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Bioaerosol Dispersal Across Scales:
Regional Patterns, Field Study, and Model Evaluation

Manu Nimmala

(ABSTRACT)

Bioaerosols–including seeds, pollen, fungal spores, bacteria, and viruses–are fundamental

agents connecting atmospheric processes to agriculture, ecosystem function, and human and

animal health. This dissertation uses Lagrangian stochastic (LS) models to simulate how

these particles travel and deposit across scales relevant for cross-pollination, with applica-

tions to many types of biological aerosols. First, we map seasonal and regional patterns of

windborne hemp pollen across the United States by running LS models with weather data to

simulate day- and night-time dispersal from summer through fall. These simulations identify

areas more susceptible to cross-pollination and show how patterns shift across seasons and

between day and night. We find regions more vulnerable to cross-pollination, with seasonal

and diurnal shifting patterns in dispersal. Next, we work to detect and model genetically

modified switchgrass pollen released from a small field in low-wind conditions during three

sampling campaigns with a suite of novel samplers. We find that only our highest-volume

samplers were able to detect pollen and that reducing the averaging window in the simula-

tions substantially improved emission-rate estimates. Finally, we evaluate the 3D LS models

used in this dissertation by comparing them to a high-fidelity model driven by large-eddy

simulation (LES) in seven daytime convective boundary layer conditions. The LS models

show moderate accuracy in strongly convective conditions, but they fail in near-neutral con-

ditions due to issues in how they are parameterized rather than in their underlying equations.



Together, these results clarify when LS models can effectively substitute for more computa-

tionally intensive LES, reveal how sampler design and averaging choices shape what can be

extracted from field measurements, and demonstrate the value of weather-aware modeling for

cross-pollination risk assessment and broader questions of bioaerosol transport. Collectively,

this work strengthens the scientific foundation needed to predict, manage, and mitigate the

movement of biological aerosols in an increasingly variable atmosphere.
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Manu Nimmala

(GENERAL AUDIENCE ABSTRACT)

Bioaerosols–including seeds, pollen, fungal spores, bacteria, and viruses–are fundamental

agents connecting atmospheric processes to agriculture, ecosystem function, and human and

animal health. This dissertation uses Lagrangian stochastic (LS) models to simulate how

these particles travel and deposit across scales relevant for cross-pollination, with applica-

tions to many types of biological aerosols. First, we map seasonal and regional patterns

of windborne hemp pollen across the United States by running LS models with large-scale

weather data to simulate day- and night-time dispersal from summer through fall. These

simulations identify areas more susceptible to cross-pollination and show how patterns shift

across seasons and between day and night. Next, we work to detect and model geneti-

cally modified switchgrass pollen released from a small field in low-wind conditions during

three sampling campaigns. We find that only the highest-volume samplers captured pollen,

and that using shorter averaging windows in the simulations greatly improved emission-rate

estimates. Finally, we evaluate the 3D LS models used in this dissertation by comparing

them to a high-fidelity model driven by large-eddy simulations (LES) across seven daytime

atmospheric conditions. The LS models show moderate accuracy in strongly convective con-

ditions, but they fail in near-neutral conditions due to issues in how they are parameterized

rather than in their underlying equations. Together, these results clarify when LS mod-

els can effectively substitute for more computationally intensive LES, reveal how sampler

design and averaging choices shape what can be extracted from field measurements, and



demonstrate the value of weather-aware modeling for cross-pollination risk assessment and

broader questions of bioaerosol transport. Collectively, this work strengthens the scientific

foundation needed to predict, manage, and mitigate the movement of biological aerosols in

an increasingly variable atmosphere.
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Chapter 1

Introduction

1.1 Bioaerosols are important and matter at different scales

Bioaerosols are small airborne particles formed and emitted from biological sources that link

atmospheric transport to processes in climate, ecosystems, agriculture, and health. They

include pollen, seeds, bacteria, fungi, and viruses, with diameters ranging from 1 nm to

100 µm [3]. They influence cloud microphysics and climate, plant reproduction and gene

flow, and the spread of plant and human disease. For example, they are of vital interest

to applications such as ice nucleation and cloud condensation [4], gene flow in relation to

historical human cultivation [5, 6] and plant evolution [7], natural forest regeneration [8],

airborne human infection [9], bioconfinement [10, 11, 12, 13] and regulation of genetically

modified organisms (GMO) in agriculture [14, 15, 16], modeling ecological changes in plant

populations [13, 17, 18, 19], allergenic pollen [20, 21, 22, 23], harmful algae blooms [24, 25,

26, 27], and the spread of plant diseases [28, 29, 30, 31, 32, 33]. In all of these settings,

the central question is how these particles are emitted, transported, and ultimately removed

from the atmosphere—that is, their dispersal.

The impacts of bioaerosol dispersal are scale-dependent, with relevant length scales ranging

from a few meters to thousands of kilometers. In the context of human health, dispersal

of bacteria and viruses via coughing and sneezing, such as those caused by chicken pox,

measles, bacterial meningitis, and the famous 1.5 meter coronavirus social distancing rule

1



[34, 35] are all of interest within a few meters of the source. At several hundred meters

to kilometers, legionnaire’s disease, a potentially deadly respiratory illness caused by the

spread of the aerosolized water containing Legionella bacteria, often spread from cooling

towers becomes important [9, 35], as do diseases spread from animal farms tens of kilometers

like avian influenza virus and Q-fever [9, 35]. Harmful algal blooms in oceans and lakes,

such as the red tide in Florida [27] release toxins into the air upon aerosolization of water

droplets, causing respiratory illness, and can be carried several kilometers inland [36].

For plant disease, Van der Heyden et al. [33] provides an extensive list of studies that monitor

spores from infected crops from plot-scale experiments (e.g., apple scab, onion Botrytis,

cucumber downy mildew) up to regional and national networks (wheat rust, Fusarium head

blight, soybean rust). This monitoring is intended to prevent and manage local epidemics

and large-scale spread, resulting in crop and financial losses [37]. Aylor [38] discusses the

risk of spread of apple scab disease, from fungal spores released from decaying leaves on the

orchard floor, escape from the floor, spread within the orchard, and spread between orchards

[28, 38] causing deformed fruit, while tobacco blue mold has caused several regional-scale

epidemics in the United States [28]. On the continental scale, Dillon and Dillon [35] discuss

the introduction of soybean rust into North America from South America via Hurricane

Ivan in 2004, with continued infestations following this event and resulting crop damage.

Mohaimin et al. [37] argue that across these same local-to-continental scales, dispersal of

crop-pathogenic bioaerosols is a major constraint on crop yield and food security [39].

Seeds are the larger than most other bioaerosols and far shorter dispersal distances. They

tend to disperse within tens of meters and 100 meters is considered long-distance transport[40,

41, 42]. Yet, the study of their dispersal is essential for tracking gene flow for ecological

applications like natural forest regeneration [8],the spread of plant and tree populations

[19, 43, 44, 45, 46, 47, 48], and how climate change [49, 50] alters this spread.



Among bioaerosols, pollen has one of the most extensive dispersal literatures and is the pri-

mary focus of this dissertation. Pollen dispersal is studied primarily for gene flow prevention

in agriculture and ecology. A major and current concern is the bioconfinement of genetically

modified species, and prevention of their genetic drift through pollen dispersal at all scales

[10, 11, 12, 13]. There has been extensive work on this for maize pollen [51, 52, 53, 54, 55]

but other crops of interest include wheat and oilseed rape [56, 57]. Creeping bentgrass is

an example of potential ecological change caused by gene flow from cultivated transgenic

populations to feral populations [58, 59]. Similarly, switchgrass pollen dispersal is closely

studied because it is often genetically modified and has the potential to alter ecosystems,

particularly as it gains footing as a major biofuel source [11, 17, 18]. In our third chapter, we

feature a field study which measures and models switchgrass pollen dispersal. In our second

chapter, we study patterns in Cannabis pollen dispersal, specifically the long tails. Cannabis

pollen is light weight and produced in large quantities [60], and so its dispersal and potential

for cross-pollination at longer distances is of importance to the Cannabis industry. Long-

range monitoring and trajectory analyses show that pollen can travel hundreds to thousands

of kilometers, with birch and Cannabis pollen observed crossing national and continental

boundaries [23, 61, 62]. Pollen dispersal is also tightly coupled to climate, with projections

of changing allergen exposure or ecosystem shifts under future climate scenarios [20, 21, 22].

These studies illustrate that pollen dispersal spans the same local-to-regional scales as plant

pathogens, and they motivate the multi-scale, Lagrangian modeling framework developed in

this dissertation.



1.2 A framework for dispersal modeling

These scales, and the processes that dominate at each, motivate a range of modeling ap-

proaches for atmospheric dispersion. Most mechanistic atmospheric dispersion models can

be viewed as two coupled components: (1) a description of the underlying flow and turbu-

lence and (2) the method of simulating dispersion, a representation of how passive or heavy

particles are transported within that flow.

1.2.1 Flow underlying dispersal

The development of the wind field for dispersal hinges on several key assumptions. Over

what spatial and temporal scales is the dispersal occurring? At those scales, can stationarity

be assumed, and if not, what time resolution is required? Can horizontal homogeneity of

the wind field be assumed—is there terrain, is it flat, is it an idealized situation, or do

other processes take over at larger length scales? What horizontal resolution is required to

resolve those changes, the characteristics of the flow, and the characteristics of interest in

the dispersal distribution? Can vertical homogeneity be assumed, or does surface wind shear

need to be accounted for?

At mesoscales (102− 103 km), dispersal models like HYSPLIT [63], CMAQ [64], and FLEX-

PART [65] are driven by numerical weather prediction models (e.g. WRF [66], MM5 [67],

NCEP NAM [68]) and reanalysis products (e.g. ERA5 [69], MERRA-2 [70], NARR [71])

with horizontal grids on the order of 1 to 100 km [63].

For smaller scales (1 m − 102 km), the diversity in wind-field development configurations

explodes, each designed for a different combination of the key assumptions. At a high level,

dispersal models at these scales can rely on measurements, modeling, or some combination



of the two. Wind fields via measurements can come from single sensors or multiple in the

field providing points of data over time, profiles from a tower of sensors, a sodar, a weather

balloon, or a drone, and a network of measurements (e.g. NOAA National Data Buoy Center

(NDBC), METAR airport weather stations). CALMET for example, is a meteorological

pre-processor that uses data such as this in combination with physics-based adjustments to

produce a wind field for the dispersal model CALPUFF [72]. Modeling the wind field by

solving the governing equations of fluid motion over a gridded domain (DNS, LES, RANS)

can provide a much more detailed 3D wind field that could be time-varying, and can be

customized to fit a micro-scale domain of a few meters, for example to resolve escape of

particles from a plant canopy [73], or up to several kilometers, to model pollution over a city

[74].

1.2.2 Dispersal

For the dispersion component, most mechanistic models represent particle motion in either

an Eulerian or Lagrangian framework.

In a Eulerian framework, the transported quantity is the concentration C(x, y, z, t) which

evolves according to an advection-diffusion equation on a fixed grid. This approach is natural

for coupling to chemistry, and underpins the large-scale chemistry-transport model CMAQ.

At smaller scales, it struggles to resolve sharp gradients in concentration such as those occur-

ring near the source [75], and would need a much finer grid in order to do so. However, Pan et

al. (2014) reproduced observed particle concentrations inside the canopy roughness sublayer

using this approach [73]. The familiar Gaussian plume model is a further simplification that

assumes stationary horizontally homogeneous flow, a mean wind speed and eddy diffusivity

that are the same everywhere in the domain, and a continuous point source, leading to an



analytical solution for Gaussian-shaped dispersion that can be shaped by a number of factors

(the Pasquill-Gifford classes) [72]. The primary recommended dispersion model by the U.S.

EPA, AERMOD, is a sophisticated extension of the basic Gaussian plume framework that

incorporates vertical profiles of wind statistics, terrain effects, and convective turbulence,

among others, into its prescriptions of Gaussian plume spread [76].

By contrast, the Lagrangian framework does not prescribe the shape of the plume in this way;

it handles turbulence more naturally. In a Lagrangian framework, the model instead tracks

the trajectories of individual particles through the wind field, and the ensemble average of

their paths produces the concentration C(x, y, z, t). Lagrangian methods handle dispersal

near point and line sources and complex removal processes like wet and dry deposition

quite easily, on a particle-by-particle basis [31, 75]. However, they can be difficult to scale

up, requiring far more particles to resolve larger domains, dispersal in three-dimensions,

and tail-end regions of low concentration. At regional to continental scales, widely used

operational Lagrangian models include HYSPLIT [63] and FLEXPART [65], which transport

large ensembles of particles on meteorological fields from numerical weather prediction or

reanalysis products to simulate long-range dispersion and deposition [63, 77]. Similarly,

CALPUFF’s Guassian puff formulation, combines Lagrangian dispersal of a puff with a

gaussian distribution to represent its expansion. [78]

Lagrangian stochastic (LS) models make up the bulk of modeling in the Lagrangian frame-

work, in which particle turbulent velocities are modeled statistically. They are an application

of Brownian motion to turbulent diffusion [79], in which each step of a particle’s path is in-

fluenced by both random and deterministic motions, guided by the statistics of the local

wind field. In pollen, seed, and spore dispersal modeling, they are most commonly assumed

to be stationary within the dispersal time of an hour or less, horizontally homogeneous, and

they output what is essentially a time-averaged plume. They take as inputs vertical profiles



of the fluctuating wind velocity statistics (variances and covariances) and mean horizontal

velocities, and assume that the mean vertical wind velocity is zero. These are often con-

structed using boundary-layer scaling [54, 79, 80, 81, 82], given input parameters like the

friction velocity u∗, the Monin-Obukhov length L, the convective velocity scale w∗, the sur-

face roughness length z0, and boundary layer height zi. This framework has been applied

extensively to pollen, spore and seed disperal [30, 40, 45, 46, 49, 83], and has also been

extended to run in a time-varying capacity when driven by LES fields [84, 85].

Within this framework, two related but distinct LS formulations have been used most widely

for daytime plant dispersal in the atmospheric boundary layer: a convective boundary-

layer (CBL) model and a surface-layer (SL) model. The CBL LS model was originally

developed for strongly convective conditions, in which turbulence in the bulk of the boundary

layer is driven primarily by buoyancy. It represents the skewed fluctuating vertical-velocity

distribution w′ in the convective mixed layer with a bi-Gaussian probability density function

[86]. As a result, it is able to reproduce plume-rise from the surface due to thermals and the

subsequent descent from the boundary layer top as rising air cools [75, 85] . In this way, the

CBL formulation can reproduce plume rise from surface sources and the subsequent descent

of material lofted toward the top of the boundary layer. Although it has been modified to

include some surface effects, it may under-predict concentrations near the source at ground-

level [54]. Modifications have been made to incorporate surface layer effects into turbulence

production for the CBL model. Luhar et al. [87] developed a closure scheme to model skewed

turbulence that could reduce to Gaussian turbulence in the limit of zero skewness, closer to

the form used for surface layer turbulence. [54] introduced a parameterization that merges

surface layer wind statistics with convective boundary layer statistics. However, it does not

include the covariance terms known to be important in the surface layer [54].

One other common formulation for LS models assumes a jointly Gaussian distribution for



the fluctuating velocity components (u′, v′, w′), which can then include the covariance u′w′

between horizontal and vertical velocities [79, 88]. The assumption of the gaussian vertical

velocities is well-suited for shear-dominated turbulence at the surface, and has produced good

agreement with near-source measurements of pollen and spore dispersal [29, 31, 53, 75, 89].

In the chapters that follow, we refer to it as the SL (surface-layer) LS formulation, where it

is mostly applied. While the SL model captures the spread and rise of the plume in unstable

conditions, it cannot simulate the subsequent fall of the plume downwind. The CBL model

would perform better at longer distances [54]. These tradeoffs motivate Chapter 4 of this

dissertation.

1.3 Research Objectives

Aerobiology and atmospheric dispersion modeling have developed over decades into a vast,

multidisciplinary field spanning microbiology, plant pathology, ecology, and atmospheric

science—countless bioaerosol dispersal applications with impacts on a continuous spectrum

of scales, simulated with an array of dispersal modeling techniques.

In light of this breadth of background, this dissertation focuses on three specific gaps in

the literature: (1) quantification of cross-pollination risk for cannabis across seasons and

geographical regions, (2) measurement and modeling of GMO pollen from a small source in

low-wind conditions, and (3) validation of the two stationary LS models previously addressed

against a high-resolution time-varying particle dispersal model driven with LES.

These works are tied together by the use of Lagrangian stochastic models in different spatial

scales, driven by different meteorological inputs. Figure 1.1 illustrates the overall modeling

framework for this dissertation.
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Figure 1.1: The LS modeling framework used in each chapter. In Chapters 2 and 3, we
use mesoscale model inputs and local-scale meteorology inputs respectively to drive two
stationary LS model formulations. In Chapter 4, we use the time-varying LS-LES simulations
as a benchmark for the stationary LS formulations.

In Chapter 2, we use boundary-layer parameters and wind statistics from a mesoscale weather

model to drive regional-scale, two-dimensional LS simulations on a 50 km grid, applied

county by county across the continental United States. By coupling daytime convective-

boundary-layer (CBL) and nighttime surface-layer (SL) formulations, this chapter quantifies

how cannabis pollen dispersal potential varies across regions and seasons under realistic

meteorological forcing. To the best of our knowledge, this is the first large-scale simulation

study of the inhomogeneity of pollen dispersal across regions and seasons.

In Chapter 3, we focus on near-field dispersal from a very small, transgenic switchgrass field

trial under predominantly low-wind conditions. Using a combination of novel measurement

techniques, together with local-scale LS modeling (three-dimensional SL formulation, appro-

priate for local scales), this chapter examines pollen transport within roughly 25 m of the



source and uses it to estimate pollen source strength, identifying diurnal trends.

In Chapter 4, we compare the two stationary three-dimensional CBL and SL formulations

driven with stationary wind statistics against PALM LES, a time-varying LS-LES simulation,

in a range of daytime convective conditions to systematically evaluate them and identify

when they are reliable and where they fail. To the best of our knowledge, there have been

no studies which validate these models in three-dimensions in a range of convective regimes.

These three projects provide a cross-disciplinary and multi-scale view of bioaerosol transport.

They combine tools from engineering mechanics (Lagrangian stochastic models and large-

eddy simulation), atmospheric science (boundary-layer turbulence and regime transitions),

and plant biology (hemp and switchgrass phenology, pollen traits, and cross-pollination

outcomes). Throughout, the modeling is anchored by what can actually be measured in the

field and by how dispersion information is used in practice by growers, regulators, and other

stakeholders. The remainder of this dissertation returns to these themes, using the regional

simulations, field campaigns, and LES comparisons together to ask not only how far and

where pollen can travel, but also which levels of model complexity are appropriate for which

types of questions.



Chapter 2

Cannabis pollen dispersal across the United

States1

2.1 Introduction

The 2014 and 2018 US Farm Bills legalized the production of industrial hemp (Cannabis

sativa) for cannabidiols, seed, and fiber[90]. This nascent industry has been challenged

by wind-blown cross-pollination between neighboring hemp fields, leading to contaminated

seeds, reduced oil yields, and in some cases, mandated crop destruction [91, 92]. Financial

impacts reported in a 2022 Colorado survey[91] ranged from $12,000 to millions of dollars,

with an Oregon lawsuit alleging damages of over $8 million [93]. Economic modeling[92]

shows that the industry will transition away from cannabidiol hemp production entirely

without effective cross-pollination mitigation strategies.

As hemp production has only recently been legalized[90], there is a deficit in hemp dispersal

research. The only study quantifying hemp pollen dispersal as a function of distance from a

known source is an experiment by Small and Antle (2003) [60]. They sampled hemp pollen

for three weeks at distances of up to 400 meters from a source field and observed significant

deposition even at the edge of their domain, 17,000 pollen grains/m2/day, enough to “achieve

1This chapter has been published as: Nimmala, M., Ross, S. D., & Foroutan, H. (2024), Scientific Reports
14:20605, doi:10.1038/s41598-024-70633-x.
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excellent seed set”, i.e., successfully cross-pollinate. The authors noted that due to its small

size (∼30 microns) hemp pollen travels farther and deposits in greater quantities than other

wind-pollinated crops, and that it is prolific—each male flower can release up to 350,000

pollen grains, and there are potentially hundreds of flowers on larger plants [94]. A single

male plant can therefore release about 100 million pollen grains. Recommended isolation

distances are far greater than the experimental domain, typically varying between 1 - 5 km

[95, 96], but there have been reports of cross-pollination up to 20 km [97] and even 48-96

km away[91]. Two back-trajectory studies have demonstrated that Cannabis pollen likely

travelled over 200 km, from Northern Africa to Spain [61, 62]. This indicates that hemp

pollen has great potential for long-distance transport, and that the ‘fat tail’ of the hemp

pollen dispersal kernel could play an outsized role in cross-pollination between fields.

Dispersal modeling studies show that the fat tail in wind-borne dispersal is highly sensi-

tive to changes in meteorological conditions, particularly the combined effects of shear and

convective turbulence. During the day, solar heating of the surface induces a positive heat

flux that creates large-scale convective updrafts. Shear-driven turbulence arises as horizon-

tal wind passes over rough surfaces. One study found that rising temperatures, correlated

with increasing heat flux, led to a greater proportion of seeds traveling beyond 100 meters

in simulations[49]. Another found that sustained updrafts caused dandelion seeds to dis-

perse further, while horizontal wind speed did not play a factor [40]. In contrast, Soons et al

(2004)[45] found that horizontal wind velocity was the primary driver of downwind transport,

and heat flux only played a role when wind velocity was low (< 4 m/s). Understanding such

patterns in variation of the tail would help inform cross-pollination mitigation strategies.

Two dispersal modeling studies have identified seasonal and diurnal patterns in the variation

of wind-borne dispersal kernels. Oneto et al. [98] used the Hybrid Single-Particle Lagrangian

Integrated Trajectory (HYSPLIT) model to simulate fungal spores released at ten North



American locations in January, April, July, and October, 2014. They found a strong diurnal

pattern in average flight times, with spores staying in the air longer during the day than at

night. They also observed seasonal changes, with the longest flight times in July and lowest in

January. Savage et al. (2012)[30] simulated spore dispersal using hourly meteorological inputs

from a large-scale weather model at two towns in Western Australia for June and September

2007, early winter and early spring, respectively. They found seasonal and diurnal changes in

the number of spores travelling past 10 km, and differences between the two towns, aligning

with seasonal and diurnal changes in temperature and wind velocity. These studies suggest

contiguous spatial patterns in dispersal on a country-wide scale.

In this study, we seek seasonal and spatial patterns in pollen dispersal spanning the con-

terminous United States (CONUS), revealing regions more prone to cross-pollination. We

extend the methodology of Savage et al. (2012)[30], using meteorological data provided by a

mesoscale model simulation to drive Lagrangian Stochastic (LS) models of pollen dispersion

for each county in the United States over five months. The LS model is ideal for examining

the sensitivity of dispersal due to shear and convection, as it more naturally captures the

variations of turbulent flow using stochasticity. It is an application of Brownian motion to

turbulent diffusion, in which the trajectories of many particles through the air are modeled

as random walks. By releasing thousands of particles and computing an ensemble average

of their trajectories, we can determine the relative concentration at any point in the domain

and the mean shape of the plume. Therefore, they require a fraction of the computational

resources of more resolved Eulerian models like Large Eddy Simulations. Although conven-

tional Gaussian plume models are computationally lighter than LS models, their treatment

of turbulence is more prescribed. Modifications have been made to incorporate effects like

convection in Gaussian plume models (for example, the AERMOD model [76]), but these

require more parameters and increase complexity [99].



We used two LS model formulations: a convective boundary layer model [54, 87, 100] for un-

stable (typically day) conditions and a surface layer model[31] for stable (night) conditions.

To drive the LS model, we used meteorological fields obtained from a Weather Research

and Forecasting (WRF) model simulation over CONUS for the entire year of 2016 [101].

This high-resolution meteorological dataset, developed by the U.S. Environmental Protec-

tion Agency to support modeling applications, comprises an hourly time series of weather

conditions on a 12 km-square horizontal grid and has been extensively validated [102]. For

each county, we extracted the weather data at the grid point nearest to its centroid and

averaged across local noon and midnight hours for each month from July to November, to

represent average “day” and “night” conditions respectively. We performed LS simulations

for day and night conditions, for five months from July to November, for each of 3,107 coun-

ties in the CONUS, totalling to 31,070 simulations. In this study, we used 2D LS models,

in which we simulate pollen travelling in the downwind and vertical directions. From each

simulation, we compute a dispersal kernel by counting the number of particles which have

deposited in the simulation domain within 250 meter-wide bins up to 50 km downwind of

the source. The meteorological conditions are assumed to be statistically stationary and

horizontally homogeneous for each simulation.

To the best of our knowledge, this is the first simulation study of hemp pollen dispersal. It

is also the first large-scale simulation study of the inhomogeneity of pollen dispersal across

regions and seasons.

2.2 Results & discussion

Simulation of day and night pollen dispersion over five months reveals significant seasonal

and spatial variations, particularly in the tail of the dispersal kernel. Each simulation yielded



a dispersal kernel, or number of particles deposited downwind from the source in 250 m wide

bins, normalized by the number of particles released. Figure 2.1a and b show median day

and night dispersal kernels on a log scale by month for each of nine US climate divisions

[103], in order to compare between climatically different regions. We observe depositions up

to 50 km downwind, the edge of our domain, which is the limit of applicability of our LS

model.

2.2.1 The tail of the dispersal kernel varies seasonally and spatially.

Simulations of day and night pollen dispersion over five months yields variation only in the

tail of the dispersal kernel. For all climate regions, in both day and night conditions, Figure
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2.1 shows a steep decline in depositions by two orders of magnitude within the first few

kilometers of the source. Approximately 70% of simulated pollen is deposited in the first bin

alone for all cases. Figure 2.2a shows that across all simulations, dispersal kernels decreased

to 1% of released particles within 3 km of the source. Although there is a slight increase

in distance for nighttime conditions, this region of steep decline is indistinguishable across

counties regardless of region and seasonal weather changes.
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While this steep decline in depositions appears to support commonly-used hemp isolation

distances (< 5 km [95, 96]), even 1% of 100 million pollen grains would result in 1 million

pollen depositing at that distance. In Figure 2.2b, lowering the threshold to 0.1% of released

particles results in far more spread, 1-10 km during the day, and 10-15 km at night. Further

decreasing the threshold to 0.01% results in distances varying throughout the entire domain,

as shown in Figure 2.2c. This fat tailed deposition kernel is common for wind-dispersed



species[23, 104], and poses challenges when computing the risk of rare events in the tail,

e.g., burning embers from a wildfire[105] or cross-pollination. For hemp in particular, the

Small and Antle experiment [60] provides evidence that even reduced depositions at the

tail of the distribution can result in effective cross-pollination. Given the prolific nature of

hemp pollen, potentially massive fields, and reports of hemp pollen travelling well beyond

established isolation distances, the fat tail of the dispersal kernel becomes necessary to assess

cross-pollination risk [23, 53].

We find that the tail of the dispersal kernel below the 0.1% and 0.01% thresholds and beyond

3 km, shows considerable variability. Figure 2.2b and c show stark differences between day

and night simulations, driven by diurnal differences in wind conditions. For more detail, see

Supplementary Figure S4. Below the 0.01% threshold, we observe a large spread in nighttime

threshold distances and two peaks for day simulations, which point to large-scale regional

and seasonal shifts in wind conditions.

2.2.2 Daytime seasonal and spatial patterns.

In Figure 2.1, daytime dispersal kernels for all climate regions exhibit a steady rise from

July to November. This increase is responsible for the second peak in daytime 0.01% thresh-

old distances, which is dominated by simulations later in the season. Although all regions

experience increase over the season, the Southwest region maintains the least depositions

throughout. In the peak summer months of July and August, the Southwest region experi-

ences the lowest depositions, as do the Northwest, Northern Rockies & Plains, and Northeast.

By October and November these latter three regions exhibit an almost 10-fold increase, shift-

ing from relatively low depositions to the highest, on par with the Upper Midwest and Ohio

Valley.



Seasonal shifts are most apparent between 5 and 10 km downwind, where overall depositions

increase by nearly an order of magnitude. At this distance, Figure 2.1 shows a distinctive

local minimum near the source for nearly all simulations. The daytime dispersal dip in

an otherwise monotonically decreasing curve is due to updrafts from convective turbulence

[106, 107], and can be interpreted as a region of relatively less deposition, or a “pollen shadow”,

in the near-field downwind of the source. Beyond the pollen shadow, there is relatively less

seasonal and regional variation in depositions, indicating that in daytime, these downwind

distances are not as strongly tied to patterns in underlying meteorological parameters.

Mapping out daytime deposition values in Figure 2.4a at 5 km, 10 km, 20 km, and 35

km downwind reveals contiguous, large-scale seasonal and spatial patterns. Within the

pollen shadow, at 5 km downwind, Northern counties are the first to experience increases

in deposition. From September, we see a region of higher depositions in California and the

Upper Midwest. That region extends to the northernmost counties by October, coalescing

into a band above about 40◦ N latitude in November. Further downwind, beyond the pollen

shadow, this pattern of northern seasonal increase is not as apparent; only the Southwest

stands out with the lowest depositions throughout the season.

We observe the lowest depositions in simulations with higher boundary layer height, zi, and

greater convective velocity, w∗. High w∗ and zi together indicate greater buoyancy associated

with the surface heat flux and more convective turbulence [108]. Scatter plots and correlation

values between daytime depositions and these meteorological parameters are provided in

Supplementary Figure S2 and the monthly heatmaps are shown in Supplementary Figure

S6. High convective conditions in summer leads to more pollen uplifting and less deposition,

particularly in the pollen shadow. More pollen is uplifted, carried far from the source, before

descending in small quantities at great distances. A reduction in convective conditions from

summer to fall explains the pattern of deposition increase for northern regions, particularly



within the pollen shadow. It is also why the Southwest exhibits low depositions throughout

the season. Greater convective conditions makes long-distance transport of pollen more likely

[30, 49, 98], but results in fewer depositions within the domain.

Our results align with other dispersal studies, which show that greater sensible heat flux and

warming temperatures during the day led to greater transport distances [30, 40, 49], partic-

ularly in combination with increased wind speed [45]. In our results, however, neither the

10-m wind speed (estimated roughly as 10u∗) nor the Monin-Obukhov length, L, influenced

deposition counts, indicating that shear-driven turbulence did not play a major role in day-

time dispersal patterns. This could be due to the monthly averaging of the meteorological

input parameters. For example, monthly-averaged u∗ only varied between 0.45-0.65 m/s, or

maximum variations in 10-m wind speed of 2 m/s. It is likely that averaging resulted in less
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variation, allowing convective conditions to govern deposition patterns within the domain.

In summary, during the day, we identify large-scale contiguous spatial patterns that shift

from summer to fall. The Southwest maintains the lowest depositions throughout the season

because it experiences greater convective conditions than all other regions. On the other

hand, northern counties shifted from comparatively low to high depositions relative to other

climate regions due to a decrease in convective conditions in the fall months. This is con-

sistent with typical CONUS weather trends; Northern climate regions experience changing

seasons more strongly, and daytime dispersal is particularly dependent on these seasonal

factors.

2.2.3 Nighttime seasonal and spatial patterns.

Unlike the daytime curves, night-time dispersal kernels for each month show a monotonic

decrease with downwind distance, as shown in Fig. 2.1b. Within the first 10 km, depositions

at night are ten times greater than during the day. Relative to these large values, spatial

patterns and seasonal differences only become clear beyond about 10 km. Beyond this

distance, we observe slight overall increase in deposition primarily in October and November.

While we do not see a major seasonal increase at night, shifting spatial patterns are dis-

cernible in both the heat maps and dispersion kernels. Figure 2.4b shows night-time depo-

sitions by county at 5, 10, 20, and 35 km downwind of the source. Observing heatmaps at

10 km and beyond, in July and August, there is a swathe of high depositions in the center

of the country, beginning with the South region and extending into the Northern Rockies

& Plains (NRP). By September, the South region is no longer as prominent, and by Octo-

ber, the swathe of high depositions has extended into the Upper Midwest (UM) and NRP.

The Northeast (NE) region also progressively increases in depositions over the season. By



November, the regions with the greatest deposition include the UM, NRP, and NE, while

the least deposition occur in the Southeast and West regions.

We find that regions of least deposition correspond to high friction velocity, u∗, high bound-

ary layer height, zi, lower roughness length, z0, and high Monin-Obukhov length |L|. Scatter

plots and correlation values between night-time depositions and these meteorological param-

eters are provided in Supplementary Figure S3. These parameters indicate more neutral

conditions and greater wind shear, resulting in pollen travelling further from the source and

depositing in greater amounts [45]. Our results show that greater u∗, i.e., greater horizontal

wind speed, is primarily responsible for variations in night time dispersal, and the slight

increase in depositions in the cooler months of October and November. This aligns with

previous dispersal studies, which show that particles travel further [30] and remain airborne

for longer [98] in winter than in summer months.

Overall, we find that night-time dispersal kernels are dictated by wind speed, or shear-

driven turbulence. This results in more depositions further downwind in cooler months,

where depositions increased with greater wind speeds.

2.2.4 Reconciling day and night patterns.

We observe strong diurnal patterns and find that night-time dispersal dominates consider-

ation of cross-pollination risk near the source. Within approximately 20 km of the source,

night-time depositions are one to two orders of magnitude greater than during the day, as

shown in Figures 2.1 and 2.4. Nearly all released particles are deposited by 20 km at night

- an average of 97% across night-time cases, compared to only 81% during the day. Cumu-

lative depositions are shown in Supplementary Figure S5. This results in a stark difference

in cross-pollination risk between day and night, showing that nighttime dispersal is more



important to consider within the domain and within 20 km.

Beyond this distance, nighttime dispersal kernels experience a steep decline in depositions,

while daytime kernels possess a fatter tail. We can see this at 35 km in Figure 2.1, where the

daytime kernels have a shallower slope than and in Figure 2.4, where most regions during

the day are greater than at night. At night, almost all pollen is deposited near the source,

but convective uplifting during the day allows for pollen to deposit in low quantities at the

furthest reaches of the domain and even beyond it. Oneto et al. (2020)[98] found that spores

released during the day had much longer flight times than at night, on the order of several

days rather than a few hours and escaped into the stratosphere in greater numbers, while

spores at night had flight times on the order of hours. For longer day flight times, pollen

viability may become a factor for risk of cross-pollination [98]. Choudhary et al. (2014) found

that viability of Cannabis pollen only decreased substantially three days after release from

the anther [109]. In our study, we are only considering dispersal within 50 km of the source.

Even with a slow wind speed of 1 m/s, it would only take a pollen grain 14 hours to traverse

the 50 km domain, and so viability need not be taken into account. Within the domain,

viability has little impact on cross-pollination risk, and so daytime dispersal patterns impact

risk at the furthest reaches of our domain.

It is possible that hemp pollen only disperses during the day, as is common for many wind-

dispersed species [23]. One study observed that male Cannabis anthers open and release

pollen in the morning hours [109]. However, Cannabis pollen measurement studies found only

slight diurnal changes in concentration [61, 110], indicating that Cannabis pollen remains in

the air throughout the day. As Cannabis production has only recently been legalized, there

is minimal research on the diurnal timings of Cannabis pollen release. For these reasons, we

consider both day and night dispersal in this study for risk assessment.



2.2.5 Cross-pollination vulnerability.

While we cannot directly estimate risk of cross-pollination, as these are 2D models that

do not take into account lateral spread, we can evaluate counties based on total counts of

particles reaching certain distances downwind. In Figure 2.3, we plot the 0.01%-distances

averaged over all day and night simulations from July to November for each county as a heat

map. This figure shows that across all months and time periods, the Upper Midwest, Ohio

Valley, and Northeast regions have the greatest average 0.01% threshold distances—they

experience the most depositions at the farthest distances. Thus, according to simulation

results alone, these regions are most vulnerable to cross pollination.

However, when county-specific information such as hemp acreage and land area are incorpo-

rated, vulnerability does not necessarily reflect the same contiguous spatial patterns demon-

strated in Figure 2.3. In Equation (2.1) below, we incorporate this information to compute a

novel, dimensionless “vulnerability” metric for each county. We first normalize the dispersion

area, Adisp, i.e., the area of a circle with radius equal to the average 0.01% threshold distance,

by the land area of each county, Aland. This yields the fraction of a county that falls within

its theoretical area of risk. We then normalize the number of acres of planted hemp in 2023

per county [2], Ahemp, by the land area of each county, Aland. This yields the proportion

of land used for hemp cultivation for each county. See Supplementary Figure S7 for heat

maps of the components of the vulnerability metric. We then multiply these two factors to

produce a rudimentary measure of how vulnerable a county is to cross-pollination,

Vulnerability =
Adisp

Aland
× Ahemp

Aland
. (2.1)

Figure 2.5 shows a heat-map of the vulnerability metric for all counties with nonzero hemp

acreage in 2023 [2]. The five states with the most land area with vulnerability greater



than 10×10−6—Montana, South Dakota, Idaho, Wisconsin, and Kentucky—are enlarged to

illustrate vulnerable counties in more detail.

In counties with high vulnerability, large isolation distances may not be sufficient to prevent

cross-pollination, as the combination of more hemp acreage and larger 0.01% threshold dis-

tances result in a greater likelihood of pollen transport across the entire county. Instead,

a more comprehensive approach is necessary. A 2022 Colorado cross-pollination working

group suggested a voluntary pinning system to track where hemp is planted in a region[91].

Rather than mandating specific isolation distances, we recommend a pinning system which

includes location of outdoor planted, time of planting, and anticipated flowering dates. This

could then be combined with an awareness of when and where pollen transport is greatest,

as demonstrated in this study, to produce a dynamic time-dependent map of high-risk areas

within a county.

Idaho Vulnerability

Montana

x 10-6

South Dakota
Wisconsin

Kentucky

Figure 2.5: Vulnerability to hemp cross-pollination across the conterminous United States.
The counties with non-zero planted hemp acreage as of 2023 are shown with darker shades
showing greater vulnerability. The five states with the most land area with vulnerability
greater than 10× 10−6 are shown with stars.

The dependence of the vulnerability metric on dispersal distances and meteorological con-

ditions tends to vary by region on a country-wide scale. Within a state, variation in the



vulnerability metric is more dependent on hemp acreage within a county. These country-

wide spatial patterns and local variations could be useful for potentially insuring farmers in

the event of financial losses due to cross-pollination—another form of risk management, with

insurance coverage and premiums varying based on region and local risk.

Weather forecasting, combined with dispersal modeling, could provide a way to predict

when and where pollen will tend to travel further, rather than relying on historical weather

patterns as done in this study. This would enable individual farmers to plan their crops

strategically, incorporating dispersal patterns when evaluating the risks of growing one crop

over another. It would also allow for voluntary community-level planning, where stakeholders

make decisions together regarding when and where certain varieties should be planted in each

season. Finally, local government could require sharing of crop timing and location so that

more informed decisions could be made.

Cannabis is typically photosensitive, flowering as day lengths shorten below a threshold (typ-

ically 10-12 hours)[111, 112]. However, this varies depending on the cultivar and planting

location. A strain adapted to northern latitudes may flower in an entirely different month

when planted further south[113], and there are also non-photosensitive cultivars[114]. It may

be possible to strategically plan and plant crops so that flowering times between fiber/grain

growers and floral hemp do not overlap. A three-year Cannabis pollen sampling study[110]

in Tetouan, Morocco, observed that the main pollen season, when concentrations peaked,

began almost a month late due to rainfalls that caused delays in planting. Strategic planting

and community coordination could shift the dates of regional pollen concentration signifi-

cantly. In fact, artificially reducing the day-lengths by covering crops has also previously

been suggested to induce earlier flowering[115].

Strategic community planning for hemp growers would alleviate many of the challenges fac-

ing the US hemp industry today. This industry is extremely new, and is still developing the



infrastructure to balance production with supply-chain capacity and consumer demand[116].

For example, in North Carolina, there was a crash in cannabidiol hemp production following

a massive grower rush which exceeded demand[113]. There are also insufficient fiber pro-

cessors for the state to bounce back to growing for fiber. It has been suggested that hemp

grown for fiber, cannabidiols, and seed should be grown near their respective processing facil-

ities in order to optimize production and prevent such problems[116]. These kinds of risks,

in addition to the cross-pollination risk, can be managed with more intensive community

planning.

2.3 Limitations and future directions.

Currently, there is no single LS model that addresses both stable and unstable conditions

effectively across our entire domain. Therefore, to model dispersal both during the day (typi-

cally unstable) and the night (typically stable), we chose two separate LS model formulations.

Although this choice of different models for day and night might influence the observed di-

urnal patterns in this study, our results qualitatively align with the literature in terms of

day and night differences and seasonal variation [30, 98]. In addition, the LS model we use

for stable conditions incorporates only shear-generated turbulence produced at the surface.

In reality, turbulence in the nocturnal boundary layer is complex, involving physics such as

decoupling from the surface layer, the low-level nocturnal jet, and slope effects [81, 108].

Future work to identify night-time dispersal patterns might include more nuanced modeling

in stable conditions. In general, more resolved, albeit more computationally expensive mod-

els, would greatly improve risk prediction. These models could incorporate more detailed

physics such as release of pollen from the anthers, dispersal within a canopy, wet deposition,

and even conditions specific to a farm’s location like topography.



The models used in this study were shown to perform reasonably when compared to exper-

imental results, described further in the Methodology section. However, we have not found

previous experimental Cannabis pollen dispersal studies with enough information to validate

the model. Experimental evidence suggests that airborne Cannabis pollen is ubiquitous[117],

in part because of its long flight times due to its small size compared to other pollen[60].

Therefore, validation of dispersal from a known source is difficult. One approach is to use

a source made of genetically engineered (GE) plants which produce pollen with fluorescent

markers [11], enabling accurate source attribution. Our group is currently pursuing this in

collaboration with co-workers. However, making GE Cannabis has proven difficult, and a

study was performed instead with GE switchgrass, which produces pollen of a similar small

size [83]. A paper on this combined experimental and modeling study is forthcoming.

The present study was performed using meteorological data only from 2016. This data has

been validated with an extensive measurement network in the US[102], which was deemed

appropriate for this proof-of-concept study. Performing this same study over multiple years

could increase the robustness of our results and provide insight into possible yearly varia-

tion. For example, warming temperatures could cause changes to these seasonal and spatial

patterns. Kuparinen et al. [49] demonstrated greater seed dispersal distances achieved in

simulations when using increasing temperatures.

In this study, averaging meteorological data across months reduces the occurrence of ex-

treme weather patterns and does not take into account frequency of certain conditions.

Incorporating wind-direction frequency would provide directionality to cross-pollination risk

assessment. For example, the Small and Antle experiment [60] measured six times more

pollen deposition downwind than upwind at their source field over a period of two weeks.

For future studies, a better measure of cross-pollination risk would include frequency of

weather conditions and directional variability in deposition.



Furthermore, incorporating the distance between farms would provide a more sophisticated

measure of county vulnerability, as was demonstrated theoretically for hemp farms in Ken-

tucky counties [118]. Our vulnerability metric assumes one source of hemp per county, as

data for the locations of individual farms are not currently available. When averaging the

0.01%-threshold distances, we weighted day and night dispersal equally, as literature describ-

ing diurnal Cannabis emission rates is lacking. However, including temporally varying rates

of pollen emission would increase accuracy.

2.4 Conclusion

This investigation represents a pioneering effort to assess the potential risks associated with

windborne hemp cross-pollination, emphasizing the variability in risk across different sea-

sons and geographic regions. By leveraging meteorological data for an entire year, obtained

through mesoscale model simulations, we have driven Lagrangian Stochastic models to sim-

ulate wind-borne pollen dispersion across the conterminous United States on a county-by-

county basis. Our findings reveal that pollen deposition rates generally escalate from sum-

mer to autumn, attributed to the reduction in convective activity during daytime and the

increase in wind shear at night as the season progresses. Notably, we detected pronounced

diurnal variations in pollen dispersion: nighttime conditions favor deposition in proximity

to the source, while daytime conditions facilitate broader dispersal albeit with reduced de-

position rates. Such variability complicates the establishment of uniform isolation distances,

suggesting the superiority of adaptive risk management strategies. These strategies could in-

corporate weather pattern considerations to mitigate cross-pollination risks more effectively

and could include measures like intertemporal zoning, farm quotas, cross-pollination damage

insurance, and regulatory policies.



To our knowledge, this study is unprecedented in its comprehensive simulation of pollen

dispersal’s regional and seasonal inhomogeneities, specifically focusing on hemp. Although

this study centers on Cannabis pollen, the methodologies employed are broadly applicable

to the dispersion of any lightweight particles. This study lays the groundwork for devel-

oping sophisticated approaches to managing agricultural cross-pollination risks, potentially

influencing both policy and practice.

2.5 Methodology

Lagrangian Stochastic model formulations. For this study, we required simulation of dispersal

across a wide range of wind conditions, encompassing both the convection-driven unstable

conditions typical of daytime and the shear-driven stable conditions of night. There is a

surface-layer LS model that has been used effectively in both conditions [31, 53, 75], but

modeling the surface-layer alone is not sufficient in convective conditions and up to the 50

km scale we are interested in. In convective conditions in particular, we need to model the

entire boundary layer, to capture both plume rise and descent. There is not currently a

single LS model that addresses both conditions effectively across our entire domain. So we

use two formulations: the surface-layer model (SL) for stable conditions, and another model

formulated for the convective boundary layer (CBL) for all unstable conditions.

Unstable formulation. For all unstable convective conditions, we employ a model formulated

for the CBL, first introduced by Luhar et al. (1989 & 1996) [86, 87]. This model captures the

skewed nature of the vertical wind velocity fluctuations, due to the convective updrafts and

downdrafts, using the summation of two Gaussian probability distribution functions (PDFs),

one representing updrafts and the other downdrafts. Luhar et al. (1996) [87] further intro-



duced a new closure that enables the model to reduce to a single Gaussian distribution in the

limit of zero skewness, typical of neutral and stable conditions, which expands the model’s

applicability to neutral conditions. Boehm et al. (2005)[100] adapted the model to include

heavy particles, and Boehm et al. (2008)[54] introduced wind statistics profiles which merge

shear-generated turbulence at the surface with convective turbulence above. Here, CBL-SL

wind statistics are merged in an effort to create a smooth transition from unstable to stable

regimes. Results from the original CBL model aligned well with convective fluid tank ex-

periments [87]. Predicted concentrations from the merged model were found to reasonably

compare with measured aerial pollen concentrations [54].

Stable formulation. For all stable conditions, we used the surface-layer model as described

in Aylor (2001)[31]. It differs from the CBL model in neutral conditions only in that it uses

a jointly Gaussian PDF in the u and w wind velocity components (downwind and vertical,

respectively), resulting in better modeling at the surface. The CBL model assumes u and

w wind velocity fluctuations are independent [119]. However, being a surface layer model,

it incorporates only shear-generated turbulence produced at the surface. For the purpose of

this study, including only the surface layer under stable conditions is sufficient, as species

released in the stable boundary layer experience little vertical mixing [108]. In our simula-

tions, pollen is released near the surface to represent release from a hemp field. Hence, we

do not expect significant vertical transport above the surface layer. Results from this model

have been previously compared favorably with measured pollen concentrations in stable con-

ditions [31]. The complete model formulations for both stable and unstable conditions can

be found in Supplementary Methods online.

Wind statistics. LS models require wind statistics at every point in the domain, i.e., the



mean, variances, covariances, and skewness. Both SL and CBL formulations assume horizon-

tal homogeneity and stationarity, so that wind statistics vary only with height and remain

constant for the duration of the simulation. Under these assumptions, we apply boundary

layer scaling parameterizations to compute vertical profiles of the wind velocity statistics

[54, 79, 80, 81, 82] as a function of five meteorological parameters: the friction velocity u∗,

the Monin-Obukhov length L, the convective velocity scale w∗, the surface roughness length

z0, and boundary layer height zi. Complete wind statistics profiles utilized in the models

can be found in the Supplementary Methods online.

Hemp pollen simulations. To simulate hemp pollen dispersal for each county in the CONUS,

we release particles from a point source at a height of h0 = 2 m. Hemp height can vary

between 1-5 meters, depending on its type and growing conditions [111, 120]. A study exam-

ining hemp morphology found the mean height of 16 genotypes in the 1-2 m range [121]. We

varied the release height by ± 0.5 m to test the sensitivity of our results to changes in release

height. We found that although increasing the magnitude of depositions changed, qualita-

tively, the seasonal and spatial patterns we found remained the same. This can be found

in the Supplementary Figure S1 available online. We used a settling velocity of vs = 0.027

m/s, based on a typical hemp pollen diameter of 30 µm[60, 111], using Stokes’ law. As hemp

pollen is nearly spherical [111], Stokes’ law provides a good approximation of settling velocity

[75, 122]. Most hemp cultivars are photosensitive, flowering as day lengths shorten below

a threshold (10-12 hours) following the summer solstice [111, 112], which varies with lati-

tude. An allergen study measured airborne Cannabis pollen counts for 5 years (1992-1996)

in Omaha, Nebraska, finding pollen starting in the last two weeks of July, peaking in late

August, and ending in mid-September [117]. A Colorado survey reported cross-pollination

between July to mid-October [91]. Therefore, we chose to simulate dispersion from July into



November, to see the continuation as weather conditions change.

Meteorological input. To drive the LS model, we use meteorological fields obtained from a

Weather Research and Forecasting (WRF) model simulation over the CONUS for calendar

year 2016 [101]. This dataset comprises an hourly time series of meteorological conditions

on a 12 km-square horizontal grid, and has been evaluated extensively in previous studies

[102]. At the grid-point nearest to the centroid of each county, we extracted meteorological

parameters describing horizontal wind shear, convection, boundary layer height, and surface

roughness, namely, the five variables mentioned above, (u∗, L, w∗, z0, zi). We averaged these

parameters across local noon and midnight hours for each month from July to November to

form county-specific monthly average “day” and “night” cases.

Model simulations and boundary conditions. In each LS simulation—a daytime and a night-

time simulation for each county and for each month—100,000 particles were released at a

height of 2 m with initial velocity selected from the velocity PDF, minus a constant set-

tling velocity. Particles were removed from the simulation when they travelled above the

boundary layer height zi, upwind 10 m, or downwind 50 km. Pollen traveling above the

ABL were considered to be subject to transport far beyond the 50 km bounds of our model

domain. Such long-distance transport was not considered, as this study is more focused on

exploring risk of cross-pollination from nearby farms. The downwind extent of the domain

was determined by computational constraints (resolution of depositions of 100,000 particles,

and simulation time for this number of particles to traverse the domain), while considering

cross-pollination distances of interest (5 km, 10 km, 20 km and greater). Particles were

considered to have “deposited” at a height of 1 m and were removed from the simulation.

This height was greater than the surface roughness length for the majority of counties, the



lowest permissible bound for the model which allows for comparison between counties. In

summary, particles are released at a 2 m height, advected by the wind model, and are

considered deposited when they fall below 1 m. Each simulation yielded a dispersal kernel,

or (normalized) number of particles deposited downwind from the source, in 250 m wide bins.

Simplifications. To facilitate a large-scale comparative model, the simulation conditions are

simplified. We treated dispersion for every county as if pollen was travelling over a flat,

rough plane. The following phenomena and conditions are not considered: canopy escape,

deposition probability, precipitation, topology, ground-cover, or variable source. We chose

these simplifications to compare the effects of weather conditions on model predictions of dis-

persion across counties and seasons. We are primarily interested in how the spatio-temporal

distribution in the five meteorological input parameters, described above, yield geographic

and seasonal patterns in pollen transport distances. To get a nationwide overview, we chose

to vary only these five parameters. For a more accurate assessment of local dispersion from

an individual field, the other phenomena and conditions listed above need to be taken into

account.



Chapter 3

From Field to Sky: Measurement and

Modeling of Transgenic Switchgrass Pollen

Dispersal in the Atmosphere

3.1 Introduction

Accurate tracking and measurement of pollen dispersal in the atmosphere is important for as-

sessing cross-pollination risks [89, 123], particularly in the case of genetically-engineered (GE)

crops. Wind-dispersed pollen is the primary method of gene flow in many grasses, including

switchgrass (Panicum virgatum), an important bioenergy crop [23]. It is a perennial, warm-

season C4 bunchgrass found across most of eastern North America—from northern Mexico

to southern Canada. Originally adopted as a forage crop, it is now a leading candidate for

large-scale lignocellulosic biofuel feedstock in the U.S. and beyond [124]. There is increasing

concern that the rapid growth and development of switchgrass as a biofuel could result in

gene flow from GE switchgrass fields to nontransgenic fields (including wild populations),

leading to both financial and ecological damage [10, 11, 17, 19, 125]. These changes could

be compounded by the effects of climate change, where rising temperatures result in altered

native switchgrass territory [18]. Therefore, there is an urgent need for field experiments

and modeling efforts to characterize the dispersal of airborne switchgrass pollen in relation
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to meteorological factors for regulation and risk management purposes.

There are limited experimental and modeling studies on switchgrass gene flow [19]; these

model pollen dispersal with and without wind breaks [126], experimentally quantify the dis-

persal and cross-pollination of transgenic switchgrass [11], and model transport in low and

high-wind conditions [83]. In 2011, Millwood and colleagues conducted the first regulated

transgenic switchgrass field experiments in the U.S. [11]. A 3-year field experiment was

performed in Oliver Springs, Tennessee, U.S.A. where 100 clonal switchgrass Alamo plants

transgenic for an orange-fluorescent protein (OFP) were used as the pollen source (whole

plants, including pollen, were orange-fluorescent). To assess pollen movement, pollen traps

were placed at 10 m intervals from the pollen-source plot in the four cardinal directions

extending up 100 m from the field. Results showed that pollen-mediated gene flow is likely

to occur over distances of at least 100 m [11]. This study provided important baseline data

useful to determine isolation distances and other management practices, should transgenic

switchgrass be grown commercially in relevant environments. Since switchgrass is an obligate

outcrossing perennial grass, there are concerns about gene flow and the need for bioconfine-

ment, especially for pollen [10, 19, 127]. Moreover, since North America is the geographic

center of switchgrass diversity, a better understanding of pollen movement in this species is

needed [19].

The spread of pollen through the atmosphere involves processes of liberation, drift, and depo-

sition [89, 128]. Knowledge of these processes can help growers and producers make informed

management decisions regarding pollen transport in seed production fields and neighboring

farms [128]. Although atmospheric transport models can predict pollen movement, they

often fail to incorporate actual measurements of pollen concentrations and viability. Vari-

ous unmanned aircraft systems (UASs or drones) have previously been used to detect and

monitor pollen movement over long distances in the lower atmosphere. Gottwald and Ted-



ders pioneered the collection of pollen with UASs [129]. They modified a remote-controlled

biplane platform with two rotating drum samplers to collect pollen and plant pathogen

spores over pecan and peach orchards. Their study demonstrated the significant potential

for regional-scale transport of pollen and plant pathogens among orchards. Two decades

later, Aylor and colleagues [53] combined ground-based sampling devices with UASs to col-

lect pollen within and above a cornfield. Over the past decade, Schmale and colleagues have

integrated autonomous systems into UASs, enabling teams of vehicles to coordinate flight

missions and perform complex atmospheric sampling tasks [130, 131].

The allergen-management community needs a fast and reliable sensor network to measure

airborne pollen concentrations to enable timely and accurate allergen reporting [132, 133, 134,

135]. Current allergen information reports only broad species group concentrations, typically

at a daily resolution at best [132, 135]. Future airborne pollen forecasts can be enhanced

by integrating known pollen emissions with large-scale atmospheric models. Understanding

diurnal pollen release patterns could aid in allergen treatment and improve emission source

data for potential forecast models [132]. To our knowledge, most airborne pollen field studies

and corresponding allergen reports rely on Hirst-type samplers [136]. These sampling devices

are constrained by a relatively low sampling rate of approximately 10 L/min [136, 137],

necessitating either high airborne pollen concentrations or extended sampling durations to

accurately characterize pollen levels. The latter constraint contributes to the coarse temporal

resolution of daily allergen pollen reporting.

We hypothesized that (1) wind-dispersed pollen from switchgrass could be tracked and quan-

tified using orange fluorescent protein (OFP) expression, (2) a Lagrangian Stochastic (LS)

dispersal model could estimate pollen source strength in the field, and (3) an array of novel

samplers could serve as viable alternatives to standard Hirst-type samplers. To test these

hypotheses, we conducted a series of unique release-recapture field studies using GE switch-



grass in Oliver Springs, TN. Two hundred plants from five transgenic lines of switchgrass

(Panicum virgatum L. ’Performer’) were planted at the center of a clear-cut field. One

block consisted of 100 plants expressing OFP under the control of a maize ubiquitin pro-

moter (PvUBI1), while the other block contained 100 plants expressing OFP driven by

a maize pollen-specific promoter (Zm13). Pollen from the atmosphere surrounding these

blocks of transgenic switchgrass was collected using a series of fixed (ground-based) and

mobile (drone-based) sampling devices at various distances from the field center. The ef-

ficacy of these various samplers was evaluated within 25 m of the source and up to 1 km

from the source. LS dispersal simulations were conducted for pollen sampling periods using

high-resolution wind measurements collected near the field. Pollen emission rates were es-

timated by combining simulated concentrations with field concentration measurements. By

integrating high-resolution measurements and simulations, our study evaluates the perfor-

mance of emerging sampling technologies and highlights their implications for biosecurity,

allergen tracking, and ecological modeling.

3.2 Methodology

3.2.1 Field Site and Pollen Source

Field site

To assess the transport of wind-dispersed pollen from transgenic switchgrass plants, a twoyear

field study was conducted under USDA APHIS BRS release permits (21-094-103r and 124-

86SS5F1). The experiments were carried out at the Tennessee Agricultural Experiment

Station, near the University of Tennessee’s Forest Resources Research and Education Center

at the Cumberland Forest Unit in Oliver Springs, TN (36.0483147, -84.4811417).



The field site was selected to satisfy the primary requirements for regulatory for transgenic

pollen dispersal experiments: isolation and traceable source attribution. It was situated

on recently cleared forest land, with felled trees surrounding a rough glade area. The site

provided sufficient open area (∼1.5 ha) for switchgrass cultivation and sampler deployment,

while heavily forested borders served as a natural barrier that reduced the likelihood of

cross-contamination with nearby wild or cultivated switchgrass and limited off-site pollen

transport. The field location was intentionally chosen in a remote, concealed area beyond

a secured access point, ensuring restricted visibility and access. The field plot measured 45

ft × 30 ft, enclosed within a protective 50 ft × 65 ft fenced perimeter, as shown in Figure

3.1A. The outer fence was locked to prevent animal intrusion.

Transgenic line generation, analysis, and selection

Transgenic switchgrass plants expressing OFP were created by genetically engineering em-

bryogenic callus derived from switchgrass seeds obtained from Ernst Conservation Seeds,

Inc. (Meadville, Pennsylvania, USA). This was achieved through Agrobacterium-mediated

transformation (Agrobacterium tumefaciens strain EHA105) as detailed in [138], using one

of two binary plasmid constructs.

The first plasmid, pANIC10A-OFP [139], contained the hygromycin phosphotransferase

(hph) selectable marker gene under the control of the switchgrass ubiquitin 2 (PvUbi2)

promoter as well as an orange fluorescent protein (OFP) gene pporRFP under the control of

the switchgrass ubiquitin promoter (PvUBI1). This promoter drives the expression of OFP

in leaves, stems, and pollen.

The second plasmid, PSYBIN1aZm13pporRFP, also contained the OFP gene pporRFP under

the control of a maize pollen-specific promoter (Zm13). This promoter drives the expression



of OFP in the pollen. This construct also contained a second OFP gene mOrangeER under

the control of the cauliflower mosaic virus (CaMV) 35S promoter which enable the expres-

sion of this OFP in callus and green tissues. In addition, the plasmid also contained the hy-

gromycin phosphotransferase (hph) selectable marker gene under the control of the PvUBI2

promoter. Several transgenic OFP-expressing shoots were recovered from hygromycin se-

lection media (100 mg/L), and once rooted, plants were grown an environmental-controlled

growth room (16/8 h day/night and 24/22řC day/night).

To confirm the presence of the OFP gene in the transgenic plants, PCR-screening was per-

formed using primers (forward primer: GCAAAGTGGGGTCAAAGATG; reverse primer:

CACCTTCAAGCCCTTCTTTG) designed to amplify a 556 bp fragment of the pporRFP

gene. PCR-confirmed transgenic plants were moved to a greenhouse and grown (16/8 h

day/night and 28/22řC day/night) until flowering. To identify transgenic events expressing

OFP in pollen, visual analysis of OFP fluorescence was conducted on pollen grains from each

event using epifluorescent microscopy as described by [140]. Transgenic lines in which all

pollen grains exhibited OFP expression were propagated in the greenhouse and subsequently

used in field experiments.

Planting

The planted area, less than 0.1 ha, consisted of 20 rows with 20 switchgrass plants per row,

totaling 400 transgenic switchgrass plants arranged in a randomized design. These plants

were hand-transplanted in the field at 76.2 cm intervals on three different dates. On July 20,

2021, 100 pANIC10A-OFP switchgrass plants from five transgenic events (20 clonal replicates

per event) were transplanted. On August 26, 2021, another 100 PSYBIN1aZm13pporRFP

plants from five transgenic events (20 clonal replicates per event) were transplanted. Lastly,

on June 20, 2022, an additional 200 pANIC10A-OFP switchgrass plants from ten transgenic



events (20 clonal replicates per event) were transplanted in the field site. These last 200

plants were not mature enough to produce pollen during the field experiments. Figure

3.1B illustrates the locations of these plants and their ages in weeks during the August 2-3,

2022 field experiment. This experimental design was structured to monitor and analyze the

dispersal from transgenic pollen over time and distance.

100 PANICA10A-OFP 
(54 weeks old)

100 PSYBIN1a-
Zm130pporRFP
(48 weeks old)

200 PANICA10A-OFP 
(6 weeks old)

y

5 m

15 m

25 m

15º

N

x

B

Overhead view of field, August 2-3, 2022

A

25º

7.5 m

Figure 3.1: Top-down drone image of the field during field experiments conducted on August
2-3, 2022. (A) The field of GE switchgrass is outlined by a white dotted square and enclosed
by a perimeter fence, as required by the APHIS BRS permits. Reddish-orange circular pads
mark the locations of pollen sampling devices, positioned at increasing distances from the
center of the source field. (B) A close-up view of the 45’ × 30’ field of GE Switchgrass,
showing the locations of both strains of OFP-expressing switchgrass plants. Labels indicate
the plant positions and ages during the August 2-3, 2022, field campaign.

3.2.2 Sampling Methods

Four types of volumetric particle samplers, shown in Figure 3.3, were used to capture GE

switchgrass pollen and estimate the concentration of airborne pollen at various times and



distances from the source field. Each sampler had different sampling rates and sensing

capabilities. To optimize equipment placement, wind forecasts and local conditions were

assessed before the first sampling period. The samplers were strategically positioned based

on prevailing and predicted wind directions, ensuring placement downwind of the expected

pollen dispersal path. Figure 3.2 illustrates the placement of samplers around the field on

each sampling day. The samplers were placed on reddish-orange circular drone landing pads

to mark their locations and enhance visibility in overhead footage, as shown in Figure 3.1A

for the August 2-3, 2022 field campaign.

Ground-based high-volume samplers (ED)

In anticipation of low pollen emission rates, several high-volume filter-based samplers (Sci-

ence First #15000, Yulee, FL) [1] were deployed during the campaign (Figure 3.3A). Origi-

nally designed for educational use in schools, these samplers are referred to as “ED” samplers

throughout the manuscript.

The barrel-shaped ED samplers draw air through a filter surface at an initial flow rate of 600

L/min [1]. Cellulose filters with a pore size of 11 µm and a diameter of 125 mm were used to

collect airborne pollen and other atmospheric particles at 0.432 m above ground level. The

ED samplers’ volumetric sampling rate is 1000 times that of the IMP and DRN samplers,

and 35 times that of the FRM sampler. This significant increase in sampling capacity allowed

for improved detection of airborne pollen, particularly in cases of low pollen emission rates.

Ground-based medium-volume sampler (FRM)

A single near-Federal Reference Method (FRM) sampler (ARA Instruments, Eugene, Ore-

gon) was deployed during the field experiments, shown in Figure 3.3B. This battery-operated



device samples air at a flow rate of 16.7 L/min. The unit is equipped with a filter sampler

(PM10 filters were used in this study), meteorological sensors, and a particle counter. Addi-

tional details about this instrument are available on ARA’s website [141].

Ground-based low-volume samplers (Impingers or IMP)

To evaluate the effectiveness of impinger-type samplers, three custom-designed impinger

packages were deployed during the field campaign (Figure 3.3C) . These sampling packages

are referred to as “IMP” throughout the manuscript.

The IMPs were constructed from high-density polyethylene, following the design specifica-

tions outlined in [24]. The 3D-printing (.stl) files for the impinger units are publicly available

online [142]. These files were modified to accommodate a 15 mL polypropylene conical col-

lection vial (Corning #CLS430791) and a stainless-steel tube with a 4 mm diameter opening.

The IMP samplers were mounted on a tripod 2 m above ground level to approximate the

height of the switchgrass panicles, the open flower structures that produce pollen. The IMPs

sampled airborne particles at a rate of 0.6 L/min, with collected particles entrained in sterile

15 mL conical tubes containing 2 mL of sterile deionized water.

Drone-based low-volume sampler (DRN)

To measure airborne pollen concentration at different altitudes above and downwind of the

field, we used a drone-based sampling system consisting of the IMP unit mounted on a DJI

Inspire 2 drone platform (Figure 3.3D). The system is described in detail in [25].

A key design feature of the drone system is the positioning of the IMP sampler high enough

above the propellers, which ensures that the sampled air remains free from propeller-induced

turbulence, commonly known as downwash. The drone was flown at a fixed altitude of 10



meters during each sampling interval, a height selected to prevent propeller downwash from

disturbing the switchgrass canopy during stable hovering.

Due to drone battery limitations and the need for safe flight and landing operations, each

sampling interval was restricted to 10 minutes. The IMP unit on the drone operated at

the same volumetric sampling rate as its ground-based counterpart (0.6 L/min). However,

because the drone sampler was only flown for 10 minutes per flight, its total sampling capacity

was significantly lower than the ground-based IMP units, which collected for 30 to 90 minutes

during the field campaign. Hereafter, the IMP-equipped drone system is referred to as “DRN”

throughout the manuscript.

3.2.3 Meteorological Data

A weather station was installed near the field to collect meteorological data throughout

each sampling day. The station consisted of a Campbell Scientific CSAT3 three-dimensional

sonic anemometer, mounted at a height of 1.5 m above ground level, which measured high-

resolution wind velocity in three dimensions and sonic temperature at a frequency of 10

Hz. In addition, a Campbell Scientific HMP45C probe recorded temperature and relative

humidity every 30 seconds. Meteorological data were recorded with the Campbell Scientific

CR3000 datalogger. To minimize interference from the tripod pole, the sonic anemometer

arm was positioned perpendicular to the anticipated dominant wind direction before each

collection day. The wind velocities in the u and v directions (relative to the sonic anemometer

arm) were then rotated into the cardinal coordinate system for analysis.



3.2.4 Processing of pollen samples

Sample preparation

Filters from the ED samplers were processed as shown in Figure 3.4A. Briefly, the 125mm

“ED” collection filters were removed with forceps and transferred to separate 150 mm petri

dishes (Fisher #FB0875714) in the field immediately following each sampling period. For

each filter, 25 mL of 25% EtOH was added in the petri dish, the filter was gently agitated

with a sterile cell spreader, and then rinsed a total of 8 times. Each rinsate was transferred

by a pipettor to a vacuum filtration unit (Thomas Scientific #300-4100) containing a 47 mm

Isopore polycarbonate 10µm filter (Millipore Sigma #TCTP04700). The sample was cleared

through the filter using the vacuum from a hand pipetting bulb. Using forceps, the Isopore

filter was then moved to a 60mm petri dish (Genesee 32-105) and rinsed 6 times with 2 mL

25% EtOH. The resulting rinsate was transferred to an Ultrafree 5 µm PVDF centrifugal

filtration tube (Millipore Sigma UFC40SV25) and centrifuged for 2 minutes at 2,500 rpm in

a swinging bucket centrifuge (IEC Clinical Centrifuge). The concentrated sample was then

resuspended from the 5µm filter surface with 200µL 25% EtOH and moved to a 1.5 mL

Eppendorf tube and stored at 4 °C for further analysis

Filters from the FRM sampler were processed as shown in Figure 3.4B. Briefly, the Isopore

filter was removed from the FRM unit sampling cartridge using forceps and transferred to a

60 mm petri dish (Genesee 32-105) in the field immediately following each sampling period.

For processing the sample, the Isopore filter was then rinsed 6 times with 2mL 25% EtOH,

and the resulting rinsate was moved to an Ultrafree 5m PVDF centrifugal filtration tube

(and centrifuged for 2 minutes at 2,500 rpm in a swinging bucket centrifuge (IEC Clinical

Centrifuge). The concentrated sample was then resuspended from the 5m filter surface with

200 L of 25% EtOH and moved to a 1.5 mL Eppendorf tube and stored at 4 °C for further



analysis.

The fluid from the IMP and DRN samplers was processed as shown in Figure 3.4C. Samples

from the IMPs and DRN were transferred by pipette to an Ultrafree 5µm PVDF centrifugal

filtration tube and centrifuged for 2 minutes at 2,500 rpm in a swinging bucket centrifuge

(IEC Clinical Centrifuge). The concentrated sample was then resuspended from the 5 µm

filter surface with 200 µl 25 EtOH and transferred to a 1.5 mL Eppendorf tube and stored

at 4 °C for further analysis.

Pollen counting

Switchgrass pollen was counted in each concentrated sample by pipetting the samples into

individual wells of a 96-well plate (Grenier Bio One 7000124). Samples were allowed to sedi-

ment for 15 minutes and then were observed using an Olympus CKX53 inverted microscope

equipped with the Olympus EP50 digital camera and associated software. Following the

quantification of the switchgrass pollen in each of the tubes, the samples were transferred

back into their respective 1.5 mL Eppendorf storage tubes and held at 4 °C for transport

and further analysis.

3.2.5 Atmospheric dispersal modeling

Meteorological Inputs

Atmospheric dispersal simulations for each sampling interval are driven using time-averaged

wind statistics collected during that interval. Most sampling intervals occurred under low-

wind conditions (< 2 m/s), characterized by meandering winds with frequent directional

shifts and intermittent lulls in wind speed. To better capture dispersal dynamics under these



conditions, the wind data was processed using different averaging window sizes. Specifically,

for the 45-minute sampling intervals on August 2-3, 2022, the following averaging windows

were used: 45 one-minute averaging windows, 9 five-minute averaging windows, and 1 full

45-minute averaging window. This approach allowed for assessing how different temporal

resolutions of wind averaging influenced the accuracy of dispersal simulations.

To compute turbulence statistics for each averaging window, the average downwind direction

was determined and the wind velocity data was rotated into the downwind (u)and crosswind

(v) coordinate system. For each sampling interval, the means, covariances, and variances

were computed for these wind velocity components, as well as temperature. Mean temper-

ature was computed from sonic temperature using the method described in [143] and the

relative humidity values. Heat flux was estimated from sonic temperature and relative hu-

midity using the Bowen ratio method from [143]. The Bowen ratio was determined using

the simplified method of [144], which requires only mean temperature and relative humidity.

These turbulence statistics provided the necessary meteorological inputs for the dispersal

simulation in each interval, specifically friction velocity (u∗) and the Monin-Obukhov length

(L).

Pollen dispersal simulations

To simulate switchgrass pollen dispersal, we use the surface-layer Lagrangian Stochastic

(LS) model described in [31] and expanded to three-dimensional transport in [75]. The

LS model framework is based on Brownian motion theory, modeling turbulent diffusion by

simulating the trajectories of thousands of particles through the air as random walks through

the atmosphere. The movement of each particle is governed by turbulent wind statistics,

and the ensemble average of these trajectories provides estimates of pollen concentration at

any given location within the simulation domain.



LS models require turbulence wind statistics to be specified at every point in the simulation

domain, including mean velocities, variances, and covariances of the wind components. Un-

der the assumptions of stationarity and horizontal homogeneity, these wind field statistics

remain constant over time within each averaging window but vary with height. To account

for this height dependence, boundary layer scaling techniques are applied to generate vertical

wind profiles based on measurable surface-level parameters, specifically the friction velocity

(u∗) and the Monin-Obukhov length (L). The full model formulation and wind statistics

used in the simulations are included in the code provided online.

These two parameters (u∗ and L) were computed from the time-averaged meteorological mea-

surements for each 45-minute sampling interval, using three different averaging approaches:

one 45-minute averaging window; nine 5-minute averaging windows; and forty-five 1-minute

averaging windows. A separate simulation was conducted for each averaging window in a

45-minute sampling interval, using the computed average wind direction, friction velocity

(u∗), and Monin-Obukhov length (L). The resulting concentration fields from these simula-

tions were then averaged to generate a single mean concentration field for each 45-minute

sampling interval.

In each simulation, 100,000 particles (representing switchgrass pollen) are released from a

point source at the center of the field at a height of 2 m, which approximates the height of

most of the switchgrass panicles in the field experiment. Particles were removed from the

simulation domain when they: traveled more than 50 m laterally from the source; rose above

100 m above ground level; or fell below 0.1 m above ground level. To simplify the simulation,

pollen dispersion was modeled as if it occurred over a flat, rough surface, with estimated

surface roughness of 0.01 m, consistent with values reported for level grassy plains and prairie

in [145]. The settling velocity was estimated as 0.0371 m/s, based on an observed switchgrass

pollen diameter of ∼35 µm, using Stokes law. Since switchgrass pollen was observed to be



nearly spherical, Stokes law provides a reliable approximation of its settling velocity.

Concentration estimation and source emission rate calculation

The pollen concentration estimation procedure in this study follows the approach described

by [146] for a stationary LS model with a constant source. Pollen concentration is estimated

by tracking the amount of time particles spend in each grid box, normalized by the total

number of particles released (Np) and the volume of the grid box (Vbox = 1 m × 1 m × 1

m), and then multiplied by the modeled emission rate (Q). Specifically, the concentration

at a given grid point (i, j, k) is calculated as,

C(i, j, k) = Q
1

Vbox

1

Np

Np∑
n=1

Tn(i, j, k), (3.1)

where Tn(i, j, k) represents the time particle n spends in the given grid box.

We employed a model-measurement fusion approach described in [31] to estimate pollen emis-

sion rate and concentration. For each sampling interval, the modeled pollen concentration at

each grid point in the simulation domain is first computed under the arbitrary assumption

of a constant release rate at the center of the field of Qmodel = 1 particle per second. This

yields a modeled relative concentration, which is proportional to the actual concentration

at every point in the domain. To estimate the actual emission rate (pollen flux from the

field), the ratio of the measured pollen concentration at each of the six ED samplers to the

modeled relative concentration at the corresponding locations in the simulation domain was

computed and used to update the value of Q. To obtain a single emission rate estimate for

each sampling interval, the computed emission rates corresponding to calculations based on

each of the six ED samplers were averaged. This estimated true emission rate was then used

to update the modeled relative concentration to predict the actual concentration at every



point within the simulation domain.

To investigate dispersal at greater distances—up to 1 km from the source—the same modeling

procedure is conducted but with a coarser grid resolution of Vbox = 3 m × 3 m × 1 m and

an extended simulation domain covering 1000 m × 1000 m × 100 m. This coarser grid was

selected to balance computational efficiency while maintaining consistency with the finer-

resolution near-source grid.

To generate 2D dispersal kernels, which represent pollen concentration as a function of

distance, concentrations at equal radial distances from the source are averaged, yielding

average concentration as a function of radial distance from the source.

3.3 Results

Three field campaigns were conducted over the course of two calendar years (2021 and 2022)

to sample airborne pollen around two blocks of transgenic switchgrass.

3.3.1 Field Experiments

First campaign (October 7-8, 2021)

The first field campaign took place on October 7-8, 2021. At this time, the pANIC10A and

PSYBIN1a plants (Fig. 3.1) were only 11 and 6 weeks old, respectively, and the youngest

200 pANIC10A plants had not yet been planted. The following ground based samplers

were placed radially around the field at distances of 0, 5, 15, and 25 meters, as shown in

figure 3.2: three ED samplers, three IMPs, and one FRM sampler. These ground-based

samplers operated in 30-minute intervals, while the drone-based sampler (DRN) was flown



at a 10-meter height for a duration of 10 minutes per sampling interval. However, due to

technical difficulties, the drone sampler was only deployed on October 7th, and was not used

on October 8th.

IMP A was placed at the center of the field (the midpoint of field 1 and 2) to estimate

pollen emission rate, but an insufficient amount of pollen was collected—at most two pollen

grains in each sampling interval, and often zero—which was not statistically significant to

estimate the pollen emission rate. IMP B and ED C were co-located to verify alignment of

their concentration estimates. However, due to their vastly different sampling rates and the

low pollen numbers collected, direct comparisons were not feasible. On October 8th, slightly

more pollen was captured, particularly by ED C, but overall pollen collection remained low.

Impingers showed an increase in measured concentrations later in the afternoon, though data

remained sparse. The IMP, FRM, and DRN samplers captured negligible pollen amounts.

Pollen concentrations for each sampling interval and sampler are presented in Table 3.1. On

October 7th, too few pollen grains were collected for meaningful analysis. Concentrations

marked with a dagger†superscript denote cases where only 1-2 pollen grains were sampled.

On October 7th, all samplers captured 2 or fewer pollen grains. On October 8th, 1-5 grains

were collected per sampler. IMP B did not capture any pollen, despite being placed alongside

ED C, likely due to the overall low pollen counts.

Second campaign (October 20-21, 2021)

During the second field campaign on October 20-21, 2021, we increased ground-based sam-

pling intervals to 90 minutes to compensate for the low pollen counts observed during the

previous campaign’s 30-minute sampling intervals. To improve pollen capture, all samplers

were moved within 15 meters of the field. The drone was still flown for 10 minutes per



sampling interval. On October 21st, heavy rainfall forced us to shorten the final sampling

interval of the day. Despite the longer sampling durations and closer sampler placement,

pollen counts remained negligible (at most two pollen grains captured per interval) through-

out this campaign. See Table 3.1 for details.

Third campaign (August 2-3, 2022)

The third and final campaign took place on August 2-3, 2022. Field and sampler placements

during this campaign are shown in Figure 3.1A and B, respectively. The oldest pANIC10A

plants were at peak pollen production during this campaign, but the PSYBIN1a plants

had not yet begun releasing pollen. The youngest pANIC10A field, planted only six weeks

prior, was too immature to release pollen. Given that ED samplers were the most effective

in previous campaigns, their number was increased from three to six. In anticipation of

prevailing winds directed toward north-northeast, samplers were primarily aligned along the

x and y axes in Figures 3.1 and 3.2. The drone sampler was again flown for 10 minutes

at 10 meters during all sampling intervals. ED D and IMP A were co-located to compare

concentration measurements. IMP B was placed at the field center to estimate the pollen

emission rate, if sufficient pollen was collected. To address diurnal trends, sampling intervals

were kept consistent across both collection days. All ground-based samplers were operated

for 45-minute sampling intervals. ED samplers collected significantly more pollen than in

previous campaigns. A clear diurnal pattern emerged, with concentrations peaking between

2:00-2:45 PM time on both days. Concentrations began increasing around 1:00 PM, peaked

at 2:00 PM, then declined after 3:00 PM. See Table 3.1 for details.
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Figure 3.3: All sampler units used during the field campaigns. (A) The ED[1], a ground-
based high-volume sampler (600 L/min). (B) The FRM, a ground-based medium-volume
volumetric sampler (16.7 L/min). (C) The IMP, an impinger-based ground-based low-volume
sampler (0.6 L/min). (D) The DRN, a drone-based sampler flown at a height of 10 meters
above ground-level (0.6 L/min).
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Figure 3.4: Flow charts showing the processing of the filters from (A) the ED samplers, (B)
the FRM sampler, and (C) the IMP and DRN samplers.
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3.3.2 Orange-Fluorescent Protein Expression

The primary source of pollen in the field experiments came from the first planted block of

GE switchgrass, which contained 100 plants expressing OFP under the control of a maize

ubiquitin promoter (PvUBI1). As shown in Figure 3.5, the OFP signal in pollen grains from

these transgenic plants was difficult to distinguish from wildtype (WT) pollen exposed to

the same OFP-inducing wavelength of light. In contrast, the OFP signal in pollen from the

later planting of GE switchgrass (expressing OFP under a maize pollen-specific promoter,

Zm13) was much stronger and easily distinguishable from WT pollen. However, these Zm13-

expressing plants were smaller and did not produce sufficient mature panicles in time for the

field experiments, limiting their contribution to the study.

3.3.3 Modeling Results

For the dispersal modeling, we focused on the third field campaign (August 2-3, 2022), as

sufficient pollen was captured on both days to allow for concentration measurements from

the ED samplers. All sampling intervals during these days were 45 minutes long. Sampling

occurred at consistent times across both days, facilitating comparisons and enabling the

identification of diurnal trends.

Near-source concentration and emission rate estimation

Dispersal simulations more accurately capture changing wind directions and pollen concen-

trations when shorter averaging periods are used for each sampling interval. Figure 3.6

presents ground-level relative concentration contours and downwind wind roses for the Au-

gust 2nd, 2:00-2:45 PM sampling interval, simulated using 1-minute, 5-minute, and 45-minute



White light 10 ms

TxRed filter 1s

Wildtype

PANIC10A

PSYBIN1a

Wildtype
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B

Figure 3.5: Comparison of OFP signal between GE switchgrass pollen and wildtype. (A)
Pollen from the pANIC10A strain (OFP expression throughout the entire plant) is not easily
distinguishable from wildtype pollen under OFP-inducing light. (B) Pollen from the PSY-
BIN1a strain (OFP expression restricted to pollen) exhibits a strong, highly distinguishable
OFP signal compared to wildtype pollen.

averaging windows. This interval corresponded to the highest measured pollen concentra-

tions by the ED samplers. The wind rose in Figure 3.6A was generated using wind data

collected at a sampling frequency of 10 Hz. The wind roses in Figure 3.6B, C, and D were cre-

ated using 1-minute, 5-minute, and 45-minute time-averaged wind data, respectively. Wind

roses display the downwind direction. Yellow circles indicate the ED sampler locations, with

their size proportional to pollen counts at each site.

Comparison of averaging windows. The 45-minute plot (Figure 3.6D), based on a single LS

simulation in the average downwind direction, fails to capture wind variability and lateral
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Figure 3.6: Relative ground-level concentration contours for the August 2nd, 2:00-2:45 PM
sampling interval. (A) Wind rose for this sampling interval, indicating the downwind direc-
tion. (B) Contour plot averaging forty-five 1-minute simulations. (C) Contour plot averaging
nine 5-minute simulations. (D) Contour plot generated using a single 45-minute simulation.
Yellow circles indicate the ED sampler locations, with their size proportional to pollen counts
at each site.

pollen spread, missing high pollen counts at ED sampler B due to a single eastward-directed

plume. The 5-minute plot (Figure 3.6C), which averages nine LS simulations, shows some

directional variation but lacks the detail seen in the 1-minute plot. The 1-minute plot

(Figure 3.6B) provides the most accurate representation of dispersal dynamics. However,

all three simulations share a common discrepancy: peak concentrations appear a few meters

from the point source, indicating lateral transport before deposition. A field source, rather

than a point source, may better address these inconsistencies, at the cost of further model



complexity.

Emission rate and diurnal pattern. The computed pollen emission rate from the field exhibits

a clear diurnal trend. Figure 3.7 presents the mean, minimum, and maximum non-zero com-

puted emission rates for each sampling interval on August 2-3, 2022 during the third field

campaign. Emission rates were computed from Equation (4.2), based on the ratio of mea-

sured to modeled concentrations. Samplers with zero measured or modeled concentrations

were excluded to prevent infinite or zero emission rate estimates. Emission rate calculations

were performed for 1-minute, 5-minute, and 45-minute averaging windows. The range of esti-

mated emission rates decreases with smaller averaging windows, indicating greater precision

with shorter averaging periods. The pollen emission rate increased by approximately three

orders of magnitude between 10 AM and 2 PM. Note that the emission rate is shown on a log

scale in Figure 3.7. The log-transformed emission rate estimate is positively correlated with

the horizontal velocity magnitude (Pearsons R = 0.73, P = 0.01), temperature (R = 0.71,

P = 0.01), and vapor pressure deficit (R = 0.69, P = 0.01), while negatively correlated with

relative humidity (R = -0.63, P = 0.02). These results indicate that higher pollen emissions

occur under conditions of higher wind speed, temperature, and vapor pressure deficit, while

increased relative humidity reduces pollen release.

Modeled concentration predictions improve dramatically when changing wind conditions are

incorporated into the simulations. Figure 3.8 compares modeled concentrations, computed

by multiplying the estimated emission rate by the relative concentration, with measured

concentrations derived from ED sampler pollen counts. Although the figures directly compare

modeled and measured concentrations, they are not intended as a formal model validation,

as the measured concentrations were directly used to compute emission rate and modeled

concentration (see Section 2.5.3). Instead, they highlight the substantial improvement in

model performance as the averaging window is reduced. The Pearson’s R-value increases



from 0.19 for 45-minute windows to 0.71 for 5-minute windows to 0.84 for 1-minute windows.

While reducing the averaging window from 45 minutes to 5 minutes requires nine times the

computational power, it yields a 270% improvement in model performance (as measured

by the R-value). In contrast, refining the resolution further from 5-minute to 1-minute

windows results in only a 20% increase, suggesting that shorter windows may not always be

computationally worthwhile beyond a certain threshold.

Estimating sensor capabilities in the far field

The intake rates of the samplers used in this study differ by multiple orders of magnitude,

with 0.6 L/min for the low-volume IMP and DRN, 16.7 L/min for the medium-volume

FRM, and 600 L/min for the high-volume ED. This disparity highlights the coarseness of

concentration measurements for the low-volume IMP and DRN samplers, particularly when

considering error estimates based on the Poisson distribution. The Poisson distribution

models the error of discrete event counts, such as the number of pollen grains collected, as
√
N , where N is the number of pollen grains captured by a sampler [147, 148]. Lower intake

rates necessitate proportionally higher aerial concentrations, and consequently, greater pollen

emission rates for detection, leading to significantly higher measurement error compared to

high-volume samplers.

To determine optimal sampler placement based on varying field emission rates, we combined

sampler intake rates with long-distance dispersal simulations. Figure 3.9 plots the maximum

distances at which each sampler could be placed to collect at least 100 pollen grains (±10)

within a 45-minute sampling interval, as a function of the pollen emission rate. These

estimates were generated using the long-distance 2D relative concentration dispersal kernels,

computed separately for ground-based samplers (IMP, ED, FRM) at ground level and the

drone-based sampler (DRN) at 10 m above ground level. Although the drone was only flown



for 10 minutes per sampling interval in our field campaigns, we evaluated its performance

over 45-minute intervals to account for potential future battery-life improvements or wire-

tether power modifications. The threshold of 100 pollen grains corresponds to different

effective concentrations across sampler types, with 3.7×103 pollen/m3 for IMP and DRN,

133 pollen/m3 for FRM, and 3.7 pollen/m3 for ED. This threshold was selected as it ensures

a ±10% error in concentration estimates when modeled with the Poisson distribution.

Figure 3.9 shows that, to collect at least 100 pollen grains, the ED samplers require 1.5

orders of magnitude less emission rate than the FRM and 3 orders of magnitude less than

the IMP, across all distances from the field. This advantage allows ED samplers to be placed

significantly farther from the field compared to IMP and FRM samplers. The DRN requires

an even greater emission rate, due to lower concentrations at 10 meters altitude. However,

at approximately 200 meters downwind, the DRN and IMP detection capabilities converge,

as vertical concentration gradients become less pronounced further from the source.

The gray vertical lines in Figure 3.9 represent computed emission rate values at each ED

sampler during our field campaign, which are also shown in Figure 3.7. These results indi-

cate that only the ED samplers had a reasonable chance of collecting at least 100 particles

during some sampling intervals. The remaining samplers were largely ineffective at detecting

airborne pollen given the small emission rates observed in this study, even at close proximity

to the source field. For a larger source, with an emission rate of 106 pollen/s (approximately

100 times larger than ours), the feasible placement of samplers would improve substantially.

Under such conditions, impingers could be placed up to 10 meters from the field, the FRM

samplers could be placed up to 100 meters from the field, and ED samplers could be placed

up to 200 meters away. These adjustments would allow each sampler type to collect at least

100 pollen grains within a 45-minute sampling interval, enhancing measurement reliability

and reducing uncertainty.



3.4 Discussion

In these field experiments, airborne pollen from two different strains of OFP-expressing

switchgrass plants were captured and analyzed using the method described in [140]. The

PSYBIN1a strain exhibited strong fluorescence compared to wild-type pollen, whereas the

pANIC10A strain was difficult to distinguish by fluorescence alone. However, since the

PSYBIN1a plants did not release sufficient pollen during any of the field experiments, OFP

expression was not used for pollen identification in this study. If we had successfully captured

PSYBIN1a pollen from the younger field, it would have expedited the counting and sampling

process. Despite this limitation, the study serves as a proof-of-concept that fluorescence

tagging can be a valuable tool for pollen tracking. Though prior studies have tracked the

movement of GE pollen in the atmosphere [11], to our knowledge, this is the first detailed

study to incorporate aerial and ground-based volumetric samplers to track the movement of

GE pollen from a known source. Fluorescent tagging presents a unique opportunity to trace

pollen dispersal and track its movement over long distances. Understanding switchgrass gene

flow is particularly relevant as biofuel production increases, helping to mitigate ecological

risks posed by invasive strains and unintended cross-pollination between transgenic varieties

[19]. Additionally, fluorescence-tagged pollen could facilitate rapid and automated counting

using instruments such as the Helmut Hund BAA500, Plair Rapid-E, or WIBS-4 [133, 149],

which is of particular interest for allergen monitoring.

During the final campaign on August 2-3, 2022, a distinct diurnal pattern emerged in both

measured pollen concentrations and computed pollen emission rate. Pollen emission rate

increased steadily after the first sampling interval at 10 AM, peaked at 2 PM on both

days, and declined during the final sampling interval at 3 PM. This diurnal pattern was

consistent across both days and correlated with increasing wind velocity and temperature,



as well as decreasing relative humidity. Such diurnal pollen release patterns are common

in wind-pollinated species, where anther dehiscence is driven by drying conditions such as

low humidity and rising temperatures [23]. Similar trends have been observed in previous

switchgrass field studies, where peak pollen concentrations occurred in the late morning and

early afternoon, followed by a decline around 3 PM [126]. Comparable findings in maize

have linked pollen release patterns to increasing vapor pressure deficit [51] and decreasing

relative humidity combined with rising wind velocity [55]. This information can be used to

better predict peak allergen concentrations and improve accuracy of large-scale air pollution

models.

Throughout all sampling intervals and field campaigns, we observed very low wind velocities

(< 2 m/s) and frequent shifts in wind direction. Under these meandering wind conditions,

particle dispersal is primarily controlled by wind direction shifts rather than turbulence

[150, 151]. Standard dispersal models that assume a dominant downwind direction fail to

account for this effect, often producing overly narrow plumes that underestimate lateral

spread. This limitation is particularly characteristic of LS models [51, 152] and Gaussian

plume models [153] which require a single downwind direction. Even more advanced mod-

eling approaches, such as Large Eddy Simulations, do not fully incorporate changing wind

directions [154]. To address this, we reduced the averaging window for wind statistics from

45 minutes to 5 and 1 minute, then ran dispersal models for each of these smaller intervals

and combined the resulting plumes. This approach dramatically improved the fit between

modeled and measured concentrations, enhancing emission rate estimates. Similar techniques

have been applied in Gaussian plume modeling with 2-minute intervals, yielding significantly

better agreement with measured data [153]. Anfossi et al. (1990) [152] also emphasized the

importance of using short averaging windows for dispersal modeling, recommending intervals

of only a few minutes. A maize dispersal study similarly attributed discrepancies between



measured and modeled concentrations to wind direction variability and assumptions of a

dominant wind direction [51]. Future large-scale pollen forecasting and bio-confinement

strategies should consider meandering wind conditions, which are not currently accounted

for in large-scale models [154].

The highest concentration measurements in this study came from the high-volume ED sam-

plers. The pollen source size—100 plants releasing pollen—was exceedingly small compared

to previous dispersal experiments in switchgrass, which involved 3,200 plants [126], as well

as studies in maize [51, 53, 55]. High-volume ED samplers performed best under these small-

source conditions, capturing spatial variations in concentration and diurnal patterns. To the

best of our knowledge, this is the first pollen-trapping field study to utilize these samplers.

Their volumetric flow rate of 600 L/min is 60 times greater than that of the traditional

Hirst-type samplers, which operate at 10 L/min and are comparable to the FRM sampler

used in this study. Due to the small pollen source, the FRM sampler did not produce us-

able data. As the ED samplers were originally designed for educational purposes, they are

inexpensive and lack pre-programming and other advanced features found in commercial

volumetric samplers. However, their simplicity and affordability make them easily deploy-

able, and they have strong potential for measuring concentrations from small sources and

capturing high-resolution pollen dispersal patterns even in small fields.

A novel impinger-type particle sampler (IMP and DRN) was used in this study to collect

pollen, marking the first application of this integrated system for pollen tracking. While

previously employed for airborne microbial sampling[24, 25], this study extends its use to

pollen dispersal. The IMP and DRN samplers successfully collected pollen in the field,

demonstrating their feasibility for tracking pollen movement. However, due to the small

source size, limited pollen production, and the relatively low sampling rate of 0.6 L/min,

the collected pollen quantities were insufficient for reliable concentration estimates. The dif-



fering flow rates between the ED and IMP samplers further complicate direct comparisons,

as impinger samplers inherently capture fewer particles at high concentrations due to their

small intake volumes. The IMP system would likely perform more effectively when sampling

from much larger sources, at least 100 times the size of the field used in our study (Fig-

ure 3.9). Similarly, the drone-mounted sampler, operating at 10 m AGL, would require a

significantly larger pollen source for effective deployment at further distances and altitudes.

Nevertheless, the drone platform remains a valuable tool for aerobiological research, offering

future opportunities for prolonged and spatially resolved sampling, particularly when paired

with higher-volume sampling technologies, including those incorporating filter-based collec-

tion systems. Moreover, impinger samplers, which preserve particles in liquid, could prove

especially useful for future viability and molecular studies.

A primary constraint in regulated transgenic pollen dispersal studies is the feasible scale of

the pollen source. From an agricultural perspective, a 100-plant source is small relative to

other agricultural dispersal studies; however, in the context of permitted flowering GE pollen

dispersal, it is substantial because it requires specialized propagation, isolated siting, and a

stringent regulatory permitting. Our experimental design therefore prioritized a small, but

well-contained OFP-tagged source, and we structured the sampling campaign to extract the

most robust insights that this rare setup could support. The value of the present study is

therefore not that it reproduces a large agricultural pollen release, but that it establishes

what is measurable and how to model it under realistic constraints that are intrinsic to

transgenic field experimentation. While future studies would benefit greatly from a larger

pollen source, the small source and low-wind conditions allowed us to stress test our sampling

and modeling methodology.

With unlimited resources, the natural next step would be a scaled up version of this same

experiment focused on validation: a large, well-established source containing only PSYBIN1a



to maximize the OFP signal, multi-year sampling on the same dates and times to quantify

repeatability of diurnal emission patterns, and colocated Hirst-type gold-standard samplers

deployed alongside the novel samplers to provide independent concentration estimates for

model validation and rigorous sampler inter-comparison. A substantially larger source would

allow meaningful comparisons between low- and high-volume samplers, with one set used to

estimate the particle release rate and another for validating modeled concentrations. It

would also enable more effective use of impinger-type samplers (IMP and DRN), which

could preserve pollen for downstream viability studies, although isolated siting requirements

for transgenic work would continue to pose limits for long-distance tracking.

Focusing solely on PSYBIN1a switchgrass, with its stronger OFP fluorescence in pollen,

could further enhance tracking accuracy via automatic fluorescence-based quantification. As

shown in Figure 3.9, these methods could enable pollen detection up to 1 km or even tens of

kilometers from the source. This fluorescence tagging technique could also be transferable

to other crops of interest. For instance, hemp is known to produce copious amounts of

pollen capable of long-distance dispersal, and its monitoring is increasingly relevant [123]. If

transgenic hemp lines become available, similar fluorescence-based tracking methods could

be applied to study its pollen movement and gene flow in detail.

3.5 Conclusion

Three field campaigns were conducted to measure pollen concentrations around a small

field of genetically modified switchgrass, utilizing both traditional and novel sampler types.

The experiments also included a drone-mounted sampler, demonstrating the feasibility of

airborne pollen sampling at 10 meters above the field as a proof-of-concept. Despite the

exceedingly small source size, the high-volume ED samplers successfully collected sufficient



pollen to analyze spatial variations in concentration and identify diurnal release patterns.

This study evaluated the effectiveness of different sampler types for pollen collection under

varying conditions. Among the three field campaigns, only the final campaign on August 2-3,

2022, produced sufficient concentration data for detailed analysis and modeling. During this

campaign, a clear diurnal pattern was observed in the pollen concentration and, consequently,

in the calculated emission rate. Persistent low-wind meandering conditions were recorded

throughout the campaign, and reducing the averaging window for simulations significantly

improved pollen emission rate estimations by better incorporating shifting wind directions.

This study highlights the potential for drone-based pollen sampling and fluorescence-based

GMO pollen tracking. The findings provide insight into the effectiveness of different sensor

types with respect to source strength and sampling distance, advancing the understanding

of pollen dispersal dynamics and measurement techniques. These results have important

implications for allergen monitoring, cross-pollination risk assessment, and broader bioaerosol

surveillance strategies.
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Figure 3.7: Mean estimated pollen emission rates for each sampling interval using 1-minute,
5-minute, and 45-minute simulations. (A) Estimated emission rates for August 2, 2022 and
(B) August 3, 2022. Non-zero emission rate estimates for each sampler are shown as solid
points. Shaded regions indicate the range the between minimum and maximum non-zero
emission rate estimates. The vertical axis is on a log scale.
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Figure 3.8: Measured concentrations at the ED samplers compared with simulated concen-
trations for (A) 45-minute, (B) 5 minute, and (C) one-minute intervals. These plots are
not intended as model validation, but rather to show that decreasing the averaging time
for simulations greatly improves modeled concentrations. Note that the plots are on log-log
scales.
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Figure 3.9: Maximum distance at which ED, FRM, IMP, and DRN sensors should be placed
from the source to capture at least 100 pollen grains for a given a emission rate from the
field. These are calculated using concentration curves derived from each sampling interval,
distinguishing between estimates computed with 1-minute, 5-minute, and 45-minute averag-
ing windows. Solid lines represent the median values, while the shaded regions indicate the
range between the lowest and highest values observed across all sampling intervals. Gray
vertical lines correspond to the estimated emission rates for each sensor during all sampling
periods.



Chapter 4

Lagrangian Stochastic Model Evaluation in

Convective Conditions

4.1 Introduction

Large-eddy simulation (LES) provides a high-fidelity time-varying description of turbulent

transport and deposition, but its computational cost limits its routine use for applications

that require many scenarios or long integration times. In contrast, Lagrangian stochastic

(LS) dispersion models are inexpensive and widely used, yet their accuracy depends sen-

sitively on flow regime and model assumptions. In this study, we quantitatively compare

LES and two LS formulations across a range of boundary layer regimes to assess when LS

can reasonably replace LES for predicting pollen and more general bioaerosol deposition

patterns within 1 km of a ground-level source, a question of practical importance for gene

flow caused by pollen and seed dispersal and the spread of plant disease via fungal spores

[9, 27, 33, 35, 45].

The comparison in this study focuses on two established Lagrangian stochastic formulations

that have been widely applied in atmospheric dispersion modeling. The first is mostly used

for near-source dispersal, where large scale convective motions are not the main drivers of

dispersal. It uses a jointly Gaussian distribution for the fluctuating velocity components

(u′, v′, w′), which can then include the covariance u′w′ between horizontal and vertical veloc-

71



ities [79, 88]. The assumption of gaussian vertical velocities is well-suited for shear-dominated

turbulence at the surface, and has produced good agreement with near-source measurements

of pollen and spore dispersal [29, 31, 53, 75, 89]. The second is a convective boundary-

layer (CBL) formulation in which the vertical velocity is represented by a height-dependent,

skewed bi-Gaussian distribution in order to better represent the updrafts and downdrafts of

convective-turbulence-dominated boundary layers [86, 87, 119]. Both formulations were orig-

inally developed for one- or two-dimensional dispersal configurations and have been validated

primarily against vertical profiles and along-wind concentration statistics rather than fully

three-dimensional deposition distributions [31, 53, 54, 87, 100]. Conceptually, the SL model

is most appropriate in the surface layer where turbulence is gaussian, produced mostly by

shear, and the large coherent motions of convective turbulence are not present [31, 75, 79, 88],

whereas the CBL model is designed for buoyancy-dominated, well-mixed convective bound-

ary layers [86, 87, 119]. To isolate differences arising from these underlying stochastic for-

mulations rather than from differing inputs, both LS models are driven here by the same set

of analytical wind-statistics profiles across the range of stability regimes considered.

The LES simulations in this study are performed with the PALM large-eddy simulation

model, which explicitly resolves the turbulent velocity field in the atmospheric boundary

layer using a well-established framework [155, 156]. Particle dispersal is simulating using

built-in Lagrangian Particle Dispersion Module (LPDM) included in the PALM package, in

which particles are advected by the instantaneous resolved velocity field plus a stochastic

subgrid-scale velocity increment following a Lagrangian stochastic formulation developed to

be driven by the time-varying fields of large-eddy simulations [84, 155].

The PALM LES simulations conducted span a sequence of seven atmospheric boundary-layer

regimes from near-neutral, high-wind, streak-dominated shear flows through roll-dominated

mixed layers to deep, strongly convective boundary layers with large convective motions



[157, 158, 159]. The resulting time-averaged LES-driven deposition distributions are treated

as the reference “truth” against which the SL and CBL LS formulations are evaluated.

To compare LES and LS performance, we focus on how well each model reproduces the LES

plume shape for different deposition magnitudes. For each case, we compute the downwind

and crosswind standard deviations of the ground-level deposition field, σx and σy, as primary

measures of plume extent and lateral spread. We then assess the spatial fidelity of each LS

formulation using a thresholded, binary comparison of the LES and LS deposition fields

across a range of deposition levels. Spatial overlap at each threshold is quantified with the

Jaccard index, defined as the ratio of intersection to union of two regions which exceed the

threshold. Together, these metrics indicate whether the LS models reproduce the overall

plume extent and lateral spread, and how much of the main deposition footprint they place

in the same locations as the LES across different stability regimes.

In this paper, we first describe the LES configuration and the seven atmospheric boundary-

layer regimes considered. We then summarize the SL and CBL LS formulations and the

analytical wind-statistics profiles used to drive both of them. Next, we present a case-by-

case comparison of LES and LS using deposition distributions, plume-spread metrics, and

Jaccard overlap curves, highlighting where each model fails or succeeds. Finally, we discuss

the implications for using LS as a substitute for LES in pollen and bioaerosol applications

and outline key limitations and directions for future work.



4.2 Methodology

4.2.1 Representative ABL cases

To identify representative wind regimes, we used hourly meteorological output from a Weather

Research and Forecasting (WRF) model simulation for year 2016 over the contiguous United

States. This data was previously extracted for each US county from July to November in

Nimmala et al. [123] and includes friction velocity u∗, Monin-Obukhov length L, convective

velocity scale w∗, surface roughness length z0, and boundary layer height zi. The dataset was

first filtered for z0 ≈ 0.1 m and negative Monin-Obukhov length. It was then partitioned into

approximate Pasquill stability classes at z0 ≈ 0.1 m by 1/L following Golder (1972) [160]:

neutral (−0.01, 0], slightly unstable (−0.035,−0.01], moderately unstable (−0.095,−0.035],

and strongly unstable ≤ −0.95. Within each stability class, cases were further grouped by

u∗ into low wind (0.1-0.2 m s−1), medium wind (0.3-0.4 m s−1), and high wind (> 0.5 ms−1).

The remaining combinations were then binned by w∗ ≈ 0.5, 1, 1.5, and 2 ms−1, and the most

frequently occurring boundary layer heights zi were selected.

We estimated a kinematic heat flux using w∗ and zi [108], assuming a 300 K surface-potential

temperature θ0,

Q =
w∗

3θ0
gzi

. (4.1)

These initial estimates were then adjusted toward values commonly used in convective ABL

LES. For example, Pan et al. (2013) [161] used Q = 0.025 Kms−1 for weakly unstable

cases, 0.05 for moderately unstable cases, and 0.1 for strongly unstable cases. In Weil et al.

(2012) [85], the strongly convective case had Q = 0.29 Kms−1, while in Moeng and Sullivan

(1994) [157] the buoyant case had Q = 0.24 Kms−1 and the two intermediate cases (strong



shear, moderate convection) had Q = 0.05 and Q = 0.03 Kms−1. After adjusting Q for each

regime, the corresponding zi used in the LES was recomputed, and a geostrophic wind speed

Ug was estimated using a logarithmic wind profile with the Paulson (1970) [162] stability

function.

Above the boundary layer, the potential temperature profile was prescribed to increase by

1 K over 60 m for the neutral and weakly unstable cases and by 6 K over 60 m for the

more strongly unstable cases. Above this capping inversion, all cases used a uniform lapse

rate of 0.003 Km−1. These values are consistent with previous convective LES studies

[157, 163, 164].

Using this procedure, we define seven distinct daytime ABL simulations which fall into three

stability regimes: shear-dominated near-neutral (cases 1 and 2), mixed shear and convective

(cases 3, 4, and 5), and strongly convective highly unstable (cases 6 and 7). The initial

parameters and final LES input values for these seven cases are summarized in Table 4.1.

Based on −zi/L values in Table 4.2, Case 1 lies in the precritical, near-neutral regime

(−zi/L < 0.43) identified by [158], in which turbulence is dominated by elongated low-

speed streaks. Case 2 falls just beyond this threshold (−zi/L = O(1)), where horizontal

roll vortices begin to organize the flow as buoyancy becomes more comparable to shear

[158]. Cases 3, 4, and 5 have −zi/L of order 10-30 and w∗/u∗ ≈ 2-4, placing them firmly in

convective but still shear-influenced mixed-layer regimes, consistent with the mixed shear-

convective CBL structures described by [157, 159, 161, 165]; Case 3 is particularly similar

to Moeng and Sullivans (1994) Case B, while Case 4 closely resembles the MUL02/MUL08

runs of [161]. Case 7 occupies a similar stability range but with a shallower, low-wind CBL

and we have not found an exact analog in the literature. Finally, Cases 6 and 7 correspond

to the most unstable conditions, with very large −zi/L and w∗/u∗ > 4, similar to the deeply

convective, buoyancy-dominated cases of [166], which are essentially free-convective regimes.



Initial chosen ABL parameters LES input parameters

Case 1/L u∗ w∗ zi Q Ugeostrophic

(m−1) (m s−1) (m s−1) (m) (Kms−1) (m s−1)

Case 1 -0.00061 0.60 0.5 380 0.01 13
Case 2 -0.00305 0.35 0.5 380 0.01 7
Case 3 -0.03391 0.30 1.0 440 0.07 4
Case 4 -0.02511 0.50 2.0 1030 0.24 8
Case 5 -0.38756 0.15 1.0 310 0.10 1.5
Case 6 -0.04844 0.30 1.5 1030 0.10 4
Case 7 -0.11627 0.30 2.0 1020 0.24 4

Table 4.1: Initial atmospheric boundary layer parameters and LES input parameters for the
seven LES cases.

4.2.2 LES set-up

For the LES simulations, we use the PALM model, which is designed to simulate high-

resolution atmospheric boundary layer flows and includes a built-in Lagrangian Particle

Dispersion Model (LDPM) module [155, 156].

All cases are run on a 2km × 2km horizontal domain with a 2 km vertical extent, using

200 × 200 × 667 grid points (∆x = ∆y = 10 m, ∆z = 3 m). Because we simulate a near-

surface release and focus on ground-level concentrations and deposition, we adopt a relatively

fine vertical grid to better resolve shear-dominated turbulence in the surface layer. Pan et

al. [161] similarly used ∆z = 3 m for a 1 m release height in convective boundary layer

simulations.

Although PALM supports grid nesting and vertical grid stretching, the documentation notes

that nesting requires further testing and that vertical stretching is not yet fully supported

for the LDPM. The chosen 2km domain with uniform ∆z = 3m is balance between resolving

surface-layer eddies and maintaining computational feasibility.

Simulations are initialized with a constant geostrophic wind Ug specified in Table 4.1. We



apply Dirichlet (no-slip) boundary conditions for velocity at the surface, and Dirichlet con-

ditions at the top, constraining the top boundary to the prescribed geostrophic wind. The

initial potential temperature profile is defined using a reference potential temperature of 300

K up to the defined boundary-layer height and a positive lapse rate above, specified in Table

4.1 and in Section 4.2.1. Convection in all cases is driven by a constant surface kinematic

heat flux Q (Table 4.1). Potential temperature boundary conditions are Neumann at the

lower boundary (required when prescribing a constant surface heat flux) and ‘initial gradi-

ent’ at the top, which maintains the initial potential temperature gradient there. All lateral

boundaries are cyclic.

All simulations use a latitude of 40◦ N, approximately the center of the continental United

States, for PALM computes the Coriolis parameters internally. The resulting flows are

influenced by the Coriolis affect and exhibit the turning of wind direction with height char-

acteristic of Ekman boundary layers [108], particularly in the shear-dominated cases, which

produces a leaning of the plume [167]. Although this does not represent an idealistic bound-

ary layer and is not included in the LS models, we retain the Coriolis forcing as it strongly

influences realistic development of turbulence [157, 168].All simulations were run for a total

of five hours of simulated-time. Each required an average of 20 hours of wallclock time using

250 CPU cores on Virginia Techs TinkerCliffs cluster.

To represent dispersion over a rough, homogeneous surface, we use a roughness length z0 =

0.1 m for all cases. This value lies near the upper end of typical ranges reported for long grass,

farmland, and crop canopies [108, 145]. Using PALMs LDPM, we simulate a near-surface

point source by continuously releasing particles at a height of 2 m at the domain center.

This near-surface release is intended to represent emission from canopy-height for grasses

and other plants; elevated releases such as for trees interact differently with boundary layer

turbulence and are outside the scope of this chapter. Particles are assigned a diameter of 30



µm based on a typical pollen (hemp, switchgrass) diameter of 30 µm[60, 111], and a density

ratio of particles to air of 0.0012. Particles are released for all five hours of the simulation,

at a constant rate of 1000 particles per 0.1 s to approximate a constant emission rate. All

domain boundaries for particles are set to ’absorb’, so that particles are removed from the

simulation when they exit the domain.

4.2.3 LS set-up

In this chapter, we use two Lagrangian stochastic (LS) formulations: a convective boundary-

layer (CBL) model and a surface-layer (SL) model. The full mathematical formulations,

including the Langevin coefficients and wind-statistics profiles, are given in Appendix A and

B respectively.

The SL model was formulated by assuming a Gaussian distribution for the turbulent veloc-

ities, which is reasonable in the small-scale shear-dominated turbulence of the surface layer.

More specifically, it uses a jointly Gaussian distribution in which the vertical and downwind

velocities are correlated, explicitly including the covariance u′w′. In convective and unsta-

ble conditions, the SL model can capture the initial spread and rise of the plume near the

source due to shear, but it cannot represent the large-scale updrafts and downdrafts in a

highly convective boundary layer, for which a convective-layer formulation is better suited.

Nevertheless, at short ranges and low heights above the ground, the SL model has shown

good agreement with measurements across a variety of wind conditions [31]. In this chapter,

we apply the SL model across the seven daytime ABL regimes defined in Section 4.2.1, from

near-neutral, high-wind conditions to strongly convective mixed layers.

The CBL model was originally formulated for strongly convective conditions [86], where

turbulence in the bulk of the boundary layer is driven primarily by buoyancy. It represents



the skewed vertical velocity distribution in the convective boundary layer with a bi-Gaussian

pdf, allowing it to reproduce plume rise from the surface in thermals and subsequent descent

from the boundary-layer top as rising air cools [86, 87]. [87] developed a closure scheme for

skewed turbulence that reduces to Gaussian turbulence in the limit of zero skewness [87],

and Boehm et al. (2008) introduced a merged parameterization that combines surface-layer

and convective-boundary-layer wind statistics [54]. Luhar (2002) extended the formulation to

three dimensions by treating the horizontal and vertical velocity components as independent,

with Gaussian pdfs for the horizontal components and a bi-Gaussian pdf for the vertical

component [119]. Importantly, the CBL model does not include Reynolds-stress covariance

terms such as u′w′ that are known to be important in the surface layer [54], and can under-

predict concentrations near the source at ground level [54]. Here we use the CBL formulation

across the same seven regimes to contrast with the SL model.

Both models assume a stationary, horizontally homogeneous ABL, so that wind statistics

depend only on height z. Vertical profiles of mean wind, velocity variances and covariances,

and turbulence dissipation rate are constructed from these using a variety of similarity and

mixed-layer scaling relations, and can be found in detail in Appendix B. For both models,

across all cases, we apply the same wind statistics profiles so that we can better understand

model differences independent of the driving wind statistics. Of particular note, we use a sin-

gle set of merged convective-boundary-layer profiles for σ2
w(z) and ε(z) following Boehm et al.

[54], together with a height-varying profile for u′w′(z) [79]. These profiles are constructed to

bridge shear-dominated surface-layer statistics near the ground with mixed-layer statistics

aloft, so that as stability varies across cases, the underlying velocity statistics profiles also

adjust. In the original formulations, the SL model is typically driven by surface-layer similar-

ity profiles that are tailored to handle strong shear near the surface, whereas the CBL model

is usually paired with vertically uniform mixed-layer statistics, characteristic of a well-mixed



CBL. Here, by instead applying the same merged σ2
w(z), ε(z), and u′w′(z) profiles to both

the SL and CBL runs, we intentionally remove differences in the wind-statistics forcing so

that any differences in results reflect the differences between the two LS formulations. How-

ever, as shown in the Results and Discussion, this results in serious deficiencies of the SL

formulation and overly narrow CBL plumes in the near-neutral, shear-dominated regimes.

Each LS simulation is driven by four ABL parameters output from the corresponding LES

simulation: the friction velocity u∗, Monin-Obukhov length L, convective velocity scale w∗,

and boundary-layer height zi, as well as the same surface roughness length z0 = 0.1 m used

in the LES. The first four values are the time-averaged values from hour 4-5 of the LES

simulation, and are summarized in Table 4.2, along with the non-dimensional ratios −zi/L

and w∗/u∗ in the last two columns. These quantify the ratio between convective and shear

generated turbulence, or stability.

For each case, the LS simulations are performed assuming the downwind direction x is aligned

with the mean wind at the source height, so that the mean crosswind velocity satisfies V = 0.

The LS domain matches the LES 2 km×2 km horizontal domain and extends vertically from

the surface to zi. For each case, 100,000 particles are released from a point source located

at the domain center at a height of z = 2 m, removed from the simulation at the domain

boundaries, and the simulation is conducted until all particles are removed. The ground

is treated as a depositing boundary, with particles removed when they reach z = 0, while

the upper and lateral boundaries are treated as absorbing. Particles are assigned a constant

gravitational settling velocity vs = 0.027m/s based on a typical pollen (hemp, switchgrass)

diameter of 30 µm[60, 111] and a density of water. As hemp pollen is nearly spherical [111],

Stoke’s law provides a good approximation of settling velocity [75, 122]. Each LS simulation

required approximately 20 minutes of wall-clock time using a single HPC core on Virginia

Techs TinkerCliffs cluster. This is 15,000 times less computationally expensive than the LES



simulations on the same system.

LES output / LS input parameters Non-dimensional ratios

Case 1/L u∗ w∗ zi −zi/L w∗/u∗
(m−1) (m s−1) (m s−1) (m)

Case 1 -0.00033 0.7348 0.4955 384 0.13 0.67
Case 2 -0.00208 0.3973 0.4941 384 0.80 1.24
Case 3 -0.06473 0.2414 0.9904 444 28.66 4.10
Case 4 -0.03089 0.4656 1.9981 1032 31.87 4.29
Case 5 -0.17917 0.1879 0.8889 312 55.93 4.73
Case 6 -0.08729 0.2460 1.4931 1032 90.18 6.07
Case 7 -0.16617 0.2646 1.9893 1023 170.33 7.52

Table 4.2: ABL parameters used to drive the Lagrangian stochastic (LS) models for the
seven cases, sorted by non-dimensional stability ratios.

4.2.4 Comparison methods

In the LS model, we compute concentration as follows,

C(i, j, k) = Qflux
1

Vbox

1

Np

Np∑
n=1

Tn(i, j, k), (4.2)

where the sum time particles spend in each grid box Tn(i, j, k) is normalized by the total

number of particles released (Np) and the volume of the grid box (Vbox = 10 m × 10 m

× 3 m), and then multiplied by the modeled emission rate (Qflux). We output a “relative

concentration” from the LS model by taking Qflux = 1. Recall that this is a time-averaged

relative concentration, as these models are stationary.

To output the same time-averaged relative concentration from the LES, we average the time-

varying particle concentrations from hour 4 to 5 and divide it by the release rate (10000

particles/sec) and the grid volume (Vbox = 10 m × 10 m × 3 m).

We then rotate this plume into the mean wind direction for each case, which is computed



by time-averaging the u and v velocity components from hour 4 to 5 of the LES simulation

at the lowest grid-level (z = 3 m) at the point of particle release (x = y = 1000 m).

To compute deposition flux distribution (# particles deposited m−2s−1) from the ground-

level concentrations (#particles m−2s−1 at the z = 3 m grid level) for both the LS and LES,

we simply multiply this ground-level concentration by the settling velocity. For particles of

this size, the deposition flux is almost entirely dependent on settling velocity [169].

Finally, in our analysis, we compute two metrics to quantify similarity between the plumes.

The first is the standard deviation of deposition flux in the horizontal σx and vertical σy, a

common measure of spread that is well-defined in [170]. We next compute the Jaccard Index

over a number of thresholds, which allows us to compare the shape of the plume at different

deposition flux magnitudes. For a given deposition flux threshold T , we construct binary

maps for each model by assigning a value of 1 where the local deposition flux exceeds T and

0 otherwise. The Jaccard index at threshold T , J(T ), is defined as the ratio of the area

where both binary maps equal 1 (intersection) to the area where at least one map equals 1

(union), so that J(T ) = 1 indicates perfect spatial overlap at that threshold and J(T ) = 0

indicates no overlap. Evaluating J(T ) over thresholds spanning several orders of magnitude

yields curves that summarize how spatial agreement between LES and LS varies from the

high-deposition plume core near the source to the low-deposition plume tail for each stability

regime and LS formulation.

4.3 Results

In this section, we compare dispersion predicted by large-eddy simulation and Lagrangian

stochastic models across the seven representative daytime ABL regimes introduced above.

For each case, we first carry out a PALM-LES driven with surface heat fluxQ, the geostrophic



wind speed Ug, and an initial potential temperature profile that defines the boundary-layer

height zi. We then then run two Lagrangian stochastic formulations—a surface-layer (SL)

model and a convective boundary-layer (CBL) model using the LES-derived wind statistics

summarized in Table 4.2—. The details of the PALM configuration, scalar release, and the

SL and CBL Langevin equations are given in the preceding Methods sections. Here we focus

on the resulting deposition fields and a set of simple, comparable summary statistics.

To organize the results, we group the cases by stability regime: near-neutral shear-dominated

(cases 1 and 2), mixed shear and convective (Cases 3, 4, and 5), and strongly unstable (Cases

6 and 7). Within each regime, we use three measures to compare deposition flux (directly

proportional to concentration in the lowest grid) between LES and LS. First, we compare

heat maps of time-averaged deposition flux, which show plume shape, orientation, and the

qualitative extent of downwind and crosswind transport. Next, we compute streamwise and

crosswind plume spreads (σx, σy) from the ground-level concentration fields for LES and LS

(Table 4.3. Lastly, we evaluate the Jaccard index between LES and LS as a function of

concentration threshold, providing a scalar measure of spatial overlap over a range of plume

cores and tails (Figure4.4). Together, these measures characterize plume location, spread,

and spatial overlap.

4.3.1 Near-neutral cases

In the near-neutral regime cases 1 and 2 in Figure 4.1, the LES dispersal shows classic

shear-dominated plumes. Depositions are elongated along the mean wind direction, with a

long tail of low deposition and minimal cross-wind spread. These cases correspond to strong

mean winds and weak buoyancy, so turbulence is generated primarily by shear rather than

convective updrafts, and particles are transported far downwind before they can disperse



laterally. Cases 1 and 2 are qualitatively similar, but the very high wind case 1 produces a

slightly narrower plume than the high-wind case 2. Both plumes have streamwise spreads of

σx ≈ 200 m, while the crosswind spread increases from σy ≈ 21 m in Case 1 to σy ≈ 25 m

in case 2 (Table 4.3), consistent with a modest reduction in mean wind and slightly greater

opportunity for lateral dispersion in case 2.

In contrast to LES, the surface-layer (SL) formulation shows practically no dispersal in either

near-neutral case. For both cases 1 and 2, the SL deposition is confined to a very small region

immediately downwind of the source. The resulting footprint is dramatically smaller than

in the LES, indicating that in near-neutral conditions, the SL model as configured here, fails

to produce a realistic plume.

The CBL formulation produces deposition plumes that extend a comparable distance down-

wind to the LES fields (Figure 4.1). The streamwise spread statistics in Table 4.3 reflect

this: for case 1, the LES and CBL values of σx are 198.45 m and 236.38 m, and for case 2

they are 200.43 m and 232.80 m, corresponding to overestimates of about 19% and 16%. In

the crosswind direction, however, the CBL formulation substantially underpredicts lateral

spread. For case 1, the LES and CBL values of σy are 21.22 m and 5.03 m, and for case

2 they are 24.51 m and 6.67 m, corresponding to large underestimates of 73% and 76%.

The SL formulation performs even worse in this regime, with σx = 3.12 m and 16.79 m and

σy = 3.01 m and 4.00 m in cases 1 and 2, which are about 90–98% smaller than the LES

values in the streamwise direction and 80–86% smaller in the crosswind direction. Overall,

in near-neutral boundary layers, the CBL formulation reproduces the order of magnitude

of streamwise spread but yields plumes that are too narrow laterally, whereas the SL for-

mulation completely collapses both streamwise and crosswind spread for the near-neutral

cases.



4.3.2 Mixed shear and convective cases

In the mixed shear and convective cases (3, 4, and 5) shown in Figure 4.2, buoyancy plays

a more active role, and the LES plumes are less elongated and noticeably wider than in the

near-neutral cases. In case 3 (Figure 4.2a), a moderately convective shallow boundary layer

with medium wind results in less downwind transport and more lateral spread than in cases

1–2, with with σx = 127.61 m and σy = 31.33 m compared to σx ≈ 200 m and σy ≈ 21− 25

m in the near-neutral regimes. In case 4 (Figure 4.2b), boundary layer is much deeper and

convective velocity scale is larger, but the higher wind speed offsets these changes, yielding

spreads σx = 139.32 m and σy = 35.89 m that are very similar to case 3. Cases 3 and

4 have similar shear-to-convective turbulence ratios, shown by the non-dimensional group

w∗/u∗ = 4.1, 4.29 respectively, which explains why their plumes are nearly identical. In case

5 (Figure 4.2c), the boundary layer is shallow and moderately convective, with the weakest

wind speed of these three cases. The LES plume in case 5 shows comparable downwind

spread (σx = 145.40 m) but the largest crosswind spread (σy = 47.89 m).

For the same moderately unstable and mixed cases (3, 4, and 5), both the SL and CBL

LS formulations reproduce the main qualitative features of the LES plume: the plumes

remain elongated downwind with noticeable crosswind spread, and their footprints extend

over similar downwind distances as LES rather than collapsing around the source (Figure

4.2). Quantitatively, the downwind spread σx from the SL model is now sensible and much

closer to LES. Across cases 3, 4, and 5, SL σx differs from the LES value by only about −10%

to +11% (Table 4.3), showing that SL recovers the correct order of magnitude for downwind

dispersion under moderately unstable conditions. The CBL formulation behaves similarly:

it modestly over-predicts σx in case 4 by about 17%, and underpredicts it in cases 3 and

5 by roughly 13% and 20%, respectively. In contrast to the near-neutral regime, both LS



schemes therefore produce realistic downwind transport in moderately unstable conditions,

with the SL formulation performing slightly better.

Crosswind spread remains systematically lower than LES for both LS formulations. In case

4, both models perform well: SL and CBL σy fall within about 8% and 6% of the LES value,

respectively, so lateral spread is essentially captured. In cases 3 and 5, however, both schemes

underpredict σy more strongly, and case 5 is the most challenging: SL underestimates LES

σy by about 24%, while CBL underestimates it by about 35%. Overall, the SL and CBL

formulations show comparable skill in lateral spread for case 4, with CBL slightly closer,

whereas SL performs modestly better in cases 3 and 5. Consistent with Figure 4.2, the LS

plumes in these moderately unstable and mixed cases are visibly broader than in cases 1–2

and show clear lateral dispersion about the centerline. Yet both formulations still tend to

produce plumes that are too narrow compared with the wider, more irregular LES footprints,

especially in case 5.

4.3.3 Strongly unstable cases

In the strongly unstable cases (6 and 7), buoyancy dominates over shear, and the LES

plumes reflect classic convective boundary-layer behavior (Figure 4.3). A larger proportion of

particles released near the surface are lofted upwards by convective updrafts, resulting in less

downwind transport and shorter wider plumes compared to the moderately unstable cases

(3, 4, and 5). Compared with the deep, shear-influenced convective case 4 and the shallow

convective cases 3 and 5, cases 6 and 7 are both more strongly unstable and, especially for

case 7. In case 6 (Figure 4.3a), a deep, strongly convective boundary layer with moderate

mean wind still produces an elongated plume, but it is noticeably wider than previous cases,

with σx = 131.6 m and σy = 37.5 m. In case 7 (Figure 4.3b), where the mean wind is the



same as in case 6, but the convective velocity is greater, convection plays and even greater

role, yielding the largest crosswind spread of all seven cases (σy = 52.6 m) and the smallest

downwind spread of σx = 106.0 m.

For these strongly unstable cases, both LS formulations strongly underpredict downwind

spread σx relative to LES. In case 6, the SL and CBL models yield σx = 96.3 m and 93.1 m,

corresponding to underestimates of about 27% and 29%, respectively. In case 7, the SL and

CBL values are 91.1 m and 82.8 m, underpredicting LES by roughly 14% and 22%. Thus,

while both schemes reproduce the correct order of magnitude for downwind dispersion in

strongly unstable conditions, SL is slightly closer to LES than CBL for σx, and both models

tend to shorten the plume considerably relative to LES.

Lateral spread is represented more accurately. In case 6, the SL and CBL crosswind spreads,

σy = 40.7 m and 38.3 m, are within about +9% and +2% of the LES value, indicating that

both formulations closely match the LES lateral dispersion, with CBL slightly closer. In case

7, SL gives σy = 51.3 m, only about 3% below LES, whereas CBL underestimates somewhat

more strongly with σy = 45.1 m, about 14% lower. Compared with the near-neutral and

moderately unstable regimes, the LS plumes in cases 6 and 7 therefore provide their best

match to LES lateral spread: both formulations recover realistic crosswind plume widths,

with SL performing slightly better overall across the two strongly unstable cases.

4.3.4 Comparing across models using the Jaccard Index

In Figure 4.4, we use the Jaccard index to quantify how well the LS models reproduce the

two-dimensional deposition distribution from LES. For a given threshold, T , the Jaccard

index J(T ) is defined as the ratio of the area where both LES and LS footprints exceed T to

the area where at least one of them exceeds T . Thus, when J(T ) = 1, there is perfect overlap



of the two plumes within that threshold T , and when J(T ) = 0, there is no spatial overlap

at all. We repeat this calculation at four thresholds (10−8, 10−7, 10−6, and 10−5), which are

also annotated as contour lines in the deposition heat maps (Figures 4.1- 4.3). Figure 4.4

shows the Jaccard index J(T ) for each case at each threshold T for both LS formulations

(SL is dotted, CBL is solid).

Figure 4.4 also includes box plots summarizing LES ensemble variability for case 3 specifi-

cally. We ran the case 3 LES five times with different random seeds and computed the same

Jaccard index at each threshold between each of the ensembles and the initial simulation.

These box plots represent the best attainable model performance under this setup by com-

paring LES to itself across ensemble members, and they serve as a benchmark to evaluate

the LS models.

In Figure 4.4, the LES ensemble runs for case 3 have Jaccard indices ranging between 0.7-

0.8, or a best possible overlap of only 70-80%. The 10−8 and 10−7 thresholds for case 3 are

nearly on par with the ensemble values (J(T ) = 0.67). The 10−8 threshold is the contour

surrounding the outermost lowest-deposition parts of the distribution. When the Jaccard

index for this threshold is high, it indicates that the LS captures the overall shape of the

plume well. The higher thresholds (10−7, 10−6, 10−5) successively delineate areas of the

distribution closer to the center with more deposition. When these are high, it means that

the center of the plume is also reproduced well. In Figure 4.4, low thresholds more frequently

have high Jaccard indices, which shows that LS reproduces the overall shape of the deposition

distribution more accurately than the center of the plume.

The Jaccard index trends across stability regimes mirror the spread statistics and heat maps.

Cases 1 and 2—which completely collapse for the SL model and are overly narrow for the

CBL model—have the lowest Jaccard indices, and the CBL model clearly performs better

in Figure 4.4. We observe a general trend of increasing performance as cases become more



convection-dominated for the higher 10−7, 10−6, and 10−5 thresholds. In short, the more

convective cases better capture the core of the deposition distribution, with some caveats.

Namely, case 3 performs better than case 4, which has a dip in performance, followed by

an increase for cases 5, 6, and 7. The performance dip for case 4 is not clear in the spread

statistics, but the corresponding heat map shows that both SL and CBL models are over-

predicting the downwind extent of deposition for these thresholds. This trend also does not

hold for the highest 10−8, which shows a steady decrease in Jaccard index for in cases 3–7.

For the latter most convective cases 6 and 7, this is due to LS under-predicting the overall

downwind extent of deposition.

Finally, for the convective cases of interest, the two LS formulations are effectively inter-

changeable in terms of Jaccard performance. For Cases 3–6, the SL (dotted) and CBL

(solid) curves almost lie on top of each other at each threshold, and the dominant variations

in J(T ) come from the choice of threshold and stability regime rather than from the choice

of LS formulation.

LES SL CBL

Case σx σy σx σy %∆σx %∆σy σx σy %∆σx %∆σy

1 198.4 21.2 3.1 3.0 -98.4 -85.8 236.4 5.0 19.1 -76.3
2 200.4 24.5 16.8 4.0 -91.6 -83.7 232.8 6.7 16.1 -72.8
3 127.6 31.3 114.8 25.4 -10.1 -19.1 110.8 24.3 -13.1 -22.3
4 139.3 35.9 153.9 33.0 10.5 -8.0 162.6 33.6 16.7 -6.4
5 145.4 47.9 134.6 36.3 -7.5 -24.1 115.7 31.2 -20.4 -34.8
6 131.6 37.5 96.3 40.7 -26.8 8.5 93.1 38.3 -29.2 2.1
7 106.0 52.6 91.1 51.3 -14.1 -2.5 82.8 45.1 -21.9 -14.3

Table 4.3: Downwind (σx) and crosswind (σy) spread statistics from LES and two Lagrangian
stochastic (LS) formulations: surface-layer (SL) and convective boundary layer (CBL). Per-
centage differences ∆σ are relative to the LES spread.
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(b) Case 2

Figure 4.1: Deposition flux maps for the near-neutral cases (Cases 1–2) from LES, SL, and
CBL models, rotated into the mean wind direction.
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(c) Case 7

Figure 4.2: Deposition flux maps for moderately unstable to unstable cases (Cases 4, 3, and
7) from LES, SL, and CBL models, rotated into the mean wind direction.
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Figure 4.3: Deposition flux maps for strongly unstable cases (Cases 5-6) from LES, SL, and
CBL models, rotated into the mean wind direction.
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(SL) formulation (same color). Colored box plots show the variability of the LES ensembles
for case 3 at each threshold, which demonstrates the best possible model performance for
that case.



4.4 Discussion

All together, the seven LES simulations capture how the ground-level plume and associated

deposition distributions evolve as the daytime boundary layer transitions from near-neutral,

shear-dominated flow to deep, strongly convective ABL structures. In the near-neutral,

high-wind Cases 1 and 2, the combination of small surface heat flux and −zi/L ≪ 1 means

that turbulence in the surface layer is organized primarily into long, wind-aligned low-speed

streaks, as in the neutral and weakly unstable shear-driven boundary layers of Moeng and

Sullivan (1994) and Khanna and Brasseur (1998), and for Case 1, the subcritical (−zi/L <

0.43) cases of Jayaraman and Brasseur (2020) [157, 158, 165, 166]. In Case 2, where −zi/L ≈

0.8, buoyancy becomes slightly more comparable to shear, horizontal roll vortices appear

[158], and the plume becomes somewhat wider than in Case 1 but still very elongated. In

Cases 3 and 4, the boundary layer becomes definitively unstable (considered −zi/L > 20)

[165] as in the mostly convective regimes reported by Moeng and Sullivan (1994), Salesky

et al. (2017), and Pan et al. (2013) [157, 159, 161]. In these cases, thermal updrafts break

up the purely streak-dominated structure, and the ground-level plume becomes noticeably

shorter and broader, with stronger cross-wind spread and faster vertical dilution than in

Cases 1–2. Case 7 occupies a similar instability range but with a shallower, low-wind CBL

which still allows substantial lateral spreading near the source. Cases 5 and 6 lie in strongly

and very strongly convective, deep CBL regimes comparable to the most unstable simulations

in Khanna and Brasseur (1998), and the near-free-convective LES of Salesky et al. (2017)

[159, 166]. Here, the CBL structure completely transitions from rolls to cells, and the

plume becomes very wide and relatively insensitive to the exact mean-wind speed. Salesky

et al. (2017) [159] write that the most dramatic change in CBL structure happens up to

−zi/L = 15 − 20, which highlights a considerable gap in our cases. However, we still cover



several important regimes, and the changes in ground-level dispersion is notable.

Because all simulations use a near-surface release height of 2 m, the resulting plumes remain

strongly coupled to surface-layer turbulence. While this is representative of a vegetative

release, pollen released from trees is also often studied in allergenic and gene-flow contexts

with release heights up to 16 m [44, 171, 172, 173], where pollen feels an increasing sensitivity

to convective updrafts [85]. It is important to note that the model evaluation in this study

is not generalizable to higher release heights. The comparison between models here applies

only to near-surface particle emission.

In the near-neutral, shear-dominated Cases 1–2, the SL model fails because the jointly

Gaussian velocity PDF that underlies its formulation [75, 79, 88] is no longer realizable with

our prescribed statistics. This formulation assumes that u, v, and w are jointly Gaussian

with variances and covariances defined by the Reynolds stress tensor, which must form a

“symmetric, non-negative definite, and non-singular covariance matrix[79]”. In the surface-

layer formulation, this appears in, A = 2
(
σ2
uσ

2
w − (u′w′)2

)
which is only well-defined when

|u′w′| < σuσw. The merged surface-to-convective wind statistics profiles we use for σ2
w(z)

and u′w′ violate this constraint for the SL formulation, resulting in unrealistic vertical and

horizontal particle velocities. Previous successful SL formulation applications did not have

this issue [31, 53] as they used profiles for just the surface layer. We also make use of the SL

formulation with solely surface-layer wind statistics in our field experiment (Chapter 4), and

encounter no issues. Our results suggest that the SL framework is highly sensitive to wind

statistics, and would require a sensitivity analysis to determine if it is actually inappropriate

in shear-dominated ABL regimes.

Similarly, the CBL formulation faces issues in the shear-dominated cases 1 and 2 due to a dif-

ferent set of wind statistics. While it reproduces realistic downwind deposition distributions,

it critically underestimates crosswind spread σy. For crosswind dispersion, both SL and CBL



formulations are entirely dependent on the variance of the crosswind velocity fluctuations,

σ2
v(z), for which we use the Luhar (2002) convective scalings for the horizontal components,

σ2
u = σ2

v = (0.6w∗)
2. This means that in both the CBL and SL runs the horizontal turbulent

fluctuations are tied only to the convective velocity scale w∗, with no explicit dependence on

the friction velocity u∗ or shear-generated variances. In the near-neutral Cases 1–2, where

u∗ dominates and w∗ is very small, this yields near-zero cross-wind velocity variance and

both the CBL and SL formulations severely underpredict σy. In the definitively convective

cases 3–7, where w∗ is large and turbulence is well-mixed throughout the boundary layer,

the same parameterization results in deposition distributions with crosswind spread that is

much more consistent with the LES.

For downwind spread for cases 3–7, both formulations are consistent with the LES as well.

Table 4.3 shows that, aside from the shear-dominated cases, the predicted downwind spreads

from SL and CBL are very similar, with no systematic advantage of one formulation over the

other. The SL and CBL models have considerably different formulations in the downwind

direction; in the SL model, the downwind and vertical velocities are correlated, whereas in

the CBL they are independent. In theory, this added complexity would mean that the SL

might perform better in conditions where shear is a factor (cases 3-5). Our results show,

however, that the dominant control on downwind spread in our setup is again the shared

wind statistics rather than the detailed differences in the formulations.

Across all seven regimes, the Jaccard index clearly quantifies the skill with which SL and

CBL formulations reproduce LES deposition distributions. It captures the collapse of the

shear-dependent near-neutral cases 1 and 2, as well as performance trends for the more

convective cases. In the more convective cases (3-7), the consequences of model choice are

more nuanced. Both LS formulations reproduce the overall plume structure and footprint

reasonably well: downwind and crosswind spreads are typically within 10-30% of the LES



values, and the Jaccard index curves in Figure 4.4 reach maxima of about 0.6-0.7 in the mixed

and strongly convective regimes. In practical terms, that means that at certain deposition

thresholds, roughly 60-70 % of the LES deposition area above that threshold is correctly

identified by the LS model. For the more convective cases, both LS models reproduce the

overall extent of the distribution more accurately than its inner structure, although this

improves as cases become convection-dominated. For these cases, we also find that the two

LS formulations perform similarly when comparing to the LES benchmark.

Atmospheric LES simulations are most-often used by researchers and modelers who are

trying to better understand the physical phenomena of airborne dispersal. For operational

users making real-time decisions, or for regulators and risk assessors who would require

many simulations, LES is computationally prohibitive. Each of our LES simulations required

approximately 20 hours of wallclock time using 250 CPU cores on Virginia Techs TinkerCliffs

cluster, whereas each LS simulation finished within 20 minutes on a single core on the same

cluster. This is 15,000 times less computationally expensive than the LES simulations and

could easily be run on a personal computer.

The kinds of decisions that motivated this chapter (how far and wide a bioaerosol plume can

spread near the ground) are typically made instead with lower-cost models. Applications

include agricultural disease-forecasters [33], bioaerosols and particulates affecting human

health [9, 35], and agricultural and environmental stakeholders looking to preempt, evaluate

the risk of, or litigate gene flow [58, 91, 92].

If the wrong low-cost model is used in these settings, it might result in incorrect decision-

making. For example, in near-neutral conditions, the LS formulations as presented in this

chapter would yield overly narrow or collapsed plumes and thus underestimate the gene

flow distances or disease spread. In strongly sheared, near-neutral boundary layers, neither

formulation achieves sufficient overlap with LES to justify replacing a dedicated simulation,



without reevaluation of the wind statistics used to drive the models. In deep, strongly con-

vective mixed layers, by contrast, a carefully calibrated LS model can reproduce the main

qualitative features of the LES deposition distribution—overall extent, lateral footprint, and

the location of the highest deposition—at a fraction of the computational cost. For decision-

makers who care primarily about whether a receptor lies within a broad deposition zone

(isolation distances around a pollen or disease source), this degree of agreement may be

acceptable, especially when weighed against the orders-of-magnitude difference in computa-

tional cost.

In this context, the role of these LS models for pollen and bioaerosol deposition is best viewed

as a controlled trade-off between computational requirements and accuracy. LS models are

well-suited for rapid, low-cost mapping of the main plume envelope and for scenario screening

in convective regimes. Because our Jaccard analysis is threshold-dependent, it also provides

a more flexible way to use LS outputs in practice. A decision-maker can focus on the part of

the plume and the range of deposition magnitudes that are operationally relevant and then

read off how much of the LES benchmark the LS model captures at those thresholds. Given

that the best Jaccard scores correspond to only moderate agreement, these LS models are

most appropriate for tasks where relative patterns matter more than exact agreement, such

as in early-stage risk assessment, sensitivity studies, or screening of management options.

This study allows users to quantify and report the level of error in their LS simulations of

deposition.

4.5 Limitations and Future Work

In this study, we deliberately used the same wind-statistics profiles to drive both the SL

and CBL models in order to directly compare the formulations themselves. In theory, this



choice should make the comparison clearer, but in practice it produced unrealistic behavior

in the SL model under strongly shear-dominated conditions. A more rigorous, determin-

istic comparison of the wind-statistics parameterizations—examining how different choices

for mean profiles, variances, and covariances affect each model in the absence of stochas-

tic noise—would help clarify the regimes in which each formulation remains mathemati-

cally and physically well behaved. It would also be useful to drive the LS models directly

with time-averaged wind-statistics profiles directly from the LES, which would allow us to

separate errors from the models themselves from those introduced by imperfect analytical

wind-statistics parameterizations.

Beyond the wind statistics, several limitations remain. The SL and CBL schemes were

originally developed for one- or two-dimensional dispersion and only later extended to three

dimensions, so including an evaluation of vertical dispersion is needed, even though this

chapter has focused on deposition patterns. Our seven LES cases sample near-neutral and

strongly convective conditions but leave a gap across the transition from near-neutral to

weakly and moderately unstable regimes, where both models begin to improve; additional

cases in this range would better constrain where each LS formulation can credibly replace

LES. Finally, the current comparison is restricted to a single ground-level point source and

a downwind extent of order 1 km; extending the analysis to longer distances, elevated or

distributed sources, and a broader range of particle properties would provide a more complete

picture of when these 3D LS models can safely stand in for LES in bioaerosol and pollen-

deposition applications.



4.6 Conclusion

This chapter has evaluated two Lagrangian stochastic (LS) particle dispersal models—a

surface-layer (SL) formulation [31, 79, 88] and a convective boundary layer (CBL) formulation

[86, 87, 119]—against LES-driven particle dispersal in seven different atmospheric bound-

ary layer conditions spanning near-neutral, transitional, and strongly convective regimes.

Specifically, we examined crosswind and downwind ground-level concentration, which is pro-

portional to deposition flux. To the best of our knowledge, there is not a validation study

for the 3-D extension of these LS models which also considers the lateral spread of the

plume. We found that in the near-neutral, high-wind, shear-dominated cases, the particular

merged wind-statistics parameterization used here caused the SL formulation to collapse

the plume near the source and made the CBL plume unrealistically narrow, so that nei-

ther model provided an acceptable substitute for LES. In more strongly convective regimes,

where the boundary layer is deep and buoyancy-dominated, both LS formulations produced

plume shapes and deposition footprints that were qualitatively similar to LES, capturing

the main extent and orientation of the deposition pattern when driven with wind statistics

consistent with their underlying assumptions. Based on the metrics used here, the SL and

CBL LS models achieve moderate but consistent agreement with LES. Still, their substantial

computational efficiency means they remain highly useful for applications that require a full

three-dimensional plume and deposition field but do not require perfect accuracy.



Chapter 5

Conclusions and future work

This dissertation integrates regional-scale Lagrangian stochastic (LS) modeling, local-scale

field measurements, and large-eddy simulation (LES)-LS model comparisons to quantify and

interpret windborne pollen transport and deposition across spatial scales relevant to cross-

pollination, with broader applicability to any bioaerosol dispersal.

In Chapter 2, we characterized the seasonal and spatial patterns in windborne hemp pollen

dispersal spanning the conterminous United States (CONUS). By leveraging meteorological

data obtained through mesoscale model simulations, we used Lagrangian Stochastic models

to simulate wind-borne hemp pollen dispersion across CONUS on a county-by-county basis

for five months from July to November, encompassing the potential flowering season for

industrial hemp. Our findings revealed that pollen deposition rates escalate from summer to

autumn due to the reduction in convective activity during daytime and the increase in wind

shear at night as the season progresses. We found diurnal variations in pollen dispersion:

nighttime conditions favor deposition in proximity to the source, while daytime conditions

facilitate broader dispersal albeit with reduced deposition rates. These shifting weather

patterns give rise to specific regions of CONUS more vulnerable to hemp cross-pollination.

Such variability complicates the establishment of uniform isolation distances, suggesting

the superiority of adaptive risk management strategies. These strategies could incorporate

weather pattern considerations to mitigate cross-pollination risks more effectively and could

include measures like intertemporal zoning, farm quotas, cross-pollination damage insurance,
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and regulatory policies.

The patterns we observed directly apply to any airborne particle of similar size (∼ 30 µm),

and can be used to identify regions and times of the year where those particles might travel

farther and deposit in greater quantities. In a biosecurity and defense context, this is of vital

interest to contain the spread of airborne agricultural diseases which can decimate fields, as

well as human illnesses originating from animal or water bodies such as Legionnaires disease,

Q-fever, and harmful algal blooms [9, 26, 27, 35]. These results could extend to any tracer

released intentionally or not, to predict high-risk regions.

The Chapter 2 framework is intentionally simplified and leaves several open questions. More

resolved, albeit more computationally expensive models, could incorporate detailed physics

such as release of pollen from the anthers, dispersal within a canopy, wet deposition, and even

conditions specific to a farms location like topography. Our vulnerability metric assumed

one hemp pollen source per county. More detailed information on source locations and

sizes would fuel a sophisticated vulnerability metric, or even an on-demand tool for risk-

assessment for growers. Our study used meteorological data from 2016 only; performing

this same study over multiple years would provide insight into yearly variation. Specifically,

a long-term climatological study might reveal how warming temperatures and other trends

change the seasonal spatial patterns we observed.

In Chapter 3, we moved from a regional-scale (up to 50 km) purely modeling approach to a

highly local scale (< 25 m) study that combines modeling with field measurements. In this

study, three field campaigns were conducted around a very small field of genetically modified

switchgrass tagged with orange-fluorescent protein for traceability. Switchgrass pollen was

sampled up to 25 meters from the field using both traditional and novel volumetric samplers,

including a drone-mounted sampler which collected pollen at a fixed height of 10 meters.

Lagrangian stochastic dispersal simulations were run during sampling periods driven by high-



resolution wind measurements taken at the field. Our results from this unique experimental

setup showcase several lessons that may guide future studies. Persistent low-wind meandering

conditions were recorded throughout the campaign, and reducing the averaging window for

simulations significantly improved pollen emission rate estimations by better incorporating

shifting wind directions. The pollen emission rate was estimated by combining simulated and

measured pollen concentrations, and strong diurnal trends were observed. Diurnal emission

rate trends were positively correlated with wind speed, temperature, and vapor pressure

deficit, and negatively correlated with relative humidity. This study highlights the potential

for drone-based pollen sampling and GMO pollen tracking using fluorescence measurements.

The findings provide insight into the effectiveness of different sensor types with respect

to source strength and sampling distance, advancing the understanding of pollen dispersal

dynamics and measurement techniques.

These results have important implications for allergen monitoring, cross-pollination risk as-

sessment, and broader bioaerosol surveillance strategies. With unlimited resources, the nat-

ural next step would be a scaled up version of this same experiment focused on validation:

a large, well-established source containing only PSYBIN1a to maximize the OFP signal,

multi-year sampling on the same dates and times to quantify repeatability of diurnal emis-

sion patterns, and colocated Hirst-type gold-standard samplers deployed alongside the novel

samplers to provide independent concentration estimates for model validation and rigorous

sampler inter-comparison. A substantially larger source would allow meaningful comparisons

between low- and high-volume samplers, with one set used to estimate the particle release

rate and another for validating modeled concentrations. It would also enable more effective

use of impinger-type samplers (IMP and DRN), which could preserve pollen for downstream

viability studies, although isolated siting requirements for transgenic work would continue

to pose limits for long-distance tracking. Focusing solely on PSYBIN1a switchgrass, with its



stronger OFP fluorescence in pollen, could further enhance tracking accuracy via automatic

fluorescence-based quantification.

In Chapter 4, we evaluated two Lagrangian stochastic (LS) particle dispersal models, namely

a surface-layer (SL) formulation [31, 79, 88] and a convective boundary layer (CBL) formu-

lation [86, 87, 119], against an LES-driven stochastic particle dispersal model (PALM-LES)

in seven different atmospheric boundary layer conditions spanning near-neutral, mixed shear

and convective, and strongly convective regimes. To the best of our knowledge, there has not

been a validation study for the 3-D extension of these LS formulations which also considers

the lateral spread of the plume. In the near-neutral, shear-dominated cases, the merged

wind-statistics parameterization caused the SL plume to collapse near the source and the

CBL plume to become unrealistically narrow, so neither model was an acceptable substitute

for LES. In more strongly convective, buoyancy-dominated regimes, both LS formulations

produced plume shapes and deposition footprints that were qualitatively similar to LES and

captured the main extent and orientation of the deposition pattern. Based on the metrics

employed in this study, they achieved moderate agreement, so they are best viewed as com-

putationally efficient tools for three-dimensional plume and deposition fields when perfect

accuracy is not required.

In this study, we deliberately used the same wind-statistics profiles to drive both the SL

and CBL models in order to directly compare the formulations themselves. In theory, this

choice should make the comparison clearer, but in practice it produced unrealistic behavior

in the SL model under strongly shear-dominated conditions. A more rigorous, determin-

istic comparison of the wind-statistics parameterizations—examining how different choices

for mean profiles, variances, and covariances affect each model in the absence of stochastic

noise—would help clarify the regimes in which each formulation remains mathematically

and physically well behaved. It would also be useful to drive the LS models directly with



time-averaged wind-statistics profiles directly from the LES, which would allow us to sepa-

rate errors from the models themselves from those introduced by imperfect analytical wind-

statistics parameterizations. The current comparison is restricted to a single ground-level

point source and a downwind extent of 1 km; extending the analysis to longer distances,

elevated or distributed sources, and a broader range of particle properties would provide a

more complete picture of when these 3D LS models can safely stand in for LES in bioaerosol

and pollen-deposition applications.

These three chapters are organized around a single theme: using Lagrangian stochastic

modeling, driven by realistic meteorology, to explore bioaersol dispersal at different scales—

from regional dispersal patterns of cross-pollination risk, to what can actually be measured

around a single small field, to when reduced-cost LS formulations can reasonably replace

LES. In doing so, all three chapters operate at the intersection of engineering mechanics,

atmospheric science, and plant biology: treating pollen as a mechanically transported particle

in a turbulent boundary layer, while keeping the biological and agricultural context of hemp

and switchgrass at the forefront. These results show how weather-informed modeling can

support cross-pollination risk assessment and broader bioaerosol dispersal applications. It is

a case-study for future collaborations across disciplines such as biosurveillance, agriculture,

and human health.
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Appendix A

Lagrangian Stochastic (LS) Model

Formulations

A.1 Overview

The Lagrangian stochastic (LS) model is an application of Brownian motion to turbulent

diffusion [79], in which the trajectories of many particles through the air are modeled as

random walks. Each step of a particle’s path is influenced by both random and deterministic

motions, guided by the statistics of the local wind field. By releasing thousands of particles

and computing an ensemble average of their trajectories, we can determine the relative

concentration at any point in the domain and the mean shape of the plume.

The position increments for particles in the x (downwind) and z (vertical) directions are as

follows [75],

dx = (u′ + U)dt, (A.1)

dz = (v′ + V )dt, (A.2)

dz = (w′ − vs)dt, (A.3)

where u′,v′, and w′ represent the fluctuating horizontal and vertical velocities, U is the mean

horizontal wind velocity described further in Section B.3, and vs is a constant settling velocity
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for the particle.

Particle velocity increments[31] in the x and z directions are computed using the Langevin

equation,

du′ = audt+ buN (0, dt), (A.4)

dv′ = avdt+ bvN (0, dt), (A.5)

dw′ = awdt+ bwN (0, dt), (A.6)

which describes the incremental changes in u′, v′, and w′ fluctuating particle velocities. The

Langevin coefficients, au, av, aw and bu, bv, bw, account for the deterministic and stochastic

components of particle acceleration, respectively. The stochastic timestep is drawn from a

normal distribution with a mean of 0 and variance dt.

The timestep, dt is computed as a fraction[31, 87] of the lagrangian timescale τ :

dt = 0.02τ, (A.7)

τ = 2
σ2
w

C0ε
, (A.8)

where we chose the constant C0 = 3 [54, 119] and σ2
w is the vertical velocity variance and

ε is the turbulent dissipation rate, described in Appendix B, which explicitly lists the wind

statistics used in the LS simulations in each chapter.

In this dissertation, we often refer to two specific formulations of the LS model, which are

described further in appendices A.3 and A.2. Both LS model formulations referenced in this

dissertation are based on the well-mixed condition of Thomson (1987) [79, 86, 88], which

requires “particles that are well-mixed remain so” [86, 88]. This means that the Eulerian

velocity pdf PE(u
′
i, z) of the fluid, which is the probability of the fluctuating fluid velocity



components u′, v′, and w′ taking on certain values as a function of position, should be exactly

the same as the probability of fluctuating particle velocities u′, v′, and w′ taking on the same

values at the same positions, Pa(u
′
i, z) [86]. With these assumptions, Thomson [88] derived

the following general form for the Langevin coefficients from the Fokker-Planck equation.

In the stationary, horizontally homogeneous case adopted here (so that PE depends only on

height z), they can be written as

ai =
ϕi

PE

+
1
2
C0ε

∂PE

∂ui

PE

, (A.9)

bi =
√
C0ε, (A.10)

where ε denotes the turbulent kinetic energy dissipation rate and ϕi is also computed from

PE and are described further in [79, 86, 88, 100].

The two LS model formulations differ in their assumptions for PE and the resulting expres-

sions for the Langevin coefficients. These specifics are covered in the following sections.

A.2 Surface Layer (SL) Formulation

The SL model incorporates a Gaussian pdf with jointly Gaussian velocity components (u, v,

and w), as described in [31, 79, 88], giving a PE,

PE =
1

(2π)3/2 det τ 1/2ij

exp
(
− 1

2
(ui − Ui)τ

−1
ij (uj − Uj)

)
. (A.11)

where τij is the mean Reynold’s stress tensor, and contains terms for the variances and

covariances of the wind velocity.



This yields the Langevin coefficients used in Aylor & Flesch (2001) [31].

au =
b2u
A

(
u′w′w′ − σ2

wu
′)+ 1

2

∂u′w′

∂z

+
1

A

(
σ2
w

∂σ2
u

∂z
u′w′ − u′w′∂σ

2
u

∂z
w′2 − u′w′∂u

′w′

∂z
u′w′ + σ2

u

∂u′w′

∂z
w′2

)
, (A.12)

av = −1

2
b2v
v′

σ2
v

+
1

2

∂σ2
v

∂z

v′w′

σ2
v

, (A.13)

aw =
b2w
A

(
u′w′ u′ − σ2

uw
′)+ 1

2

∂σ2
w

∂z

+
1

A

(
σ2
w

∂u′w′

∂z
u′w′ − u′w′∂u

′w′

∂z
w′2 − u′w′∂σ

2
w

∂z
u′w′ + σ2

u

∂σ2
w

∂z
w′2

)
, (A.14)

A = 2
(
σ2
uσ

2
w − u′w′ 2

)
. (A.15)

A.3 Convective Boundary Layer (CBL) Formulation

The CBL model was developed by Luhar et al. (1989) [86], and computes PE(u
′
i, z) as the

sum of two Gaussian pdfs to represent convective updrafts and downdrafts in the boundary

layer, shown in (A.16),

PE = APA +BPB,

PA =
1√
2πσA

exp
(
−(w′ − wA)

2

2σ2
A

)
,

PB =
1√
2πσB

exp
(
−(w′ + wB)

2

2σ2
B

)
.

(A.16)

It is extended to 3 dimensions based on Luhar (2002) [54, 119], which takes the horizontal



and vertical velocity fluctuations to be independent. The Langevin coefficients then become,

aw =
ϕ

PE

−
1
2
C0εQ

PE

, (A.17)

av =
−v′C0ε

2σ2
v

, (A.18)

au =
−u′C0ε

2σ2
u

. (A.19)

The ϕ term has been adapted to heavy particles in Boehm et al. (2005) [100]. The full

closure method to find A, B, wA, wB, σA, σB is shown in Luhar et al. (1996) [87]. These are

functions of the wind velocity profiles, which vary with height and are described in Appendix

B. Although the original CBL LS model [86, 87] was a one-dimensional model intended for

the well-mixed boundary-layer, Boehm et al. (2008) [54] incorporated wind statistics into

this model which transition smoothly from the surface layer to the convective boundary layer

above.



Appendix B

Wind statistics profiles by chapter

To compute the Eulerian velocity pdf PE(u
′
i, z), we need to specify the wind statistics at

every point in the domain, i.e., the mean, variances, covariances, and skewness. Assuming

stationarity and horizontal homogeneity, the wind field statistics remain constant over time

and vary only with height. Under this assumption, boundary layer scaling techniques such as

Monin-Obukhov similarity theory, mixed layer, and surface layer scaling can be employed to

generate vertical profiles of wind statistics. As a result, only 5 meteorological parameters are

required to drive the LS simulation: the friction velocity u∗, the Monin-Obukhov length L,

the convective velocity scale w∗, the surface roughness length z0, and boundary layer height

zi.

B.1 Chapter 1: Stable and Unstable Wind Statistics Applied to

the Full Boundary Layer

In chapter 1, we applied the 2D SL and CBL formulations to stable and unstable conditions

respectively. The wind statistics profiles used for each are included below with their sources

for reproducibility.

139



Horizontal wind velocity profile

To model the mean horizontal wind-velocity profile, U , we use the logarithmic wind velocity

profile from Monin-Obukhov similarity theory [108] with the stability correction function,

ψM .

U =
u∗
0.4

[
ln
(
z

z0

)
+ ψM

]
. (B.1)

For stable conditions, we use the stability function as reported in Beljaars & Holtslag

(1991)[80], where a = 1, b = 2/3, c = 5, and d = 0.35. In this paper, they compare

the resulting velocity profiles with field measurements and find that this parameterization

performs well throughout the boundary layer despite the fact that surface-layer scaling is

used. Optis et al. (2016) [174] also compared various stable wind profiles, including the one

presented below, and show that it performs well up to 200 meters above the surface.

ψM = a
z

L
+ b

(
z

L
− c

d

)
exp

(
− d

z

L

)
+
bc

d
. (B.2)

For unstable conditions, we use the stability function given by Paulson (1970) [162]. This

has previously been used for other unstable LS simulations [31, 54], and is considered to

approximate measurements well [80].

ψM = −2 ln
(
1 + α

2

)
− ln

(
1 + α2

2

)
+ 2 tan−1(α)− π

2
, (B.3)

where,

α = (1− 15
z − d

L
)1/4. (B.4)



Horizontal wind velocity variance

In stable conditions, we use the following relationship from Kantha and Clayson for the

horizontal velocity variance (2000)[82],

σ2
u = 4u∗

2

(
1− z

zi

)3/2

. (B.5)

In unstable conditions, we use the following parameterization from Luhar et al. (2002) [119]

for the horizontal wind velocity variance.

σ2
u = (0.6w∗)

2. (B.6)

Vertical wind velocity variance

In stable conditions, for the vertical wind velocity variance, we use a relationship from

Kantha and Clayson [82],

σ2
w = 3u∗

2

(
1− z

zi

)3/2

. (B.7)

In the HYSPLIT model, this parameterization is provided as one option for simulating

velocity variances in stable conditions. Oneto et al. (2020) compared dispersal results using

the Kantha and Clayson (2000) scheme with other parameterizations offered by HYSPLIT,

and found that there was little sensitivity.

In unstable conditions, we apply the merged parameterization from Boehm et al. (2005)[54].

This combines surface-layer scaling with that of the convective boundary layer, so that the

conditions ranging from very unstable to neutral can be accurately modeled.



σ2
w,CBL = 1.7w∗

2(z/zi)
2/3(1− 0.9z/zi)

4/3, (B.8a)

σ2
w,neutral = u∗

2(1.7− z/zi), (B.8b)

σ2
w,merged =

(1− exp(z/L))w∗
3σ2

w,CBL + 5 exp(z/L)u∗3σ2
w,neutral

(1− exp(z/L))w∗3 + 5 exp(z/L)u∗3
. (B.8c)

(B.8d)

Velocity covariance

In unstable conditions, the covariance between downwind and vertical velocities is required.

We use the following parameterizations used in Aylor and Flesch (2001) [31],

u′w′ = −u2∗ (B.9)

Lagrangian Timescale

In all stabilities, we compute the Lagrangian time scale using[31, 87],

τ =
2σ2

w

C0ε
. (B.10)

Turbulence kinetic energy dissipation rate

In stable conditions, we use the profile suggested by Rodean (1996) [79] for the entire stable

boundary layer,

ε =
u∗

3

0.4 ∗ z

(
1 + 3.5

z

L

)(
1− 0.85 ∗ z

zi

)3/2

. (B.11)



Rodean (1996) discusses that this profile was formed by fitting to a second-order turbulence

model[175], and has generally agreed with measurements and other simulations.

In unstable conditions, we apply the merged surface layer/convective boundary layer profile

described by Boehm et al. (2008) [54] to LS modeling, and found previously using Large

Eddy Simulations[157],

ε = 0.4
w∗

3

zi
+

u∗
3(1− z/zi)

0.4z(1− 15 ∗ z/L)1/4
. (B.12)

B.2 Chapter 2: Unstable Wind Statistics Applied to the Surface

layer

In chapter 2, we applied the 3D SL formulation to unstable daytime conditions to simulate

near-source dispersal. The wind statistics profiles used are included below for reproducibility,

and come entirely from Aylor and Flesch (2001) [31].

Horizontal wind velocity profile

To model the mean horizontal wind-velocity profile, U , we use the logarithmic wind velocity

profile from Monin-Obukhov similarity theory [108] with the stability correction function,

ψM .

U =
u∗
0.4

[
ln
(
z

z0

)
+ ψM

]
. (B.13)

We use the stability function given by Paulson (1970) [162]. This has previously been used



for other unstable LS simulations [31, 54], and is considered to approximate measurements

well [80].

ψM = −2 ln
(
1 + α

2

)
− ln

(
1 + α2

2

)
+ 2 tan−1(α)− π

2
, (B.14)

where,

α = (1− 15
z − d

L
)1/4. (B.15)

Horizontal wind velocity variance

We use the following parameterizations used in Aylor and Flesch (2001) [31] for the horizontal

wind velocity variances,

σ2
u = σ2

v = u2∗(4 + 0.6 ∗ (−zi/L)2/3. (B.16)

Vertical wind velocity variance

In unstable conditions, we use the following parameterization used in Aylor and Flesch (2001)

[31],

σ2
w = 1.56u2∗(1− 3 ∗ (z/L)2/3. (B.17)

Vertical wind velocity variance

We use the following parameterization used in Aylor and Flesch (2001) [31],

σ2
w = 1.56u2∗(1− 3 ∗ (z/L)2/3. (B.18)



Velocity covariance

For this model, the covariance between downwind and vertical velocities is included. We use

the following parameterizations used in Aylor and Flesch (2001) [31],

u′w′ = −u2∗ (B.19)

Lagrangian Timescale

We compute the Lagrangian time scale as follows with the timescale correction as written in

Aylor and Flesch (2001) [31], where they take β to be 1.5.

TL =
0.5z

σw

(
1− 6

z

L

)1/4

, (B.20)

τ = fTL f =
1√

1 + (βvs/σw)2
, (B.21)

Turbulence kinetic energy dissipation rate

We compute the turbulence kinetic energy dissipation rate using[31, 87],

ε =
2σ2

w

C0τ
. (B.22)



B.3 Chapter 3: Unstable wind statistics Applied to the Full Bound-

ary Layer

In chapter 3, we applied the 3D SL and CBL formulations to unstable daytime conditions

to simulate disperal within about 1 km of the source. The wind statistics profiles used for

each are included below with their sources for reproducibility.

Horizontal wind velocity profile

To model the mean horizontal wind-velocity profile, U , we use the logarithmic wind velocity

profile from Monin-Obukhov similarity theory [108] with the stability correction function,

ψM .

U =
u∗
0.4

[
ln
(
z

z0

)
+ ψM

]
. (B.23)

For unstable conditions, we use the stability function given by Paulson (1970) [162]. This

has previously been used for other unstable LS simulations [31, 54], and is considered to

approximate measurements well [80].

ψM = −2 ln
(
1 + α

2

)
− ln

(
1 + α2

2

)
+ 2 tan−1(α)− π

2
, (B.24)

where,

α = (1− 15
z − d

L
)1/4. (B.25)



Horizontal wind velocity variance

We use the following parameterization from Luhar et al. (2002) [119] for the horizontal wind

velocity variance.

σ2
u = (0.6w∗)

2. (B.26)

Vertical wind velocity variance

We apply the merged parameterization from Boehm et al. (2005)[54]. This combines surface-

layer scaling with that of the convective boundary layer, so that the conditions ranging from

very unstable to neutral can be accurately modeled.

σ2
w,CBL = 1.7w∗

2(z/zi)
2/3(1− 0.9z/zi)

4/3, (B.27a)

σ2
w,neutral = u∗

2(1.7− z/zi), (B.27b)

σ2
w,merged =

(1− exp(z/L))w∗
3σ2

w,CBL + 5 exp(z/L)u∗3σ2
w,neutral

(1− exp(z/L))w∗3 + 5 exp(z/L)u∗3
. (B.27c)

(B.27d)



Velocity covariance

In unstable conditions, the covariance between downwind and vertical velocities is required.

We use the following parameterization described in Rodean (1996) [79, 81],

u′w′ = −u2∗ ∗ (1− z/zi)
3/2−q, (B.28)

q =
−0.5 ∗ zi/L
1− zi/L

. (B.29)

(B.30)

Lagrangian Timescale

We compute the Lagrangian time scale using[31, 87],

τ =
2σ2

w

C0ε
. (B.31)

Turbulence kinetic energy dissipation rate

In stable conditions, we use the profile suggested by Rodean (1996) [79] for the entire stable

boundary layer,

ε =
u∗

3

0.4 ∗ z

(
1 + 3.5

z

L

)(
1− 0.85 ∗ z

zi

)3/2

. (B.32)

Rodean (1996) discusses that this profile was formed by fitting to a second-order turbulence

model[175], and has generally agreed with measurements and other simulations.

In unstable conditions, we apply the merged surface layer/convective boundary layer profile

described by Boehm et al. (2008) [54] to LS modeling, and found previously using Large

Eddy Simulations[157],



ε = 0.4
w∗

3

zi
+

u∗
3(1− z/zi)

0.4z(1− 15 ∗ z/L)1/4
. (B.33)



Appendix C

Supplementary Figures For Chapter 1

Supplementary Figure S1

Sensitivity analysis by varying release height. In the main manuscript, we ran all simulations

with a release height of 2 m. To explore sensitivity of our results to variations in release

height, we randomly selected one county from each of the nine climate zones and reran

simulations for day and night conditions for all months from July to November using release

heights of 1.5, 2, and 2.5 meters. We found that reducing the release height resulted in less

deposition throughout the domain for both day and night conditions, except in the first bin

within 250 m from the source, where depositions increased. Increasing the release height had

the opposite effect, with increased deposition throughout the domain. Figure C.1(A) shows

pdfs of the change in percent-deposited at 5, 10, 20, and 35 km downwind, while Figure

C.1(B) quantifies the change, showing mean and median differences and the percent-change

at the same downwind distances.

While it is notable that changing the release height reduces depositions considerably, the

shape of the deposition kernels after the first bin remains the same. This means that the

spatial patterns we observe with 2 m release heights in the paper remain valid for this range

of release heights. To demonstrate this, we also ran simulations for every county in the

CONUS for day and night conditions, only for the month of July, using release heights of

1.5, 2, and 2.5 meters. In Figure C.1(C), heat maps for each of these release heights show that

150



although magnitudes change, spatial patterns remain the same. In our manuscript, we kept

a fixed value of 2-meter release height in all simulations in order to focus on meteorological

parameters. In our vulnerability analysis, we also incorporated land area and planted hemp

acreage. However, to truly estimate cross-pollination risk and vulnerability, we recommend

incorporating crop height, and additional factors such as location of farms, land topography,

frequency of weather events like gusts or precipitation, and timing of pollen release.
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Figure C.1: Sensitivity analysis conducted by varying the release height, where 2 m is the
height originally used in the paper. (A) pdfs of the change (from a 2-m release height)
in percent-deposited at 5, 10, 20, and 35 km downwind for both day and night conditions
together. (B) Mean and median change in percent-deposited, and the percent-change for
each release height, for both day and night conditions together. (C) Heatmaps showing
depositions at 5, 10, 20, and 35 km distances from the source for three release heights for
the month of July.



Supplementary Figure S2
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Figure C.2: Scatterplots of five meteorological parameters for all day simulations vs. the
percentage of particles deposited at distances downwind of the source. The Spearman cor-
relation coefficients relating depositions at each downwind distance with the respective me-
teorological parameter are denoted for each plot. Decreasing deposition is most correlated
with decreased boundary layer height zi and w∗ beyond 1 km from the source.



Supplementary Figure S3
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Figure C.3: Scatter plots of meteorological input parameters vs. depositions for night cases.
Scatterplots of five meteorological parameters for all night simulations vs. the percentage
of particles deposited at distances downwind of the source. The Spearman correlation co-
efficients relating depositions at each downwind distance with the respective meteorological
parameter are denoted for each plot. At night, greater boundary layer height zi, friction
velocity u∗, and obukhov length |L| correlate with pollen travelling further - less deposition
close to the source and increased deposition at all downwind distances beyond 1 km. The
convective velocity scale, w∗ is zero or a very small negative number for all night-time con-
ditions, which make up the vast majority of nighttime case, and is not incorporated in the
stable LS model.



Supplementary Figure S4
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Figure C.4: Distances at which dispersal kernels first fall below a threshold for each month:
(a) 1%, (b) 0.1%, and (c) 0.01%. Red represents day simulations, while blue represents
night. Seasonal variation is most pronounced for the 0.01% threshold distances, where the
frequency of daytime distances beyond 30 km progressively increases from July to November.



Supplementary Figure S5
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Figure C.5: Median cumulative depositions for each month during (a) day and (b) night,
separated by US climate region: Northeast (NE), Upper Midwest (UM), Ohio Valley (OV),
Southeast (SE), Northern Rockies & Plains (NRP), South (S), Southwest (SW), Northwest
(NW), and West (W). Shading represents data between the 10th and 90th percentiles. Note
that the vertical axis is a log scale. There is a pronounced increase in total depositions in
nighttime cases - most curves reach 100% within the domain. During the day, the kernels
level out below 90%, although there is an increase in depositions from July to November.



Supplementary Figure S6
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Figure C.6: Heat maps of five meteorological parameters for all (a) daytime and (b) nighttime
simulations over five months from July to November. The spatial and seasonal patterns
visualized here mirror the deposition patterns shown in the main paper. During the day,
the Southwest region maintains the highest convective velocity scale, w∗ and boundary layer
height, zi throughout the season, and therefore the lowest daytime depositions overall. At
night, the Southeast and Southwest regions have high friction velocity, u∗, high boundary
layer height, zi, lower roughness length, z0, and high Monin-Obukhov length |L|, which
results in less deposition in our simulations.



C.1 Supplementary Figure S7

Adisp (km2) Adisp / Aland
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Figure C.7: Components of the vulnerability metric. (a) The acreage of hemp, Ahemp, planted
in each county as of 2023 [2], where darker colors indicate greater planted hemp acreage.
(b) The dispersal area Adisp, or area within a circle of radius equal to the average 0.01%-
threshold distance, where darker colors indicate a greater dispersal area. (c) The ratio of
Adisp to the land area of each county Aland, where red colors indicate regions where more
Adisp > Aland.
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