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ABSTRACT

For the recently legalized US hemp industry (Cannabis sativa), cross-pollination between neighboring fields has become a
significant challenge, leading to contaminated seeds, reduced oil yields, and in some cases, mandated crop destruction. As a
step towards assessing hemp cross-pollination risk, this study characterizes the seasonal and spatial patterns in windborne
hemp pollen dispersal spanning the conterminous United States (CONUS). By leveraging meteorological data obtained through
mesoscale model simulations, we have driven Lagrangian Stochastic models to simulate wind-borne hemp pollen dispersion
across CONUS on a county-by-county basis for five months from July to November, encompassing the potential flowering
season for industrial hemp. Our findings reveal that pollen deposition rates escalate from summer to autumn due to the
reduction in convective activity during daytime and the increase in wind shear at night as the season progresses. We find
diurnal variations in pollen dispersion: nighttime conditions favor deposition in proximity to the source, while daytime conditions
facilitate broader dispersal albeit with reduced deposition rates. These shifting weather patterns give rise to specific regions of
CONUS more vulnerable to hemp cross-pollination.

Introduction1

The 2014 and 2018 US Farm Bills legalized the production of industrial hemp (Cannabis sativa) for cannabidiols, seed, and2

fiber1. This nascent industry has been challenged by wind-blown cross-pollination between neighboring hemp fields, leading3

to contaminated seeds, reduced oil yields, and in some cases, mandated crop destruction2, 3. Financial impacts reported in a4

Colorado survey2 ranged from $12,000 to millions of dollars, with an Oregon lawsuit alleging damages of over $8 million4.5

Economic modeling3 shows that the industry will transition away from cannabidiol hemp production entirely without effective6

cross-pollination mitigation strategies.7

As hemp production has only recently been legalized1, there is a deficit in hemp dispersal research. The only study8

quantifying hemp pollen dispersal as a function of distance from a known source is an experiment by Small and Antle9

(2003)5. They sampled hemp pollen for three weeks at distances of up to 400 meters from a source field and observed10

significant deposition even at the edge of their domain, 17,000 pollen grains/m2/day, enough to “achieve excellent seed set”,11

i.e., successfully cross-pollinate. The authors noted that due to its small size (∼30 microns) hemp pollen travels farther and12

deposits in greater quantities than other wind-pollinated crops, and that it is prolific—each male flower can release up to13

350,000 pollen grains, and there are potentially hundreds of flowers on larger plants6. A single male plant can therefore release14

about 100 million pollen grains. Recommended isolation distances are far greater than the experimental domain, typically15

varying between 1 – 5 km7, 8, but there have been reports of cross-pollination up to 20 km9 and even 48-96 km away2. One16

study estimated that cannabis pollen had travelled over 200 km, from Morocco to Spain10. This indicates that hemp pollen has17

great potential for long-distance transport, and that the ‘fat tail’ of the hemp pollen dispersal kernel could play an outsized role18

in cross-pollination between fields.19

Dispersal modeling studies show that the fat tail in wind-borne dispersal is highly sensitive to changes in meteorological20

conditions, particularly the combined effects of shear and convective turbulence. During the day, solar heating of the surface21

induces a positive heat flux that creates large-scale convective updrafts. Shear-driven turbulence arises as horizontal wind22

passes over rough surfaces. One study found that rising temperatures, correlated with increasing heat flux, led to a greater23

proportion of seeds traveling beyond 100 meters in simulations11. Another found that sustained updrafts caused dandelion seeds24

to disperse further, while horizontal wind speed did not play a factor12. In contrast, Soons et al (2004)13 found that horizontal25

wind velocity was the primary driver of downwind transport, and heat flux only played a role when wind velocity was low (< 426

m/s). Understanding such patterns in variation of the tail would help inform cross-pollination mitigation strategies.27

Two dispersal modeling studies have identified seasonal and diurnal patterns in the variation of wind-borne dispersal kernels.28



Oneto et al. (2020)14 used the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to simulate fungal29

spores released at ten North American locations in January, April, July, and October, 2014. They found a strong diurnal pattern30

in average flight times, with spores staying in the air longer during the day than at night. They also observed seasonal changes,31

with the longest flight times in July and lowest in January. Savage et al. (2012)15 simulated spore dispersal using hourly32

meteorological inputs from a large-scale weather model at two towns in Western Australia for June and September 2007, early33

winter and early spring, respectively. They found seasonal and diurnal changes in the number of spores travelling past 10 km,34

and differences between the two towns, aligning with seasonal and diurnal changes in temperature and wind velocity. These35

studies suggest contiguous spatial patterns in dispersal on a country-wide scale.36

In this study, we seek seasonal and spatial patterns in pollen dispersal spanning the conterminous United States (CONUS),37

revealing regions more prone to cross-pollination. We extend the methodology of Savage et al. (2012), using meteorological38

data provided by a mesoscale model simulation to drive Lagrangian Stochastic (LS) models of pollen dispersion for each39

county in the United States over five months. The LS model is ideal for examining the sensitivity of dispersal due to shear40

and convection, as it more naturally captures the variations of turbulent flow using stochasticity. It is an application of41

Brownian motion to turbulent diffusion, in which the trajectories of many particles through the air are modeled as random42

walks. By releasing thousands of particles and computing an ensemble average of their trajectories, we can determine the43

relative concentration at any point in the domain and the mean shape of the plume. Therefore, they require a fraction of the44

computational resources of more resolved Eulerian models like Large Eddy Simulations. Although conventional Gaussian45

plume models are computationally lighter than LS models, their treatment of turbulence is more prescribed. Modifications have46

been made to incorporate effects like convection in Gaussian plume models (for example, the AERMOD model16), but these47

require more parameters and increase complexity17.48

We used two LS model formulations: a convective boundary layer model18–20 for unstable (typically day) conditions and49

a surface layer model21 for stable (night) conditions. To drive the LS model, we used meteorological fields obtained from a50

Weather Research and Forecasting (WRF) model simulation over CONUS for the entire year of 201622. This dataset comprises51

an hourly time series of meteorological conditions on a 12 km-square grid. For each county, we extracted the weather data at52

the grid point nearest to its centroid and averaged across local noon and midnight hours for each month from July to November,53

to represent average “day” and “night” conditions respectively. We performed LS simulations for day and night conditions, for54

five months from July to November, for each of 3,107 counties in the CONUS, totalling to 31,070 simulations. In this study, we55

used 2D LS models, in which we simulate pollen travelling in the downwind and vertical directions. Rather than observing56

concentrations, we directly count the number of simulated particles which have deposited in 250 meter-wide bins up to 5057

km downwind of a source, forming a dispersal kernel for each simulation. The meteorological conditions are assumed to be58

statistically stationary and horizontally homogeneous for each simulation.59

To the best of our knowledge, this is the first simulation study of hemp pollen dispersal. It is also the first large-scale60

simulation study of the inhomogeneity of pollen dispersal across regions and seasons.61

Results and discussion62

Simulation of day and night pollen dispersion over five months reveals significant seasonal and spatial variations, particularly in63

the tail of the dispersal kernel. Each simulation yielded a dispersal kernel, or number of particles deposited downwind from64

the source in 250 m wide bins, normalized by the number of particles released. Figure 1a and b show median day and night65

dispersal kernels on a log scale by month for each of nine US climate divisions23, in order to compare between climatically66

different regions. We observe depositions up to 50 km downwind, the edge of our domain, which is the limit of applicability of67

our LS model.68

69

The tail of the dispersal kernel varies seasonally and spatially. Simulations of day and night pollen dispersion over five70

months yields variation only in the tail of the dispersal kernel. For all climate regions, in both day and night conditions, Figure71

1 shows a steep decline in depositions by two orders of magnitude within the first few kilometers of the source. Approximately72

70% of simulated pollen is deposited in the first bin alone for all cases. Figure 2a shows that across all simulations, dispersal73

kernels decreased to 1% of released particles within 3 km of the source. Although there is a slight increase in distance for74

nighttime conditions, this region of steep decline is indistinguishable across counties regardless of region and seasonal weather75

changes.76

While this steep decline in depositions appears to support commonly-used hemp isolation distances (< 5 km7, 8), even 1%77

of 100 million pollen grains would result in 1 million pollen depositing at that distance. In Figure 2b, lowering the threshold to78

0.1% of released particles results in far more spread, 1-10 km during the day, and 10-15 km at night. Further decreasing the79

threshold to 0.01% results in distances varying throughout the entire domain, as shown in Figure 2c. For hemp in particular, the80

Small and Antle experiment5 provides evidence that even reduced depositions at the tail of the distribution can result in effective81
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cross-pollination. Given the prolific nature of hemp pollen, potentially massive fields, and reports of hemp pollen travelling82

well beyond established isolation distances, the fat tail of the dispersal kernel becomes necessary to assess cross-pollination83

risk24,25.84

We find that the tail of the dispersal kernel below the 0.1% and 0.01% thresholds and beyond 3 km, shows considerable85

variability. Figure 2b and c show stark differences between day and night simulations, driven by diurnal differences in wind86

conditions. For more detail, see Supplementary Figure S3. Below the 0.01% threshold, we observe a large spread in nighttime87

threshold distances and two peaks for day simulations, which point to large-scale regional and seasonal shifts in wind conditions.88

Daytime seasonal and spatial patterns. In Figure 1, daytime dispersal kernels for all climate regions exhibit a steady rise89

from July to November. This increase is responsible for the second peak in daytime 0.01% threshold distances, which is90

dominated by simulations later in the season. Although all regions experience increase over the season, the Southwest region91

maintains the least depositions throughout. In the peak summer months of July and August, the Southwest region experiences92

the lowest depositions, as do the Northwest, Northern Rockies & Plains, and Northeast. By October and November these latter93

three regions exhibit an almost 10-fold increase, shifting from relatively low depositions to the highest, on par with the Upper94

Midwest and Ohio Valley.95

Seasonal shifts are most apparent between 5 and 10 km downwind, where overall depositions increase by nearly an order96

of magnitude. At this distance, Figure 1 shows a distinctive local minimum near the source for nearly all simulations. The97

daytime dispersal dip in an otherwise monotonically decreasing curve is due to updrafts from convective turbulence26, 27, and98

can be interpreted as a region of relatively less deposition, or a “pollen shadow”, in the near-field downwind of the source.99

Beyond the pollen shadow, there is relatively less seasonal and regional variation in depositions, indicating that in daytime,100

these downwind distances are not as strongly tied to patterns in underlying meteorological parameters.101

Mapping out daytime deposition values in Figure 4a at 5 km, 10 km, 20 km, and 35 km downwind reveals contiguous,102

large-scale seasonal and spatial patterns. Within the pollen shadow, at 5 km downwind, Northern counties are the first to103

experience increases in deposition. From September, we see a region of higher depositions in California and the Upper Midwest.104

That region extends to the northernmost counties by October, coalescing into a band above about 40◦ N latitude in November.105

Further downwind, beyond the pollen shadow, this pattern of northern seasonal increase is not as apparent; only the Southwest106

stands out with the lowest depositions throughout the season.107

We observe the lowest depositions in simulations with higher boundary layer height, zi, and greater convective velocity, w∗.108

High w∗ and zi together indicate greater buoyancy associated with the surface heat flux and more convective turbulence28. Scatter109
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Figure 1. Median dispersal kernels for each month during (a) daytime and (b) nighttime, separated by US climate region:
Northeast (NE), Upper Midwest (UM), Ohio Valley (OV), Southeast (SE), Northern Rockies & Plains (NRP), South (S),
Southwest (SW), Northwest (NW), and West (W). Dispersal kernels are formed by counting depositions within 250 meter-wide
bins up to 50 km downwind of the source, normalized by the amount released. Shading represents data between the 10th and
90th percentiles. Note that the vertical axis is a log scale.
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Figure 2. Distances at which dispersal kernels first fall
below a threshold: (a) 1%, (b) 0.1%, and (c) 0.01%. Red
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Figure 3. Heat map of 0.01%-distances averaged over
all day and night simulations from July to November for
each county.

plots and correlation values between daytime depositions and these meteorological parameters are provided in Supplementary110

Figure S2 and the monthly heatmaps are shown in Supplementary Figure S5. High convective conditions in summer leads to111
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Figure 4. Percent of particles deposited in 250 meter-wide bins at downwind distances of 5, 10, 25, and 35 km for each
county: (a) daytime simulations, (b) nighttime simulations. Note that the colorbar is a log scale.
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more pollen uplifting and less deposition, particularly in the pollen shadow. More pollen is uplifted, carried far from the source,112

before descending in small quantities at great distances. A reduction in convective conditions from summer to fall explains113

the pattern of deposition increase for northern regions, particularly within the pollen shadow. It is also why the Southwest114

exhibits low depositions throughout the season. Greater convective conditions makes long-distance transport of pollen more115

likely11, 14, 15, but results in fewer depositions within the domain.116

Our results align with other dispersal studies, which show that greater sensible heat flux and warming temperatures during117

the day led to greater transport distances11, 12, 15, particularly in combination with increased wind speed13. In our results,118

however, neither the 10-m wind speed (estimated roughly as 10u∗) nor the Monin-Obukhov length, L, influenced deposition119

counts, indicating that shear-driven turbulence did not play a major role in daytime dispersal patterns. This could be due120

to the monthly averaging of the meteorological input parameters. For example, monthly-averaged u∗ only varied between121

0.45-0.65 m/s, or maximum variations in 10-m wind speed of 2 m/s. It is likely that averaging resulted in less variation, allowing122

convective conditions to govern deposition patterns within the domain.123

In summary, during the day, we identify large-scale contiguous spatial patterns that shift from summer to fall. The Southwest124

maintains the lowest depositions throughout the season because it experiences greater convective conditions than all other125

regions. On the other hand, northern counties shifted from comparatively low to high depositions relative to other climate126

regions due to a decrease in convective conditions in the fall months. This is consistent with typical CONUS weather trends;127

Northern climate regions experience changing seasons more strongly, and daytime dispersal is particularly dependent on these128

seasonal factors.129

Nighttime seasonal and spatial patterns. Unlike the daytime curves, night-time dispersal kernels for each month show a130

monotonic decrease with downwind distance, as shown in Fig. 1b. Within the first 10 km, depositions at night are ten times131

greater than during the day. Relative to these large values, spatial patterns and seasonal differences only become clear beyond132

about 10 km. Beyond this distance, we observe slight overall increase in deposition primarily in October and November.133

While we do not see a major seasonal increase at night, shifting spatial patterns are discernible in both the heat maps134

and dispersion kernels. Figure 4b shows night-time depositions by county at 5, 10, 20, and 35 km downwind of the source.135

Observing heatmaps at 10 km and beyond, in July and August, there is a swathe of high depositions in the center of the country,136

beginning with the South region and extending into the Northern Rockies & Plains (NRP). By September, the South region is137

no longer as prominent, and by October, the swathe of high depositions has extended into the Upper Midwest (UM) and NRP.138

The Northeast (NE) region also progressively increases in depositions over the season. By November, the regions with the139

greatest deposition include the UM, NRP, and NE, while the least deposition occur in the Southeast and West regions.140

We find that regions of least deposition correspond to high friction velocity, u∗, high boundary layer height, zi, lower141

roughness length, z0, and high Monin-Obukhov length |L|. Scatter plots and correlation values between night-time depositions142

and these meteorological parameters are provided in Supplementary Figure S2. These parameters indicate more neutral143

conditions and greater wind shear, resulting in pollen travelling further from the source and depositing in greater amounts13. Our144

results show that greater u∗, i.e., greater horizontal wind speed, is primarily responsible for variations in night time dispersal,145

and the slight increase in depositions in the cooler months of October and November. This aligns with previous dispersal146

studies, which show that particles travel further15 and remain airborne for longer14 in winter than in summer months.147

Overall, we find that night-time dispersal kernels are dictated by wind speed, or shear-driven turbulence. This results in148

more depositions further downwind in cooler months, where depositions increased with greater wind speeds.149

Reconciling day and night patterns for cross-pollination vulnerability. We observe strong diurnal patterns and find that150

night-time dispersal dominates consideration of cross-pollination risk near the source. Within approximately 20 km of the151

source, night-time depositions are one to two orders of magnitude greater than during the day, as shown in Figures 1 and152

4. Nearly all released particles are deposited by 20 km at night – an average of 97% across night-time cases, compared to153

only 81% during the day. Cumulative depositions are shown in Supplementary Figure S4. This results in a stark difference in154

cross-pollination risk between day and night, showing that nighttime dispersal is more important to consider within the domain155

and within 20 km.156

Beyond this distance, nighttime dispersal kernels experience a steep decline in depositions, while daytime kernels possess a157

fatter tail. We can see this at 35 km in Figure 1, where the daytime kernels have a shallower slope than and in Figure 4, where158

most regions during the day are greater than at night. At night, almost all pollen is deposited near the source, but convective159

uplifting during the day allows for pollen to deposit in low quantities at the furthest reaches of the domain and even beyond it.160

Oneto (2020) found that spores released during the day had much longer flight times than at night, on the order of several days161

rather than a few hours and escaped into the stratosphere in greater numbers, while spores at night had flight times on the order162

of hours. For longer day flight times, pollen viability may become a factor for risk of cross-pollination14. Choudhary et al.163

(2014) found that viability of cannabis pollen only decreased substantially three days after release from the anther29. In our164

study, we are only considering dispersal within 50 km of the source. Even with a slow wind speed of 1 m/s, it would only take a165
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pollen grain 14 hours to traverse the 50 km domain, and so viability need not be taken into account. Within the domain, viability166

has little impact on cross-pollination risk, and so daytime dispersal patterns impact risk at the furthest reaches of our domain.167

It is possible that hemp pollen only disperses during the day, as is common for many wind-dispersed species25. One study168

observed that male cannabis anthers open and release pollen in the morning hours29. However, cannabis pollen measurement169

studies found only slight diurnal changes in concentration10, 30, indicating that cannabis pollen remains in the air throughout the170

day. As cannabis production has only recently been legalized, there is minimal research on the diurnal timings of cannabis171

pollen release. For these reasons, we consider both day and night dispersal in this study for risk assessment.172

While we cannot directly estimate risk of cross-pollination, as these are 2D models that do not take into account lateral173

spread, we can evaluate counties based on total counts of particles reaching certain distances downwind. In Figure 3, we174

plot the 0.01%-distances averaged over all day and night simulations from July to November for each county as a heat map.175

This figure shows that across all months and time periods, the Upper Midwest, Ohio Valley, and Northeast regions have the176

greatest average 0.01% threshold distances—they experience the most depositions at the farthest distances. Thus, according to177

simulation results alone, these regions are most vulnerable to cross pollination.178

However, when county-specific information such as hemp acreage and land area are incorporated, vulnerability does not
necessarily reflect the same contiguous spatial patterns demonstrated in Figure 3. In Equation 1 below, we incorporate this
information to compute a novel, dimensionless “vulnerability” metric for each county. We first normalize the dispersion area,
Adisp, i.e., the area of a circle with radius equal to the average 0.01% threshold distance, by the land area of each county, Aland.
This yields the fraction of a county that falls within its theoretical area of risk. We then normalize the number of acres of
planted hemp in 2023 per county31, Ahemp, by the land area of each county, Aland. This yields the proportion of land used for
hemp cultivation for each county. See Supplementary Figure S6 for heat maps of the components of the vulnerability metric.
We then multiply these two factors to produce a rudimentary measure of how vulnerable a county is to cross-pollination.

Vulnerability =
Adisp

Aland
×

Ahemp

Aland
. (1)

Figure 5 shows a heatmap of the vulnerability metric for all counties with nonzero hemp acreage in 202331. The five states with179

the most number of vulnerable counties (vulnerability > 10×10−6) are Kentucky, North Carolina, South Dakota, Wisconsin,180

and Minnesota.181

Limitations and future directions. Currently, there is no single LS model that addresses both stable and unstable conditions182

effectively across our entire domain. Therefore, to model dispersal both during the day (typically unstable) and the night183

(typically stable), we chose two separate LS model formulations. Although this choice of different models for day and night184

might influence the observed diurnal patterns in this study, our results qualitatively align with the literature in terms of day185

and night differences and seasonal variation14, 15. In addition, the LS model we use for stable conditions incorporates only186

shear-generated turbulence produced at the surface. In reality, turbulence in the nocturnal boundary layer is complex, involving187

physics such as decoupling from the surface layer, the low-level nocturnal jet, and slope effects28, 32. Future work to identify188

South Dakota (20) 

Kentucky (36)

Wisconsin (19)

Vulnerability

North Carolina (20) 

Minnesota (17)

x 10-6

Figure 5. Vulnerability to hemp cross-pollination across the conterminous United States. The counties with non-zero planted
hemp acreage as of 2023 are shown with darker shades showing greater vulnerability. The five states with the most counties
with vulnerability greater than 10×10−6 are shown with stars (number of counties in parenthesis).
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night-time dispersal patterns might include more nuanced modeling in stable conditions. In general, more resolved, albeit189

more computationally expensive models, would greatly improve risk prediction. These models could incorporate more detailed190

physics such as release of pollen from the anthers, dispersal within a canopy, wet deposition, and even conditions specific to a191

farm’s location like topography.192

This study was performed using meteorological data only from 2016 as a proof of concept. Warming temperatures could193

cause changes to these seasonal and spatial patterns. Kuparinen et al.11 demonstrated greater seed dispersal distances achieved194

in simulations when using increasing temperatures. Averaging meteorological data across months reduces the occurrence of195

extreme weather patterns and does not take into account frequency of certain conditions. When comparing cross-pollination risk196

between counties, frequency of weather conditions should also be taken into account. In addition, incorporating wind-direction197

frequency would provide directionality to cross-pollination risk assessment. For example, the Small and Antle experiment5198

measured six times more pollen deposition downwind than upwind at their source field over a period of two weeks.199

Furthermore, incorporating the distance between farms would provide a more sophisticated measure of county vulnerability,200

as was demonstrated theoretically for hemp farms in Kentucky counties33. Our vulnerability metric assumes one source of201

hemp per county, as data for the locations of individual farms are not currently available.202

Conclusion203

This investigation represents a pioneering effort to assess the potential risks associated with windborne hemp cross-pollination,204

emphasizing the variability in risk across different seasons and geographic regions. By leveraging meteorological data for205

an entire year, obtained through mesoscale model simulations, we have driven Lagrangian Stochastic models to simulate206

wind-borne pollen dispersion across the conterminous United States on a county-by-county basis. Our findings reveal that207

pollen deposition rates generally escalate from summer to autumn, attributed to the reduction in convective activity during208

daytime and the increase in wind shear at night as the season progresses. Notably, we detected pronounced diurnal variations209

in pollen dispersion: nighttime conditions favor deposition in proximity to the source, while daytime conditions facilitate210

broader dispersal albeit with reduced deposition rates. Such variability complicates the establishment of uniform isolation211

distances, suggesting the superiority of adaptive risk management strategies. These strategies could incorporate weather pattern212

considerations to mitigate cross-pollination risks more effectively and could include measures like intertemporal zoning, farm213

quotas, cross-pollination damage insurance, and regulatory policies.214

To our knowledge, this study is unprecedented in its comprehensive simulation of pollen dispersal’s regional and seasonal215

inhomogeneities, specifically focusing on hemp. Although this study centers on hemp pollen, the methodologies employed are216

broadly applicable to the dispersion of any lightweight particles. This study lays the groundwork for developing sophisticated217

approaches to managing agricultural cross-pollination risks, potentially influencing both policy and practice.218

Methodology219

Lagrangian Stochastic model formulations. For this study, we required simulation of dispersal across a wide range of220

wind conditions, encompassing both the convection-driven unstable conditions typical of daytime and the shear-driven stable221

conditions of night. There is a surface-layer LS model that has been used effectively in both conditions21, 24, 34, but modeling222

the surface-layer alone is not sufficient in convective conditions and up to the 50 km scale we are interested in. In convective223

conditions in particular, we need to model the entire boundary layer, to capture both plume rise and descent. There is not224

currently a single LS model that addresses both conditions effectively across our entire domain. So we use two formulations:225

the surface-layer model (SL) for stable conditions, and another model formulated for the convective boundary layer (CBL) for226

all unstable conditions.227

Unstable formulation. For all unstable convective conditions, we employ a model formulated for the CBL, first introduced228

by Luhar et al. (1989 & 1996)18, 35. This model captures the skewed nature of the vertical wind velocity fluctuations, due229

to the convective updrafts and downdrafts, using the summation of two Gaussian probability distribution functions (PDFs),230

one representing updrafts and the other downdrafts. Luhar et al. (1996)18 further introduced a new closure that enables the231

model to reduce to a single Gaussian distribution in the limit of zero skewness, typical of neutral and stable conditions, which232

expands the model’s applicability to neutral conditions. Boehm et al. (2005)19 adapted the model to include heavy particles, and233

Boehm et al. (2008)20 introduced wind statistics profiles which merge shear-generated turbulence at the surface with convective234

turbulence above. Here, CBL-SL wind statistics are merged in an effort to create a smooth transition from unstable to stable235

regimes. Results from the original CBL model aligned well with convective fluid tank experiments18. Predicted concentrations236

from the merged model were found to reasonably compare with measured aerial pollen concentrations20.237

Stable formulation. For all stable conditions, we used the surface-layer model as described in Aylor (2001)21. It differs from238

the CBL model in neutral conditions only in that it uses a jointly Gaussian PDF in the u and w wind velocity components239

(downwind and vertical, respectively), resulting in better modeling at the surface. The CBL model assumes u and w wind240
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velocity fluctuations are independent36. However, being a surface layer model, it incorporates only shear-generated turbulence241

produced at the surface. For the purpose of this study, including only the surface layer under stable conditions is sufficient, as242

species released in the stable boundary layer experience little vertical mixing28. In our simulations, pollen is released near the243

surface to represent release from a hemp field. Hence, we do not expect significant vertical transport above the surface layer.244

Results from this model have been previously compared favorably with measured pollen concentrations in stable conditions21.245

The complete model formulations for both stable and unstable conditions can be found in Supplementary Methods S-1.1 online.246

Wind statistics. LS models require wind statistics at every point in the domain, i.e., the mean, variances, covariances, and247

skewness. Both SL and CBL formulations assume horizontal homogeneity and stationarity, so that wind statistics vary only248

with height and remain constant for the duration of the simulation. Under these assumptions, we apply boundary layer scaling249

parameterizations to compute vertical profiles of the wind velocity statistics20, 32, 37–39 as a function of five meteorological250

parameters: the friction velocity u∗, the Monin-Obukhov length L, the convective velocity scale w∗, the surface roughness length251

z0, and boundary layer height zi. Complete wind statistics profiles utilized in the models can be found in the Supplementary252

Methods S-1.2 online.253

Hemp pollen simulations. To simulate hemp pollen dispersal for each county in the CONUS, we release particles from a point254

source at a height of h0 = 2 m. Hemp height can vary between 1-5 meters, depending on its type and growing conditions40, 41. A255

study examining hemp morphology found the mean height of 16 genotypes in the 1-2 m range42. We used a settling velocity of256

vs = 0.027 m/s, based on a typical hemp pollen diameter of 30 µm5, 41, using Stokes’ law. As hemp pollen is nearly spherical41,257

Stokes’ law provides a good approximation of settling velocity34, 43. Most hemp cultivars are photosensitive, flowering as day258

lengths shorten below a threshold (10-12 hours) following the summer solstice41, 44, which varies with latitude. An allergen259

study measured airborne cannabis pollen counts for 5 years (1992-1996) in Omaha, Nebraska, finding pollen starting in the260

last two weeks of July, peaking in late August, and ending in mid-September45. A Colorado survey reported cross-pollination261

between July to mid-October2. Therefore, we chose to simulate dispersion from July into November, to see the continuation as262

weather conditions change.263

Meteorological input. To drive the LS model, we use meteorological fields obtained from a Weather Research and Forecasting264

(WRF) model simulation over the CONUS for calendar year 201622. This dataset comprises an hourly time series of265

meteorological conditions on a 12 km-square horizontal grid, and has been evaluated extensively in previous studies46. At the266

grid-point nearest to the centroid of each county, we extracted meteorological parameters describing horizontal wind shear,267

convection, boundary layer height, and surface roughness, namely, the five variables mentioned above, (u∗,L,w∗,z0,zi). We268

averaged these parameters across local noon and midnight hours for each month from July to November to form county-specific269

monthly average “day” and “night” cases.270

Model simulations and boundary conditions. In each LS simulation—a daytime and a nighttime simulation for each county271

and for each month—100,000 particles were released at a height of 2 m with initial velocity selected from the velocity PDF,272

minus a constant settling velocity. Particles were removed from the simulation when they travelled above the boundary layer273

height zi, upwind 10 m, or downwind 50 km. The downwind extent of the domain was determined by computational constraints274

(resolution of depositions of 100,000 particles, and simulation time for this number of particles to traverse the domain), while275

considering cross-pollination distances of interest (5 km, 10 km, 20 km and greater). Particles were considered to have276

“deposited” at a height of 1 m and were removed from the simulation. This height was greater than the surface roughness length277

for the majority of counties, the lowest permissible bound for the model which allows for comparison between counties. In278

summary, particles are released at a 2 m height, advected by the wind model, and are considered deposited when they fall below279

1 m. Each simulation yielded a dispersal kernel, or (normalized) number of particles deposited downwind from the source, in280

250 m wide bins.281

Simplifications. To facilitate a large-scale comparative model, the simulation conditions are simplified. We treated dispersion282

for every county as if pollen was travelling over a flat, rough plane. The following phenomena and conditions are not considered:283

canopy escape, deposition probability, precipitation, topology, ground-cover, or variable source. We chose these simplifications284

to compare the effects of weather conditions on model predictions of dispersion across counties and seasons. We are primarily285

interested in how the spatio-temporal distribution in the five meteorological input parameters, described above, yield geographic286

and seasonal patterns in pollen transport distances. To get a nationwide overview, we chose to vary only these five parameters.287

For a more accurate assessment of local dispersion from an individual field, the other phenomena and conditions listed above288

need to be taken into account.289

Data and code availability290

Simulation results, monthly-averaged meteorological input data, and all dispersal model code are made available in the Virginia291

Tech Data repository: https://figshare.com/s/27bc288507c19fa8a580.292
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S-1 Supplementary Methods
S-1.1 Model Formulation
The Lagrangian Stochastic (LS) model is an application of Brownian motion to turbulent diffusion, in which the trajectories of
many particles through the air are modeled as random walks. Each step of a particle’s path is influenced by both random and
deterministic motions, guided by the statistics of the local wind field. By releasing thousands of particles and computing an
ensemble average of their trajectories, we can determine the relative concentration at any point in the domain and the mean
shape of the plume.

In this study, we implement two LS model formulations for the Eulerian velocity pdf: a convective boundary layer
(CBL) model for unstable conditions (L < 0)1, 2 and a surface layer (SL) model for stable conditions3 (L > 0), where L is the
Monin-Obukhov length.

The position increments for particles in the x (downwind) and z (vertical) directions are as follows3,

dx = (u′+U)dt, (1)
dz = (w′− vs)dt, (2)

where u′ and w′ represent the fluctuating horizontal and vertical velocities, U is the mean horizontal wind velocity described
further in Section S-1.2.1, and vs is a constant settling velocity for hemp computed using Stoke’s law to be 0.027 m/s based on
a typical hemp pollen diameter of 30 µm4, 5. As hemp pollen is nearly spherical5, Stoke’s law provides a good approximation
of settling velocity6, 7.

Particle velocity increments3 in the x and z directions are computed using the Langevin equation,

du′ = audt +buN (0,dt), (3)
dw′ = awdt +bwN (0,dt), (4)

which describes the incremental changes in u′ and w′ fluctuating particle velocities. The Langevin coefficients, au,aw and
bu,bw, account for the deterministic and stochastic components of particle acceleration, respectively. The stochastic timestep is
drawn from a normal distribution with a mean of 0 and variance dt.

The timestep, dt is computed as a fraction1, 3 of the lagrangian timescale τ:

dt = 0.02τ, (5)

τ = 2
σ2

w

C0ε
, (6)

where we chose the constant C0 = 38, 9, σ2
w is the vertical velocity variance and ε is the turbulent dissipation rate.

The two model formulations employed differ in their computation of the Langevin coefficients au and aw, and particularly
in how they solve for the Eulerian fluid velocity pdf PE(u′i,z) in the equations10 below.

ai =
φi

PE
+

1
2C0ε

∂PE
∂ui

PE
, (7)

bi =
√

C0ε. (8)

For both formulations, bu and bw remain the same as above.
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S-1.1.1 The Convective Boundary Layer (CBL) model for unstable conditions (L < 0)
The CBL model was introduced by Luhar et al. (1989)11, and computes PE(u′i,z) as the sum of two Gaussian pdfs to represent
convective updrafts and downdrafts in the boundary layer, shown in (9),

PE = APA +BPB,

PA =
1√

2πσA
exp

(
−(w′−wA)

2

2σ2
A

)
,

PB =
1√

2πσB
exp

(
−(w′+wB)

2

2σ2
B

)
.

(9)

It is extended to 2 dimensions based on Luhar (2002)8, 9, which takes the horizontal and vertical velocity fluctuations to be
independent. The Langevin coefficients then become,

aw =
φ

PE
−

1
2C0εQ

PE
, (10)

au =
−u′C0ε

2σ2
u

. (11)

The φ term has been adapted to heavy particles in Boehm et al. (2005)2. The full closure method to find A, B, wA, wB,
σA, σB is shown in Luhar et al. (1996)1. These are functions of the wind velocity profiles, which vary with height and are
described in Section S-1.2. Although the original CBL LS model1, 11 was a one-dimensional model intended for the well-mixed
boundary-layer, Boehm et al. (2008)8 incorporated wind statistics into this model which transition smoothly from the surface
layer to the convective boundary layer above.

S-1.1.2 Surface Layer LS Model for Stable Conditions (L > 0)
For stable conditions, the SL model incorporates a Gaussian pdf (eq. (12)) with jointly Gaussian velocity components (u, v, and
w), as described in3, 10, 12, giving a PE ,

PE =
1

(2π)3/2 detτ
1/2
i j

exp
(
− 1

2
(ui −Ui)τ

−1
i j (u j −U j)

)
. (12)

where τi j is the mean Reynold’s stress tensor, and contains terms for the variances and covariances of the wind velocity.
This yields the Langevin coefficients used in Aylor & Flesch (2001)3.

au =
1
A

b2
u(u′w′w′−σ

2
wu′)+

1
2

∂u′w′

∂ z
+

1
A
(σ2

w
∂σ2

u

∂ z
u′w′−u′w′ ∂σ2

u

∂ z
w′2 −u′w′ ∂u′w′

∂ z
u′w′+σu

∂u′w′

∂ z
w′2), (13)

aw =
1
A

b2
w(u′w′u′−σ

2
u w′)+

1
2

∂σ2
w

∂ z
+

1
A
(σ2

w
∂u′w′

∂ z
u′w′−u′w′ ∂u′w′

∂ z
w′2 −u′w′ ∂σ2

w

∂ z
u′w′+σ

2
u

∂σ2
w

∂ z
w′2), (14)

A = 2(σ2
u σ

2
w −u′w′2). (15)

S-1.2 Wind statistics
To compute the Eulerian velocity pdf PE(u′i,z), we need to specify the wind statistics at every point in the domain, i.e., the
mean, variances, covariances, and skewness. Assuming stationarity and horizontal homogeneity, the wind field statistics
remain constant over time and vary only with height. Under this assumption, boundary layer scaling techniques such as
Monin-Obukhov similarity theory, mixed layer, and surface layer scaling can be employed to generate vertical profiles of wind
statistics. As a result, only 5 meteorological parameters are required to drive the LS simulation: the friction velocity u∗, the
Monin-Obukhov length L, the convective velocity scale w∗, the surface roughness length z0, and boundary layer height zi.

S-1.2.1 Horizontal wind velocity profile
To model the mean horizontal wind-velocity profile, U , we use the logarithmic wind velocity profile from Monin-Obukhov
similarity theory13 with the stability correction function, ψM .

U =
u∗

0.4

[
ln
(

z
z0

)
+ψM

]
. (16)
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For stable conditions, we use the stability function as reported in Beljaars & Holtslag (1991)14, where a = 1, b = 2/3,
c = 5, and d = 0.35. In this paper, they compare the resulting velocity profiles with field measurements and find that this
parameterization performs well throughout the boundary layer despite the fact that surface-layer scaling is used. Optis et al.
(2016)15 also compared various stable wind profiles, including the one presented below, and show that it performs well up to
200 meters above the surface.

ψM = a
z
L
+b

(
z
L
− c

d

)
exp

(
−d

z
L

)
+

bc
d
. (17)

For unstable conditions, we use the stability function given by Paulson (1970)16. This has previously been used for other
unstable LS simulations3, 8, and is considered to approximate measurements well14.

ψM =−2ln
(

1+α

2

)
− ln

(
1+α2

2

)
+2tan−1(α)− π

2
, (18)

where,

α = (1−15
z−d

L
)1/4. (19)

S-1.2.2 Horizontal wind velocity variance
In stable conditions, we use the following relationship from Kantha and Clayson for the horizontal velocity variance (2000)17,

σ
2
u = 4u∗2

(
1− z

zi

)3/2

. (20)

In unstable conditions, we use the following parameterization from Luhar et al. (2002)9 for the horizontal wind velocity
variance.

σ
2
u = (0.6w∗)2. (21)

S-1.2.3 Vertical wind velocity variance
In stable conditions, for the vertical wind velocity variance, we use a relationship from Kantha and Clayson17,

σ
2
w = 3u∗2

(
1− z

zi

)3/2

. (22)

In the HYSPLIT model, this parameterization is provided as one option for simulating velocity variances in stable conditions.
Oneto et al. (2020) compared dispersal results using the Kantha and Clayson (2000) scheme with other parameterizations
offered by HYSPLIT, and found that there was little sensitivity.

In unstable conditions, we apply the merged parameterization from Boehm et al. (2005)8. This combines surface-layer
scaling with that of the convective boundary layer, so that the conditions ranging from very unstable to neutral can be accurately
modeled.

σ
2
w,CBL = 1.7w∗2(z/zi)

2/3(1−0.9z/zi)
4/3, (23a)

σ
2
w,neutral = u∗2(1.7− z/zi), (23b)

σ
2
w,merged =

(1− exp(z/L))w∗3
σ2

w,CBL +5exp(z/L)u∗3
σ2

w,neutral

(1− exp(z/L))w∗3 +5exp(z/L)u∗3 . (23c)

(23d)

S-1.2.4 Turbulence kinetic energy dissipation rate
In stable conditions, we use the profile suggested by Rodean (1996)10 for the entire stable boundary layer,

ε =
u∗3

0.4∗ z

(
1+3.5

z
L

)(
1−0.85∗ z

zi

)3/2

. (24)
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Rodean (1996) discusses that this profile was formed by fitting to a second-order turbulence model18, and has generally agreed
with measurements and other simulations.

In unstable conditions, we apply the merged surface layer/convective boundary layer profile described by Boehm et al.
(2008)8 to LS modeling, and found previously using Large Eddy Simulations19,

ε = 0.4
w∗3

zi
+

u∗3(1− z/zi)

0.4z(1−15∗ z/L)1/4 . (25)

S-1.2.5 Lagrangian Timescale
In all stabilities, we compute the lagrangian time scale using1, 3,

τ =
2σ2

w

C0ε
. (26)
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Figure S1
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Figure S-1. Scatterplots of five meteorological parameters for all day simulations vs. the percentage of particles
deposited at distances downwind of the source. The Spearman correlation coefficients relating depositions at each downwind
distance with the respective meteorological parameter are denoted for each plot. Decreasing deposition is most correlated with
decreased boundary layer height zi and w∗ beyond 1 km from the source.
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Figure S2
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Figure S-2. Scatter plots of meteorological input parameters vs. depositions for night cases. Scatterplots of five
meteorological parameters for all night simulations vs. the percentage of particles deposited at distances downwind of the
source. The Spearman correlation coefficients relating depositions at each downwind distance with the respective
meteorological parameter are denoted for each plot. At night, greater boundary layer height zi, friction velocity u∗, and
obukhov length |L| correlate with pollen travelling further - less deposition close to the source and increased deposition at all
downwind distances beyond 1 km. The convective velocity scale, w∗ is zero or a very small negative number for all night-time
conditions, which make up the vast majority of nighttime case, and is not incorporated in the stable LS model.
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Figure S3
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Figure S-3. Distances at which dispersal kernels first fall below a threshold for each month: (a) 1%, (b) 0.1%, and (c)
0.01%. Red represents day simulations, while blue represents night. Seasonal variation is most pronounced for the 0.01%
threshold distances, where the frequency of daytime distances beyond 30 km progressively increases from July to November.

Figure S4
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Figure S-4. Median cumulative depositions for each month during (a) day and (b) night, separated by US climate region:
Northeast (NE), Upper Midwest (UM), Ohio Valley (OV), Southeast (SE), Northern Rockies & Plains (NRP), South (S),
Southwest (SW), Northwest (NW), and West (W). Shading represents data between the 10th and 90th percentiles. Note that the
vertical axis is a log scale. There is a pronounced increase in total depositions in nighttime cases - most curves reach 100%
within the domain. During the day, the kernels level out below 90%, although there is an increase in depositions from July to
November.
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Figure S5
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Figure S-5. Heat maps of five meteorological parameters for all (a) daytime and (b) nighttime simulations over five
months from July to November. The spatial and seasonal patterns visualized here mirror the deposition patterns shown in the
main paper. During the day, the Southwest region maintains the highest convective velocity scale, w∗ and boundary layer
height, zi throughout the season, and therefore the lowest daytime depositions overall. At night, the Southeast and Southwest
regions have high friction velocity, u∗, high boundary layer height, zi, lower roughness length, z0, and high Monin-Obukhov
length |L|, which results in less deposition in our simulations.

Figure S6
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Figure S-6. Components of the vulnerability metric. (a) The acreage of hemp, Ahemp, planted in each county as of 202320,
where darker colors indicate greater planted hemp acreage. (b) The dispersal area Adisp, or area within a circle of radius equal
to the average 0.01%-threshold distance, where darker colors indicate a greater dispersal area. (c) The ratio of Adisp to the land
area of each county Aland , where red colors indicate regions where more Adisp > Aland .
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