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Abstract: Concentrations of airborne chemical and biological agents from a hazardous release
are not spread uniformly. Instead, there are regions of higher concentration, in part due to local
atmospheric flow conditions which can attract agents. We equipped a ground station and two
rotary-wing unmanned aircraft systems (UASs) with ultrasonic anemometers. Flights reported here
were conducted 10 to 15 m above ground level (AGL) at the Leach Airfield in the San Luis Valley,
Colorado as part of the Lower Atmospheric Process Studies at Elevation—a Remotely-Piloted Aircraft
Team Experiment (LAPSE-RATE) campaign in 2018. The ultrasonic anemometers were used to
collect simultaneous measurements of wind speed, wind direction, and temperature in a fixed
triangle pattern; each sensor was located at one apex of a triangle with ∼100 to 200 m on each
side, depending on the experiment. A WRF-LES model was used to determine the wind field
across the sampling domain. Data from the ground-based sensors and the two UASs were used to
detect attracting regions (also known as Lagrangian Coherent Structures, or LCSs), which have the
potential to transport high concentrations of agents. This unique framework for detection of high
concentration regions is based on estimates of the horizontal wind gradient tensor. To our knowledge,
our work represents the first direct measurement of an LCS indicator in the atmosphere using
a team of sensors. Our ultimate goal is to use environmental data from swarms of sensors to
drive transport models of hazardous agents that can lead to real-time proper decisions regarding
rapid emergency responses. The integration of real-time data from unmanned assets, advanced
mathematical techniques for transport analysis, and predictive models can help assist in emergency
response decisions in the future.
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1. Introduction

Atmospheric wind velocity measurements are critical to air quality [1], weather forecasting [2],
and climate studies [3]. Unmanned aircraft systems (UASs) are an emerging technology for atmospheric
wind velocity measurements near the surface of Earth [4] where it is difficult and expensive to operate
conventional atmospheric sensors reliably. Small UASs, both fixed- and rotary-wing, are low-cost,
mobile, and portable with some trade-offs involving flight characteristics. Fixed-wing UASs can fly for
periods of around 45 min continuously, but are limited by their flight envelope to open-space operations
for launch, maneuvering, and recovery. Rotary-wing UASs can hover, allowing for operations in
complex environments, but have limited battery power and generally have shorter flight periods.

Efforts to measure atmospheric properties with UASs began as early as 1971 with [5] using a small
fixed-wing platform to carry sensors for direct measurements of atmospheric properties [6]. Similar
studies have since followed suit using different mission-specific aircraft designs as detailed in [6].
More recently, indirect approaches have been developed to infer wind velocity using model-based
state estimation algorithms. These methods have implemented, among others, the Extended Kalman
Filter [7], Unscented Kalman Filter [8], or Finite Horizon Filter [9] to reconstruct wind velocity estimates
from inertial and airspeed aircraft sensor measurements. In general, both direct and indirect approaches
have yielded promising results as sensor technology continues to advance.

Direct methods of wind estimation encompass the integration of atmospheric flow sensors directly
onto the rotary-wing platform [10,11]. This method has been tested using vane [12], solid-state [13,14],
hot-wire [10], and sonic anemometers [10,12] as part of sensor placement studies. Results from
experiments have demonstrated sensor location to be critical as the propeller downwash can corrupt
measurements of ambient wind velocity. Indirect methods, on the other hand, measure wind velocity
employing model-free and model-based algorithms. Model-free algorithms render wind velocity
measurements from a static relationship between tilt and air-relative velocity [15,16] or the angular
kinematics accessed from on-board inertial measurement unit (IMU) sensors [16,17]. Model-based
algorithms, in contrast, use a physics-based model along with aircraft state measurements to reconstruct
wind velocity using a state observer [18–20].

Analyzing atmospheric flows can be challenging due to their chaotic nature. Lagrangian
coherent structures (LCSs) have become an increasingly popular tool for the analysis of atmospheric
systems. LCSs provide a way to visualize how particles in a flow will evolve; they constitute the
skeleton of the flow pattern, particularly regions which are attracting or repelling of nearby fluid, as in
Figure 1. For instance, attracting LCSs can correspond to regions of enhanced concentrations of some
atmospheric borne chemical species, such as water vapor, pollutants, or hazardous material.

Previous work [21–28] has shown that LCSs tend to coincide with ridges of the finite-time
Lyapunov exponent (FTLE) field, which measures the stretching of an air parcel as it advects under the
wind. Recently, new Eulerian methods have been developed to detect regions of high attraction and
repulsion in fluid flows without the need for simulating air particle paths. These methods are based on
the horizontal wind velocity gradient and can be used to calculate an instantaneous approximation to
Lagrangian quantities such as LCSs or the FTLE field [29–31]. We will take advantage of these Eulerian
methods to look for potential LCSs in the experimental results presented here.
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Fluid parcel

Attracting

LCS

Figure 1. Schematic illustration of an attracting LCS, and its effect on a fluid parcel over a short
advection time.

Measurements used in this campaign were obtained between 14–19 July 2018 as part of a
community-centric field experiment. This experiment was organized in association with the with
the International Society for Atmospheric Research using Remotely-Piloted Aircraft (ISARRA)
conference held the week before at the University of Colorado Boulder. This “flight week”, titled
Lower Atmospheric Process Studies at Elevation—a Remotely-piloted Aircraft Team Experiment
(LAPSE-RATE) took place in the San Luis Valley, Colorado. This activity included participation
by a variety of university, government, and industry teams. Over the course of six days,
over 100 participants supported the coordinated deployment of 50 different unmanned aircraft to
complete 1287 total flights, accumulating 262.4 flight hours. These flights were conducted under
both Federal Aviation Administration (FAA) Certificates of Authorization (COAs) and FAA Part 107,
with the COAs generally supporting flights up to altitudes of 3000 feet above ground level. In addition
to the aerial assets, a variety of ground-based observational assets were deployed. These included
the Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS), two Doppler LiDAR
systems, numerous radiosondes, and mobile surface instrumentation associated with vehicles and
small towers. Over the course of the week, flight operations spanned a large ( 3500 km2) area over
the northern San Luis Valley. The open space around Leach Airfield supported the simultaneous
deployment of several aircraft at a time, with these platforms operating alongside several ground-based
measurement systems as well as regular radiosonde launches to provide comparison datasets using
well-characterized methods and sensors.

In this manuscript, we describe the use of multiple UASs equipped with ultrasonic anemometers to
measure wind and temperature and forecast LCSs. The specific objectives of this work were to: develop
and deploy multiple UASs equipped with ultrasonic anemometers to measure wind speed, wind
direction, and temperature; compare data from the sonic anemometers onboard the UAS against two
different ground-based weather stations and a WRF-LES model; and conduct a series of coordinated
UAS flights to detect LCSs based on estimates of the horizontal wind gradient tensor. Our ultimate
goal is to use environmental data from UASs to drive atmospheric transport models of hazardous
agents that can lead to appropriate decisions regarding rapid emergency responses.

2. Materials and Methods

2.1. Sensor Package Onboard UAS

Two Inspire 2 quadcopters (DJI, Shenzhen, China) were each equipped with an Atmos 22
ultrasonic anemometer (Meter Environment, Pullman, WA, USA) and a Microlog SDI MP/E datalogger
(Environmental Measuring Systems, Czech Republic). The Inspire 2 quadcopters were registered
with the FAA; registration numbers FA37XL79KC and FA3KHWTTCY. The sensor package was
mounted to the airframe of the UAS using carbon fiber rods and custom 3d-printed pieces (found at
https://github.com/SchmaleLab/Schmale-Lab-3D-Printing-Files-Nolan-et-al-Sensors-2018). The Atmos
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22 weighed 424 grams and was 10 cm in diameter by 16 cm in height. The anemometer measured
horizontal wind speed from 0 to 30 m s−1 with a resolution of 0.01 m s−1 ± 0.3 m s−1 or 3% and wind
direction from 0 to 359◦ with a resolution of 1◦ ± 5◦. The datalogger recorded measurements every 15 s.
A structure was developed to mount the anemometer to the DJI Inspire 2 using a 30 cm long by 3.8 cm
wide polypropylene tube, 3D printed components and carbon fiber tubes Figure 2. The anemometer
was mounted to the top of the polypropylene tube and the data logger was mounted to the tube below
the anemometer. Four carbon fiber mounting arms attached the pole vertically to the Inspire 2 using
stainless steel bolts: one directly below the vertical tube, one to each left and right arm, and one to the
rear of the Inspire 2 main body. The data logger was set to record continuously before each flight.

Figure 2. Schematic of Inspire 2 sampler assembly. An interactive 3D version can be found at
https://a360.co/2OnKTl4.

2.2. Permissions for Flight Operations

The six counties of the San Luis Valley (SLV), through the support of UAS Colorado and CU
Boulder, established a UAS program in 2014 including extensive FAA Permits to operate UASs under
public entity Certificates of Authorization (COAs) in a 5,100,000 square mile area of the valley up to
15,000 ft MSL, which equates to about 7500 ft AGL in the central valley. All flights were deconflicted
with Local Crop-Dusting Operations, military low altitude training operations along VR routes,
routine daily airline operations in and out of KALS, and Local Flight For Life as well as private aircraft
operations in the area. UAS pilots for the missions reported in this manuscript were certified Remote
Pilots under Part 107; (Schmale, Certificate Number 4038906; González-Rocha, Certificate Number
4010055; and Estridge, Certificate Number #).

2.3. Coordinated Aerial and Ground-Based Measurements

2.3.1. Calibration Flight with Vertical Array of Sensors at 10 m (UAS), 4 m (Ground), and 2 m (Ground)

One UAS flight (UAS_B1, Table 1) was conducted over a 4 m flux tower with sensors at fixed
heights of 4 m (Atmos 22 sonic anemometer package) and 2 m (CSAT-3 sonic anemometer from
Campbell Scientific) (Figure 3). The accuracy of the CSAT-3 was between±2 and±6% with±0.08 m s−1

bias precision. Output from the CSAT-3 was logged at 20 Hz via RS232 using a Kangaroo PC portable
computer mounted in a weatherproof enclosure. Additional measurements of temperature and
humidity were provided at 2 m via a Campbell Scientific E+E Electronik EE181 digital probe (±0.2 ◦C,
±2.3%RH). This sensor was supplemented by two Campbell Scientific CS215 digital sensors (±0.4 ◦C,
±4%RH) located 1.5 m and 0.75 m above ground level. All temperature and humidity sensors were
housed in a solar radiation shield and logged every 3 s via a Campbell Scientific CR1000X measurement
and control data logger. Additional sensors on the flux tower logged every 3 s, but not used in the
present study, included a Setra 278 digital barometer, Kipp and Zonen NR-LITE2 Net Radiometer,
two Hukeseflux HFP01 Soil Heat Flux Plates, a Campbell Scientific CS655 water content reflectometer,
and Campbell Scientific TCAV averaging soil thermocouple probe. All sensors were factory calibrated

https://a360.co/2OnKTl4
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within one year of use, although intercomparison measurements in a laboratory environment revealed
that the EE181 sensor had a consistent 0.5 ◦C bias which was removed from the measurements
reported here.

Figure 3. Calibration flight with vertical array of sensors at 10 m (UAS with Atmos 22 sonic
anemometer), 4 m (Atmos22 sonic anemometer), and 2 m (CSAT3 sonic anemometer) (left).
White arrows indicate the sensors at each of the respective heights. Calibration flight (B2) with
one ground-based sensor on the MURC tower and one UAS, both at 15 m (right). White arrows
indicate the sensors for each of the platforms.

Table 1. UAS mission and ground station details. UAS sensor packages were functionally identical.
Time start and time end are in local time, Mountain Daylight Time. Height is in meters above
ground level.

Sensor Package Description of Operation Date Time Start Time End Height Location Lat Long

UAS_A2 Calibration flight w/MURC. 14 July 2018 13:30:21 13:41:05 15 MURC Tower 37.781914 −106.041412
UAS_A4 Coordinated flight w/ B4 14 July 2018 16:43:07 16:54:55 10 East Runway 37.780315 −106.040772
UAS_A5 Coordinated flight w/ B5 14 July 2018 17:15:58 17:27:19 10 East Runway 37.780312 −106.040763
UAS_A16 Coordinated flight w/ B7 16 July 2018 14:42:07 14:53:04 15 East Runway 37.780308 −106.040753
UAS_A17 Coordinated flight w/ B8 16 July 2018 15:18:01 15:28:17 15 East Runway 37.780336 −106.040746
UAS_A22 Coordinated flight w/ B9 17 July 2018 12:36:00 12:47:24 15 East Runway 37.780287 −106.04076
UAS_A23 Coordinated flight w/ B10 17 July 2018 13:59:29 14:10:59 15 East Runway 37.780307 −106.040763
UAS_A25 Coordinated flight w/ B11 17 July 2018 15:07:39 15:19:02 15 East Runway 37.780398 −106.040762
UAS_A26 Coordinated flight w/ B12 17 July 2018 15:41:53 15:53:11 15 East Runway 37.780338 −106.040762
UAS_B1 Calibration flight w/ Flux Tower. 13 July 2018 15:15:07 15:25:27 10 Above UK WS 37.781644 −106.039170
UAS_B2 Calibration flight w/ MURC. 14 July 2018 14:15:23 14:26:07 15 MURC Tower 37.78188077 −106.0414296
UAS_B4 Coordinated flight w/ A4 14 July 2018 16:42:10 16:52:40 10 West Runway 37.78155488 −106.0422978
UAS_B5 Coordinated flight w/ A5 14 July 2018 17:15:27 17:26:28 10 West Runway 37.7815583 −106.0422984
UAS_B7 Coordinated flight w/ A16 16 July 2018 14:43:05 14:52:42 18 West Runway 37.78156695 −106.0422614
UAS_B8 Coordinated flight w/ A17 16 July 2018 15:16:17 15:27:48 9 West Runway 37.78158549 −106.0422597
UAS_B9 Coordinated flight w/ A22 17 July 2018 12:35:22 12:46:56 15 West Runway 37.78153018 −106.0422848

UAS_B10 Coordinated flight w/ A23 17 July 2018 13:58:58 14:10:31 15 West Runway 37.78155617 −106.0422905
UAS_B11 Coordinated flight w/ A25 17 July 2018 15:07:12 15:18:49 15 West Runway 37.78156052 −106.0422956
UAS_B12 Coordinated flight w/ A26 17 July 2018 15:41:12 15:52:55 15 West Runway 37.78156436 −106.0422941
Ground1 13 July 2018 11:45:00 15:55:00 4 On Flux Tower 37.781644 −106.03917
Ground2 14 July 2018 8:00:00 18:30:00 4 On Flux Tower 37.781644 −106.03917
Ground3 15 July 2018 11:00:00 14:45:00 4 On Flux Tower 37.781644 −106.03917
Ground4 16 July 2018 8:40:00 15:35:00 15 On MURC Tower 37.782097 −106.041412
Ground5 17 July 2018 8:15:00 16:00:00 15 On MURC Tower 37.782005 −106.041504
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2.3.2. Calibration Flights with One Ground-Based Sensor at 15 m (MURC) and One UAS at 15 m

Two UASs flights (UAS_A2 and UAS_B2, Table 1) of about 10 min at 15 m AGL were conducted
adjacent to the Mobile UAS Research Collaboratory (MURC) tower (Figure 3). The MURC is equipped
with a 15 m extendable mast containing several meteorological sensors including a Gill MetPak Pro Base
Station that provided barometric pressure, temperature, and humidity; a Gill 3D sonic anemometer for
3D wind measurements; and an R.M. Young Wind Monitor anemometer which provided a redundant
horizontal wind measurement.

2.3.3. Simultaneous Flights with Sensors at 15 m in a Triangle Formation (two UASs, and Two Ground Sensors)

Eight coordinated flights (Table 1) were conducted at 15 m AGL in a fixed triangle pattern
(each sensor was located at one apex of a triangle with about 100 to 200 m on each side, depending on
the experiment) (Figure 4).

Figure 4. Simultaneous flights with sensors in a triangle formation (white arrows). Both UASs were
operating off of marks on the taxiway, and the MURC tower was stationed north of the UAS operations.

2.4. WRF-LES Model

Version 3.9.1.1 of the Weather Research and Forecasting (WRF) model [32,33] was used to
downscale mesoscale flows to predict the evolution of winds and turbulence in the boundary layer
during ISARRA flight week. The model set up was similar to that described by [34]. We used the
nesting configuration to downscale operational forecast from 3 km resolution NOAA/NCEP High
Resolution Rapid Refresh (HRRR) to a resolution of 111 m using 45 vertical levels. The vertical levels
were spaced to maximize resolution in the lowest 2 km of the atmosphere. The nests were configured
using one-way feedback (coarse mesh to fine mesh only). Following [34], a refinement ratio of 10
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was used between the WRF LES grid and its parent domain in order to minimize the impact of
the ‘terra incognita’ range of grid resolutions for which boundary layer parameterizations were not
designed [35]. Boundary layer turbulence in D01 was parameterized using the MYNN2 boundary
layer while unresolved turbulence in D02 was computed using a sub-grid scale (SGS) closure that
includes a prognostic equation for turbulent kinetic energy following [36]. The land surface type
was specified using the 20-category MODIS land use dataset. Model forecast data was output at
each grid point every 10 min. A higher output rate (0.66 s) was enabled at select grid points that
were coincident with ISARRA profiling sites including Leach Airfield. Data used in this study were
obtained from WRF-LES runs initialized at 11:00 UTC using HRRR data to initialize and drive the
lateral boundaries of the downscaling system. The HRRR is a rapidly-updating forecast system that
uses 3DVAR data assimilation to incorporate a wide range of observations to produce a new 18 h
forecast every hour [37]. The outer grid of the downscaling system, with 1 km grid spacing, was run
for 6 h to spin up dynamically-balanced forcing which was then used to initialize and force the
inner-most WRF-LES grid. Data from the forecasts were interpolated to a set of heights above the
ground (including 30, 80 and 150 m AGL) and were also interpolated from the Lambert Conformal
computational grid onto a regularly spaced grid using bilinear interpolation.

2.5. Lagrangian-Eulerian Analysis

Due to their chaotic nature, time-dependent unsteady fluid flows such as atmospheric flows
can be challenging to analyze. As mentioned in the introduction, Lagrangian methods such as LCS
and the FTLE field have become popular tools to analyze the transport of particles in such flows.
Calculating the FTLE field requires Lagrangian data, i.e., numerically simulating the advected paths of
fluid particles. The integration of particle trajectories tends to be computationally expensive and
necessitates a greater degree of spatial and temporal information than can reasonably be gathered by
operators in the field.

New Eulerian tools have recently been developed which use velocity gradients, instead of
integrating particle trajectories. This allows for flows to be analyzed by pointwise measurements at as
few as three points. These velocity gradients are assembled into the Eulerian rate-of-strain tensor, S in
Equation (3) discussed below. In [30] it is shown that S can provide an instantaneous approximation of
the Lagrangian dynamics of a fluid flow. Ref. [30] further states that we should seek objective Eulerian
coherent structures (OECSs) based on the invariants of S, as short-term limits of LCSs. Further work
on this topic [31] has also shown that in two-dimensional flows, the eigenvalues of S, s1 <s2, are the
limits of the backward-time and forward-time FTLE fields as integration (advection) time goes to zero.
Ref. [31] further posits that troughs of the s1 field can be identified as instantaneous attracting LCSs
and ridges of the s2 field can be identified as instantaneous repelling LCSs. For the remainder of this
manuscript we shall refer to s1 as the attraction rate and s2 as the repulsion rate.

For our analysis we be considering the fluid particle advection dynamical system,

d
dt

x = v(x, t), (1)

x0 = x(t0). (2)

In this system x(t) is the position vector of a fluid parcel at time t and v(x, t) is the horizontal
wind velocity vector at position x(t), time t. We define the components of the horizontal position
vector, x = (x, y), where x is the eastward position and y is the northward position, measured either
in meters with respect to some convenient reference point or in longitude and latitude, respectively.
We will analyze this system by looking at the attraction rate, which is the minimum eigenvalue,
s1, of the Eulerian rate-of-strain tensor, S(x, t). The Eulerian rate-of-strain tensor is defined based on
the horizontal wind gradient,

∇v(x, t),
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as
S(x, t) = 1

2

(
∇v(x, t) +∇v(x, t)T

)
. (3)

As stated before, the attraction rate provides a means of identifying the attracting OECSs,
which are the instantaneous LCSs. The attraction rate provides information on where material particles
will converge (Figure 1). The lower the value of the (negative) attraction rate, the more particles
will be attracted to that point. We focus on the attraction rate given its importance for predicting
enhanced concentrations of atmospherically advected tracers, as nearby particles will converge onto
those features and flow with them as opposed to repelling features which particles will diverge from
before flowing independent of those features.

2.6. Computation of Wind Gradient and Attraction Rate

To calculate the attraction rate we first needed to calculate the gradient of the wind velocity
field, ∇v(x, t), for the spatiotemporally varying wind velocity vector v(x, t) = (u, v), where u is the
eastward wind component and v is the northward wind component. For an estimate of the gradient,
three measurements of the wind velocity were simultaneously recorded by two UASs and one ground
station. The wind velocity data taken from these measurements was then interpolated to a fourth point
between the three sensors, Figure 5.

Sensor B

Sensor C

Sensor A

Interpolated Point

Figure 5. Schematic of how the velocity gradient, ∇v(x, t), was computed from sensor measurements.
Using wind measurements from three independent sensors, a linear function was generated for
a triangular element. This function was then used to interpolate the wind to an interpolated point.
A finite-difference scheme, Equation (4), was then used to calculate the gradient of the two components,
u and v, of the horizontal wind.

This point is chosen to be along a north-south line with one of the sensors and an east-west line
with another. A depiction of the true situation based on a satellite photo can be seen in Figure 6.
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Figure 6. Satellite image of the sampling region with sensor locations marked with blue pins.
A potential interpolated point is marked in yellow.

The velocity was interpolated to the fourth point using linear interpolation provided by the
griddata routine from Python’s SciPy module. Once the velocity was interpolated, the gradient of the
velocity field was calculated using a finite-difference scheme between the velocity at the interpolated
point and the velocity from the sensors directly north/south and east/west. For example, with the
setup shown in Figure 5, the gradient of u is calculated as

∂u
∂x
≈

uinterp − uB

dx
,

∂u
∂y
≈

uinterp − uC

dy
, (4)

where uinterp is u at the interpolated point, uB is u at sensor B, and uC is u at sensor C. This method
could then be applied to v as well to get the full horizontal gradient of the wind vector,

∇v =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
, (5)
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and the Eulerian rate-of-strain tensor,

S =

 ∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)
1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y

 . (6)

The attraction rate, s1 is then given analytically by

s1 = 1
2

(
∂u
∂x + ∂v

∂y

)
− 1

2

√(
∂u
∂x −

∂v
∂y

)2
+
(

∂u
∂y + ∂v

∂x

)2
. (7)

2.7. Uncertainty Analysis

We can quantify the uncertainty in our gradient approximation as follows. For example, for the
gradient component, ∂u

∂x , we can estimate the uncertainty δ
(

∂u
∂x

)
using (4) as,

δ
(

∂u
∂x

)
=

∣∣∣∣∣ ∂( ∂u
∂x )

∂uinterp

∣∣∣∣∣ δ
(
uinterp

)
+

∣∣∣∣∣∂( ∂u
∂x )

∂uB

∣∣∣∣∣ δ (uB) +

∣∣∣∣∣ ∂( ∂u
∂x )

∂(dx)

∣∣∣∣∣ δ (dx)

=
1

dx
δ
(
uinterp

)
+

1
dx

δ (uB) +
1

dx2

∣∣uinterp − uB
∣∣ δ (dx)

=
1

dx

(
δ
(
uinterp

)
+ δ (uB) +

∣∣∣ ∂u
∂x

∣∣∣ δ (dx)
)

.

(8)

where δ(·) denotes the uncertainty in the measured quantity. SciPy’s griddata routine uses a barycentric
interpolation scheme for linear interpolation, thus we can rewrite uinterp as,

uinterp = c1uA + c2uB + c3uC, (9)

subject to the constraint that c1 + c2 + c3 = 1. So, since the anemometers all have the same error,
δ (uA) = δ (uB) = δ (uC), we have

δ
(
uinterp

)
= δ (uA) (10)

and

δ
(

∂u
∂x

)
= 1

dx

(
c1δ (uA) + (1 + c2) δ (uB) + c3δ (uC) +

∣∣∣ ∂u
∂x

∣∣∣ δ (dx)
)

= 1
dx

(
2δ (uA) +

∣∣∣ ∂u
∂x

∣∣∣ δ (dx)
) (11)

Similar results hold for the other components of the velocity gradient (5).
We can also determine the uncertainty in the attraction rate s1, based on (7), as

δ(s1) =

∣∣∣∣∣ ∂s1

∂( ∂u
∂x )

∣∣∣∣∣ δ
(

∂u
∂x

)
+

∣∣∣∣∣ ∂s1

∂( ∂u
∂y )

∣∣∣∣∣ δ
(

∂u
∂y

)
+

∣∣∣∣∣ ∂s1

∂( ∂v
∂x )

∣∣∣∣∣ δ
(

∂v
∂x

)
+

∣∣∣∣∣ ∂s1

∂( ∂v
∂y )

∣∣∣∣∣ δ
(

∂v
∂y

)
(12)

where

∂s1

∂
(

∂u
∂x

) = 1
2 −

1
2c

(
∂u
∂x −

∂v
∂y

)
,

∂s1

∂
(

∂v
∂y

) = 1
2 + 1

2c

(
∂u
∂x −

∂v
∂y

)
,

∂s1

∂
(

∂u
∂y

) =
∂s1

∂
(

∂v
∂x

) = − 1
2c

(
∂u
∂y + ∂v

∂x

)
,

(13)
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and

c =

√(
∂u
∂x −

∂v
∂y

)2
+
(

∂u
∂y + ∂v

∂x

)2
. (14)

3. Results

UAS flights were conducted between 10 and 15 m AGL at the Leach Airfield in the San Luis
Valley, Colorado as part of the ISARRA 2018 flight campaign (Table 1). The UASs were used to collect
simultaneous measurements of wind speed, wind direction, and temperature in a fixed triangle pattern
(each sensor was located at one apex of a triangle with 100 to 200 m on each side, depending on the
experiment, Figures 5 and 6. In addition, high resolution atmospheric simulations using weather
research and forecasting (WRF) model large eddy simulation (LES) was used to determine the 4D
(space and time) wind field across the sampling domain. Data from the ground-based sensors and the
two UASs were used to detect LCSs.

3.1. Comparison of Measurements

3.1.1. Calibration Flights

Calibration flights were conducted to compare wind velocity and temperature measurements
from UAS A and B to measurements from independent sensors installed at 2, 4 and 10 m AGL as
shown in Figure 3. The wind velocity and temperature independent sensors consisted of a CSAT3 sonic
anemometer installed at 2 m, an Atmos22 sonic anemometer placed at 4 m or 15 m (on the MURC’s
tower), and the Gill 3D sonic anemometer mounted atop of the MURC’s tower at 15 m. For comparison,
measurements of temperature and wind velocity recorded at 15 m AGL were considered. Results from
this analysis were used as a confidence benchmark for UAS-based measurements of wind velocity and
temperature sensors.

3.1.2. Wind Speed

In this section, we present results from measurements of wind speed and direction collected on
13 July 2018. The wind conditions on this day were variable ranging between 2 and 10 m s−1 as shown
in Figure 7. Atmospheric sampling involved four coordinated UAS missions, comprising eight distinct
flights, along with measurements from the 15m_tower_Atmos22, 15m_tower_MURC_3Dsonic, and the
2m_tower_CSAT3. Figure 7 shows the general trend in wind velocity as recorded by independent
sensors at 2, 4 and 10 m above ground level during a 10-min interval. The wind speed trend with
height is consistent with a power law with coefficient α ≈ 0.2. In Figure 8, measurements of wind
speed and direction from UAS B and MURC were compared at 15 m AGL. Agreement for wind speed
and direction were determined using a root-mean-squared (RMS) error metric. Results show an RMS
error of 0.75 m s−1 and 8.9◦ for wind speed and direction, respectively.

In Figures 9 and 10 wind speed measurements from multiple sensors are displayed.
Figure 9 shows the measurements from the ground-based 15m_tower_MURC_3Dsonic (blue) and
15m_tower_Atmos22 (orange), these are overlaid with measurements from the 15m_UAS_A_Atmos22
(black). Figure 10 shows the measurements from the ground-based 15m_tower_MURC_3Dsonic
(blue) and 15m_tower_Atmos22 (orange), these are overlaid with measurements from the
15m_UAS_B_Atmos22 (black). The UAS A flights shown are 22, 23, 25, 26. The UAS B flights
shown are 9, 10, 11, 12. Details regarding the flights can be found in Table 1. Pearson correlation
coefficients for these wind speed measurements range from 0.868 to 0.970 and can be found in Table 2.
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Figure 7. Comparison of wind speed measurements on the flux tower for a height of 2 m
(CSAT3 sonic anemometer, yellow), 4 m (Atmos22 sonic anemometer), and 10 m (UAS with Atmos
22 sonic anemometer.
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Figure 8. Root-mean-square (RMS) error comparison for wind speed and direction measurements
collected from UAS B and MURC Tower at 15 meters above ground level.
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In Figure 11, we show the wind speed measurements associated with our attraction rate
calculations (orange) along with wind speed predictions from WRF-LES model (blue), these are
overlaid with mission averages for the sensor measurements (black). Mission averages are included for
the period over which all three sensors were operating. For this comparison, a temporal resolution of
0.66 s was used for the WRF-LES model output. To calculate the wind speed, measurements were
taken from two concurrent UAS flights as well as the 15m_tower_MURC_3Dsonic and interpolated to
the point where the attraction rate was computed, Figures 5 and 6. The wind speed from the WRF-LES
model came from the grid point nearest to where the attraction rate was calculated.

Figure 9. Comparison of wind speed measurements from UAS A and ground-based sensors.

Figure 10. Comparison of wind speed measurements from UAS B and ground-based sensors.
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Table 2. Pearson correlation coefficients for wind speed measurements between different UAS packages
and ground-based sensors.

15m_Tower_MURC_3Dsonic 15m_Tower_Atmos22 15m_UAS_A_Atmos22 15m_UAS_B_Atmos22

15m_Tower_MURC_3Dsonic – 0.970 0.876 0.914
15m_Tower_Atmos22 – 0.868 0.895

15m_UAS_A_Atmos22 – 0.868
15m_UAS_B_Atmos22 –

Figure 11. Wind speed from WRF-LES grid point nearest to where the attraction rate was calculated
(blue) and wind speed as measured by sensors, interpolated to the attraction rate position (orange)
overlaid with flight average of the wind speed (black). Wind speed from the WRF-LES comes from the
10 m height level, while wind speed measurements were performed by sensors at 15 m.

3.2. Attraction Rate Measurements

In this section, we present our results for attraction rate as calculated from our wind velocity
measurements using the UAS and ground station method described in Section 2.6. As a comparison
we show the attraction rate as calculated from the WRF-LES model predictions. To get a picture of
what was happening on a larger scale, we also calculated the attraction rate over the San Luis Valley
using the 10 m velocity field from the WRF-LES model.

In Figure 12, we show the attraction rate as calculated from the measurements provided by the
two UASs and the 15m_tower_MURC_3Dsonic (orange) along with the attraction rate calculated
from WRF-LES model predictions (blue), these are overlaid with mission averages for the sensor
measurements (black). The uncertainty ranges for the attraction rate measurements are shown in
gray. Mission averages are averages for the period over which all 3 sensors were operating. For this
comparison the WRF-LES model data was at a temporal resolution of 0.66 s. The attraction rate from
the WRF-LES model’s wind predictions was calculated using a central finite-difference scheme from
a five point stencil centered on the grid point nearest to where the attraction rate was calculated from
the UASs and the 15m_tower_MURC_3Dsonic measurements. In yellow we highlight the time periods
around the predicted attraction rate fields shown in Figures 13 and 14. We display the gradients that
were used to calculate attraction rate in Figure 15. The gradients from the WRF-LES model (blue) are
overlaid with those from our sensors (orange). We also show the range of uncertainty for our sensor
gradient calculations in gray.

In Figures 13 and 14, we show the attraction rate field over the San Luis valley on 17 July 2018
as calculated from the WRF-LES model’s 10 m velocity field prediction. In Figure 13, we show the
attraction rate field at 1400 MDT. This time was chosen to display due to a large discrepancy between
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the WRF-LES model’s attraction rate prediction and the attraction rate as calculated from real-world
data. In Figure 14, we show the attraction rate field at 1550MDT. This time was chosen because an
attracting front was passing through our sampling region out of the east. After the front passes the
field is noticeable smoother. In both figures, the point where the attraction rate was calculated for the
time series in Figure 12 is shown as a red dot. An animation of the attracting rate field over the San
Luis valley can be found at https://youtu.be/jui5GfehWGg.

12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0

Hours Mountain Daylight Time, 07-17-2018

−300

−200

−100

0

100

200

h
r−

1

Figure 12. The attraction rate from WRF-LES predictions (blue) and the attraction rate as calculated from
sensor measurements (orange) overlaid with flight average of the attraction rate (black). The uncertainty
ranges for the attraction rate measurements are shown in gray. The attraction rate from the WRF-LES
comes from the 10 m height level wind speed, while wind speed measurements used to calculate the
attraction rate were performed by sensors at 15 m. Times of interest are highlighted with a yellow vertical
line, corresponding to the predicted attraction rate fields shown in Figures 13 and 14, respectively.

Figure 13. The attraction rate field at 1400 MDT, convective cells can be seen, bordered by troughs of
the attracting field, throughout the domain. A front appears to be blowing an attracting feature out of
the east of the domain. Sampling region is marked with a red dot.

https://youtu.be/jui5GfehWGg
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Figure 14. The attraction rate field at 1550 MDT, an attracting LCS can be seen along the center of
the domain having ridden the front out of the east. The sampling region is marked with a red dot.
Part of the attracting feature is shown as a white line. The direction the feature is moving is shown by
black arrows.
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Figure 15. The velocity gradient from WRF-LES predictions (blue) and the velocity gradient as
calculated from sensor measurements (orange). The velocity gradient from the WRF-LES comes from
the 10 m height level wind speed, while wind speed measurements used to calculate the velocity
gradient were performed by sensors at 15 m. The uncertainty ranges for the velocity gradient as
calculated from sensor measurements are shown in gray.
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4. Discussion

Concentrations of airborne chemical and biological agents from a hazardous release are not spread
uniformly. Instead, there are regions of higher concentration, in part due to local atmospheric flow
conditions which can attract agents [24,27,38–40]. New tools and technology are needed to monitor
and forecast atmospheric transport phenomena [20]. Here, we have described a series of unique field
experiments to collect simultaneous measurements of wind speed, wind direction, and temperature
using multiple UASs and ground stations. Data from these sensors were compared to a WRF-LES
model, and were used to forecast LCS.

Overall, the WRF-LES model provided fairly accurate predictions of both the winds and the
attraction rate with some caveats. The wind speed predictions from the WRF-LES model followed
the general trend measured by the sensors with both modeled and observed winds ranging between
0 and 4 m s−1 during the early afternoon increasing late in the day in response to the development
of moist convection and gusty outflows. Modeling the exact timing of deep moist convection and
associate gusty winds at a single grid point is not possible, but rather, can be determined in a statistical
sense by compositing forecast information across a much larger area of similar surface type. As
seen in the attraction rate field (Figures 13 and 14), visual inspection of the modeled 10 m winds
reveals very localized convective circulations that resulted in gusty higher winds at the grid point
closest to the measurement site. However, within 5 km the 10 m winds were still below 4 m s−1 as
observed through 15:45 MDT (Figures 9 and 10). Quantifying this spatial and temporal variability can
be captured through ensemble approaches which can be derived using spatial statistics and/or by
running a multi-member ensemble; however, such analyses are beyond the scope of this paper.

Analyzing the time series data, we see that the attraction rate has quick repeated dips in it,
indicating short bursts of attracting activity. Comparing this to the the attraction rate fields shown
in Figure 13, we can see that the convective cells are bordered by narrow troughs of the attraction
rate field. These dips appear to be an indicator of the movement of convective cells across a location,
and thus a transition of the observer from one convective cell to another.

As mentioned before, there was good agreement between the attraction rate as calculated from the
WRF-LES model’s predictions and the attraction rate as calculated from sensor measurements. There is
an exception to this agreement during the second UAS mission on 17 July 2018 around 1400 MDT.
During this mission, the sensors measured the attraction rate drop below −200 hr−1, yet the model
prediction for this time was closer to −50 hr−1. Looking at the attraction rate field for this time period,
Figure 13, we can see there was a lot of convective activity going on in this region of the domain.
Furthermore, looking at the time series data, Figure 12, we can see that the WRF-LES model does
predict a dip in the attraction rate around that time. These dips appear to be an indication of transition
between convective cells. Thus, the UAS and ground station measurements are likely picking up
highly localized attraction at that time as a convective cell passes by, attraction which is falling below
the scale of the model.

Another noteworthy event happened during the fourth UAS flight on 17 July 2018. During this
flight, a front passes through the sampling area, coming out of the east. In Figure 14, we show the
predicted front (white curve) just before passing by our sampling area, marked as a red dot. In the time
series data, Figure 12, we can see two small dips right before 1600 in the attraction rate as predicted
by the WRF-LES model. During this same period, we have a sharp drop in the attraction rate as
calculated by our UAS measurements, followed by a quick uptick and then another drop as the flight
data ends. These dips happen at approximately the same time the front was predicted to pass through
the sampling area. It is thus very likely that the drops calculated correspond to the predicted front
passing through our measurement sampling area.

The troughs of the attraction rate field that we are detecting are very likely to be important
indicators of LCSs. The attraction rate field is the limit of the backward-time FTLE field as integration
time goes to zero [31]. As mentioned in the introduction, ridges of the FTLE field tend to coincide with
LCSs [21–28]. Whereas the FTLE is defined as a positively valued scalar field, indicating stretching,
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the attracting rate field is largely negative, indicating shrinking. Troughs of the attraction rate field are
the analogues to ridges of the backward-time FTLE field. These troughs can be thought of as attracting
LCSs. Therefore strong dips in the attraction rate time series should correspond to the passage of
attracting LCSs.

5. Conclusions

We equipped a ground station and two unmanned aircraft systems (UASs) with identical
ultrasonic anemometers. Flights reported here were conducted 10 to 15 m above ground level (AGL)
at the Leach Airfield in the San Luis Valley, Colorado as part of the ISARRA 2018 flight campaign.
The ultrasonic anemometers were used to collect simultaneous measurements of wind speed and
wind direction in a fixed triangle pattern. Results showed excellent agreement among sensors across
different platforms, particularly for wind speed. Over the same time period as the sampling campaign,
a WRF-LES model was used to determine the wind field across the sampling domain.

Data from the ground-based sensors and the two UASs were used to detect attracting regions
(also known as Lagrangian coherent structures or LCSs), which have the potential to attract and
transport high concentrations of chemical and biological agents. This is the first time that direct
measurement of an LCS indicator was made in the atmosphere using a team of sensors.

Coordinated teams of aerial and ground-based sensors provide unique environmental data
that have the potential to inform real-time decisions regarding rapid emergency responses, such as
following the transport of hazardous agents after a hurricane. The integration of real-time data from
unmanned assets, advanced mathematical techniques for transport analysis, and predictive models
can help assist in emergency response decisions in the future.
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