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Abstract

In this paper, we show a low energy Earth–Moon transfer in the context of the Sun–Earth–Moon–spacecraft 4-body system. We con-
sider the 4-body system as the coupled system of the Sun–Earth–spacecraft 3-body system perturbed by the Moon (which we call the
Moon-perturbed system) and the Earth–Moon–spacecraft 3-body system perturbed by the Sun (which we call the Sun-perturbed system).
In both perturbed systems, analogs of the stable and unstable manifolds are computed numerically by using the notion of Lagrangian
coherent structures, wherein the stable and unstable manifolds play the role of separating orbits into transit and non-transit orbits. We
obtain a family of non-transit orbits departing from a low Earth orbit in the Moon-perturbed system, and a family of transit orbits arriv-
ing into a low lunar orbit in the Sun-perturbed system. Finally, we show that we can construct a low energy transfer from the Earth to the
Moon by choosing appropriate trajectories from both families and patching these trajectories with a maneuver.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In designing trajectories for space missions, reducing the
energy required, in other words, the fuel, is an important
issue. A long-standing focus of much attention is the prob-
lem of designing spacecraft trajectories from the Earth to
the Moon. Typically, the patched conic approximation
has been used to design such transfer trajectories, in which
the Earth–Moon–spacecraft(S/C) 3-body system is mod-
eled approximately as the Earth–S/C and Moon–S/C 2-
body systems. However, it is known that trajectories
designed with the patched conic approximation may
require excessive amounts of energy in transferring to the
Moon and also that the resulting trajectory may not be
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accurate enough for the transfer design (e.g., Bate et al.,
1971). Belbruno and Miller (1993) developed a low energy
spacecraft trajectory by considering the Sun’s gravitational
effect as a perturbation to the gravitational effects due to
the Earth and the Moon. The concept of a Weak Stability

Boundary (WSB), which is a transition region between
gravitational capture by and escape from a planet
(Belbruno, 1987), was used to construct the lower energy
transfer to the Moon. The transfer was implemented in
the Japanese Hiten Mission in 1991. Later, another
Hiten-like trajectory was developed by Koon et al. (2001)
in the context of the coupled planar circular restricted 3-

body system, in which the Sun–Earth–Moon–S/C 4-body
system can be modeled approximately by the coupled sys-
tem of the Sun–Earth–S/C and Earth–Moon–S/C 3-body
systems. In particular, they employed so-called tube dynam-

ics, in which stable and unstable manifolds of cylindrical
topology separate transit and non-transit orbits to
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construct arbitrary trajectories. Mingotti et al. (2009)
implemented low-thrust propulsion within the framework
of the coupled 3-body system to design a low energy
Earth–Moon transfer, and obtained an optimal transfer
in the 4-body system using the Earth–Moon transfer con-
structed in the coupled 3-body system as the first candidate.
A low-energy transfer in a system using body ephemerides
was constructed by Parker (2009), which used the stable
manifold and a similar procedure to the coupled 3-body
system proposed by Parker (2006). Subsequently,
Onozaki et al. (2016a) developed a systematic design
method for the 4-body system by extending the concept
of the coupled 3-body system: The Sun–Earth–Moon–S/
C system was regarded as the coupled system of the Sun–
Earth–S/C system with the Moon’s perturbation (here-
inafter referred to as the Moon-perturbed system) and the
Earth–Moon–S/C system with the Sun’s perturbation
(hereinafter referred to as the Sun-perturbed system), which
was referred to as the coupled 3-body system with

perturbations.
On the other hand, for various practical reasons related

to the design of low energy trajectories, we require bound-
ary conditions such that the spacecraft departs from a Low
Earth Orbit (LEO) and arrives into a Low Lunar Orbit
(LLO). In this situation, we seek an optimal trajectory
among the possible trajectories subject to these boundary
conditions. Topputo (2013) numerically obtained a global
set of optimal solutions for the boundary conditions in
the 4-body system by using direct transcription and multi-
ple shooting, and related the solutions with previously pro-
posed transfers. Onozaki et al. (2016b) showed that there
exists an optimal trajectory for the coupled 3-body system
in the sense that no DV is required to patch the trajectories
between the Sun–Earth–S/C and the Earth–Moon–S/C
systems.

Now, we also note recent developments in the theory of
(hyperbolic) Lagrangian Coherent Structures (LCS), which
were proposed by Haller (2001). The LCS indicate separa-
tion structures typified by stable and unstable manifolds, as
a computational tool for detection of the invariant mani-
folds (and their analogs) in non-autonomous systems such
as a 4-body system. Shadden et al. (2005) elaborated a the-
ory of LCS wherein they are defined as ridges of Finite
Time Lyapunov Exponent (FTLE) field and illustrated
the computation of LCS by some examples of two-
dimensional fluids. In contrast, Haller (2011) proposed a
variational theory of LCS in terms of the Cauchy–Green
strain tensor, since the ridges of FTLE fields may lead to
false positives and false negatives in the detection of
LCS. Farazmand and Haller (2012) showed the computa-
tion of LCS based on the variational theory. An extension
to elliptic LCS and 3-dimensional flows was made by
Blazevski and Haller (2014). For applications to astrody-
namics, it was shown by Gawlik et al. (2009) that LCS
from the ridges of FTLE fields can be computed in a
4-dimensional phase space for the non-autonomous planar
elliptic restricted 3-body system. Similar computations of
the LCS for the circular 3-body system were made by
Onozaki and Yoshimura (2014) and Short and Howell
(2014) and others. Short and Howell (2014) also demon-
strated the computation in the 4-body and ephemeris sys-
tems. Oshima and Yanao (2014) investigated the gravity
assists concerned with the LCS for 4-body systems. A false
positive for the ridges of the FTLE field due to a primary
mass was investigated by Pérez et al. (2012). Further devel-
opments relevant to the LCS were made; for instance,
Short et al. (2015) applied eigenvectors of the Cauchy–
Green tensor to flow control segments to effectively find a
connecting condition of trajectories. Pérez et al. (2015)
developed another detection tool of the separation struc-
tures by using the Jet Transport which indicates the image
after the advection of the neighbor set around an initial
point by a flow.

In this paper, we present the design of a low energy trans-
fer from the Earth to theMoon by using the coupled 3-body
system with perturbations for modeling the restricted 4-
body system under the planar assumption. In particular,
we consider a low energy trajectory subject to the boundary
conditions that the spacecraft departs from a LEO and
arrives into a LLO. In Section 2, we briefly review the Pla-
nar Circular Restricted 3-Body System (PCR3BS) in the
context of tube dynamics. In Section 3, we derive the equa-
tions of motion of the planar bicircular restricted 4-body
system with respect to two different rotating frames together
with a coordinate transformation. In Section 4, the tubes
(i.e., the stable and unstable manifolds of the perturbed sys-
tems) are obtained by numerically extracting the LCS from
the FTLE field. Then, we demonstrate how the obtained
LCS separates orbits. In Section 5, a trajectory design from
the LEO to the LLO is shown in the framework of the cou-
pled 3-body system with perturbations. Using the charac-
teristics of the tube structures, we obtain the family of
trajectories that depart from the LEO and the family of
those that arrive into the LLO. Finally we show how a
low energy Earth–Moon transfer can be constructed by
choosing an appropriate orbit from each family such that
the required DV is minimized under given conditions.

2. Planar circular restricted 3-body system

2.1. Mathematical model

We begin this section with a brief review of the dynamics
of the PCR3BS that is used to analyze the motion of a
spacecraft subject to the gravitational pull of two masses.
In this paper, we focus upon the planar case, in which we
assume that the two masses move at constant angular
velocity on the same plane in circles around their common
mass center, and also that the spacecraft of a negligible
mass moves in the same plane, as shown in Fig. 1. Let m1

and m2 ðm2 < m1Þ be the primary and secondary masses,
respectively. Choose the unit of mass as m1 þ m2 and the
unit of length as the distance between the primary and sec-
ondary masses. The unit of time is set so that the orbital



Fig. 1. PCR3BS.
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period of masses becomes 2p. Then, the system becomes
nondimensional with the gravitational constant G set to

unity. Let q ¼ ðx; yÞ> 2 Q ¼ R2 be the position of the
spacecraft in the frame that rotates with the masses, and

denote by _q ¼ dq=dt ¼ ðvx; vyÞ> 2 T qQ ffi R2 the velocity
with respect to the nondimensional time t. In the

above, Q ¼ R2 denotes the configuration space and TQ ¼
R2 � R2 the velocity phase space (the tangent bundle) of
Q. Introducing the mass parameter by l ¼ m2=ðm1 þ m2Þ,
as in Szebehely (1967) and Koon et al. (2011), the equation
of motion in the rotating frame is

€q� 2 ~X _q� q ¼ � ð1� lÞ
jq� q1j3

ðq� q1Þ �
l

jq� q2j3
ðq� q2Þ;

ð1Þ
where

~X ¼ 0 1

�1 0

� �
:

In the above, q1 ¼ ð�l; 0Þ> and q2 ¼ ð1� l; 0Þ> indicate
the positions of the primary and secondary masses, respec-
tively. The energy of the spacecraft is given by the sum of
the kinetic energy and the effective potential consisting of
the centrifugal and gravitational potentials as

Eðq; _qÞ ¼ 1

2
j _qj2 � 1

2
jqj2 � 1� l

jq� q1j
� l
jq� q2j

;

which is preserved along the solution curves of the
PCR3BS. For the Sun–Earth–S/C system, the mass param-

eter is l ¼ mE=ðmS þ mEÞ ffi 3:02319� 10�6, and for the
Earth–Moon–S/C system the mass parameter is

l ¼ mM=ðmE þ mMÞ ffi 1:21536� 10�2.
Fig. 2. Flow around the secondary mass.
2.2. Invariant manifolds and tubes

It follows from Eq. (1) that there exist the three
Lagrange points (L1; L2; L3) on the x axis together with
the equilateral triangle points (L4; L5). Setting the energy
E to some constant value E0, we can define an energy sur-
face E � TQ as

Eðl;E0Þ ¼ w ¼ ðx; y; vx; vyÞ 2 TQjEðx; y; vx; vyÞ ¼ E0

� �
:

Letting s : TQ ! Q; ðx; y; vx; vyÞ# ðx; yÞ be the tangent
bundle projection, one can define Hill’s region by project-
ing the energy surface Eðl;E0Þ onto Q such that
sðEðl;E0ÞÞ � Q. The forbidden region in which the space-
craft energy does not permit its motion is thus defined as
the region excluding Hill’s region from the configuration
space. In this paper, we choose an energy E0 slightly greater
than the energy at L2 so that the spacecraft passes near L1

and L2, as shown in Fig. 2.
The collinear Lagrange points (L1; L2; L3) are unstable

saddle � center equilibrium points. If the energy level is
fixed consistent with E0, then unstable periodic orbits,
called Lyapunov orbits, exist around both L1 and L2. One
can obtain the stable and unstable manifolds associated
with the Lyapunov orbits, which are homeomorphic to

S1 � R and hence are called tubes. Hill’s region can be
divided into five regions by vertical lines (parallel to the
y-axis). Sets of two lines are on the right- and left-hand
sides of each Lyapunov orbit, as depicted by the dashed
lines in Fig. 2. Then, two neck regions are defined as the
regions that are bounded by each set of vertical lines and
include L1 or L2. The other regions, excluding the neck
regions, are classified as the P1 region including the primary
mass, the P2 region including the secondary mass, and the
X region outside the P1 and P2 regions. Here we introduce
the notation W s

i;A for the stable manifolds that asymptoti-

cally approach the Lyapunov orbit around Li; ði ¼ 1; 2Þ
from the Að¼ P1;P2;XÞ region and W u

i;A for the unstable

manifolds that depart a Lyapunov orbit around
Li; ði ¼ 1; 2Þ toward the Að¼ P1;P2;XÞ region. In Fig. 2,
the Lyapunov are shown in orange, whereas the stable
and unstable manifolds orbits projected onto the x-y plane
in light-green and red, respectively.

The manifold tubes separate orbits into transit and non-

transit orbits (e.g., Conley, 1968; Koon et al., 2011).
Namely, an orbit inside the tubes is a transit orbit. For
example, if a spacecraft is inside the tube in some region,



Fig. 4. Bicircular model.
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it is transported to another region through a neck region.
On the other hand, an orbit existing outside the tubes is
a non-transit orbit, where a spacecraft in a region remains
in the same region or returns to the same region through a
neck region. For the rest of this paper, we do not specifi-
cally mention the transportation through a neck region.

In Fig. 2, we show that a Poincaré section U � Eðl;E0Þ
is set to detect the tubes on the 2-dimensional space given
by

U :¼ fw¼ ðx; y; vx; vyÞ 2 Eðl;E0Þ j x¼ 1� l; y < 0; vx > 0g:

Define the j-th intersection of the stable manifold
W s

i;A ði ¼ 1; 2 and A ¼ P1;P2;XÞ with U by

Cj;s
i;A ¼ W s

i;A \ U and also define by Cj;u
i;A ¼ W u

i;A \ U the j-th

intersection of the unstable manifold W u
i;A ði ¼ 1; 2 and

A ¼ P1;P2;XÞ. We illustrate C1;s
2;P2

in Fig. 3 and choose

points wt inside C1;s
2;P2

and wn outside C1;s
2;P2

. The transit orbit

from the P2 region to the X region integrated from wt and
the non-transit orbit staying in the P2 region from wn are
colored cyan and black, respectively, as shown in Fig. 2.
3. Bicircular model for the planar restricted 4-body system

We consider the bicircular model (Huang, 1960; Simó
et al., 1995) for the restricted Sun–Earth–Moon–S/C
4-body system as illustrated in Fig. 4, where the Sun and
the barycenter of the Earth and the Moon (Earth–Moon
barycenter) rotate on the circular orbits around the
center of mass (CM) of the whole system. The distance
between the Sun and the Earth–Moon barycenter is

given by aS ffi 1:49598� 108 km and the angular velocity
of the Sun and the barycenter is denoted by

xS ffi 1:99640� 10�7 rad=s. The Earth and the Moon
rotate on the circular orbits around their barycenter

with the angular velocity xM ffi 2:66498� 10�6 rad=s, and
the distance between the Earth and the Moon is

aM ffi 3:84400� 105 km. The masses of the Sun, the Earth

and the Moon are mS ffi 1:99976� 1030 kg; mE ffi
5:97219� 1024 kg and mM ffi 7:34767� 1022 kg, respec-
Fig. 3. First intersection of the stable manifold W s
2;P2

with U.
tively. We assume that the spacecraft and the planets move
on the same plane.

We will show that this bicircular model of the restricted
4-body system can be regarded as two different perturbed
3-body systems by splitting the motion of the spacecraft
into mathematical models described in two different rotat-
ing frames.

3.1. Moon-perturbed system and the S–BEM rotating frame

We normalize the system quantities by choosing the
mass unit as mS þ mE þ mM, the length unit as aS, and
the time unit as T S ¼ 2p=xS such that the gravitational
constant G is unity. We define the mass parameters

by lS ¼ ðmE þmMÞ=ðmS þmE þmMÞ ¼ 3:02319� 10�6 and

lM ¼ mM=ðmE þ mMÞ ¼ 1:21536� 10�2. By this normaliza-
tion, the distance between the Earth and the Moon
becomes aM ¼ aM=aS. The angular velocity of the system
of the Earth and the Moon is selected to be
-M ¼ xM=xS. Denoting the normalized time by�t, the angle
with respect to the line connecting the Sun and the Earth–

Moon barycenter is given by �hM ¼ ð-M � 1Þ�t þ �hM0, where
�hM0 indicates an initial value of �hMð�tÞ. As shown in Fig. 5,
we set a local coordinate system that rotates with the Sun
and the Earth–Moon barycenter, which we shall refer to
as the S–BEM rotating frame.
Fig. 5. Bicircular model in the S–BEM rotating frame.
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Denoting by �q ¼ ð�x; �yÞ> 2 Q the position of the space-
craft in the S–BEM rotating frame and by

�q0 ¼ d�q=d�t ¼ ð�v�x;�v�yÞ> 2 T �qQ the velocity, the equation of
motion of the spacecraft in the S–BEM rotating frame is
given by

�q00 � 2 ~X�q0 � �q ¼ � ð1� lSÞ
j�q� �qSj3

ð�q� �qSÞ � lSð1� lMÞ
j�q� �qEj3

ð�q� �qEÞ

� lSlM

j�q� �qMj3
ð�q� �qMÞ; ð2Þ

where the positions of the Sun, the Earth and the Moon are
indicated by

�qS ¼ð�lS;0Þ>;
�qE ¼ðð1�lSÞ�aMlMcosð�hMÞ;�aMlMsinð�hMÞÞ>;
�qM ¼ðð1�lSÞþaMð1�lMÞcosð�hMÞ;aMð1�lMÞsinð�hMÞÞ>;

respectively.
The energy in the S–BEM rotating frame is defined by

�ESE ¼ 1

2
j�q0j2 � 1

2
j�qj2 � ð1� lSÞ

j�q� �qSj �
lSð1� lMÞ
j�q� �qEj � lSlM

j�q� �qMj :

ð3Þ
Note that this energy is not conserved along a solution
curve because the system is non-autonomous.

If lM ¼ 0, (i.e., the Moon is neglected), then Eq. (2)
coincides with the equation of motion of the Sun–Earth–
S/C 3-body system. Therefore, the bicircular model can
be considered as the Sun–Earth–S/C system perturbed by
the Moon. In this paper, we refer to the bicircular model
in the S–BEM rotating frame as the Moon-perturbed system.

3.2. Sun-perturbed system and the E–M rotating frame

Now we revisit the bicircular model by introducing the
E–M rotating frame, i.e., the local coordinate system rotat-
ing with the Earth and the Moon as shown in Fig. 6.
Choosing the mass unit as mE þ mM, the length unit as
aM, and the time unit as TM ¼ 2p=xM, the gravitational
constant G becomes unity. Then, the distance between
Fig. 6. Bicircular model in the E–M rotating frame.
the Sun and the Earth–Moon barycenter becomes
aS ¼ aS=aM and the angular velocity of the system of the
Sun and the barycenter can be described as -S ¼ xS=xM.
Note that aS ¼ a�1

M and -S ¼ -�1
M .

Let t 2 I ¼ ½t0 � T ; t0 þ T � � R be the time in the E–M
rotating frame, where t0 denotes the origin of the time
interval (which is usually set to zero) and T > 0 denotes a
certain time interval. Then the relative angle between the
masses is given by hMðtÞ ¼ ð1� -SÞt þ hM0. Denoting by

q ¼ ðx; yÞ> 2 Q the position of the spacecraft in the E–M

rotating frame and _q ¼ dq=dt ¼ ðvx; vyÞ> 2 T qQ, the equa-
tion of motion in the E–M rotating frame is obtained as

€q� 2 ~X _q� q ¼ � 1� lM

jq� qEj3
ðq� qEÞ �

lM

jq� qMj3
ðq� qMÞ

� 1� lS

lSjq� qSj3
ðq� qSÞ �

1� lS

lSa
3
S

qS; ð4Þ

where qS; qE, and qM indicate the position vectors of the
Sun, the Earth, and the Moon, respectively, and are given
by

qS ¼ð�aS cosðhMÞ; aS sinðhMÞÞ>;
qE ¼ð�lM; 0Þ>;
qM ¼ð1� lM; 0Þ>:
We define the energy in the E–M rotating frame (Simó
et al., 1995) by

EEM ¼ 1

2
j _qj2 � 1

2
jqj2 � 1� lM

jq� qEj
� lM

jq� qM j
� 1� lS

lS jq� qSj
þ 1� lS

lSa
3
S

hqS ; qi;

which is not conserved along a trajectory.
If we choose lS ¼ 1 (i.e., the Sun is neglected), then Eq.

(4) is the equation of motion of the Earth–Moon–S/C
system. Thus, we can consider the bicircular model in the
E–M rotating frame as the Earth–Moon–S/C system
perturbed by the Sun, which we shall refer to as the
Sun-perturbed system (see also Qi et al., 2012).

3.3. Coordinate transformation

Now we show the coordinate transformation between
the Moon-perturbed system and the Sun-perturbed system.
The transformation of time is given by

�t ¼ xS

xM

t ¼ -St:

The transformation of the position vectors is

�q ¼ �qB þ aM
aS

CðtÞq ¼ �qB þ 1

aS
CðtÞq; ð5Þ

where �qB ¼ ð1� lS; 0Þ> denotes the position of the Earth–
Moon barycenter in the S–BEM rotating frame and CðtÞ is a
rotation matrix given by
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CðtÞ ¼ cos hMðtÞ � sin hMðtÞ
sin hMðtÞ cos hMðtÞ

� �
:

The velocity transformation is obtained by differentiating
Eq. (5). The coordinate transformation for the velocity
phase space, ~u :TQ� I!TQ� I ;ðx;y;vx;vy ;tÞ#ð�x;�y;�v�x;�v�y ;�tÞ,
is given by

�q0 ¼ 1

aS-S

CðtÞð _q� ð1� -SÞ~XqÞ:
4. Tube dynamics in the perturbed systems

In a perturbed 3-body system (i.e., either the Moon-
perturbed system or the Sun-perturbed system), a torus,
which may be close to a periodic orbit (i.e., a nearly peri-
odic orbit), exists instead of the periodic Lyapunov orbit
of the PCR3BS. However, we expect that there will still
be analogs of stable and unstable manifolds of the torus
which will act as separatrices between transit and non-
transit orbits, similar to the PCR3BS. Thus, we numeri-
cally demonstrate this separation by using the LCS con-
cept, where an LCS approximates the generalized notion
of invariant manifolds of time-dependent systems. Note
that although the stable and unstable manifolds vary with
time, these manifolds are invariant in a system eliminated
time dependency by a transformation. Thus, we described
these manifolds as the invariant manifolds.

In this paper, we compute the LCS as the ridges of
FTLE fields (Shadden et al., 2005). The LCS may include
false positives as described by Haller (2011), Pérez et al.
(2012), while we extract the objective LCS from the inner-
most local maximum of FTLE fields by assuming that the
intersection of the stable and unstable manifolds with a
Poincaré section is homeomorphic to a circle.

4.1. Finite time Lyapunov exponents

To detect an LCS, we need to compute FTLE, which
indicates the expansion ratio of the distance between two
close points at some time and their distance after being
advected by a vector field for some duration. We refer to
Shadden et al. (2005) and Tallapragada and Ross (2013)
for the definition of the FTLE.

Let D be an open subset of a phase space M � Rn and
w ¼ ðw1; . . . ;wnÞ be an element of D. Consider a time-
dependent dynamical system

_wðt; t0;w0Þ ¼ f ðwðt; t0;w0Þ; tÞ;
wðt0; t0;w0Þ ¼ w0;

�

where wðt; t0;w0Þ is a smooth solution curve starting at an
initial point w0 2 D at time t0 and f ðw; tÞ is a given
@½/t0þT
t0

ðwÞ�
i

@wj
� ½/t0þT

t0
ðw1; . . . ;wj þ Dwj; . . . ;wnÞ�i � ½/t0þT

t0
ðw1; . . .

2Dwj
time-dependent vector field. Then, the point w0 moves to
another point after a finite time interval T by the flow map:

/t0þT
t0

: D ! D; w0 # /t0þT
t0

ðw0Þ ¼ wðt0 þ T; t0;w0Þ:
The FTLE denotes a finite time average of the maximum

expansion or contraction rate during the time interval T for
a pair of neighboring phase space points at the initial time
t0 under advection by the flow map. Now, consider an
infinitesimal perturbation dw0 for the point w0. After the
time interval T, the perturbation denoted by dwT is

dwT ¼ /t0þT
t0

ðw0 þ dw0Þ � /t0þT
t0

ðw0Þ

¼ d/t0þT
t0

ðwÞ
dw

�����
w¼w0

dw0 þ Oð dw0k k2Þ;

where the matrix d/t0þT
t0

ðwÞ=dw is called the state transition

matrix. By neglecting the higher-order terms Oð dw0k k2Þ,
the magnitude of the perturbation becomes

dwTk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dw0;Ddw0

p
;

where D is a symmetric matrix given by

D ¼ d/t0þT
t0

ðwÞ
dw

�����
w¼w0

0
@

1
A

>
d/t0þT

t0
ðwÞ

dw

�����
w¼w0

:

This is a finite time version of the (right) Cauchy-Green

tensor.
The maximum stretching occurs when dw0 is chosen so

that it is aligned with the eigenvector of the maximum

eigenvalue of D, which we denote by kmaxðDÞ. Let �dw0 be
an initial perturbation aligned with the eigenvector, and
it follows that

max
dw0

dwTk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðDÞ

p
�dw0

		 		:
The FTLE field rt0þT

t0 : D � M ! R associated with a finite
time T is defined by

rt0þT
t0

ðw0Þ ¼ 1

jT j ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðDÞ

p
: ð6Þ

In this paper, we choose t0 ¼ 0 to compute the FTLE
field for the 4-body system, denoted as rT . In order to com-
pute the FTLE, following Tallapragada and Ross (2008),
Gawlik et al. (2009), Ross et al. (2010), we set a regularly
spaced rectilinear grid of tracers in a n-dimensional phase
space to advect the grid of tracers forward in time by the
fixed time T employing the Runge-Kutta-Fehlberg integra-
tor, as in Press et al. (1992). To compute the FTLE numer-

ically, we need to discretize
d/

t0þT
t0

ðwÞ
dw of Eq. (6) at each grid

point by the central difference approximation as
;wj � Dwj; . . . ;wnÞ�i ;
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where wj and ½/t0þT
t0

ðwÞ�
i
are components of w and /t0þT

t0
ðwÞ,

respectively. The discrete size Dwj is chosen so that the esti-
mated truncation error of the matrix is smaller than the

chosen acceptable error �TOL ¼ 10�7. Regarding the estima-
tion of the error, see Appendix A.
4.2. Lagrangian coherent structures

We recall the definition of an LCS as proposed by
Shadden et al. (2005), in which an LCS is defined by ridges

of the FTLE field rT ðwÞ. More formally, there exist two
different but similar definitions of the LCS, namely, it is
defined as a curvature ridge or a second-derivative ridge
of rT , while the second-derivative ridge is identical to or
a subset of the curvature ridge with local extrema of the
FTLE field. In this paper, we employ the definition of the
second-derivative ridge known as a simpler and convenient
one as follows. First, the Hessian of the FTLE field is given
by

R ¼ d2rT ðwÞ
dw2

:

An LCS is defined as the second-derivative ridge of rT ,
which is given by an injective curve c : ða; bÞ ! D that sat-
isfies, for each s, the following conditions:

1. The vector c0ðsÞ is parallel to rrT ðcðsÞÞ.
2. Rðn; nÞ ¼ minkuk¼1Rðu; uÞ < 0 is required, where n is a

unit normal vector to cðsÞ and R is regarded as a bilinear
form evaluated at each point cðsÞ.

A ridge of the backward-time FTLE field, which one can
obtain by the negative integration time T, is called the
attracting LCS that corresponds to the time-dependent
analog of the unstable manifold. A ridge of the forward-
time FTLE field with the positive integration time T is
the repelling LCS that corresponds to the stable manifold.
Note that, in this study, the integral time T is chosen suffi-
ciently long so that the particular LCS exists stationary.
Fig. 7. FTLE field in the Moon-perturbed system (T ¼ 7).
4.3. FTLE field and LCS in the Moon-perturbed system

Here, we investigate the stable manifold, (i.e., the repel-
ling LCS), associated with the Lyapunov orbit of the
Moon-perturbed system. To do this, we define an instanta-
neous energy surface at �t ¼ �t0 in the Moon-perturbed sys-
tem by

�Eðl; �ESE
�t0
Þ¼ f�w¼ð�x;�y;�v�x;�v�yÞ 2 TQj�ESEð�x;�y;�v�x;�v�y ;�t0Þ¼ �ESE

�t0
g:

In the above, l ¼ ðlS; lMÞ and �ESE
�t0

denotes a fixed value for

the energy at �t ¼ �t0 in the Moon-perturbed system.

Define a subspace �U � �Eðl; �ESE
�t0
Þ at �t ¼ �t0 in the Moon-

perturbed system by
�Uðl; �ESE
�t0
Þ :¼ f�w ¼ ð�x; �y;�v�x;�v�yÞ 2 �Eðl; �ESE

�t0
Þ j �hM ¼ 0;

�x < 1� lS; �y ¼ 0;�v�y < 0g: ð7Þ
In order to see the FTLE field on the �x-�v�x-plane, we can
locally introduce a projection

p : ð�x; �y;�v�x;�v�yÞ# ð�x;�v�xÞ:
We show the FTLE field for the energy �ESE

�t0
¼ �1:5004 in

Fig. 7 by setting a 1000� 1000 grid within
ð�x;�v�xÞ 2 ½0:993; 1� � ½�0:03; 0:03� on the Poincaré section
�U 0 :¼ pð�UÞ and the integral time T ¼ 7. We do not com-
pute the collision points inside the Earth’s surface

6371 km, namely, j�q� �qEj < 4:25875� 10�5; these points
are colored in black in Fig. 7. The overflow or underflow
points caused by the separations due to the Moon in the
FTLE computations are also colored in black. The instan-
taneous forbidden region is colored in white.

Here, recall from Section 2.2 that the notations �Ci;s
2;E and

�Ci;s
1;E denote the i-th intersection of the stable manifolds
�W s

2;E and �W s
1;E, respectively, with the subspace �U. Namely,

�C1;s
2;E denotes the subset �W s

2;E \ �U for the first intersection of
�W s

2;E and �U, which is the stable manifold toward the E

region associated with the Lyapunov orbit �L2 on �U. Note

that we use the same notation �W s
2;E and �C1;s

2;E to describe

the stable manifold and the subset �W s
2;E \ �U as those for

the Sun-Earth-S/C 3-body system in Onozaki and
Yoshimura (2014).

Fig. 7 shows some ridges that may correspond to several

intersections �Ci;s
2;E and �Ci;s

1;E in Onozaki and Yoshimura

(2014) and may also represent a separation that originates

from the Moon. Moreover, we assume that the subset �C1;s
2;E

is homeomorphic to a circle.

To detect the repelling LCS corresponding to �C1;s
2;E in the

Moon-perturbed system, let us introduce the line l�u on �U 0

at �u 2 ½0; 2p� defined by

l�u ¼ fð�x;�v�xÞ 2 �U 0 j �x ¼ �xc þ r cos �u;�v�x ¼ �v�xc
þ r sin �u; r 2 ½0; rmax� � Rg;



Fig. 9. Repelling LCS on �U 0 in the Moon-perturbed system ðT ¼ 7Þ.
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where rmax ¼ 0:00009=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:03 cos �uÞ2 þ ð0:003 sin �uÞ2

q
and

ð�xc;�v�xcÞ ¼ ð0:997; 0:005Þ is a point properly chosen in �U 0.
In order to extract the LCS on �U 0, we compute the values
of the FTLE on the line as illustrated in Fig. 8.

The repelling LCS may be obtained as the innermost
local maximum of the FTLE as in Fig. 8. The computation
of the FTLE and the extraction of the innermost ridge are
iterated as needed by subsampling the grid. We show the
LCS at each �u in Fig. 9. Set �wl ¼ ð�x; �y;�v�x;�v�yÞ ¼
ð0:999368; 0; 0:005;�0:0958139Þ on the LCS as the initial
point at �t0. Thus we obtain a trajectory that approaches
the Lyapunov-like orbit around �L2 by forward integration
for �wl as shown in Fig. 10.

We also illustrate the cases in which the initial points are
given by:

�wt ¼ ð�x; �y;�v�x;�v�yÞ ¼ ð0:999; 0; 0:005;�0:0732899Þ;
�wn ¼ ð�x; �y;�v�x;�v�yÞ ¼ ð0:9998; 0; 0:005;�0:187686Þ;
where �wt and �wn are points located inside and outside the
LCS, respectively. In Fig. 10, the obtained trajectories are
shown to be transit and non-transit orbits associated with
�wt and �wn, respectively.

Similarly, we can compute the repelling LCS for other
instantaneous energies �ESE

�t0
.

Fig. 10. Transit and non-transit orbits in the Moon-perturbed system.
4.4. FTLE field and LCS in the Sun-perturbed system

Let us compute the attracting LCS corresponding to the
unstable manifold W u

2;X in the Sun-perturbed system. We

use similar notation W u
2;X for the unstable manifold in the

Sun-perturbed system as in the Moon-perturbed system
and we make use of local coordinates ðx; y; vx; vy ; tÞ 2
TQ� R in the E-M rotating frame for all the computations.

First, define an instantaneous energy surface Eðl;EEM
t0

Þ �
TQ at t ¼ t0 in the E-M rotating frame by
Fig. 8. FTLE on the line l0 in the Moon-perturbed system ðT ¼ 7Þ.
Eðl;EEM
t0

Þ¼ fw¼ðx;y;vx;vyÞ 2 TQjEEMðx;y;vx;vy ; t0Þ¼EEM
t0

g;
where EEM
t0

denotes a fixed value of the energy at t ¼ t0 in

the E-M rotating frame, which is chosen so that the Hill’s
region at t ¼ t0 has a neck-like region. We define a sub-

space U � Eðl;EEM
t0

Þ at t ¼ t0 in the Sun-perturbed system

by

Uðl;EEM
t0

Þ :¼ fw ¼ ðx; y; vx; vyÞ 2 Eðl;EEM
t0

Þ j
hM ¼ 2:55; x < 1� lM; y ¼ 0; vy < 0g: ð8Þ
Setting a rectilinear 1000� 1000 grid within
ðx; vxÞ 2 ½0:91; 0:99� � ½�0:5; 0:2� on the Poincaré section

U 0 :¼ pðUÞ, the FTLE field on U 0 for EEM
t0

¼ �851:53

and T ¼ �7 is illustrated in Fig. 11. The instantaneous for-
bidden region is colored in white. We do not compute the
collision points inside the Moon’s surface 1737:5 km,

namely, jq� qMj < 4:52003� 10�3; these points are col-
ored in black in Fig. 11. We can assume that the ridges



Fig. 11. FTLE field on U 0 in the Sun-perturbed system ðT ¼ �7Þ.

Fig. 13. Attracting LCS on U 0 in the Sun-perturbed system ðT ¼ �7Þ.

Fig. 14. Transit and non-transit orbits in the Sun-perturbed system.
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in the FTLE field correspond to the i-th intersections of the

unstable manifolds defined by Ci;u
1;M ¼ W u

1;M \ U and

Ci;u
2;M ¼ W u

2;M \ U.
As before, to extract the C1;u

2;M we set the line

lu ¼ fðx; vxÞ 2 U 0 j x ¼ xc þ r cosu;

vx ¼ vxc þ r cosu; r 2 ½0; rmax�g;

where rmax ¼ 0:014=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:4 cosuÞ2 þ ð0:035 sinuÞ2

q
and

ðxc; vxcÞ ¼ ð0:955;�0:1Þ 2 U 0. The attracting LCS on U 0

corresponding to the subset C1;u
2;M can be computed as the

innermost local maximum of the FTLE on the line lu. The
computation and extraction are iterated, as in Section 4.3
by subsampling the grid. We show the FTLE on l0 in
Fig. 12 and the extracted LCS in Fig. 13.

Setting the initial points wl ¼ ðx; y; vx; vyÞ ¼
ð0:981683; 0;�0:1;�1:92901Þ 2 TQ on the LCS, the inte-
grated orbit is shown in Fig. 14. The orbit seems to be
asymptotic to a Lyapunov-like orbit in backward-time. If
we choose the initial points inside and outside the LCS as

wt ¼ ðx; y; vx; vyÞ ¼ ð0:975; 0;�0:1;�1:29225Þ;
wn ¼ ðx; y; vx; vyÞ ¼ ð0:985; 0;�0:1;�2:88393Þ;
Fig. 12. FTLE on l0 in the Sun-perturbed system ðT ¼ �7Þ.
as in Fig. 13, then the orbits in backward-time are transit
and non-transit orbits respectively, as illustrated in
Fig. 14. Hence it is clear that the LCS plays the role of sep-
aratrices in the Sun-perturbed system.

We also can compute the attracting LCS for the other

cases of the instantaneous energy EEM
t0

at t ¼ t0.
5. Coupled 3-body system with perturbations and a low

energy Earth–Moon transfer

In this section, we propose a design method of a low
energy Earth–Moon transfer considering departure and
arrival conditions in the framework of the coupled 3-
body system with perturbations, referring to Onozaki
et al. (2016a,b). Of course, there are numerous candidates
of low energy transfers for the departure and arrival condi-
tions, and the global study for optimal transfers is an inter-
esting topic. However, we consider a particular case since
our main purpose here is to show how to design such a
low energy transfer for some given boundary conditions.
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We leave the study of the global optimization to future
work.

5.1. Family of departure trajectories in the Moon-perturbed

system

In this paper, we consider the case in which the space-
craft is initially located in a LEO (167 km;7:80713 km=s).
Then, the spacecraft is transferred from the LEO into a
departure trajectory by an impulsive maneuver with a
change in velocity magnitude DV E, where DV E is produced
in the direction parallel to the tangent velocity of the LEO,
as in Fig. 15. The departure trajectory is chosen so that a
non-transit orbit is outside the stable manifold �W s

2;E in

the Moon-perturbed system. Otherwise, the spacecraft
would move away from the vicinity of the Earth along a
transit orbit. In this section, we construct the departure tra-
jectories as a family of non-transit orbits.

We choose the celestial angle at the maneuver as
�hM ¼ 0 rad, so the maneuver point on the LEO is set to

ð�x; �y;�v�x;�v�yÞ ¼ð1� lS � aMlM � �rLEO; 0; 0;��vLEO þ �rLEOÞ
¼ð0:999922; 0; 0;�0:261750Þ;

where �rLEO ¼ 4:37038� 10�5 denotes the distance from the
Earth’s center to the spacecraft and �vLEO ¼ 0:261408 the
velocity of the LEO in the Moon-perturbed system. The
energy at the point can be obtained as �ESE

LEO ¼ �1:53409
by Eq. (3). The point �wD after the maneuver is given by

ð�xD; �yD;�v�yD;�v�yDÞ ¼ ð1� lS � aMlM � �rLEO; 0; 0;

� �vLEO þ �rLEO � DV EÞ
¼ ð0:999922; 0; 0;�0:261750 � DV EÞ;

where the point �wD is an initial point of the departure tra-
jectory. Denote the energy at the point �wD by �ESE

�t0
. There-

fore, DV E is uniquely obtained by the energy �ESE
�t0
.

Since we require the departure trajectory from the initial
point �wD to be a non-transit orbit, the point �wD should be
outside �W s

2;E. Let us find the energy range, or the maneuver

range, so that the point �wD satisfies this condition. To do
Fig. 15. Configuration of departure point.
this, we use the Poincaré section defined in Eq. (7) and

investigate the stable manifold �W s
2;E on �U, as described in

4.3.

We show the stable manifold �C1;s
2;E in the case of

�ESE
�t0

¼ �1:50043 in Fig. 16, which is the minimum energy

for �C1;s
2;E to emerge in the FTLE field. The LEO and the patch

point �wD are also illustrated in Fig. 16. Since �wD is outside
�C1;s
2;E, the lower limit of the energy is chosen as

�ESE
Dmin

¼ �1:50043. This energy leads to DV E ¼ 3:189 km=s.

In Fig. 17, we also show �C1;s
2;E in the case of

�ESE
�t0

¼ �1:50027, which is the maximum energy such that

�wD is outside �C1;s
2;E. Then, we can set the upper limit of the

energy as �ESE
Dmax

¼ �1:50027 ðDV E ¼ 3:202 km=sÞ. There-

fore, we can define the energy range as �ESE
Dmin

6 �ESE
�t0

6 �EDmax .

In this way, we construct the family of departure trajec-
tories parameterized by the energy �ESE

�t0
. Define the family of

the departure trajectories by

Dð�ESE
�t0
Þ ¼ f/�t

�t0
ð�wDÞ 2 TQ j �wD 2 �E l; �ESE

�t0


 �
;

�ESE
�t0

2 ½�ESE
Dmin

; �ESE
Dmax

�g:
Choosing 50 values for the energy �ESE

�t0
2 ½�ESE

Dmin
; �ESE

Dmax
�, the

family of the departure trajectories is obtain in Fig. 18.

5.2. Family of arrival trajectories in the Sun-perturbed

system

Consider another boundary condition for the spacecraft;
namely, we demand that the spacecraft is transferred from
an arrival trajectory into a LLO (100 km;1:63346 km=s)
by a correction maneuver DV M in the Sun-perturbed
system. The arrival trajectory is required to be a transit
orbit that is inside the unstable manifold W u

2;M.

We set that the spacecraft arrives at

ðx; y; vx; vyÞ ¼ð1� lM � rLLO; 0; 0;�vLLO þ rLLOÞ
¼ð0:983066; 0; 0;�1:58974Þ;

where rLLO ¼ 4:78018 � 10�3 indicates the distance from
the Moon’s center to the spacecraft and vLLO ¼ 1:59452
the velocity of the spacecraft on the LLO in the Sun-
perturbed system. In this paper, we choose the angle
hM ¼ 2:55 rad on arrival, then the energy at the LLO point

is EEM
LLO ¼ �852:703. We assume the correction maneuver is

produced in the direction parallel to the tangent velocity of
the LLO as in Fig. 19. Hence, the patch point wA before the
maneuver is obtained as

ðxA;yA;vxA;vyAÞ¼ð1�lM� rLLO;0;0;�vLLOþ rLLO�DV MÞ
¼ð0:983066;0;0;�1:58974�DV MÞ:

If we define the energy at wA by EEM
t0

, then we can uniquely

determine the energy EEM
t0

associated with some correction

maneuver DV M. We will determine the energy range



Fig. 16. Lower boundary of non-transit orbits ð�ESE
�t0

¼ �1:50043Þ.

Fig. 17. Upper boundary of non-transit orbits ð�ESE
�t0

¼ �1:50027Þ.

Fig. 18. Family of departure trajectories in the Moon-perturbed system
�ESE
�t0

2 ½�ESE
Dmin

; �ESE
Dmax

�

 �

.

Fig. 19. Configuration of arrival point.
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(associated with DV M) so that the arrival trajectory is a
transit orbit.

Therefore, the patch point wA should be inside the
unstable manifold W u

2;M. To find a patch point that satisfies

this condition, we investigate the unstable manifold W u
2;M
on the Poincaré section U defined by Eq. (8). In Fig. 20,

we illustrate the subset C1;u
2;M for the case of

EEM
t0

¼ �851:528 ðDV M ¼ 0:634 km=sÞ, which is the mini-

mum energy such that wA is inside C1;u
2;M. The patch point

wA and the LLO are also illustrated in Fig. 20. Therefore,
we can determine the lower limit of the energy as

EEM
Amin

¼ �851:528. Above the energy EEM
t0

¼ �851:528, all

arrival trajectories are considered to be transit orbits. Thus,



Fig. 20. Lower boundary of transit orbits ðEEM
t0

¼ �851:528Þ.

Fig. 22. Family of arrival trajectories in the Sun-perturbed system
EEM
t0

2 ½EEM
Amin

;EEM
Amax

�

 �

.
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the upper limit of the energy EEM
Amax

¼ �851:493 is

determined by DV M ¼ 0:65 km=s. The subset C1;u
2;M at

EEM
t0

¼ �851:493 is shown in Fig. 21. Hence, the energy

range is obtained by EEM
Amin

6 EEM
t0

6 EEM
Amax

.

Here, we use backward integration to construct the arri-
val trajectory that starts at the patch point wA. The family
of arrival trajectories is obtained by parameterizing the

energy EEM
t0

, which is given by

AðEEM
t0

Þ ¼ f/�t
t0
ðwAÞ 2 TQ j wA 2 Eðl;EEM

t0
Þ;

EEM
t0

2 ½EEM
Amin

;EEM
Amax

�g:

In Fig. 22, we show the family of the arrival trajectories

associated with 50 values of EEM
t0

.

5.3. Design of low energy transfer from LEO to LLO

In this section, we show how to construct the transfer
orbit from the LEO to the LLO. We choose one trajectory
from the family of departure trajectories and one from the
family of arrival trajectories, and we obtain the LEO–LLO
transfer by patching two trajectories together with a
maneuver DV P.
Fig. 21. Upper boundary of tran
Let us consider both families (i.e., the departure and arri-
val trajectories) in the same S–BEM rotating frame in order
to find appropriate trajectories. In Fig. 23, we show the

family of arrival trajectories ~uðAðEEM
t0

ÞÞ at �hM ¼ 2:55 rad

in addition to the family of departure trajectories Dð�ESE
�t0
Þ

at �hM ¼ 0 rad.
sit orbits ðEEM
t0

¼ �851:493Þ.



Fig. 23. Departure and arrival trajectories in the S–BEM rotating
coordinate.

Fig. 25. Departure and arrival trajectories in �x-�hM-�v�y space.
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Let ~w ¼ ð�x; �y;�v�x;�v�y ; �hMÞ 2 TQ� S1 be a local coordinate

in the extended space and let ~p : TQ� S1 ! TQ be the pro-
jection map: ~pð~wÞ ¼ �w. To determine a patch point, set the
Poincaré section on the �x axis as

�U ¼ fð�x; �y;�v�x;�v�y ; �hMÞ 2 TQ� S1 j �x > 1� lS; �y ¼ 0;�v�y > 0g:

We show the family of departure trajectories crossing

the section �U given by ~p�1ðDð�ESE
�t0
ÞÞ \ �U and the subset of

the arrival trajectories ~p�1ð~uðAðEEM
t0

ÞÞÞ \�U. In Fig. 24,

the subsets of departure trajectories are colored in blue

and the arrival trajectories in red in �x-�hM-�v�x space.

Fig. 25 illustrates the same subsets in �x-�hM-�v�y space. Define
the patch points by

~wSE ¼ ð�xSE; �ySE;�vSE�x ;�vSE�y ; �hSEM Þ 2 ~p�1ðDð�ESE
�t0
ÞÞ \ �U

and

~wEM ¼ ð�xEM ; �yEM ;�vEM�x ;�vEM�y ; �hEMM Þ 2 ~p�1ð~uðAðEEM
t0

ÞÞÞ \ �U:

If we let ~s : TQ� S1 ! Q� S1, then the patch points are
chosen so that ~sð�wSEÞ ¼ ~sð�wEMÞ : �xSE ¼ �xEM ; �ySE ¼ �yEM and
Fig. 24. Departure and arrival trajectories in �x-�hM-�v�x space.
�hSEM ¼ �hEMM . Thus, the patch points are determined for the
departure trajectory as

~wSE ¼ ð�xSE; �ySE;�vSE�x ;�vSE�y ; �hSEM Þ
¼ ð1:00507; 0;�0:0113680; 0:0175449; 4:96074Þ;

and for the arrival trajectory as

~wEM ¼ ð�xEM ; �yEM ;�vEM�x ;�vEM�y ; �hEMM Þ
¼ ð1:00507; 0;�0:0121205; 0:0184927; 4:96074Þ:

The maneuver to patch the departure and arrival trajec-
tories is required as DV P ¼ 0:036 km=s.

The departure trajectory can be computed from the ini-
tial point as

ð�xD; �yD;�v�xD;�v�yD; �hMDÞ ¼ ð0:999922; 0; 0;�0:368963; 0Þ;
where the energy is �ESE

�t0
¼ �1:50027. It follows that

DV E ¼ 3:202 km=s. The final point of the arrival trajectory
in the S–BEM rotating frame is given by

ð�xA;�yA;�v�xA;�v�yA;�hMAÞ¼ ð0:997900;0:00140873;0:0249961;0:0372041;2:55Þ:

The energy of the arrival trajectory is EEM
t0

¼ �851:511;

hence, the maneuver is DV M ¼ 0:642 km=s.
Fig. 26. Transfer from LEO to LLO in the S–BEM rotating system.



Fig. 27. Transfer from LEO to LLO in the E–M rotating system.

Table 1
Maneuver (DV ½km=s�) and flight time (T ½d�).

Transfer DV E DV M DV P DV T T

Hohmann 3:141 0:838 � 3:979 5
WSB (Belbruno and Miller, 1993) 3.161 0.648 0.029 3.838 160

Proposed transfer 3.202 0.642 0.036 3.880 100
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We illustrate the obtained transfer from LEO to LLO in
the S–BEM rotating frame in Fig. 26 and also that in the
E-M rotating frame in Fig. 27. In this transfer, we require
a total maneuver of DV T ¼DV EþDV PþDV M ¼ 3:880km=s
and a flight time of T ¼ 100 d.

Finally, we compare the proposed transfer with the
Hohmann transfer and the WSB transfer of Belbruno
and Miller (1993) in Table 1. We obtain the Hohmann
transfer as the elliptic orbit connecting the LEO with the
lunar orbit. As in Table 1, it follows that the total maneu-
ver of the proposed approach is 0:099 km=s less than the
Hohmann transfer though the flight time of our transfer
is much greater than that of the Hohmann transfer.
Comparing our transfer with the WSB transfer, the total
maneuver is 0:042 km=s greater than that of the WSB,
while the flight time is less by 60 d.

6. Conclusions

We have shown the design of a low energy transfer from
the Earth to the Moon for the restricted 4-body system in
the context of coupled 3-body system with perturbations.
Specifically, we have regarded the Sun–Earth–Moon–S/C
system as a coupled system of the Sun–Earth–S/C system
perturbed by the Moon (the Moon-perturbed system)
and the Earth-Moon-S/C system perturbed by the Sun
(the Sun-perturbed system), and the coupling process has
been made based on tube dynamics. The main advantage
of this model is that one can apply the conventional
method of the coupled 3-body problem to the coupled per-
turbed 3-body system. One can obtain the analogs of the
invariant manifolds of the perturbed 3-body system by
using the technique of Lagrangian Coherent Structures
(LCS), and one can also make use of their tube structures
to design the low energy trajectories. To do this, we have
computed the FTLE field to detect the LCS as second-
derivative ridges by estimating the higher-order errors,
and we have shown that the stable and unstable manifolds
of the perturbed 3-body system separate orbits into transit
and non-transit orbits as in a 3-body system. Furthermore,
we have investigated the boundary conditions for designing
a low energy transfer, in which the spacecraft departs from
a LEO and arrives into a LLO and we have constructed
families of departure and arrival trajectories. Finally, we
have constructed a low energy transfer from the Earth to
the Moon by patching together the departure and arrival
trajectories, and the transfer required total maneuvers sum-
ming to 0:099 km=s less than in a comparative Hohmann
transfer. In comparison with the WSB transfer, the pro-
posed transfer leads to a significantly shorter flight time,
albeit, a slightly higher maneuver cost of 0:043 km=s.
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Appendix A. FTLE with estimation of truncation errors

Recall that the FTLE is computed from the state transi-
tion matrix, the elements of which may be approximated
numerically by a central difference. The numerical error
of the matrix could cause a significant error for the FTLE
computations, in particular, near certain singular points.
Here, we estimate the truncation errors for the state transi-
tion matrix and choose the matrix so that the truncation
error can be sufficiently smaller than some value that we
set. The round-off errors in the state transition matrix are
not considered since the truncation errors dominate the
round-off errors for the quadruple precision numbers in
this study.

If we let ½/t0þT
t0

ðwÞ�
i
be the ith component of /t0þT

t0
ðwÞ,

then the state transition matrix is

d/t0þT
t0

ðwÞ
dw

¼

@½/t0þT
t0

ðwÞ�
1

@w1
� � � @½/t0þT

t0
ðwÞ�

1

@wn

..

. . .
. ..

.

@½/t0þT
t0

ðwÞ�
n

@w1
� � � @½/t0þT

t0
ðwÞ�

n
@wn

0
BBBB@

1
CCCCA:
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The element
@½/t0þT

t0
ðwÞ�

i
@wj

is approximated by a second-order

central difference sij. If the central difference is given by a
spatial discrete size Dwj,

sij ¼
½/t0þT

t0
ðw1; . . . ;wjþDwj; . . . ;wnÞ�i�½/t0þT

t0
ðw1; . . . ;wj�Dwj; . . . ;wnÞ�i

2Dwj
;

then we can write

@½/t0þT
t0

ðwÞ�
i

@wj
¼ sij � 1

6

@3½/t0þT
t0

ðwÞ�
i

@w3
j

Dw2
j þOðDw4

j Þ: ðA:1Þ

Now, we approximate the element by the central difference

�sij with another spatial discrete size �Dwjð< DwjÞ,
@½/t0þT

t0
ðwÞ�

i

@wj
¼ �sij � 1

6

@3½/t0þT
t0

ðwÞ�
i

@w3
j

�Dw2
j þOð�Dw4

j Þ; ðA:2Þ

where

�sij ¼
½/t0þT

t0
ðw1; . . . ;wjþ �Dwj; . . . ;wnÞ�i�½/t0þT

t0
ðw1; . . . ;wj� �Dwj; . . . ;wnÞ�i

2�Dwj
:

Thus, the truncation error �� is given by

��ij ¼ � 1

6

@3½/t0þT
t0

ðwÞ�
i

@w3
j

�Dw2
j þOð�Dw4

j Þ: ðA:3Þ

We take the difference between Eqs. (A.1) and (A.2):

sij��sij�1

6

@3½/t0þT
t0

ðwÞ�
i

@w3
j

ðDw2
j � �Dw2

j ÞþOðDw4
j � �Dw4

j Þ¼ 0:

Ignoring the quartic and higher terms in the above equa-
tion, we obtain the following expression.

@3½/t0þT
t0

ðwÞ�
i

@w3
j

� 6ðsij � �sijÞ
ðDw2

j � �Dw2
j Þ
: ðA:4Þ

By inserting Eq. (A.4) into Eq. (A.3) and removing the
quartic and higher terms, the truncation error is obtained as

��ij � ðsij � �sijÞ
�Dw2

j

ðDw2
j � �Dw2

j Þ
:

In this paper, we assume that the discrete size is uniform

for all elements, that is, �Dwi ¼ �Dwj ði; j ¼ 1; . . . ; nÞ. We
define an acceptable error by �TOL. If the truncation error
is smaller than the acceptable error,

max
i;j

j��ijj < �TOL; ðA:5Þ

then we employ the central difference �sij in the computation
of the FTLE. Otherwise we calculate the truncation error
again by using a new smaller discrete size until Eq. (A.5)
is satisfied.
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