for 

reconstruction of experimental velocity fields.  It has also been shown that the accuracy of this method is 

dependent on the amount of temporal information available during reconstruction (Gunes, Sirisup et al. 

2006).  Subsequently, Gunes et al. proposed an approach for termination of Venturi and Karniadakis’ 

method that would make the reconstruction applicable to experimental data.  This method stated that by 

selectively removing an additional percentage of the good data, the relative error in the reconstruction 

could be quantified and monitored and thus provide information on the relative error of the complete 
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reconstruction (Gunes, Sirisup et al. 2006).  While this method provided a convergence point for the 

reconstruction, the technique required that all of the gappy points in the data be reconstructed using the 

same amount of information, i.e. the same number of modes is necessary for all of the gappy points.  In 

the work presented here, we will show that the aforementioned convergence does not always produce the 

highest accuracy solution, and we will present an alternative approach that addresses this limitation and is 

applicable to experimental data. 

For experimental measurements, gappy fields are generated when erroneous measurements are 

detected in a data set.  Because erroneous measurements are always present in experimental data, the need 

for recovery and reconstruction of these measurements is common.  In particular, Digital Particle Image 

Velocimetry (DPIV) is subject to invalid measurements due to not only experimental error, but processing 

error as well, and therefore, there is typically a need to perform measurement validation and outlier 

removal (Huang, Dabiri et al. 1997; Hart 1998; Hart 2000; Westerweel and Scarano 2005; Pun, Susanto et 

al. 2007).  Advancements in PIV processing have helped to reduce correlation errors (Eckstein, Charonko 

et al. 2008; Eckstein and Vlachos 2009b); however, inhomogeneous seeding and varying image intensity 

would still produce incorrect measurements (Hart 1998; Eckstein and Vlachos 2009b; Fore 2010). 

Regardless of the source, the problem of identifying erroneous measurements and outliers is endemic 

to DPIV work, and various techniques for solving this problem have been proposed (Westerweel 1994; 

Vedula and Adrian 2005; Westerweel and Scarano 2005; Pun, Susanto et al. 2007).  One of the most 

common methods used in DPIV for detection of bad measurements is a linearly weighted spatial 

validation where individual measurements are compared with their neighbors (Westerweel and Scarano 

2005).  Both linear temporal and advanced nonlinear temporal validation methods have also been 

implemented for DPIV data (Fore, Tung et al. 2005).  While both approaches help to improve overall 

measurement accuracy, validating spatially without concern for temporal information limits their 

effectiveness with the same being said for validating temporally alone.  For temporal validation to be 

effective, the time scale of the validation window must be on the same order or smaller than the scale of 
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physical events in the flow.  While this is sometimes possible, many cases exist where this requirement 

would not be satisfied (Murray and Ukeiley 2007; Murray and Seiner 2008).  Despite its importance, the 

validation procedure will not be considered in this paper and accepted methodologies will be 

implemented as needed.  Instead, the replacement of missing data in PIV fields will be our focus. 

Once bad measurements have been identified, the task then becomes how best to replace these 

measurements.  One option is a simple linear interpolation of the surrounding points, which while 

providing limited accuracy is very robust (Nogueira, Lecuona et al. 1997).  With the growth of 

computational power, higher order replacement techniques are becoming feasible.  Kriging is an 

advanced spatial interpolation method that can produce high accuracy results (Oliver and Webster 1990; 

Myers 2002; Gunes, Sirisup et al. 2006).   Kriging is a form of a least squares estimator that takes 

advantage of radial basis functions for the interpolation (Gunes, Sirisup et al. 2006; Gunes and Rist 2007).  

Kriging first became popular in the geophysical community where interpolation between highly scattered 

data was required (Oliver and Webster 1990; Myers 2002).  The technique has also been used for more 

densely populated experimental data such as PIV to replace erroneous measurements (Gunes and Rist 

2007; Gunes and Rist 2008).  Principle Component Analysis (PCA) is another decomposition technique 

that has shown the ability to repair missing experimental data (Tipping and Bishop 1999).  By combining 

PCA with an Expectation Maximization algorithm it is possible to recover missing information as well as 

account for noise in the original measurements (Tipping and Bishop 1999).  While having some inherent 

differences, these two techniques, POD and PCA, have been shown to produce similar results (Lee and 

Mavris 2010).  However, only POD-based approaches will be considered in this paper. 

The work described herein proposes a new approach based on the Venturi and Karniadakis method 

(Venturi and Karniadakis 2004), as discussed previously, for the reconstruction of DPIV fields that does 

not require any a-priori information about the true solution and allows individual points to converge 

independently from the remainder of the gappy field.  The method assumes that an appropriate “outlier 

vector” identification scheme is available and has already correctly identified the bad measurements in the 
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field.  The performance of the method is characterized through comparisons using different POD 

reconstruction methods as well as standard interpolation techniques. 

2.3. Nomenclature 

𝑈(𝑥) Measured velocity field. 

𝜙(𝑥) POD eigenfunction. 

𝜆 Eigenspectra produced from POD. 

𝐾!,! Discrete correlation matrix for POD calculation. 

𝑈! Discrete velocity field 

𝜙(!) POD eigenfunction determined using method of snapshots 

𝛼(!) POD projection coefficient associated with the method of snapshots 

𝐹!.!  Kernel for the method of snapshots reduced eigenvalue problem. 

𝑈  Reconstructed velocity field. 

𝑈 Velocity field with the gappy locations filled in with the ensemble average values. 

  𝑈 Intermediate reconstructed velocity field maximizing the local smoothness 

P  Covariance matrix of the POD eigenfunctions. 

L Cross covariance matrix between the reconstruction velocity and the eigenfunctions. 

𝜁 Projection coefficients from the linear system of equations. 

𝑀(𝑥,𝑦; 𝑡) Mask locating correct (0) and bad data (1). 

𝐸(𝑈) Measure of the smoothness for the available velocity field information U.  

𝜖 Measure of the error for the reconstructed fields. 

𝜎! Total variance from the velocity information. 

∙ ! Ensemble Average.  Here the ensemble average was taken with respect to time.  
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⨂ Outer product used to create the kernel used for the POD formulation.   

2.4. Proper Orthogonal Decomposition and Reconstruction Methodologies  
For completeness, the basics of Proper Orthogonal Decomposition using the method of snapshots will 

now be described.  For more in-depth treatment, the reader is referred to prior works on the subject 

(Sirovich 1989; Everson and Sirovich 1995; Zoldi and Greenside 1997; Venturi and Karniadakis 2004; 

Murray and Ukeiley 2007).  The basic formulation of POD starts with the Fredholm integral in equation 

1, 

𝑈 𝑥 ⨂𝑈 𝑥! 𝜙(𝑥!)𝑑𝑥! = 𝜆𝜙(𝑥) (1) 

where the eigenfunctions , φ , are the orthogonal modes that represent the data defined by U. 

To apply POD to discrete data, as would be done with experimental data, the equation must be 

discretized, as shown in equation 2.  Here, Ki,j is the two point correlation tensor which is an ensemble 

average over the total number of frames or snapshots (equation 3).  

𝐾!,! 𝑥, 𝑦; 𝑝, 𝑞 𝜙!
! 𝑝, 𝑞 = 𝜆 ! 𝜙!(𝑥, 𝑦)(!)!!  (2) 

𝐾!,! = 𝑈! 𝑥, 𝑦; 𝑡 𝑈!(𝑥, 𝑦; 𝑡) ! (3) 

To minimize computation time, the method of snapshots is used (Sirovich 1987).  The method 

assumes that the eigenfunctions created in equation 2 are a linear combination of the flow field snapshots 

multiplied by a corresponding projection coefficient.  

𝜙!
! 𝑥, 𝑦 = 𝛼 !

! 𝑡 𝑈!(𝑥, 𝑦; 𝑡) (4) 

Applying the method of snapshots, equation 4, to equation 2, a reduced eigenvalue problem is 

produced (equation 5) with equation 6 representing the kernel. 
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𝐹!,!𝛼 ! 𝑛 = 𝜆 ! 𝛼 ! (𝑙)!  (5) 

𝐹!,! =
!
!

𝑈! 𝑥, 𝑦; 𝑛 𝑈!(𝑥, 𝑦; 𝑙)!!   (6) 

Because of the orthogonality of the eigenfunctions, equation 4 can be rearranged to solve for the 

reconstructed flow field (equation 7), where s is the number of snapshots used in reconstruction. 

𝑈! 𝑥, 𝑦; 𝑡 = 𝛼 ! 𝑡 𝜙!
! 𝑥, 𝑦!  (7) 

Before POD can be utilized as a missing data reconstruction method, the locations of the missing data 

must be identified.  These locations will be stored in a mask variable shown in equation 8 wherein good 

measurements are denoted with a 0 and bad measurement are equal to 1. 

𝑀 𝑥, 𝑦; 𝑡 =    0    for  locations  of  correct  data1    for  locations  of  missing  data (8) 

2.4.1. Everson-Sirovich Method 
Everson and Sirovich, who were the first to propose data reconstruction using POD, used the above 

methodology adding additional steps to reconstruct the missing points (Everson and Sirovich 1995).  This 

method will be referred to as the E-S method from hereon. 

i. Begin with ensemble average values as initial guesses at M(x,y;t) = 1 to produce Û(x,y;t) for s 
snapshots.  Because POD is only applied to the fluctuating component of the velocity, the initial 
value estimates are set to zero; 

ii. Perform POD on Û(x,y;t) to produce s spatial modes with corresponding projection coefficients; 
iii. Construct the matrix 𝑷 𝒊,𝒋 = (𝝓𝒊

(𝒔),𝝓𝒋
(𝒔))𝑴!𝟎 and [𝑳]𝒊 = (𝑼,𝝓𝒊

(𝒔))𝑴!𝟎; 

iv. Solve the linear system 𝑷𝜻 = 𝑳, for the new projection’s coefficients, 𝜻; 
v. Using equation 7, reconstruct the field using the new projection’s coefficients and the determined 

number of modes, N; 

𝑈! 𝑥, 𝑦; 𝑡 = 𝜁 ! 𝑡 𝜙 !

!

𝑥, 𝑦  

vi. Overwrite previous guess with the newly constructed field 𝐔 𝐱, 𝐲; 𝐭 = 𝐔𝐍(𝐱, 𝐲; 𝐭)  only if 
M(x,y;t) = 1. 

vii. If the solution has converged, stop, otherwise return to step (ii). 
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Convergence is determined by a point-wise comparison of the eigenspectra from the current and 

previous iteration. This comparison is synonymous with iterating until the fields themselves stop 

changing between steps.  This technique has been shown to work for repairing missing data, (Everson and 

Sirovich 1995; Tan, Willcox et al. 2003; Murray and Ukeiley 2007) and as N is increased, an optimum 

reconstruction is reached (Venturi and Karniadakis 2004).  As highlighted previously, however, the 

method does not establish a metric for determining the optimum number of modes and is computationally 

expensive due to the linear system of equations that needs to be solved in step 4 (Tan, Willcox et al. 

2003).  This method is also affected by the initial guess used in the reconstruction but has been shown to 

produce the most accurate results when the time averaged data is used (Venturi and Karniadakis 2004). 

2.4.2. Venturi-Karniadakis Method 
Venturi and Karniadakis proposed an extension of this reconstruction method eliminating the 

dependence on the initial guess as well as increasing the resolvable number of modes.  For brevity, this 

method will be referred to as the V-K method and consists of the following steps (Venturi and 

Karniadakis 2004); 

1. Perform the standard E-S method employing only two modes (N=2) in the reconstruction; 
2. Using the converged results from the previous step as a new initial guess, repeat the reconstruction 

now using 3 modes (N=3); 
3. Proceed similarly for the nth iteration until the eigenvalues no longer change.  

 In using the converged information from the previous mode, Venturi and Karniadakis increased 

the resolvable number of modes by as much as an order of magnitude in some cases (Venturi and 

Karniadakis 2004).  However, this method lacks an inherent criterion for determining convergence when 

applied to experimental data.  Convergence was determined by monitoring the divergence of the new 

eigenspectra from that of the “true” solution. However, this requirement limits the applicability of the 

method on data sets without known “true” solutions such as experimental cases.  Methods to overcome 

this limitation including an improved reconstruction procedure will be described in sections 3.3-3.5 

below. 
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2.4.3. Reduced POD Method 
Previous works have also looked at using POD reconstruction without solving the linear system of 

equations for the new projection coefficients (steps three through six of the E-S method) (Gunes, Sirisup 

et al. 2006; Murray and Seiner 2008).  This variation consisted of repairing data using 𝑈! from equation 7, 

and has been shown to be much more computationally efficient as well as producing higher accuracy 

reconstruction when used in conjunction with PIV data (Murray and Seiner 2008).  This method was first 

proposed by Gunes et al. and therefore will be referred to as the Gunes method.  

𝑈 𝑥, 𝑦; 𝑡 =
𝑈!(𝑥, 𝑦; 𝑡) at  M(x,y;t)  =  0
𝑈!(𝑥, 𝑦; 𝑡) at  M(x,y;t)  =  1 (9) 

2.4.4. Adaptive POD Reconstruction Method 
In this section, we will show that an increase in accuracy can be achieved if the individual points in 

the field are allowed to converge adaptively through the use of a field smoothness parameter.  This 

adaptive reconstruction allows for spatially varying features of the flow to be reconstructed with a varying 

number of modes.  This method will be referred to as AR-POD. 

In order to implement this new approach a modified reconstruction procedure is necessary.  This 

modified reconstruction procedure consists of the following steps. 

1. Begin with time average values as initial guesses at M(x,y;t) = 1 to produce Û(x,y;t) for s 
snapshots; 

2. Determine the initial field smoothness, 𝑬 𝑼 𝑴!𝟏 (an equation for smoothness will be provided 
in the next section). 

3. Perform POD on Û(x,y;t) to produce s spatial modes with corresponding projection coefficients; 
4. Reconstruct the field using equation 9 from the Gunes method using N=2 modes to produce a 

complete field, 𝑼(𝒙,𝒚; 𝒕); 
5. Repeat steps ii and iii using 𝑼(𝒙,𝒚; 𝒕) as the new guess until the fields converge. 
6. Evaluate the field smoothness at all gappy locations, for both the new reconstructions, 𝑬(𝑼)𝑴!𝟏, 

and the previous best points, 𝑬(𝑼)𝑴!𝟏; 
7. Create a new reconstruction where the gaps are filled using 
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𝑼𝑵 𝒙,𝒚; 𝒕 =   
𝑼𝑵(𝒙,𝒚; 𝒕) if  𝑬𝑵(𝑼)𝑴!𝟏 > 𝑬𝑵(𝑼)𝑴!𝟏
𝑼𝑵(𝒙,𝒚; 𝒕) if  𝑬𝑵(𝑼)𝑴!𝟏 ≤ 𝑬𝑵(𝑼)𝑴!𝟏

 

8. Repeat steps v and vi until 𝑼𝑵 converges, then set 𝑼 𝒙,𝒚; 𝒕 = 𝑼𝑵 𝒙,𝒚; 𝒕 ; 

Set Û(x,y;t) = 𝑼(𝒙,𝒚; 𝒕) and return𝑈! 𝑥, 𝑦; 𝑡 =   
𝑈!(𝑥, 𝑦; 𝑡) if  𝐸!(𝑈)!!! > 𝐸(𝑈)!!!
𝑈!(𝑥, 𝑦; 𝑡) if  𝐸!(𝑈)!!! ≤ 𝐸(𝑈)!!!

 

9. Replace the value of 𝑬 with those of EN at the locations where 𝑼 was replaced; 
10. Return to step ii increasing the number of modes used by 1, (N=3,4,...). 

The reconstruction process will be repeated until all of the available modes are used.  It is important 

to note that gappy locations may be replaced at any time if EN has reached a new minimum.  This means 

that a location may be updated on some iterations, but not on others.   

It should be mentioned that there are limitations to all POD methodologies.  First, these methods 

cannot resolve an area obstructed in every snapshot (Venturi and Karniadakis 2004; Gunes, Sirisup et al. 

2006), although for symmetric fields, measurements can sometimes be determined in such regions (Ma, 

Karniadakis et al. 2003).  Secondly, such techniques also have the constraint that a snapshot cannot be 

missing, i.e. the field cannot be completely “gappy” in a single snapshot (Venturi and Karniadakis 2004; 

Gunes, Sirisup et al. 2006). In either of these cases, reconstruction of the missing information is not 

possible. 

2.4.5. Convergence Methods 
Determining convergence or termination for these methods is of critical importance to their accuracy.  

For the E-S method, Venturi and Karniadakis proposed that optimum reconstruction is obtained when 

total energy of the eigenspectra has reached a maximum (Venturi and Karniadakis 2004).  To this end, 

they used equation 10, which is the sum of the squared eigenvalues after each reconstruction where N is 

the number of modes used in the reconstruction.  Once all of the reconstructions are calculated, this 

equation can be used to retroactively select the reconstruction that produces the maximum value. 

𝑒 𝑁 = 𝜆!!!
!!!  (10) 
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Gunes et al. proposed a method for determining an optimum reconstruction for the V-K method as 

well as their reduced reconstruction POD (Gunes, Sirisup et al. 2006).  They suggested that by removing 

an additional 1-3% of good vectors from the field, the relative error associated with them could be 

evaluated and would be used as an estimate for determining the optimum mode for reconstruction of the 

entire field.   

For the AR-POD method, convergence is performed concurrently with the reconstruction using the 

smoothness parameter from equation 11.   

𝐸 𝑈 =    !!!
!!!

!
+ 2 !!!

!"!#

!
+ !!!

!!!

!
+ !!!

!!!

!
+ 2 !!!

!"!#

!
+ !!!

!!!

!
 (11) 

The smoothness parameter chosen for this work has been shown to be a good measure of field 

smoothness and has previously been used in conjunction with Radial Basis Functions for data 

interpolation (Powell 1992; Karri, Charonko et al. 2009).  The use of this parameter is contingent to the 

assumption that the field is locally smooth, i.e. the velocity resolution is adequate for resolving the 

structures present in the flow field. 

When determining smoothness, the local value for each previously reconstructed point was evaluated 

(𝐸!(𝑈)!!!), one location at a time, filling in any surrounding gappy points with values from the current 

best approximation (𝑈!).  This smoothness value was compared to the smoothness at the same location 

calculated using each newly reconstructed value (𝐸!(𝑈)!!!), surrounded again by points from the 

current best approximation.  This process should be repeated, replacing at each location points of 

increasing smoothness until the field no longer changes, i.e. an iterative approach.  The result will be a 

mixture of old and new points that gives the best overall field smoothness.  An alternative to this 

approach that was also considered, although not shown here, was to simultaneously evaluate the 

smoothness of the entire field using all the points from the current iteration (𝑈) and compare that to the 

smoothness originally calculated from the previous field (𝑈). The value with the best smoothness at each 



 

 14 

point would then be selected without regard to the surrounding values.  It was seen that this method 

provided lower reconstruction error for some fields, but this was due in part to the fact that the center of 

gappy clusters could be biased to the lower, and smoother, modes.  However, when the same method was 

applied to experimental data with groups with more than one adjacent outlier, the centers of these clusters 

often remained at a low mode number while the edges continued to update, leaving what appeared as 

outliers in the field.  For this reason, this alternative method was not included in the analysis herein. 

2.4.6. Additional Reconstruction Methods for Comparison 
In order to determine the effectiveness of the newly proposed reconstruction methodology, AR-POD 

was compared against other accepted reconstruction methodologies for PIV.  It is common in PIV data to 

identify bad measurements through a statistical detection process (Westerweel 1994; Westerweel and 

Scarano 2005).  Following this identification, either a statistical replacement or an interpolation is 

typically performed to fill in the missing data.  This work compares POD reconstruction with both linear 

and higher order interpolation (Lophaven, Nielsen et al. 2002) as well as a bootstrapping algorithm (Pun, 

Susanto et al. 2007) specifically designed for PIV data. 

The most basic replacement method used here was a simple linear interpolation where after each 

gappy point was identified, a surrounding grid of 7x7 points was used to linearly interpolate back the 

value at the missing location.  A 7x7 grid was chosen as it provided enough points to achieve statistical 

significance while not encompassing too large an area, which could result in over smoothing of the field.  

A visual inspection before and after reconstruction was performed, as is common with PIV data, to insure 

that data was not becoming over-smoothed.  If bad measurements are contained in the surrounding points, 

they are removed before the interpolation is done so that only valid points are contributing.  This process 

was also designed so that, at a minimum, three good measurements were used and, if needed, the window 

was enlarged in order to ensure this fact.  This simple linear interpolation method works well when the 

field is smooth and contains only low frequency spatial features.  As field variations increase, their spatial 

frequency increases and the method becomes ineffective.   
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As previously discussed, Kriging is a higher order interpolation method that has been shown to be 

highly effective at interpolating data (Lophaven, Nielsen et al. 2002; Gunes, Sirisup et al. 2006).  This 

interpolation was implemented in MATLAB using the DACE toolbox and used a second order 

polynomial for the regression, in conjunction with a Gaussian correlation model (Lophaven, Nielsen et al. 

2002).  These parameters were shown in other studies to provide the best interpolations given that the data 

is continuously differentiable (Venturi and Karniadakis 2004; Gunes, Sirisup et al. 2006).  The 

interpolation was implemented both locally and for the full field.  The local interpolation was performed 

similarly to the linear interpolation described above.  For local Kriging a larger stencil, 11x11, (compared 

to the 7x7 used for the linear interpolation) was used, as Kriging requires a larger number of points for 

use in the regression model.  Smaller stencils were tested (5x5, 7x7, 9x9) but they yielded higher average 

errors (0.5599, 0.4797, 0.1129 respectively) than the 11x11 stencil (average error of 0.0825).  Because the 

full field Kriging had an average error of 0.0805, the 11x11 stencil provided a good choice for producing 

the high-accuracy results while limiting computational cost.  Again, the surrounding good points were 

used to generate the model and then individual points were interpolated back with a minimum of 8 good 

points, otherwise the stencil was expanded.  For the full field interpolation, all of the valid measurements 

across the entire field in a single frame were used to approximate back all of the missing locations 

simultaneously.  This approach proved to be far more computationally expensive than local Kriging and 

did not produce better results, particularly as the ratio of good measurements to interpolation sites 

increased. 

An iterative interpolation method using bootstrapping was also used to evaluate the missing locations 

(Pun, Susanto et al. 2007).  This method removes a small random sample of points from the field, which 

were used to interpolate back an estimate of the complete field.  This process was repeated until a large 

number of interpolations were generated at each point.  Using the statistical distribution of these samples 

at each point, a measurement can be determined to be erroneous, as well as simultaneously provide an 

estimate of its correct value. It is important to note that while this method will also inherently detect 
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erroneous measurements, only the predetermined locations for the bad measurements were replaced in the 

error analysis. 

2.5. Velocity Field Data and PIV Processing – DNS of a Turbulent Boundary 

Layer 
In order to test the proposed methodology, the data from a Direct Numerical Simulation (DNS) of a 

turbulent boundary layer used to generate artificial PIV images for the 2003 PIV challenge (Stanislas, 

Okamoto et al. 2005) were adopted.  This dataset was chosen due to its high spatio-temporal resolution 

and given that it is well characterized, it serves as an ideal benchmark case.  By processing the simulated 

PIV images using standard techniques the data also was imparted with noise and uncertainty typical of 

experimentally determined data.  While this case provides high temporal resolution, through the use of the 

method of snapshots, this is not a requirement of the AR-POD method.  The resolution per vector was 

0.195 wall units for a Reynolds number of 640, based on the frictional velocity and channel half height.  

The temporal resolution was adjusted such that out-of-plane particle motion was one-half of the assumed 

laser plane thickness.  While this data set only provided 100 snapshots of the flow, the energy fraction 

from the POD showed that only 63 modes were required to capture 99% of the fluctuating energy leading 

to the conclusion that enough snapshots were present to fully resolve the behavior of the field.  

Furthermore, subsample convergence testing as described below reinforced this conclusion.  Additional 

information on the dataset parameters can be found in Stanislas et al. (Stanislas, Okamoto et al. 2005). 

The PIV data was processed in MATLAB with an in-house software that uses a Robust Phase 

Correlation technique (Eckstein, Charonko et al. 2008; Eckstein and Vlachos 2009b; Eckstein and 

Vlachos 2009a) combined with an iterative multigrid process (Scarano and Riethmuller 2000; Murray and 

Seiner 2008).  The first pass used a rectangular window of 64x32 pixels (x,y) and grid resolution of 

32x16 pixels, while the second pass utilized a 16x16 pixel window with a grid resolution of 8x8 pixels.  

This processing produced a field of 191x63 vectors over the complete domain.  No intermediate or final 

validation was performed during the PIV processing.  
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Figure 2.1. Vector field from unvalidated PIV with erroneous vectors removed. 

In order to determine the locations of the bad vectors a Universal Outlier Detection (UOD) method 

was implemented (Westerweel and Scarano 2005).  Here, it will be assumed that all bad vectors have 

been correctly identified and only good measurements remain.  The complete dataset had a gappiness 

percentage of 1.3% with the largest percentage per frame being 6.3% and the smallest being 0.04%.  The 

locations of all bad points were stored into the mask shown in equation 8.  The same assumption 

regarding the accurate detection of bad measurements was made by Everson and Sirovich and Venturi 

and Karniadakis (Venturi and Karniadakis 2004) for their reconstruction.  A single snapshot output from 

the PIV processing is shown in Figure 2.1Figure 2.1. 

To insure that the data has statistically converged and that enough snapshots are available, the 

variance as a function of a subset of points was compared to the total field variance.  This method was 

proposed by Murray and Ukeiley and has been shown to work well with POD reconstruction of highly 

turbulent data (Murray and Ukeiley 2007; Murray and Seiner 2008).  By defining a subsample number of 

points P, where P < N and N is the total number of snapshots, a subsample variance can be estimated, 

(Equation 12).  A relationship between the subsample variance and the total variance, σ2, can be 
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expressed by equation 13.  A data set can be considered converged when the subset variance has reduced 

below that of the total variance.   

𝜖!! = var!! =
!
!

𝑈! − 𝑈 !
!

!
!!!  (12) 

var!! =
!!!
!
𝜎! (13) 

It can be seen from Figure 2.2 that the data has reached statistical convergence at 100 snapshots 

satisfying that the number of snapshots considered herein is sufficient.  The measurement point used for 

this convergence test was randomly selected.  Additional locations were investigated but the results 

showed no dependence on the spatial location. 

 

Figure 2.2. Convergence data for both the U and V PIV velocity fields, a and b respectively.  The X and Y locations 

chosen for this test were 1024 and 192 pixels respectively.   
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2.6. Results and Discussion – Turbulent Boundary Layer 
In this section the error analysis results from the AR-POD will be presented.  This method will be 

compared with the aforementioned POD reconstruction methods along with interpolation techniques that 

are commonly used to repair PIV data. 

2.6.1. Adaptive POD Reconstruction  
Figure 2.3 shows a single snapshot reconstructed using the Adaptive POD Reconstruction method.  

From this figure it can be seen that this new method appears to reasonably reconstruct the field.  To 

illustrate the ability of the reconstruction to adapt to local conditions, Figure 2.4 shows the location of the 

erroneous measurements colored by the final mode number used during the reconstruction for the flow 

field of Figure 2.3.  While many features are seen to reconstruct with lower mode numbers (1-20), other 

features continue to add information even from the final mode.  Because points are allowed to adaptively 

converge, i.e. not update on every mode’s iteration, points that would normally converge to a local 

minimum are allowed to update later during the reconstruction if a smoother solution is achieved using a 

different subset of reconstructed modes.   This means that while a high final convergence mode may be 

seen, the individual points may have excluded some of the previous, and possibly erroneous, 

reconstructions to reach its final values.  This idea is again shown in Figure 2.5.  While the number of 

points that updated on the final mode is high, their selectivity during the reconstruction helps to produce 

the most accurate results.  A more in depth error analysis will be presented later in this section. 

As mentioned, this work takes advantage of the computational efficiency of the Reduced Gappy POD 

reconstruction (Gunes, Sirisup et al. 2006; Murray and Seiner 2008).  Some studies have stopped the 

reconstruction prematurely due to this computational cost and thus possibly sacrificed optimal 

reconstruction (Murray and Ukeiley 2007; Murray and Seiner 2008).  If POD reconstruction is to become 

more commonplace in the PIV community the computational efficiency must be enhanced to make its 

utilization more tractable.  By improving the accuracy of reconstruction using the Reduced Gappy POD, 
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through this newly proposed Adaptive Reconstruction, implementation of a POD process will become 

more feasible for the community.  

2.6.2. Eigenspectra Comparison 
Venturi and Karniadakis stated that optimum reconstruction was achieved when the eigenspectra of 

the reconstructed field closely matched that of the true solution (Venturi and Karniadakis 2004).  For this 

reason Figure 2.6 shows a comparison of the eigenspectra of the different reconstructions with that of the 

true solution.  For the interpolation methods the POD eigenspectra was calculated after reconstruction 

using the procedure described in section 3.  We observe that the unvalidated PIV data is clearly not in 

agreement with the true solution.  All other reconstruction methods show varying degrees of improvement 

compared to the true eigenspectra.  The eigenspectra of the Kriging and POD methods show strong 

resemblance to that of the true solution for the first 50 modes.  Unfortunately, the comparison of the 

eigenspectra does not provide a quantitative measure of the reconstruction, since it does not offer any 

information on the mode shapes.  Cases could arise where the eigenspectra shows strong agreement but 

the spatial information contained in the modes and therefore the reconstruction could deviate 

significantly.  For these reasons, error analysis with respect to the true solution must be performed. 
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Figure 2.3. Original and reconstructed field using adaptive POD reconstruction, A) and B respectively.  A horseshoe 

vortex near the wall produced elevated numbers of erroneous vectors in the PIV processing, (frame 27 in 2003 PIV 

Challenge set B (Stanislas, Okamoto et al. 2005)) 

 

Figure 2.4. Spatial distribution of the final mode used by the adaptive POD reconstruction for frame 27. 
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Figure 2.5. Histogram of the final modes used in reconstruction for all of the points.  The inset to this figure shows 

that the maximum mode was used for more then 50% of the gappy locations. 

 

Figure 2.6. Eigenspectra Comparison for all of the different reconstructions.  The upper right shows a zoomed in 

portion of the complete figure demonstrating the Eignespectra divergence in the high modes. 

2.6.3. Error Comparison 
With access to a true solution for this dataset, an error analysis can be performed to determine which 

reconstruction method most effectively reconstructs the true solution.  To perform this comparison the U 

and V error along with the error magnitude were used as shown in equation 14, where UR is the 

reconstructed velocity and US is that of the solution.  The error magnitude provides a percent error based 

on the magnitude of the velocity at each point.  The average and Root Mean Squared (RMS) errors were 

also evaluated using the error data from equation 14.  The average error was also used to monitor 

convergence as proposed by Gunes et al (Gunes, Sirisup et al. 2006). 

Error, 𝜖!(𝑥, 𝑦; 𝑡)
   𝜖!(𝑥, 𝑦; 𝑡)
   𝜖!"#(𝑥, 𝑦; 𝑡)

= (𝑈! − 𝑈!)
= (𝑉! − 𝑉!)

= (!!!!!)!!(!!!!!)!

!!
!!!!

!

!/! (14) 

Average = !
!

𝜖(𝑥, 𝑦; 𝑡)!
      (15) 
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RMS = !
!

(𝜖!)!
     (16) 

The RMS error, as used by previous works (Venturi and Karniadakis 2004; Gunes, Sirisup et al. 

2006), has been shown to be the strongest metric for characterizing the performance of these methods 

since it is greatly affected by the presence of outliers in the data.  Figure 2.7 shows the RMS error 

associated with the U and V velocity components.  Because the results for the interpolation methods do 

not vary based on the number of modes they are illustrated with horizontal lines.  It can be seen that the 

AR-POD method performs the best for the U velocity.  Error for this case drops below that of the local 

Kriging at a mode number of 32 and remains lower throughout most of the reconstruction, rising slightly 

at the very end.  The other methods, E-S and Gunes, do not drop below that of either of the Kriging 

interpolations but come closest at mode 58 where they both find their minimum value of 0.50 and 0.51 

respectively.  The RMS error reduction in U is 13% when comparing the final reconstruction of the 

adaptive method with the minimum error from the other POD methods.  The reconstruction of the V 

velocity using AR-POD performs well but not as well compared to the Kriging interpolations.  Here the 

error value never falls below that of the Kriging interpolations.  The adaptive method does again  perform 

better than the other POD methods, reducing the RMS error by 5% when again comparing the final 

reconstruction of the adaptive method to the minimum error from the other methods.  It is also important 

to note that since the AR-POD method is intended to use the maximum number of available modes, errors 

for both U and V tend to decrease toward a minimum and not rise substantially with the addition of 

further modes. 

The E-S and Gunes et al. also show dramatically increasing error as the maximum number of modes 

is reached, with an almost 400% increase in error compared to the minimum value.  This is due to the fact 

that as the reconstruction advances, erroneous information that is typically contained in the higher modes, 

and thus is ignored during the early stages of the reconstruction, is ultimately re-introduced increasing the 

error.  What appears as a change point, where the error goes from being relatively flat to increasing 
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quickly, is a function of primarily the original error percentage but can also be problem specific (Gunes, 

Sirisup et al. 2006).  It is important to note that the newly proposed AR-POD method is not as affected by 

the end-rise problem.  Because the AR-POD method allows individual points to converge independently 

and does not force unnecessary information to be included, it greatly outperforms current POD 

reconstruction methodologies as the total number of frames is reached.  With the final average error lower 

than the minimum error of the Gunes et al. method, it can be stated that the AR-POD method provides a 

more accurate reconstruction for the data shown here. 

Figure 2.8 shows the average and RMS of the error magnitude, U and V combined together as shown 

in equation 14.  The error magnitude is the strongest metric for accuracy as it is normalized by the 

velocity magnitude at each location.  For the average error, Figure 2.8A, it can be seen that the error from 

the AR-POD reconstruction does dip below that of the Kriging interpolations at mode 28 but rises above 

at mode 74.  While this method does not terminate at an average error value below Kriging, its value is 

comparable to the other POD methodologies, 0.102 for E-S and 0.103 for Gunes et al. and 0.104 for the 

Adaptive method.  For the RMS error, Figure 2.8B, the adaptive method consistently outperforms the 

Kriging interpolations and the other POD methodologies.  While the final RMS error value for the 

adaptive method is higher than the minimum value from the other POD methods, 0.21 as compared to the 

Gunes method’s error of 0.14, both methods outperform the field Kriging at 0.25 and the AR-POD 

method is close the that of local Kriging at 0.20.  This in part can be attributed to the fact that at the edges 

the Kriging is performing an extrapolation which can produce very high errors.  For comparative purposes 

Figure 2.8 C) and D) show the error analysis results from these different reconstructions ignoring points 

that are within 3 grid units of the boundary and thus removing any cases of extrapolation.   It can be seen 

from this figure that all the reconstruction methods (interpolation and POD) perform better when these 

edge points are removed with the Kriging becoming the most accurate method overall.  It can also be seen 

that the AR-POD method improves significantly when the edge points are removed.  Because this method 

performs derivative estimation to compute the smoothness, when the edge points are not considered 
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(traditionally difficult for derivative schemes) this method shows great improvement compared to the 

other POD.  

It should be noted that when the Everson – Sirovich method is performed without solving the linear 

system of equations its results are remarkably similar to that of the reduced iterative procedure of Gunes 

et al..  Also, it has been shown that when solving the linear system of equations on turbulent experimental 

data, the non-iterative approach performs better (Murray and Seiner 2008).  This suggests that while the 

iterative procedure performs well with smooth, low noise data (Venturi and Karniadakis 2004; Gunes, 

Sirisup et al. 2006), it will be compromised when applied to experimental data. 

Figure 2.9 shows the average and RMS of the error with solving the linear system of equations 

proposed by Everson and Sirovich.  As mentioned this method is much more computationally intense as 

the system of equations grows.  For the Gunes et al. method the reconstruction was run in MATLAB 

2010b on a Dell Precision R5400 Dual Quad Core 2.0 GHz machine for 45 days at which point they had 

only completed 70 of the 100 total modes.  The processing times for Adaptive POD reconstruction with 

direct replacement and with the iterative replacement were compared and found to be comparable.  The 

method with iterative replacement started some time after the other methods and has only reach 53 

modes.  By not solving the linear system the complete set (100 snap shots) was solved in 31.75 hours, 

20.66 hours, and 32.50 hours for the Everson and Sirovich method, Gunes et al. Method and Adaptive 

POD reconstruction method respectively.  A list of computational times for both reconstruction 

procedures can be seen in Table 2.1.  This table also shows that on average the computational time 

increases 3500% by solving this additional linear system of equations.  In addition, it is shown that the 

linear system of equations produces a slightly less accurate solution, which has been seen in previous 

studies (Murray and Seiner 2008).  Table 2.2 shows the average and RMS error values for the three POD 

reconstruction methodologies at 36 modes, which is the minimum using the Gunes convergence method 

with the POD coefficients, and 70 modes which was the maximum number of modes used when solving 

the linear system of equations due to computational constraints.  These results suggest that the combined 
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computational efficiency and improved accuracy of the Reduced Gappy POD offer a more appropriate 

method for PIV data. 

Table 2.1.  Processing times for the different POD reconstruction.  Due to computational expense, only the first 70 

modes were reconstructed using the linear system while all of the modes where reconstructed using the POD coefficients. 

Method Using POD Coefficients (Full 100 
modes) 

Using Linear System (First 
70 modes) 

Percent Increase 

Everson and Sirovich 31.75 hours 1078.0 hours 3400% 
Gunes et al. Method 20.66 hours 934.2 hours 4520% 
Adaptive POD  32.50 hours 1066.8 hours 3300% 

 

The uniqueness of this new adaptive reconstruction method, in comparison to the other POD 

methods, resides in the fact that individual points in the field are only updated subject to an objective 

convergence criterion.  If adding an additional mode to the reconstruction does not reduce the local value 

of the smoothness parameter, then the data at that location will not be updated and the value from the 

previous reconstruction will be utilized.  By allowing these spatial points to converge independently, flow 

features are reconstructed independently rather than requiring high frequency features to be reconstructed 

with the same information as low frequency features or vice versa.  This independence leads to a higher 

accuracy reconstruction.    

Table 2.2. Error values for the different methods at 36 modes which corresponds to the minimum using the Gunes et 

al. convergence method, and 70 modes which is the maximum number of modes reconstructed using the linear system of 

equations. 

Method Average36 RMS36 Average70 RMS70 
Using POD Coefficient     
Everson and Sirovich 0.1020 0.1512 0.1725 0.3474 
Adaptive POD  0.0765 0.1210 0.0813 0.1457 
Gunes et al. Method 0.1032 0.1535 0.1838 0.3822 
Using Linear System     
Everson and Sirovich 0.1052 0.1531 0.2196 0.4782 
Adaptive POD  0.0785 0.1218 0.0852 0.1488 
Gunes et al. Method 0.1059 0.1545 0.1838 0.3515 
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Figure 2.7. RMS error for the U and V velocity components, A) and B) respectively.  Due to the high error values in 

the linear interpolation method it is not shown for clarity.  Because the E-S method does not rely on information from the 

previous mode’s convergence it is shown with only symbols.  The open symbols show the minimum locations in A) of 58, 

64, and 58 and in B) of 36, 100, and 36 for Everson – Sirovich, Adaptive POD and Gunes et al. method respectively. 
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Figure 2.8. Average and RMS error magnitude for all included points, A) and B), and with edge points excluded, C) 

and D), for the different reconstruction methodologies.  The open symbols denote the minimum location in A) of 35, 49, 

and 38, B) of 26, 42, and 26, C) of 57, 100, and 57, D) of 59, 100, and 59, for the Everson – Sirovich, Adaptive POD, and 

Gunes et al. method respectively. 

 

 

Figure 2.9.  Average and RMS error magnitude for all included points, A) and B) and with edge points excluded C) 

and D), for the different reconstruction methodologies now solving the linear system proposed by Everson and Sirovich. 

The open symbols denote the minimum location in A) of 26, 48, and 26, in B) of 26, 44, and 26, in C) 47, 53, and 48, and in 

D) 48, 53, and 48 for the Everson – Sirovich, Adaptive POD, and Gunes et al. method respectively. 

In order to investigate the effect of gappiness percentage on reconstruction accuracy an additional test 

was performed.  For this study, the PIV data was compared to the true solution and then a threshold was 

determined at which data would be removed.  This threshold was varied in order to produce 6 gappiness 
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levels of 5%, 10%, 20%, 40%, 60%, and 80%.  These new fields were then reconstructed using local 

Kriging, the Gunes et al. method or the newly proposed Adaptive POD reconstruction.  The local Kriging 

and Gunes et al. method were chosen as they where the strongest competition in terms of reconstruction 

for the interpolation and POD methods respectively.  Due to the increased computation cost associated 

with higher gappiness levels not all of the reconstructions reach 100 modes.  For the Adaptive POD 

reconstruction the terminal mode was 100, 95, 79, 68, 62, 100 for the 5%, 10%, 20%, 40%, 60%, and 

80% gappiness levels respectively.  The reason that the 80% case finished quicker is because with less 

information to work with the POD iterations converge quickly while the other cases with more 

information take more time to converge to a solution..  

It can be seen from Figure 2.10 that both the Gunes et al. method and the Adaptive POD 

reconstruction showed improved performance as the gappy percentage is reduced, but while the Adaptive 

POD method shows consistent performance as the mode number is increased the Gunes et al. method 

quickly becomes affected by the end rise problem discussed earlier.  This problem with the Gunes et al. 

method at high gappiness percentages was originally reported by the authors (Gunes, Sirisup et al. 2006).  

While local Kriging has shown to be very effective at low gappiness percentages it can be seen here that it 

quickly becomes ineffective as the gappiness level is increased.  Not shown in this figure is local Kriging 

for 40% gappiness, which had an RMS error of 3.72.  This figure illustrates the robustness of the new 

Adaptive POD reconstruction method over the currently available techniques. 
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Figure 2.10.  Effect of varying gappiness percentages on RMS reconstruction error.  The symbol shapes (n , � , � , 

u , � , u) represent gappiness percentages of 5%, 10%, 20%, 40%, 60% and 80% respectively.  The closed symbols 

belong to the Adaptive POD reconstruction while the open symbols belong to the Gunes et al. method.  Kriging is shown 

with a dashed line with only every 4th symbol shown for clarity. 

2.7. Velocity Field DATA and PIV Processing – Experimental Data Case 
In order to demonstrate the applicability of this reconstruction procedure to experimentally obtained 

data, a dataset from a turbulent channel flow experiment was tested.  The facility used to obtain this data 

was a vertically-oriented water tunnel as seen in Figure 2.11.  This tunnel consisted of three major 

sections: lower receiving chamber, test section, and settling chamber (not shown).  For this experiment, 

water was drawn from the settling chamber via a Kohler 0.5 Hp pump (model: 60934) and injected into 4 

locations in the top of the lower receiving chamber (5.08x5.08 cms from the corners of the chamber).  

This injection not only provided the water for the tunnel but also generated large-scale turbulent 

structures from the injection process.  The water was then directed vertically upward into the test section 

through a contraction that prevented the flow from separating.  The top of the test section was open to 

atmosphere and allowed the water to spill over a dividing wall before being returned to the settling 

chamber.  The square test section, which was concentric about the center of the lower receiving chamber, 
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had a hydraulic diameter of 20.32 cms.  The average velocity of the water through the test section was set 

to 4.3 cm/s, which provided a Reynolds number of 8738.   

To capture the velocity information for this experiment a Time Resolved Stereo PIV (TR-SPIV) 

system was used.  Two Photron APX-RS cameras both with Nikon 85 mm Scheimpflug lenses were used 

to record the particle field illuminated a New Wave Pegasus Nd:YAG laser.  The cameras were tilted 

approximately 30 degrees off perpendicular to the laser plane.  These cameras have 1024 pixel by 1024 

pixel CMOS sensors which provided a magnification of 84.66 um/pixel.  The velocity field was sampled 

at 250 Hz, which corresponded to a 2.0 pixel displacement between consecutive frames.  Because the 

displacement was so small between consecutive frames a frame step of two was used for the correlations, 

which allowed for the sampling rate to be maintained at 250 Hz while allowing a 4 pixel displacement 

between frames.  The images, from both cameras, were processed using a two pass multigrid method in 

conjunction with Robust Phase Correlation (RPC) (Scarano and Riethmuller 1999; Eckstein and Vlachos 

2009a; Eckstein and Vlachos 2009b).  Validation using the Universal Outlier Detector (UOD) was used 

both intermediately and on the final pass (Westerweel and Scarano 2005).  The Soloff et al. method of 

stereo reconstruction was used for this data (Soloff, Adrian et al. 1997).  This method consisted of a third 

order polynomial that was used in conjunction with the calibration information to dewarp the vector fields 

and then properly combine them and obtain the additional velocity information.   
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Figure 2.11.  Schematic for vertical water tunnel facility showing the lower receiving chamber and test section. 

In order to make this field “gappy”, clusters of points were randomly removed from the field.  The 

cluster size ranged from 1 – 5 vectors in both the X and Y direction.  The total percentage of vectors 

removed for this case was 20 percent.  An example image of the field before and after data was removed 

can be seen in Figure 2.12.  This data set consisted of 500 snapshots.  When looking at the cumulative 

sum of the eigenspectra, Figure 2.13, it was seen that 95% of the total energy was captured by the first 15 

modes and 99% of the energy was capture by 156 modes.  This supports the statement that while only 500 

snap shots were used it was in fact more than sufficient to completely resolve the fluctuations found in the 

field.  
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Figure 2.12.  Vector field from the original (A) and gappy field (B) from the turbulent channel experiment.  The 

contour is vertical velocity (V). 

 

Figure 2.13.  Cumulative sum of the eigenspectra for the turbulent channel flow field.  The inset shows a zoomed in 

look at the first 70 modes. 

2.8. Results and Discussion – Experimental Case 
Figure 2.14 shows a reconstructed snap shot from the AR-POD method.  Visually this field strongly 

resembles the original field, which helps to support the assertion that this method can be applied to 

experimentally obtained data sets and that it can perform well even with fields containing high gappiness 

percentages.  Because this is an experimental field, obviously no true solution exists for the purpose of 
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comparison.  For the error analysis performed in this section, the original values from the field will be 

used as the “true” solution similar to Gunes et al..  It should be noted that this gives an obvious advantage 

to the Gunes et al. method as it is developed in such a way that it tries to find the best solution based on 

the valid information provided.   

 

Figure 2.14.  Reconstructed field after 70 modes using the adaptive POD reconstruction.  Visually no discernable 

difference can be seen when compared to the original field. 

Continuing to use the error analysis procedure presented in section 5, Figure 2.15 shows the average 

and RMS error for the first 70 modes of the reconstruction.  In addition to the AR-POD method the Gunes 

et al. method as well as local Kriging were performed to provide comparisons.  These two methods were 

chosen as they were the strongest competitors to this new method from the categories of POD- and 

interpolation-based methods, respectively.  It can be seen from this figure that the AR-POD method 

consistently outperformed the Gunes et al. method both in average and RMS error and after 48 modes the 

AR-POD outperformed the local Kriging with respect to average error.  After 70 modes the AR-POD 

method performed 25% better than the Gunes et al. method and 5% better when compared to Kriging with 

respect to the average error.   For the RMS error, while the AR-POD does not yet outperform Kriging it 

did perform 13% better than the Gunes et al. method.  While due to computational costs only 70 modes 

where computed, it can be seen that the AR-POD methods error was still decreasing as more modes were 
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added, leading to the possibility of an even higher accuracy reconstruction if the method had been 

allowed to continue.   

 

Figure 2.15.  Average and RMS error for reconstruction of the turbulent channel flow field.  The closed symbols 

denote average error while the open symbols are RMS. 

It should be noted that these results come using the iterative convergence replacement for the AR-

POD method.  While not shown here, the authors found that when determining smoothness for this case, 

if the field was evaluated with direct replacement of the current step then points at the centers of the 

gappy blocks remained at lower and more smooth modes.  While direct replacement showed improved 

results in select cases this iterative replacement appears to be a more universal approach.   

2.9. Conclusions 
A novel gappy POD methodology for adaptive reconstruction of PIV data was developed and 

characterized. This method improves upon the current gappy POD methodologies as well as upon 

different interpolation-based reconstructions for PIV data.  Its enhanced performance stems from a) 

improved accuracy beyond what was previously reported and b) providing a solution to the final mode 

convergence problem that currently existed with some of the POD reconstruction techniques.  By 

combining POD reconstruction with an adaptive convergence through a field smoothness parameter, 
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individual spatial points are reconstructed with different numbers of POD modes.  This allows for high 

frequency spatial features to be reconstructed independently of lower frequency features.  As a result the 

RMS error decreased by as much as 13% and 5% for the U and V velocity components respectively, 

when compare to the next best method (Gunes et al.).  Also, because the method allows for measurements 

to be updated only if and when a new minimum in the field smoothness parameter is reached, points are 

not trapped into local minimums that can corrupt the data set.  Finally, this work showed that the reduced 

reconstruction methodology proposed by Gunes et al. performs better with experimentally determined 

PIV data than the linear systems approach by Everson and Sirovich.   
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3. Computation of Finite Time Lyapunov Exponents from Time 

Resolved Particle Image Velocimetry Data 

3.1. Abstract 
This work presents two new methods for computing Finite Time Lyapunov Exponents (FTLE) from noisy 

spatio-temporally resolved experimental data generated using Particle Image Velocimetry (PIV).  These new 

approaches are based on the simple insight that the particle images recorded during PIV experiments represent 

Lagrangian flow tracers whose trajectories lend them selves to the direct computation of FTLE flow maps.  We 

show that using this idea we can improve the reliability and accuracy of FTLE calculation through the use of either 

sequential Lagrangian particle tracking velocimetry (PTV), where individual particle paths over a fixed period of 

time are used to determine the flow map, or PTV flow map interpolation, where instantaneous tracking results are 

used to advect massless tracer particles creating the complete flow map.  Comparisons of the traditional numerical 

integration method for computing FTLE fields with these new methods show that PTV flow map interpolation 

produces significantly more accurate estimates of the FTLE field for both synthetic data as well as experimental 

data.  This is because the numerical integration estimates particle motion while PTV directly measures particle 

motion and therefore generates a more accurate flow map.  Overall our results suggest that the numerical integration 

is not always a reliable approach when applied to noisy experimental PIV data.  For cases where particle loss 

between frames is minimal, the sequential Lagrangian tracking can also produce better results but the final field is 

susceptible to error due to the unstructured nature of the raw flow maps.  When comparing the ability to match the 

true separatrix of a flow, PTV flow map interpolation is shown to be a far superior method.  The separatrix from 

PTV flow map interpolations has an 80% overlap with the true solution as compared to approximately 25% for the 

sequential Lagrangian tracking and only 1% for the numerical integration method. PTV flow map interpolation 

shows a significant advantage when the particle seeding is low, which is particularly relevant for applications to 

environmental or biological flows where adding seed particles is not always practical and investigation of 

Lagrangian flow structures must rely on naturally occurring flow tracers. 

3.2. Introduction  
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Finite-Time Lyapunov Exponents (FTLE) can provide information on the mixing and transport 

mechanisms in a flow (Brunton and Rowley 2010; Shadden 2011) and they are applicable in both 

turbulent and laminar flows (Haller 2001).  FTLEs are a measure of the exponential rate of divergence or 

convergence of the Lagrangian particle trajectories over a finite time.  The calculation of FTLEs has been 

used previously in both experimentally (Shadden, Katija et al. 2007; Peng and Dabiri 2009) and 

computationally generated (Haller 2001; Wilson, Peng et al. 2009) flow fields. 

The ridges, or high magnitude locations in FTLE fields are referred to here as Lagrangian coherent 

structures (LCS).  Ridges can be defined precisely by appealing to differential geometric quantities 

(Shadden, Lekien et al. 2005).  An alternative definition of LCS (Haller 2011) defines LCS more 

restrictively as hyperbolic material surfaces with extreme finite time normal repulsion or attraction.  This 

eliminates spurious LCS such as those due to shear or stretching.  Thus it is more correct to consider 

ridges of FTLE as candidate LCS, and while they provide insight to the Lagrangian skeleton of the flow, 

further criteria must be satisfied to classify a candidate LCS as a hyperbolic LCS.  Nevertheless, FTLE 

ridge features can be used to determine the underlying transport structure in complex flow fields (Holmes, 

Lumley et al. 1996; Lekien and Ross 2010; Senatore and Ross 2011) revealing mixing barriers that inhibit 

transport, or when there is a high density of rapidly moving LCS, regions of increased mixing (Shadden, 

Lekien et al. 2005; Tallapragada and Ross 2008; Peng and Dabiri 2009).   

While the calculation of LCS from FTLE fields has been used to better understand fluid dynamics 

behavior both numerically (Haller and Yuan 2000; Lekien and Ross 2010; Tallapragada and Ross 2013) 

and experimentally (Shadden, Dabiri et al. 2006; Shinneeb, Balachandar et al. 2006; Mathur, Haller et al. 

2007; Charonko, Kumar et al. 2013), their application has been limited.  Part of the limitation is due to the 

high computational cost in calculating the FTLE fields.  Currently, in order to calculate these fields 

artificial flow tracers are numerically advected in time to determine the flow map for a flow field (Haller 

2002).  Determining this flow map using conventional methods is computationally costly (Brunton and 

Rowley 2010) and can yield incorrect values near boundaries (Ruiz, Boree et al. 2010).  Additional 
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methods have also been developed for decreasing the computation cost for determining and tracking the 

motion of LCSs for a given flow field (Lipinski and Mohseni 2010).  

The current work aims to efficiently and accurately calculate FTLE fields from experimentally 

measured particle image data of the type used for particle image velocimetry (PIV) or particle tracking 

velocimetry (PTV).  Both are techniques for non-invasively measuring a fluid flow experimentally where 

flow tracers are added to a flow to probe the fluid’s motion (Adrian 1991; Raffel, Willert et al. 1998; 

Adrian 2005).  When properly matched with the experimental flow conditions, these particles are 

assumed to act as perfect flow tracers (Raffel, Willert et al. 1998), with zero response delay to the flow 

fluctuations  i.e., similar to the numerical particles that are artificially added to the flow during the 

numerical calculation of the flow maps.  

Previous work has shown that the computational cost can be decreased when investigating successive 

FTLE fields from a single data set by reducing the number of redundant particle integrations (Brunton and 

Rowley 2010) by numerically integrating particle trajectories over small time intervals to create short 

snapshots of the flow map.  By using compositions of these flow map snapshots, FTLE fields over 

different initial and final integration times can be computed quickly and efficiently (Brunton and Rowley 

2010).  This procedure allows for different time intervals to be linked together providing a flow map at 

varying time intervals with reduced computational cost.   

While this approach reduces the computational cost, it is still expensive and moreover it does not take 

advantage of the flow map information contained in experimental flow fields derived from particle 

images, i.e., the Lagrangian motion of the particle flow tracers.  When PIV or PTV images are acquired 

they inherently contain information about the flow map over a short-time snapshot, i.e., the discrete 

particle motion from one frame to the next.  This simple insight, suggests that if properly extracted and 

compiled, these measured particle trajectories can be used to more accurately and directly measure the 

FTLE/LCS field from experimental PIV data.   
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This work presents a new method for FTLE calculation by simply measuring the flow map directly 

from the flow tracer particles present in the field.  Compared to the conventional numerical integration 

method, this new method offers an alternative that is better suited for use with particle image data because 

it exploits information already inherent in the recorded images to deliver increased accuracy and 

robustness.  By measuring the motion of each of these particles from one time instant to the next, through 

the use of PTV, a direct measure the flow map can be produced.  This new procedure, illustrated in Figure 

3.1, eliminates the need for costly numerical integration.  In addition, using PTV also has the additional 

benefit of better resolving near wall flows (Kahler, Scharnowski et al. 2012) which can increase the 

accuracy of the FTLE/LCS near boundaries.  

 

 

Figure 3.1.  Flow chart showing the common procedure for computation of the FTLEs from experimental 

data and our novel procedure denoted with the red dashed line. 

Two different forms of particle tracking can be utilized in order to determine the required flow maps 

for a given field.  The first form is to use sequential Lagrangian particle tracking where individual 

particles are followed over a series of consecutive frames throughout the entire time of interest.  The 

second method is to use the particle tracking between two adjacent frames and then combine these 

successive flow maps via interpolation (Brunton and Rowley 2010).  The advantage of sequential 

Lagrangian particle tracking is that the particle tracks are direct measures of the flow map as they provide 

the exact path of a given particle for a specific location.  The disadvantage to this method is that 
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experimentally it can be challenging to follow a particle over an extended period of time.  Particles can be 

“lost” due to improper matching in the tracking algorithm or, in the case of planar PIV/PTV, they can be 

lost due to out-of-plane motion.  Using tracking information only between two frames has the advantage 

over sequential Lagrangian tracking in that it can provide a higher density of successfully tracked 

particles.  When limited to only two frames the tracking algorithm will not be as heavily influenced by 

losses and when properly compiled should provide a very good estimate of the true flow map. 

The following provides a detailed analysis of using both Lagrangian particle tacking and 

instantaneous particle tracking for flow map determination of FTLE fields from experimental data.  First a 

synthetic data set was created to test the methods as well as perform error analysis.   This was followed by 

a demonstration of the methods on an experimental data set of a vortex ring.  

3.3. Flow Map Determination 

3.3.1. Flow Map Computation using Particle Tracking Methods 
This work uses a multi-component particle tracking algorithm that has been developed for single and 

multiphase flows (Cardwell, Vlachos et al. 2010).  The process works by calculating unique particle 

identifiers such as particle size, shape, and maximum intensity and uses this information to parametrically 

track the particles.  By changing the relative weighting of these factors, along with the inter-particle 

distance of the possible matched particles, the algorithm can be tuned to work in highly turbulent flows 

with particles that may not follow the flow.  Even non-flow tracers can lead to informative FTLE analysis 

(Tallapragada and Ross 2008; Peng and Dabiri 2009).  When the particles follow the flow path, the 

algorithm can also use information produced from PIV to more efficiently predict particle motion and pair 

the particles.  Using this method has shown great improvements in both the probability to match particles 

and in the accuracy of those matches (Cardwell, Vlachos et al. 2010).  However, there are several other 

efficient PTV methods that can also be used to produce accurate PTV velocity field estimations (Ohmi 

and Li 2000; Mikheev and Zubtsov 2008; Ohmi and Panday 2009). 
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3.3.1.1. Flow Map Compilation from Instantaneous Tracking 
Because two-frame tracking results are direct measures of an incremental flow maps over the inter-

frame time, i.e., the particle motion between frames, it is possible to achieve more accurate measurements 

of the total flow map by combining these results together.  This method was first proposed for numerical 

results by Brunton and Rowley (2010).  They proposed that the complete flow map could be calculated 

from a compilation of small time step flow maps as in,  

     (3.1) 

where  is the flow map calculated from time t0 to time , etc.,  is the time-step between 

successive frames, and .  Because these flow maps are computed on a discrete grid, an 

interpolation, , is needed to compile the flow maps.  Evaluating small time step flow maps 

consecutively allows for the total flow map to be computed. As the tracking results are obtained on an 

unstructured grid they must be interpolated onto the points coincident with the compiled flow map at a 

given time step.  To this end, a thin plate smoothing spline, which provides a high accuracy interpolation 

while reducing the effects of noise in the tracking results, was used (Karri, Charonko et al. 2009).  For a 

given location in the flow map, the 50 closest tracks centered about the given location were used in the 

interpolation.  This number was chosen in an effort to balance the competing effects of having sufficient 

information to produce a proper interpolation and not over smoothing the data due to the inclusion of 

distant points in the interpolation.  While the results presented here use a rectilinear flow map, this 

procedure is still valid if the initial flow map grid was on an unstructured mesh (Lekien and Ross 2010).  

A flow chart illustrating the traditional procedure along with the newly proposed method for calculating 

FTLE fields is shown in Figure 3.1. 

3.3.1.2. FTLE Computation from Sequential Lagrangian Tracking 

Lagrangian particle tracking results were compiled from the instantaneous PTV results by linking 

particle locations from the final position in time step  to initial particle positions in time .  Only 
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complete tracks over the entire time of interest, excluding any lost or gained particles, were used for 

computation of the FTLE field.  Particles can be “lost”, incomplete matching, due to a number of factors 

including, but not limited to, out of plane motion and incorrect pairing with the previous step of the 

tracking procedure.  This process produces a flow map that is regularly sampled in time, but irregularly 

sampled in space.  In order to perform the FTLE computation the flow maps were first interpolated onto a 

rectilinear grid.  Again a thin-plate spline using the 50 closest particles was used to perform the 

interpolation.  After interpolation the FTLE was computed using the method described in the FLTE 

section below. 

3.3.2. Numerical Particle Trajectory Method 
To perform the numerical integration the software package “Newman” was used (Du Toit 2010).  

Newman determines the flow map by numerically integrating a grid of massless tracer particles evenly 

spaced through the field.  To perform this integration a Runga-Kutta 4-5 with an adaptive time step 

algorithm with tunable absolute and relative initial tolerances was used.  For the synthetic data results, the 

absolute and relative tolerances were set to 10-12 and 10-14 respectively with an initial time step set to 10-7.  

For the experimental vortex ring data the absolute and relative tolerances were set to 10-10 and 10-9 

respectively with an initial time step of 10-3.  After this numerical integration the FTLE is computed using 

the method described below. 

3.4. FTLE Computation 

Computation of FTLEs begins first by computing the right Cauchy-Green deformation tensor, , 

which is given by, 

  (3.2) 

 
C jk

C = ∇Φt0
t0+T( )* ⋅∇Φt0

t0+T
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where * denotes transpose, and  is the flow map generated by either particle integration or 

particle tracking.  Next, the largest eigenvalue, λmax, from the deformation tensor is identified and used to 

yield the forward FTLE field σ at each point in the flow field at time t0, as in, 

    (3.3) 

3.5. Synthetic Data 
In order to test this method on a field with a known solution the double gyre flow field was selected 

(Solomon and Gollub 1988; Solomon and Gollub 1988). This flow field is a standard test case in the 

FTLE/LCS literature (Shadden, Lekien et al. 2005; Brunton and Rowley 2010; Lekien and Ross 2010; 

Tallapragada and Ross 2013) as well as in the fluids community as it is a close approximation to the flow 

field found in 2D Rayleigh-Benard convection (Solomon and Gollub 1988; Solomon and Gollub 1988).  

This field can be most easily thought of as a pair of counter rotating vortices confined on all sides as 

shown in Figure 3.2.  The time dependence of this flow is controlled by the asymmetric expansion and 

contraction of the vortices inside the domain.  The flow field is described by the stream-function  

  (3.4) 

where,  

  (3.5) 

  (3.6) 

  (3.7) 

This formulation is valid over the domain of x from 0 to 2 and y from 0 to 1.  The velocity field is 

given by 

Φt0
t0+T

σ t0
t0+T = 1

T
ln λmax C( )( )

  
ψ t( ) = Asin π f t( )( )sin π y( )

  f t( ) = a t( )x2 + b t( )x

   a t( ) = sin ωt( )

   b t( ) = 1− 2sin ωt( )
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  (3.8) 

  (3.9) 

where A is the scaling parameter for the magnitude of the velocity and  determines how far the 

vortices grow and shrink.  The original formulation of this comes from (Solomon and Gollub 1988) while 

this specific derivation was performed by (Shadden, Lekien et al. 2005).  It is important to note that this 

solution does not satisfy the Navier-Stokes equations but rather is an approximation of a time-varying 

flow field with fixed boundaries.  If  then the flow becomes time independent. When , then  

provides a measure of how much the separation line between the gyres moves in the x direction over a 

period of 2π/ω.  For the work herein,  was set to 0.25,  was set to π/5 and A was set to 0.1.  For 

results pertaining to this data the spatial domain is normalized using the characteristic length of the 

domain x,y = 1, L.   

 

Figure 3.2.  Vector field snap-shot of the double gyre flow field. 

3.5.1. Artificial Image Generation 
To generate images simulating an experimental environment, the benchmark velocities must be 

integrated at finite locations so that these locations can be used to simulate particles as would typically be 

seen in PIV/PTV experiments.  To perform this integration, 30,000 random tracers were seeded 
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throughout the domain were integrated using MATLABs ode45 solver which is a Runga-Kutta based 

numerical differential equation solver that is 4th order accurate with a 5th order check.  The equations were 

integrated using a time step that would allow for 500 evenly spaced realizations over one complete period 

of the flow, 2π/ω.  Because the particle locations are were randomly distributed in space care needed to 

taken when performing gradient calculations, to this end the authors used radial basis functions to provide 

high accuracy estimation of these gradients (Karri, Charonko et al. 2009). 

From this larger set of particles, randomly sampled subsets were extracted to generate images with 

specified seeding densities.  Each seeding density was simulated 10 times (with a different subset of 

particles) in an effort to produce statistically significant results.  The seeding densities chosen for the 

simulations were 500, 1000, 2500, 5000, 7500, 10,000 and 20,000 particles per image.  The image size 

was 1024 by 512 pixels, which produced seeding concentrations of 0.001 to 0.038 particles per pixel for 

the 500 and 20,000 particle cases respectively.  For comparison, in a typical PIV experiment there are 

approximately 10 particles in a 32 by 32 pixel window corresponding to a seeding density of 0.01 

particles per pixel (Raffel, Willert et al. 1998; Adrian and Westerweel 2011).   

The image generation was performed using the Gaussian approximation for light scatter from a 

particle illuminated from a thin sheet of laser light (Brady, Raben et al. 2009).  The laser light distribution 

was also assumed to be Gaussian with the highest intensities at the center of the light sheet.  As in an 

actual experiment, the particles were assumed to be non-uniform in size, with diameters assumed to 

continuously vary from 2 to 15 pixels. 

3.6. PIV and PTV Procedure 
The PIV processing was performed using an in-house developed code1 employing the robust phase 

correlation technique (Eckstein and Vlachos 2009; Eckstein and Vlachos 2009) in conjunction with the 

                                                        
1	
  PRANA	
  software	
  is	
  freely	
  distributed	
  as	
  open	
  source	
  http://sourceforge.net/projects/qi-­‐tools/	
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multi-grid discrete window offset method (Scarano and Riethmuller 1999) and image deformation 

(Scarano 2002).  The initial window size was determined using the ¼ rule, which suggests that the 

window size should be 4 times larger than the maximum particle displacement within.  The second 

effective window resolution was 16 by 16 pixels with a 4 by 4 grid resolution creating 75% overlap 

between interrogation windows.  Two iterations were performed at each window size of a total of 4 

passes.  To improve the deformation procedure outlier in the intermediate results were removed using the 

Universal Outlier Detection (UOD) (Westerweel and Scarano 2005) and then smooth while for the final 

pass only the UOD was applied.   

In order to increase the accuracy and robustness of the PTV results, PIV information was used to 

predict the most likely location of particles in future frames.  A weighting of 75% was given to the PIV 

estimation while 25% was based on the previous tracking information as this code can use previous tracks 

to better estimate a particle’s future position.  A two-pass median validation was also used to remove 

erroneous tracks (Duncan, Dabiri et al. 2010).  After these tracks were removed, the new estimate on the 

next particle position was determined by a weighted average of its surrounding neighbors.  Once these 

new estimates were established the tracking algorithm was re-run to find more accurate matches.  

Lagrangian particle tracks were acquired by linking the instantaneous particles tracked in successive 

frames by using the termination locations from the first frame as the starting location of particles in the 

second frame.   

3.7. Experimental Data 
In order to test this method on experimental flow fields, data from a laminar vortex ring in a semi-

infinite domain was chosen (Stewart, Niebel et al. 2012).  This data provided a good test-bed for the 

present work as previous studies have predicted the geometry of the FTLE/LCS from vortex rings 

(Shadden, Dabiri et al. 2006; Olcay, Pottebaum et al. 2010).  The experimental setup consisted of a 

piston-cylinder arrangement with the fluid being ejected into a semi-infinite domain.  The stroke-to-
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diameter ratio (L/D) for the piston-cylinder was 1.2, which produced a Reynolds number of 

approximately 1,800, based on the circulation and kinematic viscosity.  

To measure the fluid motion, neutrally buoyant hollow glass spheres with average diameters of 85 

microns were added to the fluid.  These particles were illuminated by a Nd:YAG dual head laser (New 

Wave Pegasus) firing at a constant rate of 500 Hz.  The images were captured using an IDT XS-3 CMOS 

camera with a resolution of 1280 by 1024 pixels and a magnification of 63 microns per pixel providing a 

resolution of 2.9 diameters in the vertical direction and 6.1 diameter along the length.  The spot diameter 

of the particles in the images was between 2 and 4 pixels.  For more information on the experimental 

setup see the work of (Stewart, Niebel et al. 2012). 

The PTV data was computed by using the multi-parametric particle tracking method (Cardwell, 

Vlachos et al. 2010).  Particles were identified using a dynamic thresholding method with a lower pixel 

intensity limit of 50 (these were 8 bit images with a maximum intensity value of 255).  After 

identification, the particles were sized using a least squares Gaussian method (Brady, Raben et al. 2009) 

with the diameter assigned at 4 standard deviations.  Hybrid PIV-PTV tracking was used to increase the 

efficiency of the PTV algorithm.  The multi-parametric tracking algorithm used a combination of particle 

size, intensity and estimated position to determine the optimal particle match.  Position estimation was 

performed using both previous track information as well as PIV results.  The PIV was processed using the 

same in-house code utilizing Robust Phase Correlation (RPC) (Eckstein and Vlachos 2009; Eckstein and 

Vlachos 2009) as the synthetic images.(Eckstein and Vlachos 2009; Eckstein and Vlachos 2009).  Due to 

the high shear rate produced by the vortex, window deformation was also performed (Scarano 2002). An 

initial PIV window size of 32 by 32 pixels was selected.  This window size was held constant for three 

iterations to allow the window deformation to converge (Scarano 2002).  A final window size of 16 by 16 

pixels was used and again allowed to converge over three iterations resulting in a total of six passes.  

Because the deformation method can be very sensitive to outliers in the intermediate results, outliers were 

identified using the UOD method and smoothed while only outlier detection was applied to the final 
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output field (Westerweel and Scarano 2005).  Once the data was fully processed the PIV results where 

filtered using Proper Orthogonal Decomposition (POD) (Sirovich 1987) preserving 95% of the 

fluctuating energy.  This step helped to reduce any noise that may have been present in the data.   

3.8. Results and Discussion 

3.8.1. Synthetic Data 
Figure 3.3 shows the benchmark FTLE field computed at t0 = 0 over one full period, T= 2π/ω, for the 

double gyre.  We consider this FTLE field the benchmark against which our methods should be 

compared.  The dominant feature of this field is the ridge located in the center extending to the upper left.  

This ridge is the primary separatrix and will serve as a criterion to determine the effectiveness of the 

different methods to accurately resolve the FTLE field. 

 

Figure 3.3.  Resulting FTLE field from using the benchmark flow field.  This field will be used as the basis of 

comparison for the synthetic data analysis. 

For brevity only the 500, 5000 and 20000 particle cases will be shown in the following example 

figures, although all cases are included in the analysis.  Figure 3.4 provides a qualitative comparison 

between three FTLE fields calculated using different methods from a set of 500 particles.  Figure 3.4A 

was generated using numerical integration; Figure 3.4B using sequential Lagrangian tracking, and Figure 

3.4C using PTV flow map interpolation.  For the numerical integration massless tracer particles were 
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placed at ever pixel, which produced a grid 8 times finer then the PIV field.  For the PTV flow map 

interpolation the massless particles were placed at every fourth pixels which when using the 50 closest 

tracks produced an average window size of 95, 29 and 19 pixels for the 500, 5000, and 20000 particles 

cases respectively.  These average windows correspond to relative length of 19%, 5.7% and 3.7% when 

normalized by the chrematistic length, L, for the double gyre flow field.  For this seeding density the PIV 

results contain a large amount of noise due to the small number of particles in each interrogation region 

and as a result, the numerical integration also contains a large amount of error.  While increasing the 

window size would improve the PIV results the reduction in resolution would still yield compromised 

results (Olcay, Pottebaum et al. 2010).  Fintite Time Lyapunov Exponent fields can handle high error in 

the velocity field over a limited duration (Haller 2002), but long duration errors can strongly distort the 

field (Olcay, Pottebaum et al. 2010).  For the sequential Lagrangian tracking, there are a small number of 

sequential Lagrangian tracks due to the low seeding density.  As a result, the FTLE field appears to be 

under-resolved leading to a diffused and difficult to discern ridge.  Unlike the numerical integration at this 

seeding density, the sequential Lagrangian tracking resolves the separatrix that is present in the 

benchmark solution, although the ridge appears to have a reduced peak value and is broader than in the 

benchmark.  For the PTV flow map interpolation, even with this low seeding density the method returns a 

field that is sufficiently similar to that of the solution.  Some discrepancies can be seen which again are 

most likely due to the limited number of tracks used during the flow map interpolation.  This field is not 

only able to capture the main separatrix but also some of the smaller ridges seen in the FTLE field. 

Figure 3.5 shows results from the case with a seeding density of 5000 particles where Figures 5A, 5B, 

and 5C correspond to the numerical integration, sequential Lagrangian tracking, and PTV flow map 

interpolation methods respectively.  With an increased number of particles the numerical integration does 

an improved job at resolving the field.  The method however, does struggle to capture the attachment of 

the separatrix to the lower wall.  This inability stems from the poor numerical integration of velocities 

near walls.  Because the measured velocity from PIV is, in a sense, an average of all the particle velocities 
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in the interrogation region, it is difficult to properly measure the velocity near a wall or near a location 

with zero velocity (Kahler, Scharnowski et al. 2012).  For the sequential Lagrangian tracking, the field 

also shows improved estimation of the benchmark solution.  Again, error in the flow map due to the 

discrete locations of the tracks appears as spurious ridges in the FTLE field.  For the PTV flow map 

interpolation, the error in the tail of the separatrix appears to be gone and the noise that was seen in the 

previous case appears to be diminished. 

A)  

B)  

C)  
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Figure 3.4.  FTLE results for the 500 particles case where A), B) and C) represent numerical integration of 

the PIV velocity fields, sequential Lagrangian tracking, and the PTV flow map interpolation method 

respectively. 

A)  

B)  

C)  

Figure 3.5.  FTLE results for the 5000 particles case where A), B) and C) represent numerical integration of 

the PIV velocity fields, sequential Lagrangian tracking, and the PTV flow map interpolation method 

respectively.  
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A)  

B)  

C)  

Figure 3.6.  FTLE results for the 20000 particles case where A), B) and C) represent numerical integration of 

the PIV velocity fields, sequential Lagrangian tracking, and the PTV flow map interpolation method 

respectively. 

Finally Figure 3.6 shows the results for the seeding density case of 20000 particles where again 

Figures 6A, 6B, and 6C correspond to the numerical integration, sequential Lagrangian tracking, and PTV 

flow map interpolation methods respectively.  This case is noteworthy as it is most similar to the seeding 

density that would be found in an ideally seeded PIV/PTV fluid experiment.  Again, for the numerical 
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integration it can be seen that the secondary structures appear to be well resolved (the multiple finger-like 

structures in the right side of the image) while the main separatrix is still not fully captured.  This shows 

that even with highly seeded data, numerical integration of PIV results may poorly capture features due to 

near wall dynamics.  For the sequential Lagrangian tracking case, again the separatrix appears to be 

captured, but the noise is still significantly affecting the resolution of the FTLE features.  However, the 

PTV flow map interpolation result shows good agreement with the solution.  The separatrix appears to be 

well resolved with little noise present in the field.  However it is worth noting that in Figure 3.5C and 

Figure 3.6C thin hair-like structures, which are spurious random ridges in the FTLE field, appear, which 

are not present in the benchmark solution. 

For a quantitative analysis of these results, the normalized average error and normalized Root-Mean-

Squared (RMS) error was calculated using the following, 

 
  
Normalized Average Error = 1

N
σ (i)Measured −σ (i)Solution

σ (i)Solutioni=1

N

∑   (3.10) 

 
  
Normalized RMS Error = 1

N
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⎛

⎝⎜
⎞

⎠⎟i=1

N

∑
2
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where  is calculated from t0 to t0+T for all of the cases using the solution as a benchmark for 

comparison and i are the different pixel locations for which the FTLE is calculated.  These values were 

computed for each of the 10 cases at each seeding density.  Figure 3.7 shows the average of all of these 

cases for each seeding density with the uncertainty bars showing the one standard deviation value 

computed from the 10 cases.  For the average error, Figure 3.7A, it can be seen that the error decreases as 

the seeding density is increased.  The numerical integration consistently contains higher error than the 

other methods reaching a minimum value of 0.136 for the 20000 particles case.  Sequential Lagrangian 

tracking reaches a minimum average error of 0.0733 at the 10000 particles case.  There is an increase in 

the error for the sequential Lagrangian tracking in the 20000 particles case to a value of 0.1085.  This 

σ σ
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increase is due to the fact that as the seeding density increases, and the inter-particle distance decreases, 

there is an increased likelihood that particle mismatch could occur which would introduce error into the 

flow map and therefore the FTLE field.  For the PTV flow map interpolation, the error continues to 

decrease as the seeding density is increased reaching a minimum at the 20000 particles case of 0.0579, 

which is the lowest value compared to any of the other cases.  The variance between the cases at a given 

seeding density also diminishes as the seeding density increases.  For the 5000 particles cases and above, 

the variance is less then 2.5% of the error on average. 

A)  

B)  
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Figure 3.7.  Normalized average (A) and Root-Mean-Squared (RMS) (B) error for all three of the methods 

tested. 

For the normalized RMS error, as shown in Figure 3.7B, the error in the FTLE field for the different 

cases again deceases and levels off as the particle number reaches the 5000 particle case.  Again for the 

highest seeding density the PTV flow map interpolation has the smallest RMS error of 0.1432.  The 

numerical integration consistently has the highest RMS error with very large values at the lower seeding 

densities.  The sequential Lagrangian tracking does well throughout the seeding densities until the 20000 

particle cases where the error again rises as seen in the normalized average error.  It can be understood 

from these results that the PTV flow map interpolation proves, under these imaging conditions, to be a 

superior method when compared to numerical integration and comparable to sequential Lagrangian 

tracking.   

The FTLE difference calculations shown above may lead one to infer that the sequential Lagrangian 

tracking is almost always delivering the best results. However that would be misleading since Figure 3.4-

Figure 3.6 clearly show that it fails to properly resolve the FTLE structure and is only producing 

comparable results in a spatially averaged sense, where one point spatial FTLE point is weighted equally 

with the next.  Therefore, in addition to investigating the total FTLE field errors, we also investigated the 

ability of the given methods to properly determine the separatrix seen in the benchmark solution.  To this 

end the amount of overlap between the benchmark separatrix and the calculation method was computed.  

This analysis is similar to that completed by Olcay, Pottebaum et al. (2010) with their analysis of the 

sensitivity of LCS identification on the flow field resolution.  Figure 3.8 shows the benchmark separatrix 

(solid grey line) along with the separatrix from the three methods (colored lines) for the seeding density 

of 500 particles.  For this study the separatrix was defined as the region above a threshold value of 0.40, 

or about 75% of the maximum value, which contained all of the primary ridge information.  Here the PTV 

flow map interpolation clearly shows the best agreement with the benchmark solution.  While the 

sequential Lagrangian tracking produces FTLE values close to that of the benchmark and thus performs 



 

 60 

well in a statistical sense when we calculate overall errors, here it can be seen that the separatrix is not 

well resolved and little overlap occurs. 

Figure 3.9 shows the overlap for the seeding density of 5000 particles.  Again, because of the poor 

near wall interpolation and velocity resolution, the separatrix is not clearly defined for the numerical 

integration.  For the sequential Lagrangian tracking the separatrix appears noisy and not well resolved.  

The PTV flow map interpolation method still shows strong overlap with the benchmark solution 

throughout the length of the separatrix.  For the final 20000 particle case, Figure 3.10, the results have a 

similar appearance.  The increased noise in the sequential Lagrangian tracking can be seen in the noisy 

separatrix values while the PTV flow map interpolation maintains a good correlation with the benchmark. 

 

Figure 3.8.  Separatrix analysis for the case of 500 particles.  The solid grey line represents the separatrix 

from the benchmark solution. 
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Figure 3.9.  Separatrix analysis for the case of 5000 particles.  The solid grey line represents the separatrix 

from the benchmark solution. 

 

Figure 3.10.  Separatrix analysis for the case of 20000 particles.  The solid line represents the separatrix from 

the benchmark solution. 

Figure 3.11 shows the overlap percentages for all of the cases and methods.  Overlap was calculated 

by determining the number of FTLE pixel values above the given threshold that occupied the same 

position as those in the benchmark solution.  It can be seen from this figure that the PTV flow map 
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interpolation consistently does a better job at resolving the separatrix than the other methods.  The 

numerical integration is not able to capture the separatrix due to the sharp near wall flow gradient and 

near wall integration.  The sequential Lagrangian tracking performs better than numerical integration but 

underperforms when compared to the PTV flow map interpolation method.  Also, the increased error that 

is present in the sequential Lagrangian tracking when increasing the seeding density from 10000 to 

20000, leads to decreased overlap for the highest seeding density case. 

 

Figure 3.11.  Percent overlap between the measure and true separatrix for the different methods. 

Another method for measuring the performance of these methods is to use the Hausdorff distance 

(Dubuisson and Jain 1994).  Hausdorff distances have been used in the imaging community for pattern 

recognition (Zhao, Shi et al. 2005).  The Hausdorff distance computes the minimum distance between all 

of the points in two different sets and then returns the largest of these minimum distances as given by 

  (3.12) 
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where sup is the supremum and inf is the infimum.  This metric helps to describe quality of a match 

between the two sets; the closer to zero, the better.  For the purpose of this study each set will be 

composed of the largest continuous section of the FTLE above the threshold used in the previous overlap 

analysis and will be compared to the benchmark solution location above the same threshold.  The use of 

only the largest continuous section is appropriate since, without a priori knowledge, this would be chosen 

as the dominant feature of the field.  The results are normalized using the characteristic length, L.  The 

result of this comparison is shown in Figure 3.12.  It can be seen from this figure that the PTV flow map 

interpolation significantly outperforms the other two methods.  While qualitatively it could be seen that 

the PTV flow map interpolation was producing a strong match with the solution, the Hausdorff distance 

allows for a more quantitative comparison.  Again it can be seen from this figure that the sequential 

Lagrangian tracking improves as the seeding density is increased but then digresses as the seeding density 

is increased to 20,000.  The PTV flow map interpolation shows continuous improvement as the seeding 

density increases, reaching its smallest value of 0.0082 at a seeding density of 20,000.  

 

Figure 3.12.  Hausdorff distance for all three methods compared with the solution. 
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3.8.2. Experimental Data 
Figure 3.13 shows the velocity field along with the non-dimensional vorticity for the laminar vortex 

ring experimental case.  As typically seen with a vortex ring, the field has maximum vorticity in the two 

counter rotating cores of the vortex ring cross-section.  The seeding density was measured from the 

particles used during the matching of the particle tracking; it was 0.0172 particles per pixel, which is 

similar to the 0.0191 particles per pixels seen in the 10000 particles case for the synthetic data.  Some 

noise in the velocity field can be seen in the wavy pattern present in the vorticity magnitude inside the 

vortex ring.  Noise in the velocity field can become amplified when derivatives are calculated (Etebari 

and Vlachos 2005), thus the vorticity field may show noise that is not immediately apparent in the 

velocity field.   

 

Figure 3.13.   Velocity field with the corresponding vorticity field magnitude calculated from PIV data for the 

experimental laminar vortex ring. 

Calculating the forward time FTLE fields for all three methods yields the results shown in Figure 

3.14.  These results show the FTLE field calculated using 75 frames.  The numerical integration produces 

a strong separatrix around the vortex core along with smaller noisier features in the far field.  The shape 

of the separatrix is to be expected as it represents the boundary between fluid parcels that entrained into 
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the vortex and those that are simply swept around the vortex.   The sequential Lagrangian tracking, Figure 

3.14B, fails to capture the separatrix around the vortex ring.  In experimental data particles can be lost 

during the particle tracking process for a number of reasons, with the most notable being the out-of-plane 

motion.  This loss of particles reduces the number of sequential tracks that can be used to calculate the 

FTLE and therefore produces a field with poor resolution of the separatrix.  Figure 3.14C shows the 

results from the PTV flow map interpolation.  This field also shows a strong separatrix, similar to the 

numerical integration, but with a smoother shape and less noise in the far field.  In comparison, this 

method produces an FTLE field around the vortex ring that most strongly resembles the fields that are 

seen in the literature (Shadden, Dabiri et al. 2006; Olcay, Pottebaum et al. 2010).   

A)  

B)  
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C)  

Figure 3.14.  Results for the experimental data from a laminar vortex ring.  A), B), and C) show the FTLE 

results for the numerical integration, sequential Lagrangian tracking, and the PTV flow map interpolation 

respectively.   

To better illustrate the relationship between the separatrix and the vortex ring vorticity field, Figure 

3.15 shows the vorticity field overlaid with the separatrix from the numerical integration and PTV flow 

map interpolation.  Again it can be seen that the PTV flow map interpolation appears less susceptible to 

noise in the velocity field as it produces a smoother separatrix.  While the PTV method has less 

“structure” in the front (right side) of the vortex, this is attributed to noise and it is not actually present in 

the flow field. 

A)  
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B)  

Figure 3.15.  Separatrix overlaid with the non-dimensional vorticity field for the numerical integration (A) 

and the PTV flow map interpolation (B). 

3.9. Conclusions 
This work presents two new methods for computing FTLE fields based on sequential Lagrangian 

tracking and PTV flow map interpolation, and compares them against the traditional numerical integration 

of velocity field data.  The focus is on application to noisy fluid measurements using PIV or PTV 

generated data where we take advantage of the fact that the flow map information is inherently contained 

in the Lagrangian motion of the particle flow tracers.  Using this fundamental principle we show that the 

FTLE fields can be calculated with increased accuracy directly from the measured particle trajectories. 

We show that PTV flow map interpolation produces the most accurate estimates of the FTLE field for 

both synthetic data as well as experimental data.  For cases where particle loss between frames is 

minimal, the sequential Lagrangian tracking can produce reasonable results but can also be significantly 

affected by the unstructured nature of the data on which the flow maps are based upon.  As sequential 

Lagrangian tracking is following the complete particle path, and thus should provide the best estimate of 

the particle flow map, it is note worthy that it does not perform as PTV flow map interpolation.  When 

comparing the ability to resolve the true separatrix of a flow field, the PTV flow map interpolation was 



 

 68 

shown to be far superior with an average overlap percentage of 80% as compared to ~25% and ~1% for 

the sequential Lagrangian tracking and numerical integration respectively.   

The PTV flow map interpolation shows a significant advantage over the other methods when the 

particle seeding is low.  This can be particularly important for applications to environmental or biological 

flows where adding seed particles is not practical and investigation of Lagrangian flow structures must 

rely on naturally occurring flow tracers to produce the flow map.  These results also demonstrate that 

when analyzing experimental data it is advantageous to use the PTV flow map interpolation for the 

computation of FTLE/LCS over numerical particle integration.  The method not only produces strong 

measures of the FTLE field but also outperforms numerical integration of data with near-wall flow fields.  

PTV flow map interpolation is also more computationally cost effective as each snap-shot of the flow 

map only needs to be interpolated once whereas numerical integration can require multiple iterations.  

The PTV flow map interpolation also requires far fewer massless flow tracer (16 times less for the 

synthetic data) and thus few computations then the numerical integration procedure.   

Future work should investigate these methodologies on three-dimensional data sets.  While not shown 

here, the methods described are directly applicable to three-dimensional data.  This apporach should 

increase the efficiency of the tracking-based methods as extension to 3D will increase the number of 

possible matches in the tracking procedure while numerically integrating velocity fields in 3D will 

become significantly more computationally expensive.   
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4. Experimental Three Dimensional Lagrangian Coherent Structures 

of Inertial Particles in Flows 

4.1. Abstract 
This work provides an experimental method for simultaneously measuring finite time Lyapunov 

exponent fields for multiple particle groups, including non-flow tracers, in three-dimensional multiphase 

flows.  From sequences of particle images, e.g., from fluid experiment imaging techniques, we can 

directly compute the flow map and coherent structures, skipping the computationally costly numerical 

integration.  This is especially useful for finding three-dimensional Lagrangian coherent structures for 

inertial particles, which do not follow the bulk fluid velocity, as we demonstrate for a grid turbulence 

experiment.  The technique described may provide a new means for exploring the physics of experimental 

multi-phase flows. 

 

Finite Time Lyapunov Exponents (FTLE) are a powerful and increasingly popular tool for describing 

mixing and transport in both turbulent and laminar flow fields (Haller 2001; Brunton and Rowley 2010).  

FTLEs provide a measure of the exponential rate of divergence or convergence of Lagrangian particle 

trajectories and can be used both experimentally and numerically to describe a flow field, which may 

have a high degree of spatiotemporal complexity (Haller 2001; Shadden, Katija et al. 2007).  While 

primarily used to describe single-phase flow behavior (Haller 2001; Haller 2005; Shadden, Dabiri et al. 

2006) some works have attempted to account for inertial particles by modeling the particles’ motion 

through simulations (Haller and Sapsis 2008; Tallapragada and Ross 2008; Peng and Dabiri 2009).  This 

procedure can provide insight, but does not provide direct information about the true observable inertial 

particle trajectories.  Often, the inertial particle equations of motion make simplifying assumptions (e.g., 

the Maxey-Riley equations (Maxey and Riley 1983)) which lead to significant differences between the 
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modeled and true motion.  This brief communication reports a method to directly determine FTLEs from 

experimental data for inertial particles through the use of particle tracking velocimetry (PTV) without any 

a-priori assumptions about particle motion.   

FTLEs are computed via the Cauchy-Green deformation tensor Cjk, 

   (4.1) 

where * denotes transpose, and  is the flow map (diffeomorphism) of particle locations from time t0 

to t0+T.  From the maximum eigenvalue of C, the FTLE field defined in the measurement volume is, 

   (4.2) 

It is typical when computing FTLEs from experimental data to use a numerical integration routine to 

numerically advect artificial tracer particles to determine the flow map from the estimated velocity field 

(Shadden, Dabiri et al. 2006; Shadden, Katija et al. 2007; Lekien and Ross 2010).  While this can be 

effective for single-phase flow it neglects the fact that inertial particles, bubbles, or active particles may 

fail to follow the bulk fluid motion or the fact that tracking individual particles can provide a direct 

measure of a short duration flow map.  While numerical routines can be modified to estimate inertial 

particle behavior via modeling as mentioned above, this procedure does not directly measure inertial 

particle trajectories.  However, using time resolved PTV to obtain snap shots of the particle motion allows 

direct measurement of the particle flow map while also allowing for parameterization of the particle flow 

map based on unique identifying characteristics, such as size, shape or color, providing, e.g., a one-

parameter family of particle flow maps with particle size as the parameter.  The concept of merging small 

flow map snap shots to estimate a complete flow map was put forth by Brunton and Rowley (Brunton and 

Rowley 2010) for results of fluid computations and later adapted for experimental data as PTV 

interpolation by Raben et al. (Raben, Ross et al. 2013).  Through this method it is possible to 

C = ∇Φt0
t0+T( )* ⋅∇Φt0
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simultaneously determine FTLEs for multiple particle groups within the same measurement volume and 

compare them to the bulk flow field.  It has also been shown that this method can provide high accuracy 

flow map computation results even when the particle concentration drops below what is typically used for 

PIV/PTV (Raben, Ross et al. 2013).  This is an important aspect; when the particles are separated into 

groups, some groups will have smaller particle population densities requiring a method suitable to provide 

high resolution FTLE information with low resolution velocity information in order to properly 

determining the FTLE values. 

To study the motion of inertial particles in an experimental environment, data were collected in a 

vertical water tunnel that was designed to generate homogeneous isotropic grid turbulence, as described 

in (Raben, Charonko et al. 2012).  For this experiment a bar thickness of the grid, b, of 0.3175 cm was 

used with the gap between bars equal to the width of the bar.  Overlapping bars created a square lattice, 

which was located 8 cm upstream from the measurement location.  Two different types of particles where 

added to the flow: 85 + 20 μm diameter silver coated hollow glass spheres that were tuned to be neutrally 

buoyant and were used to act as flow tracers; and solid glass particles with diameters ranging from 

approximately 150 - 200 μm that were added downstream (top of the tunnel) and had an approximate 

mass density of 2600 kg/m3.  The vertical nature of the tunnel created opposing motion as gravity pulled 

the negatively buoyant particles down while the bulk flow was moving mostly upward. 

Time resolved imaging techniques such as particle image velocimetry (PIV) have made it possible to 

study the Lagrangian motion of a flow field experimentally (Mathur, Haller et al. 2007; Shadden, Katija 

et al. 2007).  With the recent development of volumetric image techniques (Elsinga, Scarano et al. 2006) 

it is now possible to investigate particle trajectories in a fully three-dimensional flow field.  Because these 

imaging techniques make no assumptions on particle motion (e.g., must be a tracer following the bulk 

flow) they can be effective in capturing non-flow tracer particle motion (e.g., inertial particles) as well as 

bulk flow motion. 
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Time resolved tomographic imaging was used to collect information on the complete particle field as 

well as fully resolve the three-dimensional fluid motion.  A New Wave Pegasus laser was used to 

illuminate all the particles in the measurement volume.  Three Photron FASTCAM APX-RS high-speed 

CMOS cameras were used to simultaneously image this light field, recording images at 250 Hz.  These 

images were reconstructed into a three-dimensional light intensity distribution using the Multiplicative 

Algebraic Reconstruction Technique employ in the DaVis 8.1 software (Herman and Lent 1976; Elsinga, 

Scarano et al. 2006). 

Once the images have been reconstructed, the particles’ size and motion are determined.  Particles 

were first located in the volume using a simple thresholding method and then sized using an intensity 

weighted pixel count.  In an effort to track the particles, a multi-component particle tracking algorithm 

developed for single and multiphase flows (Cardwell, Vlachos et al. 2010) was adapted to three-

dimensional data.  The method worked by comparing unique particle identifiers, such as size, peak 

intensity, and proximity, to match particles in consecutive images.  This method has been shown to work 

well in turbulent flows even with non-flow tracers (Cardwell, Vlachos et al. 2010).   

Figure 4.1 shows a histogram of the particle sizes present in the measurement volume.  Due to factors 

such as camera arrangement and the MART reconstruction algorithm (Herman and Lent 1976), the 

particle size may be over-estimated.  As these factors should affect all particles equally, and the concern 

here is not exact particle size but rather relative size, this should not affect the results.  For this study, the 

particle size distribution was divided into only three groups.  The first group was small particles, most 

likely including the tracer particles that should follow the bulk fluid motion.  The second group was 

medium particles, which contained a mixture of flow tracers and smaller silica particles.  The final group 

was the large particles, primarily the large glass particles that will tend not to follow the bulk fluid 

motion.  When computing the FTLE field, the complete particle distribution was used as a control, as this 

total group provides an estimate of the FTLE field that would be found if no particle sizing procedure had 

been applied to the data and all the particles were (erroneously) treated as flow tracers. 
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Figure 4.1.  Normalized particle diameter distribution within the measurement volume. 

For each particle group, the FTLE field can be calculated with an integration time of 1s which is 

equal to 250 frames.  For two-dimensional flows, FTLE fields are often characterized by the elevated 

ridges, or connected lines with high FTLE values, which are referred to as Lagrangian coherent structures 

(LCS) and reveal hyperbolic or shear-dominated structures.  In three-dimensional fields, the locus of 

elevated values are two-dimensional surfaces.  Figure 4.2 shows iso-surfaces of high FTLE values as 

proxies for true ridges for both the forward and backward FTLE fields.  Ridges in the forward FTLE field 

reveal repelling surfaces where particles are exponentially diverging away from one another while the 

backward FTLE shows attracting surfaces which may be related to clustering cores for inertial particles.  

From Figure 4.2A it can be seen that there is a significant difference in the FTLE fields based on the 

particle size.  The iso-surface for the large particle group is dominated by a large structure in the upper 

left of the domain.  It could be seen from the raw data that during this time that there was an influx of 

larger particles that begin to spread throughout the volume, which would explain the elevated FTLE 

values in this region.  For the small particle group the iso-surface shows a structure that extends from the 

lower right of the domain up to the top.  This structure could indicate that the influx of large particles 
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forced the flow tracers to be redirected around the large particle cluster causing a divergence in the small 

particle trajectories. 

Figure 4.2B shows the backward FTLE, which will indicate locations of particle clustering.  Previous 

works that have investigated particle clustering have used the second invariant of the velocity gradient 

tensor, Q, sometimes referred to as the Okubo-Weiss parameter, as an indicator for where particles are 

likely to found, (Squires and Eaton 1991; Eaton and Fessler 1994; Guala, Liberzon et al. 2008; Haller and 

Sapsis 2008) where Q is defined as: 

   (4.3) 

with  and  representing vorticity and strain rate, respectively.  For scaling purposes Q is often 

normalized by the ensemble average of vorticity squared, Q*= Q/< >, as was done here and produced 

normalized values between -1.5 and 0.5 which is in agreement with the literature for turbulent flow 

(Guala, Liberzon et al. 2008).  When Q* is negative this indicates a region of high strain and low vorticity, 

which, when particles are added to the flow, has been shown to correlate with preferential particle 

concentration (Squires and Eaton 1991; Eaton and Fessler 1994; Guala, Liberzon et al. 2008; Haller and 

Sapsis 2008).  To illustrate regions where particles should cluster a Q* iso-surface showing the location of 

three standard deviation away from the zero in the negative direction based on the mean field, is also 

shown in Figure 4.2.  It can be seen from Figure 4.2B that while there exist some smaller regions of high 

backward FTLE throughout the domain, the attracting LCS locations are predominantly located near the 

location of higher negative Q*.  Since the flow is time-dependent, there is no reason to expect perfect 

agreement between the Eulerian Q* field and attracting LCSs. 

Q = 1
2
ω 2 − s2( )

ω s

ω 2
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A)   B)  

Figure 4.2.  Iso-surfaces of the forward (A) and backward (B) FTLE fields based on the different components in the flow. 

To further investigate the locations of particle clustering, Figure 4.3 shows backward FTLE values on 

the center Z plane for each of the 4 different particle groupings, where a thick black line representing the 

same iso-contour of Q* is included.  In addition an iso-contour for -3.0 and -1.5 times the standard 

deviation and a zero contour are also included.  It can be seen from this figure that while there are some 

similarities in the locations of the elevated backward FTLE values between the different groups, there are 

also some important differences.  Figure 4.3A shows the FTLE field for the total particle group, which we 

note is not a superposition of the FTLE field for the size-based groups.  Elevated FTLE values are seen in 

close proximity to the highly negative Q* values as this will be a location where particles will cluster 

(Guala, Liberzon et al. 2008).  For the large particles, Figure 4.3D, elevated values are again seen near 

highly negative Q* but in a different location from that seen with the total particle group.  In this case the 

large particles appear attracted to a region just above the Q* iso-contour, on the opposite side from zero 

Q* iso-contour (the zero iso-contour would suggest particle repulsion).  The large particles also have a 
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lower maximum FTLE value, which may indicate that their attraction to this region is not as strong as 

some of the other particles groups. 

A)  B)  

C)  D)  

Figure 4.3.  Contours of Backward time FTLE values for the total location of particles A), the small particle sizes B) 

the medium particles sizes C) and finally the large particle sizes, D).  The thick line shows iso-contour for -3 std (surface 

shown in Figure 4.2), while the thick line shows an iso-contour for -1.5 std and the dashed line is the zero iso-contour. 

The medium particle group also has elevated FTLE values in close proximity to the Q*
 strongly 

negative iso-contour, as seen in Figure 4.3C.  As this group is most likely a collection of flow tracers and 
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smaller inertial particles it is interesting to see that very high FTLE values appear to be located inside the 

Q* iso-contour mean that particle clustering associated with this group most closely coincides with the Q* 

grouping.  For the smallest particles, Figure 4.3B, it can again be seen that the elevated FTLE values are 

located near the Q* iso-contour.  This particle group appears to have more scatter than the other groups 

which is mostly due to the fact that as flow tracers these particles are more susceptible to the turbulent 

fluctuations in the volume and thus will have a more spatially distributed structure.  Again, because Q* is 

an Eulerian field and ours is a temporally varying flow there is no expectation of perfect agreement with 

the LCS but it does help to illustrate the behavior. 

To summarize, this work has shown that three-dimensional FTLE fields can be calculated for inertial 

particles in experiments through the use a non-flow tracer flow map determination technique that uses 

particle tracking and sizing information to directly measure the size-parameterized families of flow maps.  

The use of particle tracking for the direct calculation of the FTLEs is an important advancement as it is 

capable of uniquely determining the flow maps for different groups of particles, e.g., grouped by size in 

our experiment, but other parameterizations are possible.  Using this method it is possible to directly 

measure inertial particle FTLE fields and Lagrangian coherent structures without making assumptions 

about the underlying particle equations of motion.  This may have relevance for the experimental study of 

inertial particle motion in fluids and multi-phase flows. 
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5. The Developing Region of Wall-Jets 

5.1. Abstract 
Wall jets have many applications in engineering ranging from active flow control to film cooling.  

While a large number of studies have focused on the fully developed flow regime where wall-jets exhibit 

self-similar velocity profiles, this study investigates the developing flow region and provides scaling 

arguments for their growth and behavior.  Firstly, this work provides a relationship for development 

length, which describes the length of the inviscid core of the jets downstream of the exit, as a function of 

Reynolds number which has yet to be applied to wall-jets.  The development length illustrates the 

diffusion of momentum from the core and the behavior of the jet.  During this diffusion of momentum the 

velocity profiles evolve in the streamwise and vertical directions creating a highly anisotropic flow 

governed by an inner wall-bounded shear-layer and an outer free shear-layer.  This work provides scaling 

relationships for the growth of these layers, which are denoted by the location where the velocity profile 

is one half of its maximum (referred as  and  respectively).  It is shown that these layers grow 

linearly as a function of streamwise location.  A Reynolds number independent scaling is also provided 

for the Y1/2
B  with respect to the boundary layer momentum thickness.  We also find that the locations of 

 and  coincide with the locations of peak Reynolds stress.  This colocation asserts that these 

locations not only scale the profile but also identify the shear layer locations.  Vortex formation is another 

mechanism that is used to diffuse momentum and aids in the development of these jets.  This work uses 

vortex identification to show the location of vortex formation as a function of Reynolds numbers as well 

as shows a clear agreement between vortex location and the  and  locations. 

5.2. Introduction  
Wall-jets are formed by injecting high-speed momentum driven fluid along the surface of a wall.  As 

such, these flows are characterized by strong anisotropy especially along the wall-normal direction 
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because the inner (near–wall) flow resembles a boundary layer while the outer region corresponds to a 

free shear layer.  Since the early work by Glauert (1956), wall-jets have received attention primarily due 

to their importance to many engineering applications including heating and cooling, film cooling in gas-

turbines, and aerodynamic flow control.  The review by Launder and Rodi extensively discusses the 

physics and state-of-the-art up until 1983 (Launder and Rodi 1983).  This work, like the many that 

followed, focused on the fully developed downstream region of the jet leaving the development region 

largely unstudied.  Because many engineering applications employ wall jets inside the development 

region, a full understanding of the development region flow is important for proper utilization. 

Chun and Schwarz (1967) showed that for wall jets, the critical Reynolds number for transition to 

turbulence is on the order of 57.  Based on this knowledge, we can assume that for most engineering 

applications wall jets will either be transitional or fully turbulent.  The transfer of momentum from the 

core of the jet to the outer flow dominates the development process for these jets.  One important 

parameter that has yet to be investigated for wall jets is the development length (Wang and Law 2002; 

Lee and Chu 2003), which is the streamwise location at which the centerline velocity begins to decay as 

the profile transitions, for example from a top-hat exit profile to a more self-similar Gaussian shape.  

Understanding the importance of this length scale, as well as the transfer of momentum will help to 

provide a better understanding of the profile development. 

Fully developed turbulent wall jets have been shown to possess a self-similar profile, allowing for 

scaling parameters to be applied across a large range of Reynolds numbers (Schneider and Goldstein 

1994; Amitay and Cohen 1997).  The anisotropic characteristics of this turbulent flow, large velocity 

dynamic range, regions of high shear, and the variation in length scales combine to generate a formidable 

flow field that challenges conventional experimental methods.  Previous studies typically used point 

measurement methods such as hot wire, Pitot probe, and Laser Doppler Anemometry (LDA) to deliver 

either high spatial resolution (Karlsson, Eriksson et al. 1992; Grissom, Smith et al. 2007) or temporal 

resolution (Bajura and Szewczyk 1975) and primarily focused on the fully developed regime of the flow.  
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Scaling of wall-jet growth has received significant attention (Launder and Rodi 1981; Wygnanski, 

Katz et al. 1992; Eriksson, Karlsson et al. 1998; George, Abrahamsson et al. 2000; Afzal 2005; 

Barenblatt, Chorin et al. 2005).  However, because of the differences in length scales governing the inner 

and outer flow regions, complete scaling is difficult.  This challenge is more pronounced in the 

developing flow regime where the flow is not yet self similar.  Often the scaling is based on the vertical 

distance from the wall at which the velocity is equal to one-half of the maximum streamwise velocity as 

illustrated by Figure 5.1.  Given the asymmetry of the flow, this yields two characteristic heights of  

and  for the outer and inner region respectively.  This approach has been proven effective for scaling 

the velocity profiles across Reynolds numbers and streamwise locations (Launder and Rodi 1981; 

Launder and Rodi 1983; Karlsson, Eriksson et al. 1992; Schneider and Goldstein 1994; Eriksson, 

Karlsson et al. 1998) and Barenblatt, Chorin et al. (2005) showed that  and  can be used to 

formulate a model to account for the incomplete similarity of the jet.  

 

Figure 5.1.  Diagram showing the two vertical locations used for scaling.  The top and bottom regimes are the 

locations where the U velocity is one half the maximum. 

The scaling of these vertical locations (  and ) with respect to the streamwise location has also 

been the subject of several investigations.  The growth of  was first thought to be linear (Launder and 
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Rodi 1983; Karlsson, Eriksson et al. 1992; Eriksson, Karlsson et al. 1998).  Later it was postulated that 

with regards to downstream locations at X/H > 20, where X/H is the streamwise distance from the jet slot, 

the growth behaves more like a power law (George, Abrahamsson et al. 2000; Barenblatt, Chorin et al. 

2005).  This idea was improved upon by Barenblatt, Chorin et al. (2005) by looking at the scaling of the 

 as well as .  In their work, Barenblatt et al. showed these length scales are sufficient to 

completely scale these jets as well as provided growth rates for  and  at the downstream locations.  

Bajura and Szewczyk (1975) showed that the transition process for wall jets contains multiple stages 

which rely heavily on vortex formation and coalescences between the inner and outer regions of the jet.  

However, their work only had illustrative depictions of the process.  Gogineni and Shih (1997) and 

Gogineni, Visbal et al. (1999) investigated transitional wall jets both numerically as well as through the 

use of PIV.  These works showed the effect of vortex formation inside as well as outside of the outer 

shear layer.  Although their study was limited to Re=2150, results clearly showed vortex pairing across 

the shear layer which led to break up and turbulent transition of the jet (Gogineni, Visbal et al. 1999).  

The aim of this study is to resolve the flow characteristics of wall jets in the developing flow regime 

across a range of Reynolds numbers between Re ~ 150-10,000 (Re defined based on the jet slot height 

and exit velocity) and provide scaling arguments for the behavior and growth of these jets in this under-

studied region.  The relationship of the development length to Reynolds number is investigated.  Scaling 

relationships for the growth of  and  are also deduced as well as their relationship to the 

turbulence characteristics in this region.  Vortex identification was used to show the relationship to the 

 and  in this development region and the effects of vortex formation.   

5.3. Experimental Methods and Facilities 
This experiment was conducted using a jet with a slot height (H) of 2 mm and an aspect ratio of 

18.5:1 (jet width / height).  A total of nine different Reynolds numbers were tested ranging from 150 – 
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10,000.  The Reynolds numbers were based on the slot height and nozzle exit velocity.  Table 5.1 shows 

each Reynolds number and corresponding exit velocity.  The mid-spanwise plane of the jet was 

investigated, focusing on a 4 mm height by 22 mm width field of view (2H x 11H).  Room temperature 

high-pressure dry air was supplied through a plenum connected to the jet slot through a one-sided bell-

mouth contraption.  Table 5.1 provides a summary of the experimental conditions and Figure 5.2 shows a 

schematic of the test setup.  

Table 5.1.  Experimental Parameters. 

Reynolds	
  

Number	
  

Jet	
  Exit	
  

Velocity	
  

Sampling	
  

Rate	
  

Pulse	
  

Separation	
  

150	
   1.10 m/s 1000 Hz 65	
  µs 

200	
   1.49 m/s 1000 Hz 47	
  µs 

750	
   5.63 m/s 1000 Hz 12	
  µs 

1,000	
   7.51 m/s 1000 Hz 9	
  µs 

1,500	
   11.25 m/s 1000 Hz 6	
  µs 

2,000	
   14.95 m/s 2000 Hz 5	
  µs 

5,000	
   37.47 m/s 2000 Hz 2	
  µs 

7,500	
   56.20 m/s 2000 Hz 1	
  µs 

10,000	
   75.44 m/s 2000 Hz 0.92	
  µs 
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Figure 5.2.  Experimental Setup. The red box represents the field of view of the camera while the green line is the 

laser plane entering from the right.    

All measurements in this study were performed with Digital Particle Image Velocimetry (DPIV) 

using a Pegasus Nd:YAG dual head laser from New Wave.  An IDT XS-5 CMOS digital camera with 

kHz sampling was utilized for data collection.  To achieve the required sampling rate, the resolution was 

set to 256x1280 for all cases.  The flow fields for the lower Reynolds numbers (Re=150 – 1500) were 

sampled at 1 kHz while cases for higher Reynolds numbers (Re=2000 - 10000) were sampled at 2 kHz.  

Pulse separations were optimized based on the flow speed and the desired DPIV resolution, ensuring that 

the recorded displacements did not exceed ¼ of the interrogation window size.  Seeding was generated 

using a Laskin nozzle with Diethylhexel Sebacate (DHS).  The estimated seeding density was 20 particles 

per 32 x 32 pixel window with an approximate droplet size of 1.0 µm.  Based on the fluid properties, the 

flow tracer Stokes number was on the order of 1x10-5 to 1x10-3 for velocity ranges of 1 – 75 m/s, 

respectively.  Direct seeding of the outer flow was not performed in order to avoid any interaction 

(injection of momentum) of the seeding jet with the wall jet flow, which would inadvertently change the 

flow characteristics.  Thus, only preexisting and residual flow tracers were present in the surrounding air 

above the shear layer, which resulted in fewer particles per interrogation window in the outer flow region.  

All DPIV images were processed using an in-house developed open-source PIV software package 

PRANA2, that utilizes the Robust Phase Correlation (RPC) technique (Eckstein, Charonko et al. 2008; 

Eckstein and Vlachos 2009; Eckstein and Vlachos 2009) coupled with a second-order discrete window 

offset technique (Scarano and Riethmuller 1999) and window deformation (Scarano 2002).  The RPC 

method provides higher accuracy and reduces peak-locking effects versus standard cross-correlation 

techniques.  Each Reynolds number was processed using a 64 x 32 pixel window for the first pass that 

used a Gaussian spatial filter reducing the effective window resolution down to 32 x 16 pixels.  This first 

                                                        
2  PRANA software is freely distributed as open source http://sourceforge.net/projects/qi--‐tools/ 
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pass was iterated twice in order to refine the deformation (Scarano 2002).  The second pass used uneven 

windows where a 16 x 8 pixel window was used to search a 32 x 16 pixel window in the second image.  

Uneven windows allow for a reduction in window size, which can yield an increase in resolution while 

still allowing for optimum particle displacement matching.  Again, deformation iterations were performed 

to improve the accuracy.  The final grid resolution produced a vector every 3 pixels or 422 x 81 (34182) 

vectors over the entire domain. 

Due to the sensitivity of window deformation to erroneous measurements, the fields were validated 

and smoothed between each pass to prevent “tearing” in the images.  The universal outlier detection 

(UOD) method was used to remove bad vectors (Westerweel and Scarano 2005).  During the first PIV 

pass, two UOD passes were used between each iteration using a window size of 7 x 7 vectors and 

decreasing thresholds of 3 and 2 standard deviations.  For the second PIV pass a UOD window size of 5 x 

5 vectors with thresholds of 4 and 2.5 were performed.  After validation, the fields were smoothed using a 

Gaussian smoothing function with the standard deviation set to 2 vectors.  While this was performed 

between each of the PIV passes, with the exception of the final fields.  A final pass of UOD was 

performed to catch any remaining vectors that may have presided.   

In an effort to remove any anomalies in the temporal information the data were filtered using proper 

orthogonal decomposition utilizing the method of snap shots (Sirovich 1989; Everson and Sirovich 1995).  

Here, the data was reconstructed such that 95% of the fluctuating energy was preserved which required 

between 1000 and 2300 modes depending on Reynolds number.  This number is far less than 5000 snap 

shots processed, which assures that low order fields will be properly reconstructed and still contain the 

underling physical information.  

5.4. Results and Discussion  
As mentioned in §1 wall jets can be divided into three different regimes: near-wall boundary layer, 

mixing layer, and outer shear layer.  These three regimes are identified by the location of steamwise 
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velocity equal to one-half of the maximum velocity.  This happens at two locations along the profile and 

is noted as  and  in Figure 5.1, for the top and bottom locations respectively.  Many previous 

works have shown that normalizing the vertical axis by the location of  produces a self-similar profile 

in fully developed jets (Karlsson, Eriksson et al. 1992; Schneider and Goldstein 1994; Barenblatt, Chorin 

et al. 2005).  Our investigation focused in the region of [X/H=0-11] where the flow is developing and the 

velocity profiles are not yet self-similar.   

In order to compare with previous works, the normalized streamwise velocity profiles were plotted 

with respect to their  location, shown in Figure 5.3.  The velocity profiles are normalized by the max 

velocity at each location, forcing all the profiles to have a maximum value of 1.  All the Reynolds 

numbers are shown in each plot using different symbols, while the four plots correspond to different 

streamwise positions X/H=1, X/H=4, X/H=8, X/H=11 respectively.  For the upstream locations the 

profiles resemble top-hat shapes while at the downstream locations, the profiles appear more Gaussian.  

This evolution and its dependence on Reynolds number will be discussed in the following section. 

It can be seen that for the majority of the cases and for most of the streamwise positions, the velocity 

profiles fall closely on top of each other, especially for the top layer; however, they do not entirely 

collapse.  Due to the extent of the range of Reynolds numbers considered in this study, it could be 

expected that different Reynolds number would develop at different rates which would explain the 

disagreement with the lower two Reynolds numbers.  As stated by Barenblatt, Chorin et al. (2005) the 

wall jet presents an incomplete similarity where the entire profile can not scale by one characteristic 

length, which is illustrated by the disagreement between the profiles in the inner layer region.  While 

scaling by the  would produce agreement in the lower region a similar disagreement would be seen in 

the top section of the profile.  While this incomplete scaling has been shown for fully developed profiles 

this work shows that this dissimilarity is also evident in the development region for these jets. 
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The downstream velocity profiles that approximate the fully developed region strongly resemble 

previous results for similar experiments (Chun and Schwarz 1967; Launder and Rodi 1983; Schneider and 

Goldstein 1994; Gogineni, Visbal et al. 1999; Hall and Ewing 2007).  In Figure 5.3D the empirical curve 

given by Schneider and Goldstein (1994), equation (5.1), is plotted along with the time averaged velocity 

profiles at steamwise location of X/H = 11.  Because Schneider’s work focused on the fully developed 

flow velocity profiles, good agreement was seen only for the farthest downstream locations of this study.  

The coefficients also needed to be modified in order to apply to this region.  Here the empirical 

coefficients where found to be 2.4, 0.42, and 0.91 for C1, C2, and C3 respectively which is different than 

those found by Schneider and Goldstein of 1.4 0.28 and 0.66.  The major reason for disagreement 

between these profiles, and thus a change in the coefficients, is the different growth rates for the  and 

 locations as well as the location of the maximum velocity, .  In the development region, where 

the jet is just beginning to spread and the momentum is primarily in the core, the Umax location is more 

centered between the  and  heights as opposed to the fully developed downstream profiles which 

has a Umax proportionally closer to  location.  The growth rate for  is sufficiently larger the  

and thus exhibits greater spread in the fully developed profile as will be discussed later. 
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C)  D)  

Figure 5.3.  Time average velocity profiles for different Reynolds numbers at different X/H locations: A) X/H=1, B) 

X/H = 4, C) X/H = 8, D) X/H = 11. 

   (5.1) 

5.4.1. Development Length and Scaling of Streamwise Velocity 
The transfer of momentum from the core of the wall jet to its surroundings plays a large role in the 

development and behavior of the wall jet.  One method that has been used for free round jets to describe 

the diffusion of momentum as the jet develops is to define a development length.  The development 

length is the distance at which the inviscid core extends past the orifice and for turbulent round jets this 

value is typically 6.4 diameters (Wang and Law 2002; Lee and Chu 2003).  While the development length 

has been studied for other types of jets, it has yet to be investigated with respect to wall jet data, partly 

due to the limited number of studies in the development region.   

Figure 5.4 shows the development length for the different Reynolds as calculated by the location at 

which the time-averaged velocity drops below 2.5% of the maximum value.  Noise in the images has 

effected the centerline for the Re = 2000 cases leading to a small inconsistency with the other cases.  In 

order to provide a fair comparison with round jets this figure also includes development length as a 
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function of hydraulic diameter (DH).  When comparing the development normalized by hydraulic 

diameter, the values are lower than what is expected from a free round jet, DH ~ 6.4.  This reduction is to 

be expected as viscous effects from the wall will cause the jet to break down more quickly than would be 

seen with a free jet.  This figure also shows that for lower Reynolds number the core of the jet begins to 

break down over a relatively short length (~1H) and starts diffusing momentum shortly after exiting the 

slot, while for larger Reynolds number the inviscid core is persistent for longer and requires more length 

to develop.  The effects of development length are also see in Figure 5.3 where the lower Reynolds 

number cases begin to show a fully developed Gaussian shape more quickly than their higher Reynolds 

number counter parts.  Good agreement is seen when fitting the development length using a logarithmic 

fit.  Figure 5.4 also provides a logarithmic fit to the data as a function of Reynolds number.  This fit 

shows that the development length grows as function of Reynolds number, almost tripling in length for 

every order of magnitude increase in Reynolds number.  With respect to the hydraulic diameter the 

development length triples with an increase in two orders of magnitude in Reynolds number.  This 

relationship means that in order to increase the development length a significant increase in Reynolds 

number is required, which could impact implementation in engineering applications where increased 

develop length is advantageous.   

 

Figure 5.4.  Development length as a function of Reynolds number. 
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The effect of the development length is also seen in the decay of streamwise velocity, Figure 5.5A.  

For each case no change in velocity is seen before the development length while a clear decay appears 

thereafter.  Most previous studies that have investigated velocity decay rate have done so at downstream 

locations X/H > 20, and thus have not noticed this effect (Wygnanski, Katz et al. 1992; Eriksson, 

Karlsson et al. 1998; George, Abrahamsson et al. 2000).  Figure 5.5A shows that following the 

development length, a linear decay for each Reynolds numbers can be seen.  Performing a linear fit to the 

velocity decay after the development length produces an average decay rate of -0.0245 + 0.00457 (one 

standard deviation).  Previous work has shown a Reynolds number dependence for the fully developed 

profiles (Wygnanski, Katz et al. 1992) but in the development region this decay is constant.  

A)  B)  

Figure 5.5.  Decay of streamwise velocity as a function of distance (A), and decay of maximum velocity scaled by the 

growth of the  (B).  In (A) and (B) markers are shown at only every 10th measurement location for clarity.  The 

development length for each case is noted in (A) with a vertical line using the same line markers at either end. 

Previous studies have also shown that in the far downstream region, X/H > 20, a logarithmic decay to 

velocity can be seen when scaled against the location of  as shown in equation (5.2), 
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where Umax is the local maximum value and U0 is the exit velocity.  Figure 5.5B shows the decay rate of 

velocity scaled using this equation, which better illustrates that a consistent slope can be seen for all of the 

Reynolds numbers.  In this form, the decay rate is -0.61 + 0.077 which is in good agreement with 

previous works that focused on the downstream section where the slopes were found to be on the order of 

~0.575 (Eriksson, Karlsson et al. 1998; George, Abrahamsson et al. 2000).  The agreement seen when 

scaling the velocity decay by the Y1/2
T  indicates that the velocity decay and thus momentum transfer to the 

outflow is the dominate factor in causing these jets to spread.  An equally important note is that while this 

process starts at different locations in the development regions the decay is Reynolds number independent 

and can be seen in both the fully developed and development region of the jet. 

5.4.2. Scaling of  and  Locations 

The transfer of momentum from the core velocity decay causes the wall jet to spread, which in turn 

raises the location of  away from the wall as the flow moves downstream. Figure 5.6A shows the 

location of the  and Y1/2
B  for the different Reynolds numbers as a function of streamwise location.  For 

the Y1/2
T  locations it is seen that in the development region the growth is linear and constant between 

Reynolds numbers.  Averaging across the different Reynolds numbers produces a growth rate of 0.0595 + 

0.00168, which is similar to previous studies for the fully developed regions, 0.073 + 0.004.  As well as 

focusing on the fully developed region these studies also tended towards higher Reynolds numbers, Re = 

7,000 – 53,000 (Launder and Rodi 1983; Karlsson, Eriksson et al. 1992; Eriksson, Karlsson et al. 1998).  

The reason for a slow growth rate in the development regions is due in part to the development length.  

As the diffusion of momentum from the core will provide the primary mechanism for the jet to spread, 

until the development length is reached and inviscid core is fully broken down, the jet growth rate will be 

diminished. 
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Figure 5.6B shows the behavior of Y1/2
B  as a function of streamwise location.  Due to the viscous 

effects near the wall the  does not naturally collapse as well as .  Reynolds numbers 150 and 200 

have clearly linear treads, with growth rates of 0.016.  For the Reynolds numbers 750 and greater the 

average growth rates of 4.38 x 10-3 + 1.49 x 10-3 which is much lower than the growth rate seen for the 

.  Previous work has shown the viscous effects from the wall are only seen over a short section of the 

velocity profile, much shorter than what is seen for typical boundary layer flows (Wygnanski, Katz et al. 

1992).  This means that while viscous effects will influence the growth of Y1/2
B  location the Y1/2

T  location 

will have a resemblance much closer to a free jet.  These different growth rates of the inner and outer 

region reemphasize the complex nature of these wall jets that are governed by multiple length scales.  

A)  B)  

Figure 5.6.  Growth the  height as a function of streamwise distance, (A), as well Growth of the  height as a 

function of streamwise distance.  For each Reynolds number only every 10th marker is shown for clarity.  

As Reynolds number increases the inner wall layer thickness will decrease moving the location of 

 closer to the wall.  Because this region of the wall jet should have a behavior that resembles a classic 

boundary layer, we propose to use some of the same arguments to help with the scaling.  Momentum 

thickness is commonly used for scaling boundary layers, but because this is not a true boundary layer 

with a bulk flow velocity, Launder and Rodi (1981) proposed a modified version of the equation where 
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the velocity profile would be integrated from the wall to the location where U reaches its maximum value, 

as shown in equation (5.3):   

    (5.3) 

where u is the profile velocity, U0 is maximum velocity at the current location, and is the vertical 

location of the maximum streamwise velocity.  Computing the momentum thickness for all of the 

Reynolds numbers as a function of length produces results seen in Figure 5.7.  As expected, the 

momentum thickness decreases with increasing Reynolds number and converges to a near zero growth 

rate at a Reynolds number of 5000.  This decreasing momentum thickness means that the viscous effects 

are seen over a smaller percentage of profile as Reynolds number is increased.   

 

Figure 5.7.  Growth of the momentum thickness of the wall jet, where markers are shown at only every 10th 

measurement location for clarity 

Scaling the location of Y1/2
B  by the momentum thickness as a function of streamwise location 

produces the results seen in Figure 5.8.  For this plot we have normalized the streamwise distance by the 

respective development length, (Ld).  Figure 5.8A shows the complete plot while Figure 5.8B shows a 

zoomed in portion near the development length.  Figure 5.8B indicates that after the development 
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equilibrium is reached and the ratio between Y1/2
B  and θ  reaches a constant value.  For a better 

quantification of this result, Figure 5.8C provides the average Y1/2
B /θ  before and after the development 

length.  The average value from all of the Reynolds numbers after the development length is 3.52 + 0.37, 

which means that on average the Y1/2
B  location is at least three times larger then the momentum thickness.  

This constant relationship signifies that after the development length the growth of these two heights are 

constant with respect to one another.  This constant relationship supports the argument that Y1/2
B  can be 

universally scaled in the development region by the momentum thickness of the near wall boundary layer. 

A)  B)   

C)  
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Figure 5.8.  Growth of  normalized by the momentum thickness as a function of streamwise location normalized 

by the development length (A).  (B) provides a zoomed in look at the early lengths. 

The equilibrium after the development length is also seen in the profile velocity at the momentum 

thickness scaled by the local maximum.  Using a spline interpolation we can determine the velocity that 

corresponds to the momentum thickness as a function of streamwise distance.  Figure 5.9 depicts this 

relationship and shows that after the development length is reached this velocity ratio becomes constant.  

While the Reynolds numbers do not collapse, the equilibrium with respect to development length is still 

important as it reinforces the transition that occurs as the development length is reached. 

A)  B)  

Figure 5.9.  Ratio of profile velocity at the momentum thickness to the maximum U velocity.  (B) provides a zoomed 

in view of (A). 

In addition to scaling the  and  locations, Figure 5.10 shows the trend for the location of 

maximum streamwise velocity, Umax.  For the lowest two Reynolds numbers it is seen that the location 

grows linearly over the developing region, meaning that as the jet develops it moves away from the wall 

in a linear fashion.  For the other Reynolds numbers a parabolic shape is seen.  It should be noted that 

near the exit of the jet it is difficult to experimentally determine the location of Umax as the profile is a top-

hat shape and many locations have the same value.  The parabolic shape is due to the fact that as the jet 
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first exits the slot, momentum is transferred more quickly to the outer flow than what is lost due to 

viscous effects.  The asymmetry in the momentum diffusion leads to asymmetry in the velocity core as a 

function of streamwise location.  By the time the peak velocity begins to decay the profile has taken a 

more fully developed form and begins a more self-similar growth with streamwise distance.  

 

Figure 5.10.  Location of Umax as a function of streamwise location.   

5.4.3. Turbulent Statistics and Scaling 
Figure 5.11 and Figure 5.12 show the Reynolds stress profiles for increasing downstream distances 

normalized by the jet exit velocity.  While previous works did not report results for this development 

region, the downstream locations have values that are in agreement with previously published works 

(Launder and Rodi 1983; George, Abrahamsson et al. 2000).  Near the exit, Figure 5.11A shows the 

existence of two dominant peaks in the streamwise Reynolds stress values which occur at the near wall 

location and in conjunction with the location of  which is to be expected, as this position should be 

the location of the upper shear layer of the jet.  As the jet progresses downstream, Figure 5.11B-D, a 

spread is seen in the Reynolds stress profile near the  location which correlations with the growth of 

the shear layer.  Momentum is transferred from the jet core by way of turbulent fluctuations in the upper 

shear layer.  As the jet develops, more momentum is transferred and thus the width of the shear layer 
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grows.  Because of the lack of particles in the external flow, some false peaks in Figure 5.11A were the 

result of erroneous correlations. 

The second peak in Reynolds stresses, seen near the wall, is lower in magnitude in comparison to the 

upper peak for the low Reynolds number cases (150 and 200), while becoming more dominant for the 

higher Reynolds numbers.  The width of the lower peak is much tighter in comparison to the upper peak 

as the length scale for the near wall layer is much smaller than that seen with the free shear layer.  As will 

be shown in the following section, these near wall fluctuations contribute the vortex formation occurring 

in the near wall boundary layer. 

A)  B)   

C)  D)  
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Figure 5.11.  Profiles of streamwise velocity fluctuation, u’, normalized by the exit velocity, U0, for down stream 

distances of X/H = 1 (A), X/H = 4 (B), X/H = 8 (C), and X/H 10 (D).   

For the wall normal Reynolds stresses, Figure 5.12, the profiles are characterized primarily by a peak 

located at the upper shear layer without additional peaks near the wall.  This profile shape has been 

reported in previous studies (Eriksson, Karlsson et al. 1998).  Again there is a spread in the wall normal 

fluctuation at the upper shear layer similar to that seen with the streamwise Reynolds stresses.  As a large 

amount of diffusion and mixing will take place in this shear layer it is to be expected that this will 

coincide with high streamwise and wall normal fluctuations. 

A)  B)  

C)  D)  
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Figure 5.12.  Profiles of wall normal velocity fluctuation, v’, normalized by the exit velocity, U0, for down stream 

distances of X/H = 1 (A), X/H = 4 (B), X/H = 8 (C), and X/H 10 (D).   

Figure 5.11 and Figure 5.12 indicate that the vertical locations of peak Reynolds stress appears to be 

correlated the  and  locations.  Figure 5.13 quantifies this observations by plotting the location of 

maximum u’ and v’ as a function of  and .  In an effort to reduce the effect of noise and erroneous 

peaks from the outer flow, the first maximum location above the Umax location was used to correlate with 

, while the first maximum beneath Umax was chosen for scaling against .  The locations of the 

peak streamwise Reynolds stress, Figure 5.13A, shows clear agreement with  location.  As we expect 

the shear layer to by identified by a location of maximum Reynolds stress this figure shows a strong 

connection between the location of the shear layer the .  For the lowest two Reynolds numbers (150 

and 200) some disagreement is seen, which is most likely the result of insufficiently resolving the outer 

flow.  Poor image quality at the downstream location for Re 2000 resulted in some disagreement with the 

other cases.  The location of the near wall peak in the u’ profiles shows a strong agreement with the  

location, Figure 5.13B.   

Figure 5.13C shows that the maximum location in wall normal Reynolds stress again shows a strong 

agreement with the locations of .  This continues to support the notion that  is coincident with the 

shear layer location in the development region.  Due to the fact that no peak near the wall was seen for the 

v’ data, scaling with respect to  was not included.  While the  and  locations have been 

primarily used to scale velocity profiles, this work shows that these parameters also aid in scaling the 

Reynolds stress in the development regions, which has previously not been shown. 
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A)  B)  

C)  

Figure 5.13.  Locations of maximum streamwise, u’, and wall normal, v’, Reynolds stress normalized by the  and 

 locations.  A) and B) show maximum u’ locations normalized by the  and  hiehgts respectively while C) 

show locations for v’ normalized by .   

5.4.4. Vortex Identification 
As vortex formation and interaction will be a factor in the development process for these jets, this 

work looks to quantify the role of vortices in development region.  In order to identify and determine the 

location of vortices the  vortex identification scheme ( -VIS) was applied on the instantaneous data 

after filtering with proper orthogonal decomposition (POD) (Chong, Perry et al. 1990; Zhou, Adrian et al. 

1999).  The -VIS states that a vortex can be identified by first finding the eigenvalues of the velocity 

gradient tenor, Equations (5.4) and (5.5). 
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   (5.5) 

where Im denotes the imaginary part of the complex term .  It has been shown that a vortex exists 

when a complex eigenvalue exists (Chong, Perry et al. 1990; Zhou, Adrian et al. 1999; Christensen and 

Adrian 2001).  Experimental data inherently has a given amount of noise, which can produce a  

without the presence of a vortex.  For this reason a threshold for the  value was used in order to 

prevent false positives from corrupting the data.  The threshold was held constant for all cases by 

normalizing the velocity gradients by the inlet velocity and the physical vector spacing.  This process 

allowed for a global threshold with a value of 0.3 to be used for all Reynolds numbers.  Vortex circulation 

was also calculated by computing the line integral of the velocity along the  iso-contour of the 

identified vortex.  Circulation was normalized by slot height and free-stream velocity (Gogineni, Shih et 

al. 1993). 

From the instantaneous spatial data, it is possible to see the formation and ejection of near wall 

vortices in the flow.  Traditionally when studying vortex interaction in boundary layer flows cross power-

spectra is often used (Bajura and Szewczyk 1975; Durbin and Wu 2007).  Due to the high velocity and 

high image magnification a sampling rate of 2kHz was not sufficient to fully resolve the temporal 

behavior; however, information can still be gleaned from this data set.  Figure 5.14 show a series of non-

consecutive snap shots of the vorticity field for the Reynolds number 1000 case along with the location of 

vortices as well as an iso-contour of the Q2 burst events.  Q2 burst events, shown by quadrant analysis, 

have been used previously for describing vortex behavior in turbulent boundary layer flows (Robinson 

1991; Cantwell 1993).  Previous wall jet studies have qualitatively shown, for a limited number of 

Reynolds, that burst events will occur when vortices from the outer flow approach the wall (Bajura and 

Szewczyk 1975; Gogineni, Visbal et al. 1999).  

C = max Im λ( )( )
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A)  

B)  

C)  

Figure 5.14.  Snap shots of near wall vortex ejection for the Re 1000 case.  The color contour shows normalized 

vorticity while the white circles indicate vortices identified with the  method.  The iso-contour lines enclose Q2 events 

that are seen in the field. 

Figure 5.14A depicts this process.  At a streamwise location of X/H=7 two vortices can be seen with 

one vortex in the bulk of the flow while the other is near the wall with the burst event forming 

underneath.  At this location, elevated levels of vorticity have begun to detach from the wall with a vortex 

located at the head, suggesting the development of hair-pin vortex (Zhou, Adrian et al. 1999; Durbin and 

Wu 2007).  The Q2 event beneath the near wall vortex, supports that this event is an ejection away from 

the wall.  A similar event also exists at X/H = 10.  Figure 5.14B at X/H of 9 shows a more evolved 
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ejection where the near wall vortex has moved further away from the wall and a clear Q2 event is present 

underneath the near wall vortex.  A nearly completed ejection can be seen in Figure 5.14C at X/H of 10, 

where the near wall vortex has separated from the wall.  This behavior of near wall vortex ejection is seen 

in this development region for all of the Reynolds numbers except for Re 150 and 200.  Because these 

cases have a more laminar behavior in this development region there is less interaction between the upper 

and lower shear layers and their transition will take place further down stream, outside of the region 

measured in this study. 

Figure 5.15 more directly quantifies the location of burst events as a function of wall normal location.  

This figure shows a histogram of the burst events for the different Reynolds numbers as a function of 

vertical location.  For all the Reynolds numbers studied, the highest probability of a burst event is seen 

near the wall.  A rise in burst event frequency can be seen near the out shear layer but with reduced 

strength when compared to the near wall Figure 5.15A. Figure 5.15B shows the peak in burst events near 

Y1/2
B  location.  These near wall burst events eject near wall vortices away from the wall and into the bulk 

flow diffusing momentum as the jet develops.   

A)  B)  

Figure 5.15.  Histogram of burst versus their vertical location scale by Y1/2
T  (A) and Y1/2

B   (B). 
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To show the vertical location of vortex formation, Figure 5.16 displays normalized histograms for all 

of the vortices with respect to the  and .  This figure shows that as Reynolds number increases, 

vortex population moves from the near wall region to the inner layer.  Again for the higher Reynolds 

numbers, vortices occur most frequently at the  location.  For Reynolds numbers 150-200 a spike is 

seen in the histogram near the wall showing the high population of vortices near the wall.  For Reynolds 

numbers 750 - 1500 this spike has increased in percentage, which could indicate a transitional Reynolds 

number, where shear layer and near wall flow are becoming equally important to the formation of 

vortices.  The presence of elevated burst events near the wall, Figure 5.15, helps to support the notion that 

the outer vortices are contributing to the ejection near the wall.  For the highest Reynolds number (2,000-

10,000) the near wall spike is far less significant because of the prevalence of vortex formation at the  

location. 

A)  B)  

Figure 5.16.  Normalized histograms for the vortex locations in the vertical direction with the vertical axis 

normalized by the  and  respectively. 

Figure 5.17 shows the distribution of normalized circulation values for the different Reynolds 

numbers.  Once normalized, this wide range of Reynolds number produces circulation values that fall 

close together.  Figure 5.17 B and C shows the most probable clockwise and counter-clockwise (negative 
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and positive circulation respectively) circulation values as well as their normalized histogram values, 

which illustrates the difference between these Reynolds numbers.  From this figure, it is seen that vortices 

for Reynolds numbers 150-200 have a high concentration of vortices with a normalized strength of -0.07.  

The negative circulation indicates that these vortices are most likely near wall vortices due to the direction 

of rotation as well as the information learned from Figure 5.16.  As Reynolds number is increased the 

percentage of near wall vortices with negative circulation increases for the Re=750 - 1500 cases.  The 

influence of the large-scale shear layer structures, as seen from Figure 5.14, is the most pronounced in 

these cases.  As these structures in the shear layer approach the wall they will feed energy to the near wall 

structure, which leads to an increase in circulation in these vortices and promote an ejection away from 

the wall.  This increase in interaction between the layers for these Reynolds number suggests that this is a 

transitional range as the flow has evolved passed the laminar behavior and is moving towards a more 

turbulent regime.  As Reynolds number is increased further, the circulation near the wall decreases while 

the number of positive circulation remains relatively constant.  While some interaction between the top 

shear layer and the near wall boundary layer still exists, the presence of the high momentum core limits 

the interaction in the development region.  While these circulation strengths are different from the values 

first reported by (Gogineni, Shih et al. 1993) their analysis only used vorticty contours to determine 

vortex location and size instead of a vortex identification scheme such as the -VIS.  This work 

provides a more complete look at not only the vortex production in the development region but also the 

effect of Reynolds number on this vortex production.  As vortex production can play a large role in the 

transfer of momentum, it is important to understand its behavior to better understand the development of 

the wall jet. 
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A)  

B)  C)  

Figure 5.17.  Normalized histogram of normalized circulation strengths for the different Reynolds numbers(A) as 

well as peak circulation values from the histogram (B), and their relative contribution in the distribution (B).  The open 

symbols show negative circulation (clock wise rotation) while the closed symbols represent positive circulation (counter-

clock wise rotation) 

5.5. Conclusion 
This work has provided an in-depth look at the development region for wall jets across a wide range 

of Reynolds numbers.  The effect of momentum diffusion at the jet exit has an effect on many of the 

characteristics that make up the wall jet.  The diffusion of momentum is most clearly seen in the 

development length for these different Reynolds numbers, which has not been previous investigated for 

wall jets.  It was shown that as Reynolds number is increased, the development length increases.  Due to 
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the influence of the wall, the development lengths for wall jets are seen to be shorter than what is 

proposed for free round jets.  While the development lengths is a function of Reynolds number, this 

worked showed that the decay in maximum velocity is constant after the development length, with an 

average decay rate of -0.61 + 0.077, which is in good agreement with previous studies.  As Reynolds 

number is increased, the location of maximum streamwise velocity was seen to become parabolic as 

function of streamwise location.  This shape is the result of momentum diffusing faster to the outer shear 

layer than what is lost to the near wall effects. 

The diffusion of momentum also directly impacts the growth of the profile heights that are typically 

used to scale these jets.  It has been shown that the growth of the  height is constant respect to 

Reynolds number, producing an average growth rate of 0.0595 + 0.00168.  Up until now, previous studies 

focused on the fully developed self-similar region, a growth rate in the development region is missing 

from current literature and plays an important role in the development of these jets.  In an effort to scale 

the growth rate for the  location, this work has proposed to normalize the height by a modified 

boundary layer momentum thickness.  This procedure has shown to produce better agreement between the 

Reynolds numbers and suggests a more universal collapse of the height in the fully developed region.  

These heights are also useful when scaling the location of Reynolds stress, which has not been addressed 

in previous studies.  It was observed that the peak locations in the Reynolds stress coincide with the 

locations of  and , which places grater significance on these scaling terms in the development 

region.  Vortex identification was also applied to this data due to the direct impact of vortex production 

on momentum transfer and jet development.  The results showed that there is a correlation between the 

location of vortices and the  and  heights.  It was also seen that for lower Reynolds number cases 

there was a higher probability of near wall vortices, which transitioned to a higher probability in the shear 

location as the Reynolds number increased.  These findings help to provide a more complete 
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understanding of the wall jet in the development region and illustrate the dominant effect of momentum 

transfer on the behavior of the developing wall jet. 
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6. Conclusions 
This dissertation presents work for the direct determination of three-dimensional time varying flow 

structures.  There are a few important conclusions that should be reiterated.  In chapter 2 it was shown 

that the newly proposed adaptive “gappy” POD procedure produces reconstructed fields with higher 

accuracy in comparison to other currently available reconstruction methods.  This procedure has also been 

shown to be effective even when the amount of missing information reaches as high as 80%.  

Chapter 3 provided a novel methodology for directly determining FTLE fields from experimental 

particle image data.  This new procedure takes advantage of particle motion inherently captured in these 

images to reduce computational cost by removing the need for numerical integration. Additionally, the 

method produces superior results especially in low seeding density environments.  Experimental data 

from an unconfined vortex ring was used to demonstrate the applicability of this method for realistic 

conditions.  The resulting FTLE field was in good agreement with what has been shown in literature and 

out performed the other methods tested in this study. 

The demonstration of this new FTLE methodology on inertial particles in a three-dimensional flow 

field was executed in chapter 4.  Using tomographic imaging, it was possible to capture both neutrally 

buoyant and inertial particles simultaneously, which could then be separated numerically based on their 

apparent size.  This newly developed FTLE methodology was then applied to the different particle groups 

in an effort to demonstrate how this technique could be used to study inertial particle behavior.  A clear 

difference in the FTLE fields was seen between the inertial particles and the flow tracers indicating the 

method’s applicability to multiphase flows.  The resulting FTLE fields were also compared with currently 

published methods for demonstrating particle clustering, which showed some agreement.  

The final chapter of this worked discussed the behavior of wall jets in the development region for a 

wide range of Reynolds numbers.  While the vast majority of previous studies have investigated wall jets 
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in the downstream self-similar region, this work focuses on the development region.  It was shown that 

the transfer of momentum plays a large roll development of these jets.  A clear Reynolds number 

dependence on the development length was shown.  Higher Reynolds number jets exhibited a longer 

development length suggesting that less momentum was transferred to the surrounding flow over this 

region.  This result was confirmed when observing the growth of the Y1/2
T .  As momentum is transferred 

out of the core, the jet’s profile begins to expand.  Jets with larger Reynolds number and longer 

development lengths correspond to a slower growth of the Y1/2
T  locations in comparison to lower Reynolds 

number jets.  A connection was also shown between the locations of Y1/2
T  and Y1/2

B  and the locations of 

peak Reynolds stress.  As the jet develops and momentum is transferred out of the core, the Reynolds 

stresses showed increased fluctuations at the upper shear layer coinciding with the Y1/2
T  location.  This 

work also showed the roll of vortex formation in the development region.  Vortices are seen to interact 

between the near wall and free shear layer.  This interaction leads to an ejection from the wall where 

vortices are produces and enter the bulk flow. 


