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Bioaerosol Dispersal Across Scales:
Regional Patterns, Field Study, and Model Evaluation

Manu Nimmala

(ABSTRACT)

Bioaerosols—including seeds, pollen, fungal spores, bacteria, and viruses—are fundamental
agents connecting atmospheric processes to agriculture, ecosystem function, and human and
animal health. This dissertation uses Lagrangian stochastic (LS) models to simulate how
these particles travel and deposit across scales relevant for cross-pollination, with applica-
tions to many types of biological aerosols. First, we map seasonal and regional patterns of
windborne hemp pollen across the United States by running LS models with weather data to
simulate day- and night-time dispersal from summer through fall. These simulations identify
areas more susceptible to cross-pollination and show how patterns shift across seasons and
between day and night. We find regions more vulnerable to cross-pollination, with seasonal
and diurnal shifting patterns in dispersal. Next, we work to detect and model genetically
modified switchgrass pollen released from a small field in low-wind conditions during three
sampling campaigns with a suite of novel samplers. We find that only our highest-volume
samplers were able to detect pollen and that reducing the averaging window in the simula-
tions substantially improved emission-rate estimates. Finally, we evaluate the 3D LS models
used in this dissertation by comparing them to a high-fidelity model driven by large-eddy
simulation (LES) in seven daytime convective boundary layer conditions. The LS models
show moderate accuracy in strongly convective conditions, but they fail in near-neutral con-

ditions due to issues in how they are parameterized rather than in their underlying equations.



Together, these results clarify when LS models can effectively substitute for more computa-
tionally intensive LES, reveal how sampler design and averaging choices shape what can be
extracted from field measurements, and demonstrate the value of weather-aware modeling for
cross-pollination risk assessment and broader questions of bioaerosol transport. Collectively,
this work strengthens the scientific foundation needed to predict, manage, and mitigate the

movement of biological aerosols in an increasingly variable atmosphere.
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Manu Nimmala

(GENERAL AUDIENCE ABSTRACT)

Bioaerosols—including seeds, pollen, fungal spores, bacteria, and viruses—are fundamental
agents connecting atmospheric processes to agriculture, ecosystem function, and human and
animal health. This dissertation uses Lagrangian stochastic (LS) models to simulate how
these particles travel and deposit across scales relevant for cross-pollination, with applica-
tions to many types of biological aerosols. First, we map seasonal and regional patterns
of windborne hemp pollen across the United States by running LS models with large-scale
weather data to simulate day- and night-time dispersal from summer through fall. These
simulations identify areas more susceptible to cross-pollination and show how patterns shift
across seasons and between day and night. Next, we work to detect and model geneti-
cally modified switchgrass pollen released from a small field in low-wind conditions during
three sampling campaigns. We find that only the highest-volume samplers captured pollen,
and that using shorter averaging windows in the simulations greatly improved emission-rate
estimates. Finally, we evaluate the 3D LS models used in this dissertation by comparing
them to a high-fidelity model driven by large-eddy simulations (LES) across seven daytime
atmospheric conditions. The LS models show moderate accuracy in strongly convective con-
ditions, but they fail in near-neutral conditions due to issues in how they are parameterized
rather than in their underlying equations. Together, these results clarify when LS mod-
els can effectively substitute for more computationally intensive LES, reveal how sampler

design and averaging choices shape what can be extracted from field measurements, and



demonstrate the value of weather-aware modeling for cross-pollination risk assessment and
broader questions of bioaerosol transport. Collectively, this work strengthens the scientific
foundation needed to predict, manage, and mitigate the movement of biological aerosols in

an increasingly variable atmosphere.
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Chapter 1

Introduction

1.1 Bioaerosols are important and matter at different scales

Bioaerosols are small airborne particles formed and emitted from biological sources that link
atmospheric transport to processes in climate, ecosystems, agriculture, and health. They
include pollen, seeds, bacteria, fungi, and viruses, with diameters ranging from 1 nm to
100 pm [3]. They influence cloud microphysics and climate, plant reproduction and gene
flow, and the spread of plant and human disease. For example, they are of vital interest
to applications such as ice nucleation and cloud condensation [4], gene flow in relation to
historical human cultivation [5, 6] and plant evolution [7], natural forest regeneration [8],
airborne human infection [9], bioconfinement [10, 11, 12, 13| and regulation of genetically
modified organisms (GMO) in agriculture [14, 15, 16|, modeling ecological changes in plant
populations [13, 17, 18, 19], allergenic pollen [20, 21, 22, 23|, harmful algae blooms [24, 25,
26, 27|, and the spread of plant diseases [28, 29, 30, 31, 32, 33|. In all of these settings,
the central question is how these particles are emitted, transported, and ultimately removed

from the atmosphere—that is, their dispersal.

The impacts of bioaerosol dispersal are scale-dependent, with relevant length scales ranging
from a few meters to thousands of kilometers. In the context of human health, dispersal
of bacteria and viruses via coughing and sneezing, such as those caused by chicken pox,

measles, bacterial meningitis, and the famous 1.5 meter coronavirus social distancing rule

1



[34, 35] are all of interest within a few meters of the source. At several hundred meters
to kilometers, legionnaire’s disease, a potentially deadly respiratory illness caused by the
spread of the aerosolized water containing Legionella bacteria, often spread from cooling
towers becomes important |9, 35|, as do diseases spread from animal farms tens of kilometers
like avian influenza virus and Q-fever [9, 35]. Harmful algal blooms in oceans and lakes,
such as the red tide in Florida [27] release toxins into the air upon aerosolization of water

droplets, causing respiratory illness, and can be carried several kilometers inland [36].

For plant disease, Van der Heyden et al. [33] provides an extensive list of studies that monitor
spores from infected crops from plot-scale experiments (e.g., apple scab, onion Botrytis,
cucumber downy mildew) up to regional and national networks (wheat rust, Fusarium head
blight, soybean rust). This monitoring is intended to prevent and manage local epidemics
and large-scale spread, resulting in crop and financial losses [37]. Aylor [38] discusses the
risk of spread of apple scab disease, from fungal spores released from decaying leaves on the
orchard floor, escape from the floor, spread within the orchard, and spread between orchards
[28, 38| causing deformed fruit, while tobacco blue mold has caused several regional-scale
epidemics in the United States [28]. On the continental scale, Dillon and Dillon [35] discuss
the introduction of soybean rust into North America from South America via Hurricane
Ivan in 2004, with continued infestations following this event and resulting crop damage.
Mohaimin et al. [37] argue that across these same local-to-continental scales, dispersal of

crop-pathogenic bioaerosols is a major constraint on crop yield and food security [39].

Seeds are the larger than most other bioaerosols and far shorter dispersal distances. They
tend to disperse within tens of meters and 100 meters is considered long-distance transport|40,
41, 42]|. Yet, the study of their dispersal is essential for tracking gene flow for ecological
applications like natural forest regeneration [8|,the spread of plant and tree populations

[19, 43, 44, 45, 46, 47, 48], and how climate change [49, 50| alters this spread.



Among bioaerosols, pollen has one of the most extensive dispersal literatures and is the pri-
mary focus of this dissertation. Pollen dispersal is studied primarily for gene flow prevention
in agriculture and ecology. A major and current concern is the bioconfinement of genetically
modified species, and prevention of their genetic drift through pollen dispersal at all scales
[10, 11, 12, 13]. There has been extensive work on this for maize pollen [51, 52, 53, 54, 55|
but other crops of interest include wheat and oilseed rape [56, 57|. Creeping bentgrass is
an example of potential ecological change caused by gene flow from cultivated transgenic
populations to feral populations [58, 59|. Similarly, switchgrass pollen dispersal is closely
studied because it is often genetically modified and has the potential to alter ecosystems,
particularly as it gains footing as a major biofuel source [11, 17, 18]. In our third chapter, we
feature a field study which measures and models switchgrass pollen dispersal. In our second
chapter, we study patterns in Cannabis pollen dispersal, specifically the long tails. Cannabis
pollen is light weight and produced in large quantities [60], and so its dispersal and potential
for cross-pollination at longer distances is of importance to the Cannabis industry. Long-
range monitoring and trajectory analyses show that pollen can travel hundreds to thousands
of kilometers, with birch and Cannabis pollen observed crossing national and continental
boundaries [23, 61, 62|. Pollen dispersal is also tightly coupled to climate, with projections
of changing allergen exposure or ecosystem shifts under future climate scenarios [20, 21, 22|.
These studies illustrate that pollen dispersal spans the same local-to-regional scales as plant
pathogens, and they motivate the multi-scale, Lagrangian modeling framework developed in

this dissertation.



1.2 A framework for dispersal modeling

These scales, and the processes that dominate at each, motivate a range of modeling ap-
proaches for atmospheric dispersion. Most mechanistic atmospheric dispersion models can
be viewed as two coupled components: (1) a description of the underlying flow and turbu-
lence and (2) the method of simulating dispersion, a representation of how passive or heavy

particles are transported within that flow.

1.2.1  Flow underlying dispersal

The development of the wind field for dispersal hinges on several key assumptions. Over
what spatial and temporal scales is the dispersal occurring? At those scales, can stationarity
be assumed, and if not, what time resolution is required? Can horizontal homogeneity of
the wind field be assumed—is there terrain, is it flat, is it an idealized situation, or do
other processes take over at larger length scales?” What horizontal resolution is required to
resolve those changes, the characteristics of the flow, and the characteristics of interest in
the dispersal distribution? Can vertical homogeneity be assumed, or does surface wind shear

need to be accounted for?

At mesoscales (102 — 10® km), dispersal models like HYSPLIT [63], CMAQ [64], and FLEX-
PART [65] are driven by numerical weather prediction models (e.g. WRF [66], MM5 [67],
NCEP NAM |[68]) and reanalysis products (e.g. ERA5 [69], MERRA-2 [70], NARR [71])

with horizontal grids on the order of 1 to 100 km [63].

For smaller scales (1 m — 10? km), the diversity in wind-field development configurations
explodes, each designed for a different combination of the key assumptions. At a high level,

dispersal models at these scales can rely on measurements, modeling, or some combination



of the two. Wind fields via measurements can come from single sensors or multiple in the
field providing points of data over time, profiles from a tower of sensors, a sodar, a weather
balloon, or a drone, and a network of measurements (e.g. NOAA National Data Buoy Center
(NDBC), METAR airport weather stations). CALMET for example, is a meteorological
pre-processor that uses data such as this in combination with physics-based adjustments to
produce a wind field for the dispersal model CALPUFF [72]. Modeling the wind field by
solving the governing equations of fluid motion over a gridded domain (DNS, LES, RANS)
can provide a much more detailed 3D wind field that could be time-varying, and can be
customized to fit a micro-scale domain of a few meters, for example to resolve escape of
particles from a plant canopy [73], or up to several kilometers, to model pollution over a city

[74].

1.2.2  Dispersal

For the dispersion component, most mechanistic models represent particle motion in either

an Eulerian or Lagrangian framework.

In a Eulerian framework, the transported quantity is the concentration C(z,y, z,t) which
evolves according to an advection-diffusion equation on a fixed grid. This approach is natural
for coupling to chemistry, and underpins the large-scale chemistry-transport model CMAQ.
At smaller scales, it struggles to resolve sharp gradients in concentration such as those occur-
ring near the source 75|, and would need a much finer grid in order to do so. However, Pan et
al. (2014) reproduced observed particle concentrations inside the canopy roughness sublayer
using this approach [73|. The familiar Gaussian plume model is a further simplification that
assumes stationary horizontally homogeneous flow, a mean wind speed and eddy diffusivity

that are the same everywhere in the domain, and a continuous point source, leading to an



analytical solution for Gaussian-shaped dispersion that can be shaped by a number of factors
(the Pasquill-Gifford classes) [72|. The primary recommended dispersion model by the U.S.
EPA, AERMOD, is a sophisticated extension of the basic Gaussian plume framework that
incorporates vertical profiles of wind statistics, terrain effects, and convective turbulence,

among others, into its prescriptions of Gaussian plume spread [76].

By contrast, the Lagrangian framework does not prescribe the shape of the plume in this way;
it handles turbulence more naturally. In a Lagrangian framework, the model instead tracks
the trajectories of individual particles through the wind field, and the ensemble average of
their paths produces the concentration C(x,y, z,t). Lagrangian methods handle dispersal
near point and line sources and complex removal processes like wet and dry deposition
quite easily, on a particle-by-particle basis [31, 75]. However, they can be difficult to scale
up, requiring far more particles to resolve larger domains, dispersal in three-dimensions,
and tail-end regions of low concentration. At regional to continental scales, widely used
operational Lagrangian models include HYSPLIT [63] and FLEXPART [65], which transport
large ensembles of particles on meteorological fields from numerical weather prediction or
reanalysis products to simulate long-range dispersion and deposition |63, 77]. Similarly,
CALPUFF’s Guassian puff formulation, combines Lagrangian dispersal of a puff with a

gaussian distribution to represent its expansion. [78]

Lagrangian stochastic (LS) models make up the bulk of modeling in the Lagrangian frame-
work, in which particle turbulent velocities are modeled statistically. They are an application
of Brownian motion to turbulent diffusion |79], in which each step of a particle’s path is in-
fluenced by both random and deterministic motions, guided by the statistics of the local
wind field. In pollen, seed, and spore dispersal modeling, they are most commonly assumed
to be stationary within the dispersal time of an hour or less, horizontally homogeneous, and

they output what is essentially a time-averaged plume. They take as inputs vertical profiles



of the fluctuating wind velocity statistics (variances and covariances) and mean horizontal
velocities, and assume that the mean vertical wind velocity is zero. These are often con-
structed using boundary-layer scaling [54, 79, 80, 81, 82|, given input parameters like the
friction velocity wu,, the Monin-Obukhov length L, the convective velocity scale w,, the sur-
face roughness length zp, and boundary layer height z;. This framework has been applied
extensively to pollen, spore and seed disperal [30, 40, 45, 46, 49, 83|, and has also been

extended to run in a time-varying capacity when driven by LES fields [84, 85].

Within this framework, two related but distinct LS formulations have been used most widely
for daytime plant dispersal in the atmospheric boundary layer: a convective boundary-
layer (CBL) model and a surface-layer (SL) model. The CBL LS model was originally
developed for strongly convective conditions, in which turbulence in the bulk of the boundary
layer is driven primarily by buoyancy. It represents the skewed fluctuating vertical-velocity
distribution w’ in the convective mixed layer with a bi-Gaussian probability density function
[86]. As a result, it is able to reproduce plume-rise from the surface due to thermals and the
subsequent descent from the boundary layer top as rising air cools [75, 85] . In this way, the
CBL formulation can reproduce plume rise from surface sources and the subsequent descent
of material lofted toward the top of the boundary layer. Although it has been modified to
include some surface effects, it may under-predict concentrations near the source at ground-
level [54]. Modifications have been made to incorporate surface layer effects into turbulence
production for the CBL model. Luhar et al. [87] developed a closure scheme to model skewed
turbulence that could reduce to Gaussian turbulence in the limit of zero skewness, closer to
the form used for surface layer turbulence. |54] introduced a parameterization that merges
surface layer wind statistics with convective boundary layer statistics. However, it does not

include the covariance terms known to be important in the surface layer [54].

One other common formulation for LS models assumes a jointly Gaussian distribution for



the fluctuating velocity components (u’,v’,w’), which can then include the covariance u/'w’
between horizontal and vertical velocities |79, 88]. The assumption of the gaussian vertical
velocities is well-suited for shear-dominated turbulence at the surface, and has produced good
agreement with near-source measurements of pollen and spore dispersal |29, 31, 53, 75, 89|.
In the chapters that follow, we refer to it as the SL (surface-layer) LS formulation, where it
is mostly applied. While the SL model captures the spread and rise of the plume in unstable
conditions, it cannot simulate the subsequent fall of the plume downwind. The CBL model
would perform better at longer distances [54]. These tradeoffs motivate Chapter 4 of this

dissertation.

1.3 Research Objectives

Aerobiology and atmospheric dispersion modeling have developed over decades into a vast,
multidisciplinary field spanning microbiology, plant pathology, ecology, and atmospheric
science—countless bioaerosol dispersal applications with impacts on a continuous spectrum

of scales, simulated with an array of dispersal modeling techniques.

In light of this breadth of background, this dissertation focuses on three specific gaps in
the literature: (1) quantification of cross-pollination risk for cannabis across seasons and
geographical regions, (2) measurement and modeling of GMO pollen from a small source in
low-wind conditions, and (3) validation of the two stationary LS models previously addressed

against a high-resolution time-varying particle dispersal model driven with LES.

These works are tied together by the use of Lagrangian stochastic models in different spatial
scales, driven by different meteorological inputs. Figure 1.1 illustrates the overall modeling

framework for this dissertation.
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Figure 1.1: The LS modeling framework used in each chapter. In Chapters 2 and 3, we
use mesoscale model inputs and local-scale meteorology inputs respectively to drive two
stationary LS model formulations. In Chapter 4, we use the time-varying LS-LES simulations
as a benchmark for the stationary LS formulations.

In Chapter 2, we use boundary-layer parameters and wind statistics from a mesoscale weather
model to drive regional-scale, two-dimensional LS simulations on a 50 km grid, applied
county by county across the continental United States. By coupling daytime convective-
boundary-layer (CBL) and nighttime surface-layer (SL) formulations, this chapter quantifies
how cannabis pollen dispersal potential varies across regions and seasons under realistic
meteorological forcing. To the best of our knowledge, this is the first large-scale simulation

study of the inhomogeneity of pollen dispersal across regions and seasons.

In Chapter 3, we focus on near-field dispersal from a very small, transgenic switchgrass field
trial under predominantly low-wind conditions. Using a combination of novel measurement
techniques, together with local-scale LS modeling (three-dimensional SL formulation, appro-

priate for local scales), this chapter examines pollen transport within roughly 25 m of the



source and uses it to estimate pollen source strength, identifying diurnal trends.

In Chapter 4, we compare the two stationary three-dimensional CBL and SL formulations
driven with stationary wind statistics against PALM LES, a time-varying LS-LES simulation,
in a range of daytime convective conditions to systematically evaluate them and identify
when they are reliable and where they fail. To the best of our knowledge, there have been

no studies which validate these models in three-dimensions in a range of convective regimes.

These three projects provide a cross-disciplinary and multi-scale view of bioaerosol transport.
They combine tools from engineering mechanics (Lagrangian stochastic models and large-
eddy simulation), atmospheric science (boundary-layer turbulence and regime transitions),
and plant biology (hemp and switchgrass phenology, pollen traits, and cross-pollination
outcomes). Throughout, the modeling is anchored by what can actually be measured in the
field and by how dispersion information is used in practice by growers, regulators, and other
stakeholders. The remainder of this dissertation returns to these themes, using the regional
simulations, field campaigns, and LES comparisons together to ask not only how far and
where pollen can travel, but also which levels of model complexity are appropriate for which

types of questions.



Chapter 2

Cannabis pollen dispersal across the United

States!

2.1 Introduction

The 2014 and 2018 US Farm Bills legalized the production of industrial hemp (Cannabis
sativa) for cannabidiols, seed, and fiber[90]. This nascent industry has been challenged
by wind-blown cross-pollination between neighboring hemp fields, leading to contaminated
seeds, reduced oil yields, and in some cases, mandated crop destruction |91, 92|. Financial
impacts reported in a 2022 Colorado survey|91| ranged from $12,000 to millions of dollars,
with an Oregon lawsuit alleging damages of over $8 million [93]. Economic modeling|92]
shows that the industry will transition away from cannabidiol hemp production entirely

without effective cross-pollination mitigation strategies.

As hemp production has only recently been legalized|90], there is a deficit in hemp dispersal
research. The only study quantifying hemp pollen dispersal as a function of distance from a
known source is an experiment by Small and Antle (2003) [60]. They sampled hemp pollen
for three weeks at distances of up to 400 meters from a source field and observed significant

deposition even at the edge of their domain, 17,000 pollen grains/m? /day, enough to “achieve

!This chapter has been published as: Nimmala, M., Ross, S. D., & Foroutan, H. (2024), Scientific Reports
14:20605, doi:10.1038/s41598-024-70633-x.
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excellent seed set”, i.e., successfully cross-pollinate. The authors noted that due to its small
size (~30 microns) hemp pollen travels farther and deposits in greater quantities than other
wind-pollinated crops, and that it is prolific—each male flower can release up to 350,000
pollen grains, and there are potentially hundreds of flowers on larger plants [94]. A single
male plant can therefore release about 100 million pollen grains. Recommended isolation
distances are far greater than the experimental domain, typically varying between 1 - 5 km
[95, 96], but there have been reports of cross-pollination up to 20 km [97] and even 48-96
km away|91]. Two back-trajectory studies have demonstrated that Cannabis pollen likely
travelled over 200 km, from Northern Africa to Spain [61, 62]. This indicates that hemp
pollen has great potential for long-distance transport, and that the ‘fat tail’ of the hemp

pollen dispersal kernel could play an outsized role in cross-pollination between fields.

Dispersal modeling studies show that the fat tail in wind-borne dispersal is highly sensi-
tive to changes in meteorological conditions, particularly the combined effects of shear and
convective turbulence. During the day, solar heating of the surface induces a positive heat
flux that creates large-scale convective updrafts. Shear-driven turbulence arises as horizon-
tal wind passes over rough surfaces. One study found that rising temperatures, correlated
with increasing heat flux, led to a greater proportion of seeds traveling beyond 100 meters
in simulations[49]. Another found that sustained updrafts caused dandelion seeds to dis-
perse further, while horizontal wind speed did not play a factor [40]. In contrast, Soons et al
(2004)[45] found that horizontal wind velocity was the primary driver of downwind transport,
and heat flux only played a role when wind velocity was low (< 4 m/s). Understanding such

patterns in variation of the tail would help inform cross-pollination mitigation strategies.

Two dispersal modeling studies have identified seasonal and diurnal patterns in the variation
of wind-borne dispersal kernels. Oneto et al. [98] used the Hybrid Single-Particle Lagrangian

Integrated Trajectory (HYSPLIT) model to simulate fungal spores released at ten North



American locations in January, April, July, and October, 2014. They found a strong diurnal
pattern in average flight times, with spores staying in the air longer during the day than at
night. They also observed seasonal changes, with the longest flight times in July and lowest in
January. Savage et al. (2012)[30] simulated spore dispersal using hourly meteorological inputs
from a large-scale weather model at two towns in Western Australia for June and September
2007, early winter and early spring, respectively. They found seasonal and diurnal changes in
the number of spores travelling past 10 km, and differences between the two towns, aligning
with seasonal and diurnal changes in temperature and wind velocity. These studies suggest

contiguous spatial patterns in dispersal on a country-wide scale.

In this study, we seek seasonal and spatial patterns in pollen dispersal spanning the con-
terminous United States (CONUS), revealing regions more prone to cross-pollination. We
extend the methodology of Savage et al. (2012)[30], using meteorological data provided by a
mesoscale model simulation to drive Lagrangian Stochastic (LS) models of pollen dispersion
for each county in the United States over five months. The LS model is ideal for examining
the sensitivity of dispersal due to shear and convection, as it more naturally captures the
variations of turbulent flow using stochasticity. It is an application of Brownian motion to
turbulent diffusion, in which the trajectories of many particles through the air are modeled
as random walks. By releasing thousands of particles and computing an ensemble average
of their trajectories, we can determine the relative concentration at any point in the domain
and the mean shape of the plume. Therefore, they require a fraction of the computational
resources of more resolved Eulerian models like Large Eddy Simulations. Although conven-
tional Gaussian plume models are computationally lighter than LS models, their treatment
of turbulence is more prescribed. Modifications have been made to incorporate effects like
convection in Gaussian plume models (for example, the AERMOD model [76]), but these

require more parameters and increase complexity [99].



We used two LS model formulations: a convective boundary layer model [54, 87, 100] for un-
stable (typically day) conditions and a surface layer model[31] for stable (night) conditions.
To drive the LS model, we used meteorological fields obtained from a Weather Research
and Forecasting (WRF) model simulation over CONUS for the entire year of 2016 [101].
This high-resolution meteorological dataset, developed by the U.S. Environmental Protec-
tion Agency to support modeling applications, comprises an hourly time series of weather
conditions on a 12 km-square horizontal grid and has been extensively validated [102]. For
each county, we extracted the weather data at the grid point nearest to its centroid and
averaged across local noon and midnight hours for each month from July to November, to
represent average “day” and “night” conditions respectively. We performed LS simulations
for day and night conditions, for five months from July to November, for each of 3,107 coun-
ties in the CONUS, totalling to 31,070 simulations. In this study, we used 2D LS models,
in which we simulate pollen travelling in the downwind and vertical directions. From each
simulation, we compute a dispersal kernel by counting the number of particles which have
deposited in the simulation domain within 250 meter-wide bins up to 50 km downwind of
the source. The meteorological conditions are assumed to be statistically stationary and

horizontally homogeneous for each simulation.

To the best of our knowledge, this is the first simulation study of hemp pollen dispersal. It
is also the first large-scale simulation study of the inhomogeneity of pollen dispersal across

regions and seasons.

2.2 Results & discussion

Simulation of day and night pollen dispersion over five months reveals significant seasonal

and spatial variations, particularly in the tail of the dispersal kernel. Each simulation yielded



a dispersal kernel, or number of particles deposited downwind from the source in 250 m wide
bins, normalized by the number of particles released. Figure 2.1a and b show median day
and night dispersal kernels on a log scale by month for each of nine US climate divisions
[103], in order to compare between climatically different regions. We observe depositions up
to 50 km downwind, the edge of our domain, which is the limit of applicability of our LS

model.

2.2.1 The tail of the dispersal kernel varies seasonally and spatially.

Simulations of day and night pollen dispersion over five months yields variation only in the

tail of the dispersal kernel. For all climate regions, in both day and night conditions, Figure
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Figure 2.1: Median dispersal kernels for each month during (a) daytime and (b) nighttime,
separated by US climate region: Northeast (NE), Upper Midwest (UM), Ohio Valley (OV),
Southeast (SE), Northern Rockies & Plains (NRP), South (S), Southwest (SW), Northwest
(NW), and West (W). Dispersal kernels are formed by counting depositions within 250 meter-
wide bins up to 50 km downwind of the source, normalized by the amount released. Shading
represents data between the 10th and 90th percentiles. Note that the vertical axis is a log
scale.



2.1 shows a steep decline in depositions by two orders of magnitude within the first few
kilometers of the source. Approximately 70% of simulated pollen is deposited in the first bin
alone for all cases. Figure 2.2a shows that across all simulations, dispersal kernels decreased
to 1% of released particles within 3 km of the source. Although there is a slight increase
in distance for nighttime conditions, this region of steep decline is indistinguishable across

counties regardless of region and seasonal weather changes.
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1%, (b) 0.1%, and (c¢) 0.01%. Red rep-
resents day simulations, while blue repre-
sents night.

While this steep decline in depositions appears to support commonly-used hemp isolation
distances (< 5 km [95, 96]), even 1% of 100 million pollen grains would result in 1 million
pollen depositing at that distance. In Figure 2.2b, lowering the threshold to 0.1% of released
particles results in far more spread, 1-10 km during the day, and 10-15 km at night. Further
decreasing the threshold to 0.01% results in distances varying throughout the entire domain,

as shown in Figure 2.2c. This fat tailed deposition kernel is common for wind-dispersed



species|23, 104], and poses challenges when computing the risk of rare events in the tail,
e.g., burning embers from a wildfire[105] or cross-pollination. For hemp in particular, the
Small and Antle experiment [60] provides evidence that even reduced depositions at the
tail of the distribution can result in effective cross-pollination. Given the prolific nature of
hemp pollen, potentially massive fields, and reports of hemp pollen travelling well beyond
established isolation distances, the fat tail of the dispersal kernel becomes necessary to assess

cross-pollination risk |23, 53].

We find that the tail of the dispersal kernel below the 0.1% and 0.01% thresholds and beyond
3 km, shows considerable variability. Figure 2.2b and ¢ show stark differences between day
and night simulations, driven by diurnal differences in wind conditions. For more detail, see
Supplementary Figure S4. Below the 0.01% threshold, we observe a large spread in nighttime
threshold distances and two peaks for day simulations, which point to large-scale regional

and seasonal shifts in wind conditions.

2.2.2 Daytime seasonal and spatial patterns.

In Figure 2.1, daytime dispersal kernels for all climate regions exhibit a steady rise from
July to November. This increase is responsible for the second peak in daytime 0.01% thresh-
old distances, which is dominated by simulations later in the season. Although all regions
experience increase over the season, the Southwest region maintains the least depositions
throughout. In the peak summer months of July and August, the Southwest region experi-
ences the lowest depositions, as do the Northwest, Northern Rockies & Plains, and Northeast.
By October and November these latter three regions exhibit an almost 10-fold increase, shift-
ing from relatively low depositions to the highest, on par with the Upper Midwest and Ohio
Valley.



Seasonal shifts are most apparent between 5 and 10 km downwind, where overall depositions
increase by nearly an order of magnitude. At this distance, Figure 2.1 shows a distinctive
local minimum near the source for nearly all simulations. The daytime dispersal dip in
an otherwise monotonically decreasing curve is due to updrafts from convective turbulence
[106, 107], and can be interpreted as a region of relatively less deposition, or a “pollen shadow”,
in the near-field downwind of the source. Beyond the pollen shadow, there is relatively less
seasonal and regional variation in depositions, indicating that in daytime, these downwind

distances are not as strongly tied to patterns in underlying meteorological parameters.

Mapping out daytime deposition values in Figure 2.4a at 5 km, 10 km, 20 km, and 35
km downwind reveals contiguous, large-scale seasonal and spatial patterns. Within the
pollen shadow, at 5 km downwind, Northern counties are the first to experience increases
in deposition. From September, we see a region of higher depositions in California and the
Upper Midwest. That region extends to the northernmost counties by October, coalescing
into a band above about 40° N latitude in November. Further downwind, beyond the pollen
shadow, this pattern of northern seasonal increase is not as apparent; only the Southwest

stands out with the lowest depositions throughout the season.

We observe the lowest depositions in simulations with higher boundary layer height, z;, and
greater convective velocity, w,. High w, and z; together indicate greater buoyancy associated
with the surface heat flux and more convective turbulence [108|. Scatter plots and correlation
values between daytime depositions and these meteorological parameters are provided in
Supplementary Figure S2 and the monthly heatmaps are shown in Supplementary Figure
S6. High convective conditions in summer leads to more pollen uplifting and less deposition,
particularly in the pollen shadow. More pollen is uplifted, carried far from the source, before
descending in small quantities at great distances. A reduction in convective conditions from

summer to fall explains the pattern of deposition increase for northern regions, particularly



within the pollen shadow. It is also why the Southwest exhibits low depositions throughout
the season. Greater convective conditions makes long-distance transport of pollen more likely

[30, 49, 98], but results in fewer depositions within the domain.

Our results align with other dispersal studies, which show that greater sensible heat flux and
warming temperatures during the day led to greater transport distances [30, 40, 49|, partic-
ularly in combination with increased wind speed [45]. In our results, however, neither the
10-m wind speed (estimated roughly as 10u,) nor the Monin-Obukhov length, L, influenced
deposition counts, indicating that shear-driven turbulence did not play a major role in day-
time dispersal patterns. This could be due to the monthly averaging of the meteorological
input parameters. For example, monthly-averaged u, only varied between 0.45-0.65 m/s, or

maximum variations in 10-m wind speed of 2 m/s. It is likely that averaging resulted in less
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Figure 2.4: Percent of particles deposited in 250 meter-wide bins at downwind distances of
5, 10, 25, and 35 km for each county: (a) daytime simulations, (b) nighttime simulations.
Note that the colorbar is a log scale.



variation, allowing convective conditions to govern deposition patterns within the domain.

In summary, during the day, we identify large-scale contiguous spatial patterns that shift
from summer to fall. The Southwest maintains the lowest depositions throughout the season
because it experiences greater convective conditions than all other regions. On the other
hand, northern counties shifted from comparatively low to high depositions relative to other
climate regions due to a decrease in convective conditions in the fall months. This is con-
sistent with typical CONUS weather trends; Northern climate regions experience changing
seasons more strongly, and daytime dispersal is particularly dependent on these seasonal

factors.

2.2.3 Nighttime seasonal and spatial patterns.

Unlike the daytime curves, night-time dispersal kernels for each month show a monotonic
decrease with downwind distance, as shown in Fig. 2.1b. Within the first 10 km, depositions
at night are ten times greater than during the day. Relative to these large values, spatial
patterns and seasonal differences only become clear beyond about 10 km. Beyond this

distance, we observe slight overall increase in deposition primarily in October and November.

While we do not see a major seasonal increase at night, shifting spatial patterns are dis-
cernible in both the heat maps and dispersion kernels. Figure 2.4b shows night-time depo-
sitions by county at 5, 10, 20, and 35 km downwind of the source. Observing heatmaps at
10 km and beyond, in July and August, there is a swathe of high depositions in the center
of the country, beginning with the South region and extending into the Northern Rockies
& Plains (NRP). By September, the South region is no longer as prominent, and by Octo-
ber, the swathe of high depositions has extended into the Upper Midwest (UM) and NRP.

The Northeast (NE) region also progressively increases in depositions over the season. By



November, the regions with the greatest deposition include the UM, NRP, and NE, while

the least deposition occur in the Southeast and West regions.

We find that regions of least deposition correspond to high friction velocity, u,, high bound-
ary layer height, z;, lower roughness length, 2z, and high Monin-Obukhov length |L|. Scatter
plots and correlation values between night-time depositions and these meteorological param-
eters are provided in Supplementary Figure S3. These parameters indicate more neutral
conditions and greater wind shear, resulting in pollen travelling further from the source and
depositing in greater amounts [45]. Our results show that greater w,, i.e., greater horizontal
wind speed, is primarily responsible for variations in night time dispersal, and the slight
increase in depositions in the cooler months of October and November. This aligns with
previous dispersal studies, which show that particles travel further [30] and remain airborne

for longer [98] in winter than in summer months.

Overall, we find that night-time dispersal kernels are dictated by wind speed, or shear-
driven turbulence. This results in more depositions further downwind in cooler months,

where depositions increased with greater wind speeds.

2.2.4 Reconciling day and night patterns.

We observe strong diurnal patterns and find that night-time dispersal dominates consider-
ation of cross-pollination risk near the source. Within approximately 20 km of the source,
night-time depositions are one to two orders of magnitude greater than during the day, as
shown in Figures 2.1 and 2.4. Nearly all released particles are deposited by 20 km at night
- an average of 97% across night-time cases, compared to only 81% during the day. Cumu-
lative depositions are shown in Supplementary Figure S5. This results in a stark difference

in cross-pollination risk between day and night, showing that nighttime dispersal is more



important to consider within the domain and within 20 km.

Beyond this distance, nighttime dispersal kernels experience a steep decline in depositions,
while daytime kernels possess a fatter tail. We can see this at 35 km in Figure 2.1, where the
daytime kernels have a shallower slope than and in Figure 2.4, where most regions during
the day are greater than at night. At night, almost all pollen is deposited near the source,
but convective uplifting during the day allows for pollen to deposit in low quantities at the
furthest reaches of the domain and even beyond it. Oneto et al. (2020)[98] found that spores
released during the day had much longer flight times than at night, on the order of several
days rather than a few hours and escaped into the stratosphere in greater numbers, while
spores at night had flight times on the order of hours. For longer day flight times, pollen
viability may become a factor for risk of cross-pollination [98]. Choudhary et al. (2014) found
that viability of Cannabis pollen only decreased substantially three days after release from
the anther [109]. In our study, we are only considering dispersal within 50 km of the source.
Even with a slow wind speed of 1 m/s, it would only take a pollen grain 14 hours to traverse
the 50 km domain, and so viability need not be taken into account. Within the domain,
viability has little impact on cross-pollination risk, and so daytime dispersal patterns impact

risk at the furthest reaches of our domain.

It is possible that hemp pollen only disperses during the day, as is common for many wind-
dispersed species [23]. One study observed that male Cannabis anthers open and release
pollen in the morning hours [109]. However, Cannabis pollen measurement studies found only
slight diurnal changes in concentration [61, 110], indicating that Cannabis pollen remains in
the air throughout the day. As Cannabis production has only recently been legalized, there
is minimal research on the diurnal timings of Cannabis pollen release. For these reasons, we

consider both day and night dispersal in this study for risk assessment.



2.2.5  Cross-pollination vulnerability.

While we cannot directly estimate risk of cross-pollination, as these are 2D models that
do not take into account lateral spread, we can evaluate counties based on total counts of
particles reaching certain distances downwind. In Figure 2.3, we plot the 0.01%-distances
averaged over all day and night simulations from July to November for each county as a heat
map. This figure shows that across all months and time periods, the Upper Midwest, Ohio
Valley, and Northeast regions have the greatest average 0.01% threshold distances—they
experience the most depositions at the farthest distances. Thus, according to simulation

results alone, these regions are most vulnerable to cross pollination.

However, when county-specific information such as hemp acreage and land area are incorpo-
rated, vulnerability does not necessarily reflect the same contiguous spatial patterns demon-
strated in Figure 2.3. In Equation (2.1) below, we incorporate this information to compute a
novel, dimensionless “vulnerability” metric for each county. We first normalize the dispersion
area, Aqisp, 1.€., the area of a circle with radius equal to the average 0.01% threshold distance,
by the land area of each county, Aj.,q. This yields the fraction of a county that falls within
its theoretical area of risk. We then normalize the number of acres of planted hemp in 2023
per county [2], Apemp, by the land area of each county, Apna. This yields the proportion
of land used for hemp cultivation for each county. See Supplementary Figure S7 for heat
maps of the components of the vulnerability metric. We then multiply these two factors to

produce a rudimentary measure of how vulnerable a county is to cross-pollination,

Adisp % Ahemp
Aland Aland

Vulnerability = (2.1)

Figure 2.5 shows a heat-map of the vulnerability metric for all counties with nonzero hemp

acreage in 2023 [2]. The five states with the most land area with vulnerability greater



than 10 x 10~%—Montana, South Dakota, Idaho, Wisconsin, and Kentucky—are enlarged to

illustrate vulnerable counties in more detail.

In counties with high vulnerability, large isolation distances may not be sufficient to prevent
cross-pollination, as the combination of more hemp acreage and larger 0.01% threshold dis-
tances result in a greater likelihood of pollen transport across the entire county. Instead,
a more comprehensive approach is necessary. A 2022 Colorado cross-pollination working
group suggested a voluntary pinning system to track where hemp is planted in a region|91].
Rather than mandating specific isolation distances, we recommend a pinning system which
includes location of outdoor planted, time of planting, and anticipated flowering dates. This
could then be combined with an awareness of when and where pollen transport is greatest,
as demonstrated in this study, to produce a dynamic time-dependent map of high-risk areas

within a county.
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Figure 2.5: Vulnerability to hemp cross-pollination across the conterminous United States.
The counties with non-zero planted hemp acreage as of 2023 are shown with darker shades
showing greater vulnerability. The five states with the most land area with vulnerability
greater than 10 x 10~% are shown with stars.

The dependence of the vulnerability metric on dispersal distances and meteorological con-

ditions tends to vary by region on a country-wide scale. Within a state, variation in the



vulnerability metric is more dependent on hemp acreage within a county. These country-
wide spatial patterns and local variations could be useful for potentially insuring farmers in
the event of financial losses due to cross-pollination—another form of risk management, with

insurance coverage and premiums varying based on region and local risk.

Weather forecasting, combined with dispersal modeling, could provide a way to predict
when and where pollen will tend to travel further, rather than relying on historical weather
patterns as done in this study. This would enable individual farmers to plan their crops
strategically, incorporating dispersal patterns when evaluating the risks of growing one crop
over another. It would also allow for voluntary community-level planning, where stakeholders
make decisions together regarding when and where certain varieties should be planted in each
season. Finally, local government could require sharing of crop timing and location so that

more informed decisions could be made.

Cannabis is typically photosensitive, flowering as day lengths shorten below a threshold (typ-
ically 10-12 hours)[111, 112]. However, this varies depending on the cultivar and planting
location. A strain adapted to northern latitudes may flower in an entirely different month
when planted further south[113], and there are also non-photosensitive cultivars[114]. It may
be possible to strategically plan and plant crops so that flowering times between fiber/grain
growers and floral hemp do not overlap. A three-year Cannabis pollen sampling study|110]
in Tetouan, Morocco, observed that the main pollen season, when concentrations peaked,
began almost a month late due to rainfalls that caused delays in planting. Strategic planting
and community coordination could shift the dates of regional pollen concentration signifi-
cantly. In fact, artificially reducing the day-lengths by covering crops has also previously

been suggested to induce earlier flowering|115].

Strategic community planning for hemp growers would alleviate many of the challenges fac-

ing the US hemp industry today. This industry is extremely new, and is still developing the



infrastructure to balance production with supply-chain capacity and consumer demand|116].
For example, in North Carolina, there was a crash in cannabidiol hemp production following
a massive grower rush which exceeded demand[113]. There are also insufficient fiber pro-
cessors for the state to bounce back to growing for fiber. It has been suggested that hemp
grown for fiber, cannabidiols, and seed should be grown near their respective processing facil-
ities in order to optimize production and prevent such problems[116]. These kinds of risks,
in addition to the cross-pollination risk, can be managed with more intensive community

planning.

2.3 Limitations and future directions.

Currently, there is no single LS model that addresses both stable and unstable conditions
effectively across our entire domain. Therefore, to model dispersal both during the day (typi-
cally unstable) and the night (typically stable), we chose two separate LS model formulations.
Although this choice of different models for day and night might influence the observed di-
urnal patterns in this study, our results qualitatively align with the literature in terms of
day and night differences and seasonal variation 30, 98]. In addition, the LS model we use
for stable conditions incorporates only shear-generated turbulence produced at the surface.
In reality, turbulence in the nocturnal boundary layer is complex, involving physics such as
decoupling from the surface layer, the low-level nocturnal jet, and slope effects [81, 108|.
Future work to identify night-time dispersal patterns might include more nuanced modeling
in stable conditions. In general, more resolved, albeit more computationally expensive mod-
els, would greatly improve risk prediction. These models could incorporate more detailed
physics such as release of pollen from the anthers, dispersal within a canopy, wet deposition,

and even conditions specific to a farm’s location like topography.



The models used in this study were shown to perform reasonably when compared to exper-
imental results, described further in the Methodology section. However, we have not found
previous experimental Cannabis pollen dispersal studies with enough information to validate
the model. Experimental evidence suggests that airborne Cannabis pollen is ubiquitous|117],
in part because of its long flight times due to its small size compared to other pollen|60].
Therefore, validation of dispersal from a known source is difficult. One approach is to use
a source made of genetically engineered (GE) plants which produce pollen with fluorescent
markers [11], enabling accurate source attribution. Our group is currently pursuing this in
collaboration with co-workers. However, making GE Cannabis has proven difficult, and a
study was performed instead with GE switchgrass, which produces pollen of a similar small

size [83]. A paper on this combined experimental and modeling study is forthcoming.

The present study was performed using meteorological data only from 2016. This data has
been validated with an extensive measurement network in the US[102|, which was deemed
appropriate for this proof-of-concept study. Performing this same study over multiple years
could increase the robustness of our results and provide insight into possible yearly varia-
tion. For example, warming temperatures could cause changes to these seasonal and spatial
patterns. Kuparinen et al. [49] demonstrated greater seed dispersal distances achieved in

simulations when using increasing temperatures.

In this study, averaging meteorological data across months reduces the occurrence of ex-
treme weather patterns and does not take into account frequency of certain conditions.
Incorporating wind-direction frequency would provide directionality to cross-pollination risk
assessment. For example, the Small and Antle experiment [60] measured six times more
pollen deposition downwind than upwind at their source field over a period of two weeks.
For future studies, a better measure of cross-pollination risk would include frequency of

weather conditions and directional variability in deposition.



Furthermore, incorporating the distance between farms would provide a more sophisticated
measure of county vulnerability, as was demonstrated theoretically for hemp farms in Ken-
tucky counties [118]. Our vulnerability metric assumes one source of hemp per county, as
data for the locations of individual farms are not currently available. When averaging the
0.01%-threshold distances, we weighted day and night dispersal equally, as literature describ-
ing diurnal Cannabis emission rates is lacking. However, including temporally varying rates

of pollen emission would increase accuracy.

2.4  Conclusion

This investigation represents a pioneering effort to assess the potential risks associated with
windborne hemp cross-pollination, emphasizing the variability in risk across different sea-
sons and geographic regions. By leveraging meteorological data for an entire year, obtained
through mesoscale model simulations, we have driven Lagrangian Stochastic models to sim-
ulate wind-borne pollen dispersion across the conterminous United States on a county-by-
county basis. Our findings reveal that pollen deposition rates generally escalate from sum-
mer to autumn, attributed to the reduction in convective activity during daytime and the
increase in wind shear at night as the season progresses. Notably, we detected pronounced
diurnal variations in pollen dispersion: nighttime conditions favor deposition in proximity
to the source, while daytime conditions facilitate broader dispersal albeit with reduced de-
position rates. Such variability complicates the establishment of uniform isolation distances,
suggesting the superiority of adaptive risk management strategies. These strategies could in-
corporate weather pattern considerations to mitigate cross-pollination risks more effectively
and could include measures like intertemporal zoning, farm quotas, cross-pollination damage

insurance, and regulatory policies.



To our knowledge, this study is unprecedented in its comprehensive simulation of pollen
dispersal’s regional and seasonal inhomogeneities, specifically focusing on hemp. Although
this study centers on Cannabis pollen, the methodologies employed are broadly applicable
to the dispersion of any lightweight particles. This study lays the groundwork for devel-
oping sophisticated approaches to managing agricultural cross-pollination risks, potentially

influencing both policy and practice.

2.5 Methodology

Lagrangian Stochastic model formulations. For this study, we required simulation of dispersal
across a wide range of wind conditions, encompassing both the convection-driven unstable
conditions typical of daytime and the shear-driven stable conditions of night. There is a
surface-layer LS model that has been used effectively in both conditions [31, 53, 75|, but
modeling the surface-layer alone is not sufficient in convective conditions and up to the 50
km scale we are interested in. In convective conditions in particular, we need to model the
entire boundary layer, to capture both plume rise and descent. There is not currently a
single LS model that addresses both conditions effectively across our entire domain. So we
use two formulations: the surface-layer model (SL) for stable conditions, and another model

formulated for the convective boundary layer (CBL) for all unstable conditions.

Unstable formulation. For all unstable convective conditions, we employ a model formulated
for the CBL, first introduced by Luhar et al. (1989 & 1996) (86, 87|. This model captures the
skewed nature of the vertical wind velocity fluctuations, due to the convective updrafts and
downdrafts, using the summation of two Gaussian probability distribution functions (PDFs),

one representing updrafts and the other downdrafts. Luhar et al. (1996) 87| further intro-



duced a new closure that enables the model to reduce to a single Gaussian distribution in the
limit of zero skewness, typical of neutral and stable conditions, which expands the model’s
applicability to neutral conditions. Boehm et al. (2005)[100] adapted the model to include
heavy particles, and Boehm et al. (2008)[54] introduced wind statistics profiles which merge
shear-generated turbulence at the surface with convective turbulence above. Here, CBL-SL
wind statistics are merged in an effort to create a smooth transition from unstable to stable
regimes. Results from the original CBL model aligned well with convective fluid tank ex-
periments [87|. Predicted concentrations from the merged model were found to reasonably

compare with measured aerial pollen concentrations [54].

Stable formulation. For all stable conditions, we used the surface-layer model as described
in Aylor (2001)[31]. It differs from the CBL model in neutral conditions only in that it uses
a jointly Gaussian PDF in the u and w wind velocity components (downwind and vertical,
respectively), resulting in better modeling at the surface. The CBL model assumes u and
w wind velocity fluctuations are independent [119]. However, being a surface layer model,
it incorporates only shear-generated turbulence produced at the surface. For the purpose of
this study, including only the surface layer under stable conditions is sufficient, as species
released in the stable boundary layer experience little vertical mixing [108]. In our simula-
tions, pollen is released near the surface to represent release from a hemp field. Hence, we
do not expect significant vertical transport above the surface layer. Results from this model
have been previously compared favorably with measured pollen concentrations in stable con-
ditions [31]. The complete model formulations for both stable and unstable conditions can

be found in Supplementary Methods online.

Wind statistics. LS models require wind statistics at every point in the domain, i.e., the



mean, variances, covariances, and skewness. Both SL and CBL formulations assume horizon-
tal homogeneity and stationarity, so that wind statistics vary only with height and remain
constant for the duration of the simulation. Under these assumptions, we apply boundary
layer scaling parameterizations to compute vertical profiles of the wind velocity statistics
[54, 79, 80, 81, 82| as a function of five meteorological parameters: the friction velocity w.,
the Monin-Obukhov length L, the convective velocity scale w,, the surface roughness length
20, and boundary layer height z;. Complete wind statistics profiles utilized in the models

can be found in the Supplementary Methods online.

Hemp pollen simulations. To simulate hemp pollen dispersal for each county in the CONUS,
we release particles from a point source at a height of hy = 2 m. Hemp height can vary
between 1-5 meters, depending on its type and growing conditions [111, 120]. A study exam-
ining hemp morphology found the mean height of 16 genotypes in the 1-2 m range [121]. We
varied the release height by 4+ 0.5 m to test the sensitivity of our results to changes in release
height. We found that although increasing the magnitude of depositions changed, qualita-
tively, the seasonal and spatial patterns we found remained the same. This can be found
in the Supplementary Figure S1 available online. We used a settling velocity of vy = 0.027
m/s, based on a typical hemp pollen diameter of 30 um|60, 111], using Stokes’ law. As hemp
pollen is nearly spherical [111], Stokes’ law provides a good approximation of settling velocity
[75, 122]. Most hemp cultivars are photosensitive, flowering as day lengths shorten below
a threshold (10-12 hours) following the summer solstice [111, 112|, which varies with lati-
tude. An allergen study measured airborne Cannabis pollen counts for 5 years (1992-1996)
in Omaha, Nebraska, finding pollen starting in the last two weeks of July, peaking in late
August, and ending in mid-September [117]. A Colorado survey reported cross-pollination

between July to mid-October [91]. Therefore, we chose to simulate dispersion from July into



November, to see the continuation as weather conditions change.

Meteorological input. To drive the LS model, we use meteorological fields obtained from a
Weather Research and Forecasting (WRF) model simulation over the CONUS for calendar
year 2016 [101]. This dataset comprises an hourly time series of meteorological conditions
on a 12 km-square horizontal grid, and has been evaluated extensively in previous studies
[102]. At the grid-point nearest to the centroid of each county, we extracted meteorological
parameters describing horizontal wind shear, convection, boundary layer height, and surface
roughness, namely, the five variables mentioned above, (u., L, w,, 2q, z;). We averaged these
parameters across local noon and midnight hours for each month from July to November to

form county-specific monthly average “day” and “night” cases.

Model simulations and boundary conditions. In each LS simulation—a daytime and a night-
time simulation for each county and for each month-—100,000 particles were released at a
height of 2 m with initial velocity selected from the velocity PDF, minus a constant set-
tling velocity. Particles were removed from the simulation when they travelled above the
boundary layer height z;, upwind 10 m, or downwind 50 km. Pollen traveling above the
ABL were considered to be subject to transport far beyond the 50 km bounds of our model
domain. Such long-distance transport was not considered, as this study is more focused on
exploring risk of cross-pollination from nearby farms. The downwind extent of the domain
was determined by computational constraints (resolution of depositions of 100,000 particles,
and simulation time for this number of particles to traverse the domain), while considering
cross-pollination distances of interest (5 km, 10 km, 20 km and greater). Particles were
considered to have “deposited” at a height of 1 m and were removed from the simulation.

This height was greater than the surface roughness length for the majority of counties, the



lowest permissible bound for the model which allows for comparison between counties. In
summary, particles are released at a 2 m height, advected by the wind model, and are
considered deposited when they fall below 1 m. Each simulation yielded a dispersal kernel,

or (normalized) number of particles deposited downwind from the source, in 250 m wide bins.

Simplifications. To facilitate a large-scale comparative model, the simulation conditions are
simplified. We treated dispersion for every county as if pollen was travelling over a flat,
rough plane. The following phenomena and conditions are not considered: canopy escape,
deposition probability, precipitation, topology, ground-cover, or variable source. We chose
these simplifications to compare the effects of weather conditions on model predictions of dis-
persion across counties and seasons. We are primarily interested in how the spatio-temporal
distribution in the five meteorological input parameters, described above, yield geographic
and seasonal patterns in pollen transport distances. To get a nationwide overview, we chose
to vary only these five parameters. For a more accurate assessment of local dispersion from
an individual field, the other phenomena and conditions listed above need to be taken into

account.



Chapter 3

From Field to Sky: Measurement and
Modeling of Transgenic Switchgrass Pollen

Dispersal in the Atmosphere

3.1 Introduction

Accurate tracking and measurement of pollen dispersal in the atmosphere is important for as-
sessing cross-pollination risks [89, 123], particularly in the case of genetically-engineered (GE)
crops. Wind-dispersed pollen is the primary method of gene flow in many grasses, including
switchgrass (Panicum virgatum), an important bioenergy crop [23|. It is a perennial, warm-
season C4 bunchgrass found across most of eastern North America—from northern Mexico
to southern Canada. Originally adopted as a forage crop, it is now a leading candidate for
large-scale lignocellulosic biofuel feedstock in the U.S. and beyond [124]. There is increasing
concern that the rapid growth and development of switchgrass as a biofuel could result in
gene flow from GE switchgrass fields to nontransgenic fields (including wild populations),
leading to both financial and ecological damage [10, 11, 17, 19, 125]. These changes could
be compounded by the effects of climate change, where rising temperatures result in altered
native switchgrass territory [18]. Therefore, there is an urgent need for field experiments

and modeling efforts to characterize the dispersal of airborne switchgrass pollen in relation
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to meteorological factors for regulation and risk management purposes.

There are limited experimental and modeling studies on switchgrass gene flow [19]; these
model pollen dispersal with and without wind breaks [126], experimentally quantify the dis-
persal and cross-pollination of transgenic switchgrass [11], and model transport in low and
high-wind conditions [83|. In 2011, Millwood and colleagues conducted the first regulated
transgenic switchgrass field experiments in the U.S. [11]. A 3-year field experiment was
performed in Oliver Springs, Tennessee, U.S.A. where 100 clonal switchgrass Alamo plants
transgenic for an orange-fluorescent protein (OFP) were used as the pollen source (whole
plants, including pollen, were orange-fluorescent). To assess pollen movement, pollen traps
were placed at 10 m intervals from the pollen-source plot in the four cardinal directions
extending up 100 m from the field. Results showed that pollen-mediated gene flow is likely
to occur over distances of at least 100 m [11]. This study provided important baseline data
useful to determine isolation distances and other management practices, should transgenic
switchgrass be grown commercially in relevant environments. Since switchgrass is an obligate
outcrossing perennial grass, there are concerns about gene flow and the need for bioconfine-
ment, especially for pollen [10, 19, 127]. Moreover, since North America is the geographic
center of switchgrass diversity, a better understanding of pollen movement in this species is

needed [19].

The spread of pollen through the atmosphere involves processes of liberation, drift, and depo-
sition [89, 128|. Knowledge of these processes can help growers and producers make informed
management decisions regarding pollen transport in seed production fields and neighboring
farms [128]. Although atmospheric transport models can predict pollen movement, they
often fail to incorporate actual measurements of pollen concentrations and viability. Vari-
ous unmanned aircraft systems (UASs or drones) have previously been used to detect and

monitor pollen movement over long distances in the lower atmosphere. Gottwald and Ted-



ders pioneered the collection of pollen with UASs [129]. They modified a remote-controlled
biplane platform with two rotating drum samplers to collect pollen and plant pathogen
spores over pecan and peach orchards. Their study demonstrated the significant potential
for regional-scale transport of pollen and plant pathogens among orchards. Two decades
later, Aylor and colleagues [53| combined ground-based sampling devices with UASs to col-
lect pollen within and above a cornfield. Over the past decade, Schmale and colleagues have
integrated autonomous systems into UASs, enabling teams of vehicles to coordinate flight

missions and perform complex atmospheric sampling tasks [130, 131].

The allergen-management community needs a fast and reliable sensor network to measure
airborne pollen concentrations to enable timely and accurate allergen reporting [132, 133, 134,
135]. Current allergen information reports only broad species group concentrations, typically
at a daily resolution at best [132, 135]. Future airborne pollen forecasts can be enhanced
by integrating known pollen emissions with large-scale atmospheric models. Understanding
diurnal pollen release patterns could aid in allergen treatment and improve emission source
data for potential forecast models [132]. To our knowledge, most airborne pollen field studies
and corresponding allergen reports rely on Hirst-type samplers [136]. These sampling devices
are constrained by a relatively low sampling rate of approximately 10 L/min [136, 137],
necessitating either high airborne pollen concentrations or extended sampling durations to
accurately characterize pollen levels. The latter constraint contributes to the coarse temporal

resolution of daily allergen pollen reporting.

We hypothesized that (1) wind-dispersed pollen from switchgrass could be tracked and quan-
tified using orange fluorescent protein (OFP) expression, (2) a Lagrangian Stochastic (LS)
dispersal model could estimate pollen source strength in the field, and (3) an array of novel
samplers could serve as viable alternatives to standard Hirst-type samplers. To test these

hypotheses, we conducted a series of unique release-recapture field studies using GE switch-



grass in Oliver Springs, TN. Two hundred plants from five transgenic lines of switchgrass
(Panicum virgatum L. 'Performer’) were planted at the center of a clear-cut field. One
block consisted of 100 plants expressing OFP under the control of a maize ubiquitin pro-
moter (PvUBIL), while the other block contained 100 plants expressing OFP driven by
a maize pollen-specific promoter (Zm13). Pollen from the atmosphere surrounding these
blocks of transgenic switchgrass was collected using a series of fixed (ground-based) and
mobile (drone-based) sampling devices at various distances from the field center. The ef-
ficacy of these various samplers was evaluated within 25 m of the source and up to 1 km
from the source. LS dispersal simulations were conducted for pollen sampling periods using
high-resolution wind measurements collected near the field. Pollen emission rates were es-
timated by combining simulated concentrations with field concentration measurements. By
integrating high-resolution measurements and simulations, our study evaluates the perfor-
mance of emerging sampling technologies and highlights their implications for biosecurity,

allergen tracking, and ecological modeling.

3.2  Methodology

3.2.1 Field Site and Pollen Source

Field site

To assess the transport of wind-dispersed pollen from transgenic switchgrass plants, a twoyear
field study was conducted under USDA APHIS BRS release permits (21-094-103r and 124-
86SS5F1). The experiments were carried out at the Tennessee Agricultural Experiment
Station, near the University of Tennessee’s Forest Resources Research and Education Center

at the Cumberland Forest Unit in Oliver Springs, TN (36.0483147, -84.4811417).



The field site was selected to satisfy the primary requirements for regulatory for transgenic
pollen dispersal experiments: isolation and traceable source attribution. It was situated
on recently cleared forest land, with felled trees surrounding a rough glade area. The site
provided sufficient open area (~1.5 ha) for switchgrass cultivation and sampler deployment,
while heavily forested borders served as a natural barrier that reduced the likelihood of
cross-contamination with nearby wild or cultivated switchgrass and limited off-site pollen
transport. The field location was intentionally chosen in a remote, concealed area beyond
a secured access point, ensuring restricted visibility and access. The field plot measured 45
ft x 30 ft, enclosed within a protective 50 ft x 65 ft fenced perimeter, as shown in Figure

3.1A. The outer fence was locked to prevent animal intrusion.

Transgenic line generation, analysis, and selection

Transgenic switchgrass plants expressing OFP were created by genetically engineering em-
bryogenic callus derived from switchgrass seeds obtained from Ernst Conservation Seeds,
Inc. (Meadville, Pennsylvania, USA). This was achieved through Agrobacterium-mediated
transformation (Agrobacterium tumefaciens strain EHA105) as detailed in [138], using one

of two binary plasmid constructs.

The first plasmid, pANIC10A-OFP [139], contained the hygromycin phosphotransferase
(hph) selectable marker gene under the control of the switchgrass ubiquitin 2 (PvUbi2)
promoter as well as an orange fluorescent protein (OFP) gene pporRFP under the control of
the switchgrass ubiquitin promoter (PvUBI1). This promoter drives the expression of OFP

in leaves, stems, and pollen.

The second plasmid, PSYBIN1aZm13pporRFP, also contained the OFP gene pporRFP under

the control of a maize pollen-specific promoter (Zm13). This promoter drives the expression



of OFP in the pollen. This construct also contained a second OFP gene mOrangeER under
the control of the cauliflower mosaic virus (CaMV) 35S promoter which enable the expres-
sion of this OFP in callus and green tissues. In addition, the plasmid also contained the hy-
gromycin phosphotransferase (hph) selectable marker gene under the control of the PvUBI2
promoter. Several transgenic OFP-expressing shoots were recovered from hygromycin se-
lection media (100 mg/L), and once rooted, plants were grown an environmental-controlled

growth room (16/8 h day/night and 24/22¢C day /night).

To confirm the presence of the OFP gene in the transgenic plants, PCR-screening was per-
formed using primers (forward primer: GCAAAGTGGGGTCAAAGATG; reverse primer:
CACCTTCAAGCCCTTCTTTG) designed to amplify a 556 bp fragment of the pporRFP
gene. PCR-confirmed transgenic plants were moved to a greenhouse and grown (16/8 h
day /night and 28/22FC day/night) until flowering. To identify transgenic events expressing
OFP in pollen, visual analysis of OFP fluorescence was conducted on pollen grains from each
event using epifluorescent microscopy as described by [140]. Transgenic lines in which all
pollen grains exhibited OFP expression were propagated in the greenhouse and subsequently

used in field experiments.

Planting

The planted area, less than 0.1 ha, consisted of 20 rows with 20 switchgrass plants per row,
totaling 400 transgenic switchgrass plants arranged in a randomized design. These plants
were hand-transplanted in the field at 76.2 cm intervals on three different dates. On July 20,
2021, 100 pANIC10A-OFP switchgrass plants from five transgenic events (20 clonal replicates
per event) were transplanted. On August 26, 2021, another 100 PSYBIN1aZm13pporRFP
plants from five transgenic events (20 clonal replicates per event) were transplanted. Lastly,

on June 20, 2022, an additional 200 pANIC10A-OFP switchgrass plants from ten transgenic



events (20 clonal replicates per event) were transplanted in the field site. These last 200
plants were not mature enough to produce pollen during the field experiments. Figure
3.1B illustrates the locations of these plants and their ages in weeks during the August 2-3,
2022 field experiment. This experimental design was structured to monitor and analyze the

dispersal from transgenic pollen over time and distance.

E 100 PANICA10A-OFP
| (54 weeks old)

100 PSYBIN1a-
Zm130pporRFP
(48 weeks old)

200 PANICA10A-OFP
(6 weeks old)

Overhead view of field, August 2-3, 2022

Figure 3.1: Top-down drone image of the field during field experiments conducted on August
2-3, 2022. (A) The field of GE switchgrass is outlined by a white dotted square and enclosed
by a perimeter fence, as required by the APHIS BRS permits. Reddish-orange circular pads
mark the locations of pollen sampling devices, positioned at increasing distances from the
center of the source field. (B) A close-up view of the 45" x 30’ field of GE Switchgrass,
showing the locations of both strains of OFP-expressing switchgrass plants. Labels indicate
the plant positions and ages during the August 2-3, 2022, field campaign.

3.2.2  Sampling Methods

Four types of volumetric particle samplers, shown in Figure 3.3, were used to capture GE

switchgrass pollen and estimate the concentration of airborne pollen at various times and



distances from the source field. Each sampler had different sampling rates and sensing
capabilities. To optimize equipment placement, wind forecasts and local conditions were
assessed before the first sampling period. The samplers were strategically positioned based
on prevailing and predicted wind directions, ensuring placement downwind of the expected
pollen dispersal path. Figure 3.2 illustrates the placement of samplers around the field on
each sampling day. The samplers were placed on reddish-orange circular drone landing pads
to mark their locations and enhance visibility in overhead footage, as shown in Figure 3.1A

for the August 2-3, 2022 field campaign.

Ground-based high-volume samplers (ED)

In anticipation of low pollen emission rates, several high-volume filter-based samplers (Sci-
ence First #15000, Yulee, FL) [1] were deployed during the campaign (Figure 3.3A). Origi-
nally designed for educational use in schools, these samplers are referred to as “ED” samplers

throughout the manuscript.

The barrel-shaped ED samplers draw air through a filter surface at an initial flow rate of 600
L/min [1]. Cellulose filters with a pore size of 11 um and a diameter of 125 mm were used to
collect airborne pollen and other atmospheric particles at 0.432 m above ground level. The
ED samplers’ volumetric sampling rate is 1000 times that of the IMP and DRN samplers,
and 35 times that of the FRM sampler. This significant increase in sampling capacity allowed

for improved detection of airborne pollen, particularly in cases of low pollen emission rates.

Ground-based medium-volume sampler (FRM)

A single near-Federal Reference Method (FRM) sampler (ARA Instruments, Eugene, Ore-

gon) was deployed during the field experiments, shown in Figure 3.3B. This battery-operated



device samples air at a flow rate of 16.7 L /min. The unit is equipped with a filter sampler
(PMy, filters were used in this study), meteorological sensors, and a particle counter. Addi-

tional details about this instrument are available on ARA’s website [141].

Ground-based low-volume samplers (Impingers or IMP)

To evaluate the effectiveness of impinger-type samplers, three custom-designed impinger
packages were deployed during the field campaign (Figure 3.3C) . These sampling packages

are referred to as “IMP” throughout the manuscript.

The IMPs were constructed from high-density polyethylene, following the design specifica-
tions outlined in [24]. The 3D-printing (.stl) files for the impinger units are publicly available
online [142]. These files were modified to accommodate a 15 mL polypropylene conical col-

lection vial (Corning #CLS430791) and a stainless-steel tube with a 4 mm diameter opening.

The IMP samplers were mounted on a tripod 2 m above ground level to approximate the
height of the switchgrass panicles, the open flower structures that produce pollen. The IMPs
sampled airborne particles at a rate of 0.6 L /min, with collected particles entrained in sterile

15 mL conical tubes containing 2 mL of sterile deionized water.

Drone-based low-volume sampler (DRN)

To measure airborne pollen concentration at different altitudes above and downwind of the
field, we used a drone-based sampling system consisting of the IMP unit mounted on a DJI

Inspire 2 drone platform (Figure 3.3D). The system is described in detail in [25].

A key design feature of the drone system is the positioning of the IMP sampler high enough
above the propellers, which ensures that the sampled air remains free from propeller-induced

turbulence, commonly known as downwash. The drone was flown at a fixed altitude of 10



meters during each sampling interval, a height selected to prevent propeller downwash from

disturbing the switchgrass canopy during stable hovering.

Due to drone battery limitations and the need for safe flight and landing operations, each
sampling interval was restricted to 10 minutes. The IMP unit on the drone operated at
the same volumetric sampling rate as its ground-based counterpart (0.6 L /min). However,
because the drone sampler was only flown for 10 minutes per flight, its total sampling capacity
was significantly lower than the ground-based IMP units, which collected for 30 to 90 minutes
during the field campaign. Hereafter, the IMP-equipped drone system is referred to as “DRN”

throughout the manuscript.

3.2.3 Meteorological Data

A weather station was installed near the field to collect meteorological data throughout
each sampling day. The station consisted of a Campbell Scientific CSAT3 three-dimensional
sonic anemometer, mounted at a height of 1.5 m above ground level, which measured high-
resolution wind velocity in three dimensions and sonic temperature at a frequency of 10
Hz. In addition, a Campbell Scientific HMP45C probe recorded temperature and relative
humidity every 30 seconds. Meteorological data were recorded with the Campbell Scientific
CR3000 datalogger. To minimize interference from the tripod pole, the sonic anemometer
arm was positioned perpendicular to the anticipated dominant wind direction before each
collection day. The wind velocities in the u and v directions (relative to the sonic anemometer

arm) were then rotated into the cardinal coordinate system for analysis.



3.2.4  Processing of pollen samples

Sample preparation

Filters from the ED samplers were processed as shown in Figure 3.4A. Briefly, the 125mm
“ED” collection filters were removed with forceps and transferred to separate 150 mm petri
dishes (Fisher #FB0875714) in the field immediately following each sampling period. For
each filter, 25 mL of 25% EtOH was added in the petri dish, the filter was gently agitated
with a sterile cell spreader, and then rinsed a total of 8 times. Each rinsate was transferred
by a pipettor to a vacuum filtration unit (Thomas Scientific #300-4100) containing a 47 mm
Isopore polycarbonate 10um filter (Millipore Sigma #TCTP04700). The sample was cleared
through the filter using the vacuum from a hand pipetting bulb. Using forceps, the Isopore
filter was then moved to a 60mm petri dish (Genesee 32-105) and rinsed 6 times with 2 mL
25% EtOH. The resulting rinsate was transferred to an Ultrafree 5 yum PVDF centrifugal
filtration tube (Millipore Sigma UFC40SV25) and centrifuged for 2 minutes at 2,500 rpm in
a swinging bucket centrifuge (IEC Clinical Centrifuge). The concentrated sample was then
resuspended from the 5um filter surface with 200uL 25% EtOH and moved to a 1.5 mL

Eppendorf tube and stored at 4 °C for further analysis

Filters from the FRM sampler were processed as shown in Figure 3.4B. Briefly, the Isopore
filter was removed from the FRM unit sampling cartridge using forceps and transferred to a
60 mm petri dish (Genesee 32-105) in the field immediately following each sampling period.
For processing the sample, the Isopore filter was then rinsed 6 times with 2mL 25% EtOH,
and the resulting rinsate was moved to an Ultrafree 5m PVDEF centrifugal filtration tube
(and centrifuged for 2 minutes at 2,500 rpm in a swinging bucket centrifuge (IEC Clinical
Centrifuge). The concentrated sample was then resuspended from the 5m filter surface with

200 L of 25% EtOH and moved to a 1.5 mL Eppendorf tube and stored at 4 °C for further



analysis.

The fluid from the IMP and DRN samplers was processed as shown in Figure 3.4C. Samples
from the IMPs and DRN were transferred by pipette to an Ultrafree 5um PVDF centrifugal
filtration tube and centrifuged for 2 minutes at 2,500 rpm in a swinging bucket centrifuge
(IEC Clinical Centrifuge). The concentrated sample was then resuspended from the 5 pm
filter surface with 200 ul 25 EtOH and transferred to a 1.5 mL Eppendorf tube and stored

at 4 °C for further analysis.

Pollen counting

Switchgrass pollen was counted in each concentrated sample by pipetting the samples into
individual wells of a 96-well plate (Grenier Bio One 7000124). Samples were allowed to sedi-
ment for 15 minutes and then were observed using an Olympus CKX53 inverted microscope
equipped with the Olympus EP50 digital camera and associated software. Following the
quantification of the switchgrass pollen in each of the tubes, the samples were transferred
back into their respective 1.5 mL. Eppendorf storage tubes and held at 4 °C for transport

and further analysis.

3.2.5  Atmospheric dispersal modeling

Meteorological Inputs

Atmospheric dispersal simulations for each sampling interval are driven using time-averaged
wind statistics collected during that interval. Most sampling intervals occurred under low-
wind conditions (< 2 m/s), characterized by meandering winds with frequent directional

shifts and intermittent lulls in wind speed. To better capture dispersal dynamics under these



conditions, the wind data was processed using different averaging window sizes. Specifically,
for the 45-minute sampling intervals on August 2-3, 2022, the following averaging windows
were used: 45 one-minute averaging windows, 9 five-minute averaging windows, and 1 full
45-minute averaging window. This approach allowed for assessing how different temporal

resolutions of wind averaging influenced the accuracy of dispersal simulations.

To compute turbulence statistics for each averaging window, the average downwind direction
was determined and the wind velocity data was rotated into the downwind (u)and crosswind
(v) coordinate system. For each sampling interval, the means, covariances, and variances
were computed for these wind velocity components, as well as temperature. Mean temper-
ature was computed from sonic temperature using the method described in [143] and the
relative humidity values. Heat flux was estimated from sonic temperature and relative hu-
midity using the Bowen ratio method from [143|. The Bowen ratio was determined using
the simplified method of [144|, which requires only mean temperature and relative humidity.
These turbulence statistics provided the necessary meteorological inputs for the dispersal

simulation in each interval, specifically friction velocity (u.) and the Monin-Obukhov length

(L).

Pollen dispersal simulations

To simulate switchgrass pollen dispersal, we use the surface-layer Lagrangian Stochastic
(LS) model described in [31] and expanded to three-dimensional transport in [75]. The
LS model framework is based on Brownian motion theory, modeling turbulent diffusion by
simulating the trajectories of thousands of particles through the air as random walks through
the atmosphere. The movement of each particle is governed by turbulent wind statistics,
and the ensemble average of these trajectories provides estimates of pollen concentration at

any given location within the simulation domain.



LS models require turbulence wind statistics to be specified at every point in the simulation
domain, including mean velocities, variances, and covariances of the wind components. Un-
der the assumptions of stationarity and horizontal homogeneity, these wind field statistics
remain constant over time within each averaging window but vary with height. To account
for this height dependence, boundary layer scaling techniques are applied to generate vertical
wind profiles based on measurable surface-level parameters, specifically the friction velocity
(u) and the Monin-Obukhov length (L). The full model formulation and wind statistics

used in the simulations are included in the code provided online.

These two parameters (u, and L) were computed from the time-averaged meteorological mea-
surements for each 45-minute sampling interval, using three different averaging approaches:
one 45-minute averaging window; nine 5-minute averaging windows; and forty-five 1-minute
averaging windows. A separate simulation was conducted for each averaging window in a
45-minute sampling interval, using the computed average wind direction, friction velocity
(u), and Monin-Obukhov length (L). The resulting concentration fields from these simula-
tions were then averaged to generate a single mean concentration field for each 45-minute

sampling interval.

In each simulation, 100,000 particles (representing switchgrass pollen) are released from a
point source at the center of the field at a height of 2 m, which approximates the height of
most of the switchgrass panicles in the field experiment. Particles were removed from the
simulation domain when they: traveled more than 50 m laterally from the source; rose above
100 m above ground level; or fell below 0.1 m above ground level. To simplify the simulation,
pollen dispersion was modeled as if it occurred over a flat, rough surface, with estimated
surface roughness of 0.01 m, consistent with values reported for level grassy plains and prairie
in [145]. The settling velocity was estimated as 0.0371 m/s, based on an observed switchgrass

pollen diameter of ~35 pum, using Stokes law. Since switchgrass pollen was observed to be



nearly spherical, Stokes law provides a reliable approximation of its settling velocity.

Concentration estimation and source emission rate calculation

The pollen concentration estimation procedure in this study follows the approach described
by [146] for a stationary LS model with a constant source. Pollen concentration is estimated
by tracking the amount of time particles spend in each grid box, normalized by the total
number of particles released (INV,) and the volume of the grid box (Viox = 1m x 1 m x 1
m), and then multiplied by the modeled emission rate (@Q). Specifically, the concentration
at a given grid point (i, j, k) is calculated as,

Np

1 1
Vbox Np

where T, (i, j, k) represents the time particle n spends in the given grid box.

We employed a model-measurement fusion approach described in [31] to estimate pollen emis-
sion rate and concentration. For each sampling interval, the modeled pollen concentration at
each grid point in the simulation domain is first computed under the arbitrary assumption
of a constant release rate at the center of the field of Q0qe = 1 particle per second. This
yields a modeled relative concentration, which is proportional to the actual concentration
at every point in the domain. To estimate the actual emission rate (pollen flux from the
field), the ratio of the measured pollen concentration at each of the six ED samplers to the
modeled relative concentration at the corresponding locations in the simulation domain was
computed and used to update the value of (). To obtain a single emission rate estimate for
each sampling interval, the computed emission rates corresponding to calculations based on
each of the six ED samplers were averaged. This estimated true emission rate was then used

to update the modeled relative concentration to predict the actual concentration at every



point within the simulation domain.

To investigate dispersal at greater distances—up to 1 km from the source—the same modeling
procedure is conducted but with a coarser grid resolution of Vj,,, = 3 m x 3 m x 1 m and
an extended simulation domain covering 1000 m x 1000 m x 100 m. This coarser grid was
selected to balance computational efficiency while maintaining consistency with the finer-

resolution near-source grid.

To generate 2D dispersal kernels, which represent pollen concentration as a function of
distance, concentrations at equal radial distances from the source are averaged, yielding

average concentration as a function of radial distance from the source.

3.3 Results

Three field campaigns were conducted over the course of two calendar years (2021 and 2022)

to sample airborne pollen around two blocks of transgenic switchgrass.

3.3.1 Field Experiments

First campaign (October 7-8, 2021)

The first field campaign took place on October 7-8, 2021. At this time, the pANIC10A and
PSYBIN1a plants (Fig. 3.1) were only 11 and 6 weeks old, respectively, and the youngest
200 pANIC10A plants had not yet been planted. The following ground based samplers
were placed radially around the field at distances of 0, 5, 15, and 25 meters, as shown in
figure 3.2: three ED samplers, three IMPs, and one FRM sampler. These ground-based

samplers operated in 30-minute intervals, while the drone-based sampler (DRN) was flown



at a 10-meter height for a duration of 10 minutes per sampling interval. However, due to
technical difficulties, the drone sampler was only deployed on October 7th, and was not used

on October 8th.

IMP A was placed at the center of the field (the midpoint of field 1 and 2) to estimate
pollen emission rate, but an insufficient amount of pollen was collected—at most two pollen
grains in each sampling interval, and often zero—which was not statistically significant to
estimate the pollen emission rate. IMP B and ED C were co-located to verify alignment of
their concentration estimates. However, due to their vastly different sampling rates and the
low pollen numbers collected, direct comparisons were not feasible. On October 8th, slightly
more pollen was captured, particularly by ED C, but overall pollen collection remained low.
Impingers showed an increase in measured concentrations later in the afternoon, though data

remained sparse. The IMP, FRM, and DRN samplers captured negligible pollen amounts.

Pollen concentrations for each sampling interval and sampler are presented in Table 3.1. On
October 7th, too few pollen grains were collected for meaningful analysis. Concentrations
marked with a daggerfsuperscript denote cases where only 1-2 pollen grains were sampled.
On October Tth, all samplers captured 2 or fewer pollen grains. On October 8th, 1-5 grains
were collected per sampler. IMP B did not capture any pollen, despite being placed alongside

ED C, likely due to the overall low pollen counts.

Second campaign (October 20-21, 2021)

During the second field campaign on October 20-21, 2021, we increased ground-based sam-
pling intervals to 90 minutes to compensate for the low pollen counts observed during the
previous campaign’s 30-minute sampling intervals. To improve pollen capture, all samplers

were moved within 15 meters of the field. The drone was still lown for 10 minutes per



sampling interval. On October 21st, heavy rainfall forced us to shorten the final sampling
interval of the day. Despite the longer sampling durations and closer sampler placement,
pollen counts remained negligible (at most two pollen grains captured per interval) through-

out this campaign. See Table 3.1 for details.

Third campaign (August 2-3, 2022)

The third and final campaign took place on August 2-3, 2022. Field and sampler placements
during this campaign are shown in Figure 3.1A and B, respectively. The oldest pANIC10A
plants were at peak pollen production during this campaign, but the PSYBINla plants
had not yet begun releasing pollen. The youngest pANIC10A field, planted only six weeks
prior, was too immature to release pollen. Given that ED samplers were the most effective
in previous campaigns, their number was increased from three to six. In anticipation of
prevailing winds directed toward north-northeast, samplers were primarily aligned along the
x and y axes in Figures 3.1 and 3.2. The drone sampler was again flown for 10 minutes
at 10 meters during all sampling intervals. ED D and IMP A were co-located to compare
concentration measurements. IMP B was placed at the field center to estimate the pollen
emission rate, if sufficient pollen was collected. To address diurnal trends, sampling intervals
were kept consistent across both collection days. All ground-based samplers were operated
for 45-minute sampling intervals. ED samplers collected significantly more pollen than in
previous campaigns. A clear diurnal pattern emerged, with concentrations peaking between
2:00-2:45 PM time on both days. Concentrations began increasing around 1:00 PM, peaked
at 2:00 PM, then declined after 3:00 PM. See Table 3.1 for details.



® mp y October 7-8, 2021 October 20, 2021

'\ 15° August 2-3, 2022

October 21, 2021

Figure 3.2: Ground-based sampler locations for each collection day. Yellow, blue, and red
denotes placement of ED, IMP, and FRM samplers, respectively, positioned at radii of 5,
7.5, 15, and 25 meters from the center of field.
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600 l/min 16.7 L/min 0.6 L/min

Figure 3.3: All sampler units used during the field campaigns. (A) The EDJ1], a ground-
based high-volume sampler (600 L/min). (B) The FRM, a ground-based medium-volume
volumetric sampler (16.7 L /min). (C) The IMP, an impinger-based ground-based low-volume
sampler (0.6 L/min). (D) The DRN, a drone-based sampler flown at a height of 10 meters
above ground-level (0.6 L/min).
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Figure 3.4: Flow charts showing the processing of the filters from (A) the ED samplers, (B)
the FRM sampler, and (C) the IMP and DRN samplers.
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3.3.2  Orange-Fluorescent Protein Expression

The primary source of pollen in the field experiments came from the first planted block of
GE switchgrass, which contained 100 plants expressing OFP under the control of a maize
ubiquitin promoter (PvUBI1). As shown in Figure 3.5, the OFP signal in pollen grains from
these transgenic plants was difficult to distinguish from wildtype (WT) pollen exposed to
the same OFP-inducing wavelength of light. In contrast, the OFP signal in pollen from the
later planting of GE switchgrass (expressing OFP under a maize pollen-specific promoter,
Zm13) was much stronger and easily distinguishable from WT pollen. However, these Zm13-
expressing plants were smaller and did not produce sufficient mature panicles in time for the

field experiments, limiting their contribution to the study.

3.3.3 Modeling Results

For the dispersal modeling, we focused on the third field campaign (August 2-3, 2022), as
sufficient pollen was captured on both days to allow for concentration measurements from
the ED samplers. All sampling intervals during these days were 45 minutes long. Sampling
occurred at consistent times across both days, facilitating comparisons and enabling the

identification of diurnal trends.

Near-source concentration and emission rate estimation

Dispersal simulations more accurately capture changing wind directions and pollen concen-
trations when shorter averaging periods are used for each sampling interval. Figure 3.6
presents ground-level relative concentration contours and downwind wind roses for the Au-

gust 2nd, 2:00-2:45 PM sampling interval, simulated using 1-minute, 5-minute, and 45-minute
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Figure 3.5: Comparison of OFP signal between GE switchgrass pollen and wildtype. (A)
Pollen from the pANIC10A strain (OFP expression throughout the entire plant) is not easily
distinguishable from wildtype pollen under OFP-inducing light. (B) Pollen from the PSY-
BINla strain (OFP expression restricted to pollen) exhibits a strong, highly distinguishable
OFP signal compared to wildtype pollen.

averaging windows. This interval corresponded to the highest measured pollen concentra-
tions by the ED samplers. The wind rose in Figure 3.6A was generated using wind data
collected at a sampling frequency of 10 Hz. The wind roses in Figure 3.6B, C, and D were cre-
ated using 1-minute, 5-minute, and 45-minute time-averaged wind data, respectively. Wind
roses display the downwind direction. Yellow circles indicate the ED sampler locations, with

their size proportional to pollen counts at each site.

Comparison of averaging windows. The 45-minute plot (Figure 3.6D), based on a single LS

simulation in the average downwind direction, fails to capture wind variability and lateral



1-min intervals

5-min intervals 45-min interval

Figure 3.6: Relative ground-level concentration contours for the August 2nd, 2:00-2:45 PM
sampling interval. (A) Wind rose for this sampling interval, indicating the downwind direc-
tion. (B) Contour plot averaging forty-five 1-minute simulations. (C) Contour plot averaging
nine 5-minute simulations. (D) Contour plot generated using a single 45-minute simulation.
Yellow circles indicate the ED sampler locations, with their size proportional to pollen counts
at each site.

pollen spread, missing high pollen counts at ED sampler B due to a single eastward-directed
plume. The 5-minute plot (Figure 3.6C), which averages nine LS simulations, shows some
directional variation but lacks the detail seen in the 1-minute plot. The 1-minute plot
(Figure 3.6B) provides the most accurate representation of dispersal dynamics. However,
all three simulations share a common discrepancy: peak concentrations appear a few meters
from the point source, indicating lateral transport before deposition. A field source, rather

than a point source, may better address these inconsistencies, at the cost of further model



complexity.

Emission rate and diurnal pattern. The computed pollen emission rate from the field exhibits
a clear diurnal trend. Figure 3.7 presents the mean, minimum, and maximum non-zero com-
puted emission rates for each sampling interval on August 2-3, 2022 during the third field
campaign. Emission rates were computed from Equation (4.2), based on the ratio of mea-
sured to modeled concentrations. Samplers with zero measured or modeled concentrations
were excluded to prevent infinite or zero emission rate estimates. Emission rate calculations
were performed for 1-minute, 5-minute, and 45-minute averaging windows. The range of esti-
mated emission rates decreases with smaller averaging windows, indicating greater precision
with shorter averaging periods. The pollen emission rate increased by approximately three
orders of magnitude between 10 AM and 2 PM. Note that the emission rate is shown on a log
scale in Figure 3.7. The log-transformed emission rate estimate is positively correlated with
the horizontal velocity magnitude (Pearsons R = 0.73, P = 0.01), temperature (R = 0.71,
P = 0.01), and vapor pressure deficit (R = 0.69, P = 0.01), while negatively correlated with
relative humidity (R = -0.63, P = 0.02). These results indicate that higher pollen emissions
occur under conditions of higher wind speed, temperature, and vapor pressure deficit, while

increased relative humidity reduces pollen release.

Modeled concentration predictions improve dramatically when changing wind conditions are
incorporated into the simulations. Figure 3.8 compares modeled concentrations, computed
by multiplying the estimated emission rate by the relative concentration, with measured
concentrations derived from ED sampler pollen counts. Although the figures directly compare
modeled and measured concentrations, they are not intended as a formal model validation,
as the measured concentrations were directly used to compute emission rate and modeled
concentration (see Section 2.5.3). Instead, they highlight the substantial improvement in

model performance as the averaging window is reduced. The Pearson’s R-value increases



from 0.19 for 45-minute windows to 0.71 for 5-minute windows to 0.84 for 1-minute windows.
While reducing the averaging window from 45 minutes to 5 minutes requires nine times the
computational power, it yields a 270% improvement in model performance (as measured
by the R-value). In contrast, refining the resolution further from 5-minute to 1-minute
windows results in only a 20% increase, suggesting that shorter windows may not always be

computationally worthwhile beyond a certain threshold.

Estimating sensor capabilities in the far field

The intake rates of the samplers used in this study differ by multiple orders of magnitude,
with 0.6 L/min for the low-volume IMP and DRN, 16.7 L/min for the medium-volume
FRM, and 600 L/min for the high-volume ED. This disparity highlights the coarseness of
concentration measurements for the low-volume IMP and DRN samplers, particularly when
considering error estimates based on the Poisson distribution. The Poisson distribution
models the error of discrete event counts, such as the number of pollen grains collected, as
VN, where N is the number of pollen grains captured by a sampler [147, 148]. Lower intake
rates necessitate proportionally higher aerial concentrations, and consequently, greater pollen
emission rates for detection, leading to significantly higher measurement error compared to

high-volume samplers.

To determine optimal sampler placement based on varying field emission rates, we combined
sampler intake rates with long-distance dispersal simulations. Figure 3.9 plots the maximum
distances at which each sampler could be placed to collect at least 100 pollen grains (410)
within a 45-minute sampling interval, as a function of the pollen emission rate. These
estimates were generated using the long-distance 2D relative concentration dispersal kernels,
computed separately for ground-based samplers (IMP, ED, FRM) at ground level and the

drone-based sampler (DRN) at 10 m above ground level. Although the drone was only flown



for 10 minutes per sampling interval in our field campaigns, we evaluated its performance
over 45-minute intervals to account for potential future battery-life improvements or wire-
tether power modifications. The threshold of 100 pollen grains corresponds to different
effective concentrations across sampler types, with 3.7x10? pollen/m? for IMP and DRN,
133 pollen/m? for FRM, and 3.7 pollen/m? for ED. This threshold was selected as it ensures

a +10% error in concentration estimates when modeled with the Poisson distribution.

Figure 3.9 shows that, to collect at least 100 pollen grains, the ED samplers require 1.5
orders of magnitude less emission rate than the FRM and 3 orders of magnitude less than
the IMP, across all distances from the field. This advantage allows ED samplers to be placed
significantly farther from the field compared to IMP and FRM samplers. The DRN requires
an even greater emission rate, due to lower concentrations at 10 meters altitude. However,
at approximately 200 meters downwind, the DRN and IMP detection capabilities converge,

as vertical concentration gradients become less pronounced further from the source.

The gray vertical lines in Figure 3.9 represent computed emission rate values at each ED
sampler during our field campaign, which are also shown in Figure 3.7. These results indi-
cate that only the ED samplers had a reasonable chance of collecting at least 100 particles
during some sampling intervals. The remaining samplers were largely ineffective at detecting
airborne pollen given the small emission rates observed in this study, even at close proximity
to the source field. For a larger source, with an emission rate of 10° pollen/s (approximately
100 times larger than ours), the feasible placement of samplers would improve substantially.
Under such conditions, impingers could be placed up to 10 meters from the field, the FRM
samplers could be placed up to 100 meters from the field, and ED samplers could be placed
up to 200 meters away. These adjustments would allow each sampler type to collect at least
100 pollen grains within a 45-minute sampling interval, enhancing measurement reliability

and reducing uncertainty:.



3.4  Discussion

In these field experiments, airborne pollen from two different strains of OFP-expressing
switchgrass plants were captured and analyzed using the method described in [140]. The
PSYBINI1a strain exhibited strong fluorescence compared to wild-type pollen, whereas the
pANICI0A strain was difficult to distinguish by fluorescence alone. However, since the
PSYBIN1a plants did not release sufficient pollen during any of the field experiments, OFP
expression was not used for pollen identification in this study. If we had successfully captured
PSYBIN1a pollen from the younger field, it would have expedited the counting and sampling
process. Despite this limitation, the study serves as a proof-of-concept that fluorescence
tagging can be a valuable tool for pollen tracking. Though prior studies have tracked the
movement of GE pollen in the atmosphere [11], to our knowledge, this is the first detailed
study to incorporate aerial and ground-based volumetric samplers to track the movement of
GE pollen from a known source. Fluorescent tagging presents a unique opportunity to trace
pollen dispersal and track its movement over long distances. Understanding switchgrass gene
flow is particularly relevant as biofuel production increases, helping to mitigate ecological
risks posed by invasive strains and unintended cross-pollination between transgenic varieties
[19]. Additionally, fluorescence-tagged pollen could facilitate rapid and automated counting
using instruments such as the Helmut Hund BAA500, Plair Rapid-E, or WIBS-4 [133, 149,

which is of particular interest for allergen monitoring.

During the final campaign on August 2-3, 2022, a distinct diurnal pattern emerged in both
measured pollen concentrations and computed pollen emission rate. Pollen emission rate
increased steadily after the first sampling interval at 10 AM, peaked at 2 PM on both
days, and declined during the final sampling interval at 3 PM. This diurnal pattern was

consistent across both days and correlated with increasing wind velocity and temperature,



as well as decreasing relative humidity. Such diurnal pollen release patterns are common
in wind-pollinated species, where anther dehiscence is driven by drying conditions such as
low humidity and rising temperatures [23|. Similar trends have been observed in previous
switchgrass field studies, where peak pollen concentrations occurred in the late morning and
early afternoon, followed by a decline around 3 PM [126]. Comparable findings in maize
have linked pollen release patterns to increasing vapor pressure deficit [51] and decreasing
relative humidity combined with rising wind velocity [55]. This information can be used to
better predict peak allergen concentrations and improve accuracy of large-scale air pollution

models.

Throughout all sampling intervals and field campaigns, we observed very low wind velocities
(< 2 m/s) and frequent shifts in wind direction. Under these meandering wind conditions,
particle dispersal is primarily controlled by wind direction shifts rather than turbulence
[150, 151]. Standard dispersal models that assume a dominant downwind direction fail to
account for this effect, often producing overly narrow plumes that underestimate lateral
spread. This limitation is particularly characteristic of LS models [51, 152] and Gaussian
plume models [153] which require a single downwind direction. Even more advanced mod-
eling approaches, such as Large Eddy Simulations, do not fully incorporate changing wind
directions [154]. To address this, we reduced the averaging window for wind statistics from
45 minutes to 5 and 1 minute, then ran dispersal models for each of these smaller intervals
and combined the resulting plumes. This approach dramatically improved the fit between
modeled and measured concentrations, enhancing emission rate estimates. Similar techniques
have been applied in Gaussian plume modeling with 2-minute intervals, yielding significantly
better agreement with measured data [153]. Anfossi et al. (1990) [152] also emphasized the
importance of using short averaging windows for dispersal modeling, recommending intervals

of only a few minutes. A maize dispersal study similarly attributed discrepancies between



measured and modeled concentrations to wind direction variability and assumptions of a
dominant wind direction [51]. Future large-scale pollen forecasting and bio-confinement
strategies should consider meandering wind conditions, which are not currently accounted

for in large-scale models [154].

The highest concentration measurements in this study came from the high-volume ED sam-
plers. The pollen source size—100 plants releasing pollen—was exceedingly small compared
to previous dispersal experiments in switchgrass, which involved 3,200 plants [126], as well
as studies in maize |51, 53, 55|. High-volume ED samplers performed best under these small-
source conditions, capturing spatial variations in concentration and diurnal patterns. To the
best of our knowledge, this is the first pollen-trapping field study to utilize these samplers.
Their volumetric flow rate of 600 L/min is 60 times greater than that of the traditional
Hirst-type samplers, which operate at 10 L /min and are comparable to the FRM sampler
used in this study. Due to the small pollen source, the FRM sampler did not produce us-
able data. As the ED samplers were originally designed for educational purposes, they are
inexpensive and lack pre-programming and other advanced features found in commercial
volumetric samplers. However, their simplicity and affordability make them easily deploy-
able, and they have strong potential for measuring concentrations from small sources and

capturing high-resolution pollen dispersal patterns even in small fields.

A novel impinger-type particle sampler (IMP and DRN) was used in this study to collect
pollen, marking the first application of this integrated system for pollen tracking. While
previously employed for airborne microbial sampling|24, 25|, this study extends its use to
pollen dispersal. The IMP and DRN samplers successfully collected pollen in the field,
demonstrating their feasibility for tracking pollen movement. However, due to the small
source size, limited pollen production, and the relatively low sampling rate of 0.6 L/min,

the collected pollen quantities were insufficient for reliable concentration estimates. The dif-



fering flow rates between the ED and IMP samplers further complicate direct comparisons,
as impinger samplers inherently capture fewer particles at high concentrations due to their
small intake volumes. The IMP system would likely perform more effectively when sampling
from much larger sources, at least 100 times the size of the field used in our study (Fig-
ure 3.9). Similarly, the drone-mounted sampler, operating at 10 m AGL, would require a
significantly larger pollen source for effective deployment at further distances and altitudes.
Nevertheless, the drone platform remains a valuable tool for aerobiological research, offering
future opportunities for prolonged and spatially resolved sampling, particularly when paired
with higher-volume sampling technologies, including those incorporating filter-based collec-
tion systems. Moreover, impinger samplers, which preserve particles in liquid, could prove

especially useful for future viability and molecular studies.

A primary constraint in regulated transgenic pollen dispersal studies is the feasible scale of
the pollen source. From an agricultural perspective, a 100-plant source is small relative to
other agricultural dispersal studies; however, in the context of permitted flowering GE pollen
dispersal, it is substantial because it requires specialized propagation, isolated siting, and a
stringent regulatory permitting. Our experimental design therefore prioritized a small, but
well-contained OFP-tagged source, and we structured the sampling campaign to extract the
most robust insights that this rare setup could support. The value of the present study is
therefore not that it reproduces a large agricultural pollen release, but that it establishes
what is measurable and how to model it under realistic constraints that are intrinsic to
transgenic field experimentation. While future studies would benefit greatly from a larger
pollen source, the small source and low-wind conditions allowed us to stress test our sampling

and modeling methodology.

With unlimited resources, the natural next step would be a scaled up version of this same

experiment focused on validation: a large, well-established source containing only PSYBIN1a



to maximize the OFP signal, multi-year sampling on the same dates and times to quantify
repeatability of diurnal emission patterns, and colocated Hirst-type gold-standard samplers
deployed alongside the novel samplers to provide independent concentration estimates for
model validation and rigorous sampler inter-comparison. A substantially larger source would
allow meaningful comparisons between low- and high-volume samplers, with one set used to
estimate the particle release rate and another for validating modeled concentrations. It
would also enable more effective use of impinger-type samplers (IMP and DRN), which
could preserve pollen for downstream viability studies, although isolated siting requirements

for transgenic work would continue to pose limits for long-distance tracking.

Focusing solely on PSYBIN1a switchgrass, with its stronger OFP fluorescence in pollen,
could further enhance tracking accuracy via automatic fluorescence-based quantification. As
shown in Figure 3.9, these methods could enable pollen detection up to 1 km or even tens of
kilometers from the source. This fluorescence tagging technique could also be transferable
to other crops of interest. For instance, hemp is known to produce copious amounts of
pollen capable of long-distance dispersal, and its monitoring is increasingly relevant [123]. If
transgenic hemp lines become available, similar fluorescence-based tracking methods could

be applied to study its pollen movement and gene flow in detail.

3.5  Conclusion

Three field campaigns were conducted to measure pollen concentrations around a small
field of genetically modified switchgrass, utilizing both traditional and novel sampler types.
The experiments also included a drone-mounted sampler, demonstrating the feasibility of
airborne pollen sampling at 10 meters above the field as a proof-of-concept. Despite the

exceedingly small source size, the high-volume ED samplers successfully collected sufficient



pollen to analyze spatial variations in concentration and identify diurnal release patterns.
This study evaluated the effectiveness of different sampler types for pollen collection under
varying conditions. Among the three field campaigns, only the final campaign on August 2-3,
2022, produced sufficient concentration data for detailed analysis and modeling. During this
campaign, a clear diurnal pattern was observed in the pollen concentration and, consequently,
in the calculated emission rate. Persistent low-wind meandering conditions were recorded
throughout the campaign, and reducing the averaging window for simulations significantly
improved pollen emission rate estimations by better incorporating shifting wind directions.
This study highlights the potential for drone-based pollen sampling and fluorescence-based
GMO pollen tracking. The findings provide insight into the effectiveness of different sensor
types with respect to source strength and sampling distance, advancing the understanding
of pollen dispersal dynamics and measurement techniques. These results have important
implications for allergen monitoring, cross-pollination risk assessment, and broader bioaerosol

surveillance strategies.
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Figure 3.7: Mean estimated pollen emission rates for each sampling interval using 1-minute,
5-minute, and 45-minute simulations. (A) Estimated emission rates for August 2, 2022 and
(B) August 3, 2022. Non-zero emission rate estimates for each sampler are shown as solid
points. Shaded regions indicate the range the between minimum and maximum non-zero
emission rate estimates. The vertical axis is on a log scale.
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Figure 3.8: Measured concentrations at the ED samplers compared with simulated concen-
trations for (A) 45-minute, (B) 5 minute, and (C) one-minute intervals. These plots are
not intended as model validation, but rather to show that decreasing the averaging time
for simulations greatly improves modeled concentrations. Note that the plots are on log-log

scales.
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Figure 3.9: Maximum distance at which ED, FRM, IMP, and DRN sensors should be placed
from the source to capture at least 100 pollen grains for a given a emission rate from the
field. These are calculated using concentration curves derived from each sampling interval,
distinguishing between estimates computed with 1-minute, 5-minute, and 45-minute averag-
ing windows. Solid lines represent the median values, while the shaded regions indicate the
range between the lowest and highest values observed across all sampling intervals. Gray
vertical lines correspond to the estimated emission rates for each sensor during all sampling
periods.



Chapter 4

Lagrangian Stochastic Model Evaluation in

Convective Conditions

4.1 Introduction

Large-eddy simulation (LES) provides a high-fidelity time-varying description of turbulent
transport and deposition, but its computational cost limits its routine use for applications
that require many scenarios or long integration times. In contrast, Lagrangian stochastic
(LS) dispersion models are inexpensive and widely used, yet their accuracy depends sen-
sitively on flow regime and model assumptions. In this study, we quantitatively compare
LES and two LS formulations across a range of boundary layer regimes to assess when LS
can reasonably replace LES for predicting pollen and more general bioaerosol deposition
patterns within 1 km of a ground-level source, a question of practical importance for gene
flow caused by pollen and seed dispersal and the spread of plant disease via fungal spores

[9, 27, 33, 35, 45].

The comparison in this study focuses on two established Lagrangian stochastic formulations
that have been widely applied in atmospheric dispersion modeling. The first is mostly used
for near-source dispersal, where large scale convective motions are not the main drivers of
dispersal. It uses a jointly Gaussian distribution for the fluctuating velocity components

(u',v",;w’), which can then include the covariance v'w’ between horizontal and vertical veloc-

71



ities |79, 88]. The assumption of gaussian vertical velocities is well-suited for shear-dominated
turbulence at the surface, and has produced good agreement with near-source measurements
of pollen and spore dispersal [29, 31, 53, 75, 89|. The second is a convective boundary-
layer (CBL) formulation in which the vertical velocity is represented by a height-dependent,
skewed bi-Gaussian distribution in order to better represent the updrafts and downdrafts of
convective-turbulence-dominated boundary layers [86, 87, 119]. Both formulations were orig-
inally developed for one- or two-dimensional dispersal configurations and have been validated
primarily against vertical profiles and along-wind concentration statistics rather than fully
three-dimensional deposition distributions [31, 53, 54, 87, 100]. Conceptually, the SL model
is most appropriate in the surface layer where turbulence is gaussian, produced mostly by
shear, and the large coherent motions of convective turbulence are not present 31, 75, 79, 88|,
whereas the CBL model is designed for buoyancy-dominated, well-mixed convective bound-
ary layers [86, 87, 119|. To isolate differences arising from these underlying stochastic for-
mulations rather than from differing inputs, both LS models are driven here by the same set

of analytical wind-statistics profiles across the range of stability regimes considered.

The LES simulations in this study are performed with the PALM large-eddy simulation
model, which explicitly resolves the turbulent velocity field in the atmospheric boundary
layer using a well-established framework [155, 156|. Particle dispersal is simulating using
built-in Lagrangian Particle Dispersion Module (LPDM) included in the PALM package, in
which particles are advected by the instantaneous resolved velocity field plus a stochastic
subgrid-scale velocity increment following a Lagrangian stochastic formulation developed to

be driven by the time-varying fields of large-eddy simulations [84, 155].

The PALM LES simulations conducted span a sequence of seven atmospheric boundary-layer
regimes from near-neutral, high-wind, streak-dominated shear flows through roll-dominated

mixed layers to deep, strongly convective boundary layers with large convective motions



[157, 158, 159|. The resulting time-averaged LES-driven deposition distributions are treated

as the reference “truth” against which the SL and CBL LS formulations are evaluated.

To compare LES and LS performance, we focus on how well each model reproduces the LES
plume shape for different deposition magnitudes. For each case, we compute the downwind
and crosswind standard deviations of the ground-level deposition field, o, and o, as primary
measures of plume extent and lateral spread. We then assess the spatial fidelity of each LS
formulation using a thresholded, binary comparison of the LES and LS deposition fields
across a range of deposition levels. Spatial overlap at each threshold is quantified with the
Jaccard index, defined as the ratio of intersection to union of two regions which exceed the
threshold. Together, these metrics indicate whether the LS models reproduce the overall
plume extent and lateral spread, and how much of the main deposition footprint they place

in the same locations as the LES across different stability regimes.

In this paper, we first describe the LES configuration and the seven atmospheric boundary-
layer regimes considered. We then summarize the SL and CBL LS formulations and the
analytical wind-statistics profiles used to drive both of them. Next, we present a case-by-
case comparison of LES and LS using deposition distributions, plume-spread metrics, and
Jaccard overlap curves, highlighting where each model fails or succeeds. Finally, we discuss
the implications for using LS as a substitute for LES in pollen and bioaerosol applications

and outline key limitations and directions for future work.



4.2  Methodology

4.2.1 Representative ABL cases

To identify representative wind regimes, we used hourly meteorological output from a Weather
Research and Forecasting (WRF) model simulation for year 2016 over the contiguous United
States. This data was previously extracted for each US county from July to November in
Nimmala et al. [123] and includes friction velocity w., Monin-Obukhov length L, convective
velocity scale w,, surface roughness length zg, and boundary layer height z;. The dataset was
first filtered for 2y ~ 0.1 m and negative Monin-Obukhov length. It was then partitioned into
approximate Pasquill stability classes at zop ~ 0.1 m by 1/L following Golder (1972) [160]:
neutral (—0.01, 0], slightly unstable (—0.035, —0.01], moderately unstable (—0.095, —0.035],
and strongly unstable < —0.95. Within each stability class, cases were further grouped by
u, into low wind (0.1-0.2 ms™!), medium wind (0.3-0.4 ms™'), and high wind (> 0.5 ms™).
The remaining combinations were then binned by w, ~ 0.5,1,1.5, and 2 ms~!, and the most

frequently occurring boundary layer heights z; were selected.

We estimated a kinematic heat flux using w, and z; [108], assuming a 300 K surface-potential
temperature 6,
w*390

Q= o (4.1)

These initial estimates were then adjusted toward values commonly used in convective ABL
LES. For example, Pan et al. (2013) [161] used @ = 0.025 Kms™! for weakly unstable
cases, 0.05 for moderately unstable cases, and 0.1 for strongly unstable cases. In Weil et al.
(2012) [85], the strongly convective case had @ = 0.29 Kms™!, while in Moeng and Sullivan

(1994) [157] the buoyant case had @ = 0.24 Kms™! and the two intermediate cases (strong



shear, moderate convection) had Q = 0.05 and Q = 0.03 Kms™'. After adjusting Q for each
regime, the corresponding z; used in the LES was recomputed, and a geostrophic wind speed
U, was estimated using a logarithmic wind profile with the Paulson (1970) [162] stability

function.

Above the boundary layer, the potential temperature profile was prescribed to increase by
1 K over 60 m for the neutral and weakly unstable cases and by 6 K over 60 m for the
more strongly unstable cases. Above this capping inversion, all cases used a uniform lapse
rate of 0.003 Km™!. These values are consistent with previous convective LES studies

[157, 163, 164].

Using this procedure, we define seven distinct daytime ABL simulations which fall into three
stability regimes: shear-dominated near-neutral (cases 1 and 2), mixed shear and convective
(cases 3, 4, and 5), and strongly convective highly unstable (cases 6 and 7). The initial

parameters and final LES input values for these seven cases are summarized in Table 4.1.

Based on —z;/L values in Table 4.2, Case 1 lies in the precritical, near-neutral regime
(—zi/L < 0.43) identified by [158], in which turbulence is dominated by elongated low-
speed streaks. Case 2 falls just beyond this threshold (—z;/L = O(1)), where horizontal
roll vortices begin to organize the flow as buoyancy becomes more comparable to shear
[158]. Cases 3, 4, and 5 have —z;/L of order 10-30 and w, /u, ~ 2-4, placing them firmly in
convective but still shear-influenced mixed-layer regimes, consistent with the mixed shear-
convective CBL structures described by [157, 159, 161, 165|; Case 3 is particularly similar
to Moeng and Sullivans (1994) Case B, while Case 4 closely resembles the MUL02/MULO08
runs of [161]. Case 7 occupies a similar stability range but with a shallower, low-wind CBL
and we have not found an exact analog in the literature. Finally, Cases 6 and 7 correspond
to the most unstable conditions, with very large —z;/L and w, /u, > 4, similar to the deeply

convective, buoyancy-dominated cases of [166], which are essentially free-convective regimes.



Initial chosen ABL parameters LES input parameters

Case 1/L U Wi Zi Q Ugeostrophic
(m™)  (ms7)  (ms7h)  (m) (Kms™)  (ms)
Case 1 -0.00061 0.60 0.5 380 0.01 13
Case 2 -0.00305 0.35 0.5 380 0.01 7
Case 3 -0.03391 0.30 1.0 440 0.07 4
Case 4 -0.02511 0.50 2.0 1030 0.24 8
Case b5 -0.38756 0.15 1.0 310 0.10 1.5
Case 6  -0.04844 0.30 1.5 1030 0.10 4
Case 7 -0.11627 0.30 2.0 1020 0.24 4

Table 4.1: Initial atmospheric boundary layer parameters and LES input parameters for the
seven LES cases.

4.2.2 LES set-up

For the LES simulations, we use the PALM model, which is designed to simulate high-
resolution atmospheric boundary layer flows and includes a built-in Lagrangian Particle

Dispersion Model (LDPM) module [155, 156].

All cases are run on a 2km X 2km horizontal domain with a 2 km vertical extent, using
200 x 200 x 667 grid points (Azx = Ay = 10 m, Az = 3 m). Because we simulate a near-
surface release and focus on ground-level concentrations and deposition, we adopt a relatively
fine vertical grid to better resolve shear-dominated turbulence in the surface layer. Pan et
al. [161] similarly used Az = 3 m for a 1 m release height in convective boundary layer

simulations.

Although PALM supports grid nesting and vertical grid stretching, the documentation notes
that nesting requires further testing and that vertical stretching is not yet fully supported
for the LDPM. The chosen 2km domain with uniform Az = 3m is balance between resolving

surface-layer eddies and maintaining computational feasibility.

Simulations are initialized with a constant geostrophic wind U, specified in Table 4.1. We



apply Dirichlet (no-slip) boundary conditions for velocity at the surface, and Dirichlet con-
ditions at the top, constraining the top boundary to the prescribed geostrophic wind. The
initial potential temperature profile is defined using a reference potential temperature of 300
K up to the defined boundary-layer height and a positive lapse rate above, specified in Table
4.1 and in Section 4.2.1. Convection in all cases is driven by a constant surface kinematic
heat flux @ (Table 4.1). Potential temperature boundary conditions are Neumann at the
lower boundary (required when prescribing a constant surface heat flux) and ‘initial gradi-
ent” at the top, which maintains the initial potential temperature gradient there. All lateral

boundaries are cyclic.

All simulations use a latitude of 40° N, approximately the center of the continental United
States, for PALM computes the Coriolis parameters internally. The resulting flows are
influenced by the Coriolis affect and exhibit the turning of wind direction with height char-
acteristic of Ekman boundary layers [108], particularly in the shear-dominated cases, which
produces a leaning of the plume [167]. Although this does not represent an idealistic bound-
ary layer and is not included in the LS models, we retain the Coriolis forcing as it strongly
influences realistic development of turbulence [157, 168].All simulations were run for a total
of five hours of simulated-time. Each required an average of 20 hours of wallclock time using

250 CPU cores on Virginia Techs TinkerCliffs cluster.

To represent dispersion over a rough, homogeneous surface, we use a roughness length zy =
0.1 m for all cases. This value lies near the upper end of typical ranges reported for long grass,
farmland, and crop canopies [108, 145]. Using PALMs LDPM, we simulate a near-surface
point source by continuously releasing particles at a height of 2 m at the domain center.
This near-surface release is intended to represent emission from canopy-height for grasses
and other plants; elevated releases such as for trees interact differently with boundary layer

turbulence and are outside the scope of this chapter. Particles are assigned a diameter of 30



pum based on a typical pollen (hemp, switchgrass) diameter of 30 um[60, 111], and a density
ratio of particles to air of 0.0012. Particles are released for all five hours of the simulation,
at a constant rate of 1000 particles per 0.1 s to approximate a constant emission rate. All
domain boundaries for particles are set to ’absorb’, so that particles are removed from the

simulation when they exit the domain.

4.2.3 LS set-up

In this chapter, we use two Lagrangian stochastic (LS) formulations: a convective boundary-
layer (CBL) model and a surface-layer (SL) model. The full mathematical formulations,
including the Langevin coefficients and wind-statistics profiles, are given in Appendix A and

B respectively.

The SL model was formulated by assuming a Gaussian distribution for the turbulent veloc-
ities, which is reasonable in the small-scale shear-dominated turbulence of the surface layer.
More specifically, it uses a jointly Gaussian distribution in which the vertical and downwind
velocities are correlated, explicitly including the covariance ww’. In convective and unsta-
ble conditions, the SLL model can capture the initial spread and rise of the plume near the
source due to shear, but it cannot represent the large-scale updrafts and downdrafts in a
highly convective boundary layer, for which a convective-layer formulation is better suited.
Nevertheless, at short ranges and low heights above the ground, the SL model has shown
good agreement with measurements across a variety of wind conditions [31]. In this chapter,
we apply the SL model across the seven daytime ABL regimes defined in Section 4.2.1, from

near-neutral, high-wind conditions to strongly convective mixed layers.

The CBL model was originally formulated for strongly convective conditions [86], where

turbulence in the bulk of the boundary layer is driven primarily by buoyancy. It represents



the skewed vertical velocity distribution in the convective boundary layer with a bi-Gaussian
pdf, allowing it to reproduce plume rise from the surface in thermals and subsequent descent
from the boundary-layer top as rising air cools [86, 87]. [87] developed a closure scheme for
skewed turbulence that reduces to Gaussian turbulence in the limit of zero skewness [87],
and Boehm et al. (2008) introduced a merged parameterization that combines surface-layer
and convective-boundary-layer wind statistics [54]. Luhar (2002) extended the formulation to
three dimensions by treating the horizontal and vertical velocity components as independent,
with Gaussian pdfs for the horizontal components and a bi-Gaussian pdf for the vertical
component [119]. Importantly, the CBL model does not include Reynolds-stress covariance
terms such as w/w’ that are known to be important in the surface layer [54], and can under-
predict concentrations near the source at ground level [54]. Here we use the CBL formulation

across the same seven regimes to contrast with the SL model.

Both models assume a stationary, horizontally homogeneous ABL, so that wind statistics
depend only on height 2. Vertical profiles of mean wind, velocity variances and covariances,
and turbulence dissipation rate are constructed from these using a variety of similarity and
mixed-layer scaling relations, and can be found in detail in Appendix B. For both models,
across all cases, we apply the same wind statistics profiles so that we can better understand
model differences independent of the driving wind statistics. Of particular note, we use a sin-
gle set of merged convective-boundary-layer profiles for o2 (z) and () following Boehm et al.
[54], together with a height-varying profile for u/w’(2) |79]. These profiles are constructed to
bridge shear-dominated surface-layer statistics near the ground with mixed-layer statistics
aloft, so that as stability varies across cases, the underlying velocity statistics profiles also
adjust. In the original formulations, the SL model is typically driven by surface-layer similar-
ity profiles that are tailored to handle strong shear near the surface, whereas the CBL model

is usually paired with vertically uniform mixed-layer statistics, characteristic of a well-mixed



CBL. Here, by instead applying the same merged o2 (z), £(2), and w/'w/(z) profiles to both
the SL and CBL runs, we intentionally remove differences in the wind-statistics forcing so
that any differences in results reflect the differences between the two LS formulations. How-
ever, as shown in the Results and Discussion, this results in serious deficiencies of the SL

formulation and overly narrow CBL plumes in the near-neutral, shear-dominated regimes.

Each LS simulation is driven by four ABL parameters output from the corresponding LES
simulation: the friction velocity u,, Monin-Obukhov length L, convective velocity scale w;,
and boundary-layer height z;, as well as the same surface roughness length z5 = 0.1 m used
in the LES. The first four values are the time-averaged values from hour 4-5 of the LES
simulation, and are summarized in Table 4.2, along with the non-dimensional ratios —z;/L
and w, /u, in the last two columns. These quantify the ratio between convective and shear

generated turbulence, or stability.

For each case, the LS simulations are performed assuming the downwind direction x is aligned
with the mean wind at the source height, so that the mean crosswind velocity satisfies V' = 0.
The LS domain matches the LES 2 km x 2 km horizontal domain and extends vertically from
the surface to z;. For each case, 100,000 particles are released from a point source located
at the domain center at a height of z = 2 m, removed from the simulation at the domain
boundaries, and the simulation is conducted until all particles are removed. The ground
is treated as a depositing boundary, with particles removed when they reach z = 0, while
the upper and lateral boundaries are treated as absorbing. Particles are assigned a constant
gravitational settling velocity vs = 0.027m/s based on a typical pollen (hemp, switchgrass)
diameter of 30 um|60, 111] and a density of water. As hemp pollen is nearly spherical [111],
Stoke’s law provides a good approximation of settling velocity |75, 122]. Each LS simulation
required approximately 20 minutes of wall-clock time using a single HPC core on Virginia

Techs TinkerCliffs cluster. This is 15,000 times less computationally expensive than the LES



simulations on the same system.

LES output / LS input parameters  Non-dimensional ratios

Case 1/L Uy Wy 2 —z;/L Wy /U
(m™)  (ms™') (ms™') (m)
Case 1 -0.00033 0.7348 04955 384  0.13 0.67
Case 2 -0.00208 0.3973 0.4941 384 0.80 1.24
Case 3 -0.06473 0.2414 0.9904 444 28.66 4.10
Case 4 -0.03089  0.4656 1.9981 1032 31.87 4.29
Case b5 -0.17917  0.1879 0.8889 312 55.93 4.73
Case 6 -0.08729  0.2460 1.4931 1032 90.18 6.07
Case 7 -0.16617  0.2646 1.9893 1023 170.33 7.52

Table 4.2: ABL parameters used to drive the Lagrangian stochastic (LS) models for the
seven cases, sorted by non-dimensional stability ratios.

4.2.4 Comparison methods

In the LS model, we compute concentration as follows,

1

(Zaja ) Qfl Vbox

Np
Nip ;Tn(i,]’, k), (4.2)
where the sum time particles spend in each grid box 7T,,(7, j, k) is normalized by the total
number of particles released (N,) and the volume of the grid box (Viex = 10 m x 10 m
x 3 m), and then multiplied by the modeled emission rate (Q ;). We output a “relative
concentration” from the LS model by taking @), = 1. Recall that this is a time-averaged

relative concentration, as these models are stationary.

To output the same time-averaged relative concentration from the LES, we average the time-
varying particle concentrations from hour 4 to 5 and divide it by the release rate (10000

particles/sec) and the grid volume (Viox = 10 m x 10 m x 3 m).

We then rotate this plume into the mean wind direction for each case, which is computed



by time-averaging the u and v velocity components from hour 4 to 5 of the LES simulation

at the lowest grid-level (z = 3 m) at the point of particle release (x = y = 1000 m).

To compute deposition flux distribution (# particles deposited m~2s71) from the ground-
level concentrations (#particles m~2s~! at the z = 3 m grid level) for both the LS and LES,
we simply multiply this ground-level concentration by the settling velocity. For particles of

this size, the deposition flux is almost entirely dependent on settling velocity [169].

Finally, in our analysis, we compute two metrics to quantify similarity between the plumes.
The first is the standard deviation of deposition flux in the horizontal o, and vertical o, a
common measure of spread that is well-defined in [170]. We next compute the Jaccard Index
over a number of thresholds, which allows us to compare the shape of the plume at different
deposition flux magnitudes. For a given deposition flux threshold 7', we construct binary
maps for each model by assigning a value of 1 where the local deposition flux exceeds T and
0 otherwise. The Jaccard index at threshold T', J(T'), is defined as the ratio of the area
where both binary maps equal 1 (intersection) to the area where at least one map equals 1
(union), so that J(7T') = 1 indicates perfect spatial overlap at that threshold and J(7T') = 0
indicates no overlap. Evaluating J(7') over thresholds spanning several orders of magnitude
yields curves that summarize how spatial agreement between LES and LS varies from the
high-deposition plume core near the source to the low-deposition plume tail for each stability

regime and LS formulation.

4.3 Results

In this section, we compare dispersion predicted by large-eddy simulation and Lagrangian
stochastic models across the seven representative daytime ABL regimes introduced above.

For each case, we first carry out a PALM-LES driven with surface heat flux @, the geostrophic



wind speed U,, and an initial potential temperature profile that defines the boundary-layer
height z;. We then then run two Lagrangian stochastic formulations—a surface-layer (SL)
model and a convective boundary-layer (CBL) model using the LES-derived wind statistics
summarized in Table 4.2—. The details of the PALM configuration, scalar release, and the
SL and CBL Langevin equations are given in the preceding Methods sections. Here we focus

on the resulting deposition fields and a set of simple, comparable summary statistics.

To organize the results, we group the cases by stability regime: near-neutral shear-dominated
(cases 1 and 2), mixed shear and convective (Cases 3, 4, and 5), and strongly unstable (Cases
6 and 7). Within each regime, we use three measures to compare deposition flux (directly
proportional to concentration in the lowest grid) between LES and LS. First, we compare
heat maps of time-averaged deposition flux, which show plume shape, orientation, and the
qualitative extent of downwind and crosswind transport. Next, we compute streamwise and
crosswind plume spreads (o, 0,) from the ground-level concentration fields for LES and LS
(Table 4.3. Lastly, we evaluate the Jaccard index between LES and LS as a function of
concentration threshold, providing a scalar measure of spatial overlap over a range of plume
cores and tails (Figure4.4). Together, these measures characterize plume location, spread,

and spatial overlap.

4.3.1 Near-neutral cases

In the near-neutral regime cases 1 and 2 in Figure 4.1, the LES dispersal shows classic
shear-dominated plumes. Depositions are elongated along the mean wind direction, with a
long tail of low deposition and minimal cross-wind spread. These cases correspond to strong
mean winds and weak buoyancy, so turbulence is generated primarily by shear rather than

convective updrafts, and particles are transported far downwind before they can disperse



laterally. Cases 1 and 2 are qualitatively similar, but the very high wind case 1 produces a
slightly narrower plume than the high-wind case 2. Both plumes have streamwise spreads of
0, ~ 200 m, while the crosswind spread increases from o, ~ 21 m in Case 1 to o, = 25 m
in case 2 (Table 4.3), consistent with a modest reduction in mean wind and slightly greater

opportunity for lateral dispersion in case 2.

In contrast to LES, the surface-layer (SL) formulation shows practically no dispersal in either
near-neutral case. For both cases 1 and 2, the SL deposition is confined to a very small region
immediately downwind of the source. The resulting footprint is dramatically smaller than
in the LES, indicating that in near-neutral conditions, the SL model as configured here, fails

to produce a realistic plume.

The CBL formulation produces deposition plumes that extend a comparable distance down-
wind to the LES fields (Figure 4.1). The streamwise spread statistics in Table 4.3 reflect
this: for case 1, the LES and CBL values of o, are 198.45 m and 236.38 m, and for case 2
they are 200.43 m and 232.80 m, corresponding to overestimates of about 19% and 16%. In
the crosswind direction, however, the CBL formulation substantially underpredicts lateral
spread. For case 1, the LES and CBL values of o, are 21.22 m and 5.03 m, and for case
2 they are 24.51 m and 6.67 m, corresponding to large underestimates of 73% and 76%.
The SL formulation performs even worse in this regime, with ¢, = 3.12 m and 16.79 m and
o, = 3.01 m and 4.00 m in cases 1 and 2, which are about 90-98% smaller than the LES
values in the streamwise direction and 80-86% smaller in the crosswind direction. Overall,
in near-neutral boundary layers, the CBL formulation reproduces the order of magnitude
of streamwise spread but yields plumes that are too narrow laterally, whereas the SL for-
mulation completely collapses both streamwise and crosswind spread for the near-neutral

cases.



4.3.2 Mixed shear and convective cases

In the mixed shear and convective cases (3, 4, and 5) shown in Figure 4.2, buoyancy plays
a more active role, and the LES plumes are less elongated and noticeably wider than in the
near-neutral cases. In case 3 (Figure 4.2a), a moderately convective shallow boundary layer
with medium wind results in less downwind transport and more lateral spread than in cases
1-2, with with o, = 127.61 m and o, = 31.33 m compared to o, ~ 200 m and o, ~ 21 — 25
m in the near-neutral regimes. In case 4 (Figure 4.2b), boundary layer is much deeper and
convective velocity scale is larger, but the higher wind speed offsets these changes, yielding
spreads o, = 139.32 m and o, = 35.89 m that are very similar to case 3. Cases 3 and
4 have similar shear-to-convective turbulence ratios, shown by the non-dimensional group
wy /u, = 4.1,4.29 respectively, which explains why their plumes are nearly identical. In case
5 (Figure 4.2¢), the boundary layer is shallow and moderately convective, with the weakest
wind speed of these three cases. The LES plume in case 5 shows comparable downwind

spread (o, = 145.40 m) but the largest crosswind spread (o, = 47.89 m).

For the same moderately unstable and mixed cases (3, 4, and 5), both the SL and CBL
LS formulations reproduce the main qualitative features of the LES plume: the plumes
remain elongated downwind with noticeable crosswind spread, and their footprints extend
over similar downwind distances as LES rather than collapsing around the source (Figure
4.2). Quantitatively, the downwind spread o, from the SL model is now sensible and much
closer to LES. Across cases 3, 4, and 5, SL o, differs from the LES value by only about —10%
to +11% (Table 4.3), showing that SL recovers the correct order of magnitude for downwind
dispersion under moderately unstable conditions. The CBL formulation behaves similarly:
it modestly over-predicts o, in case 4 by about 17%, and underpredicts it in cases 3 and

5 by roughly 13% and 20%, respectively. In contrast to the near-neutral regime, both LS



schemes therefore produce realistic downwind transport in moderately unstable conditions,

with the SL formulation performing slightly better.

Crosswind spread remains systematically lower than LES for both LS formulations. In case
4, both models perform well: SL and CBL o, fall within about 8% and 6% of the LES value,
respectively, so lateral spread is essentially captured. In cases 3 and 5, however, both schemes
underpredict o, more strongly, and case 5 is the most challenging: SL underestimates LES
o, by about 24%, while CBL underestimates it by about 35%. Overall, the SL and CBL
formulations show comparable skill in lateral spread for case 4, with CBL slightly closer,
whereas SL performs modestly better in cases 3 and 5. Consistent with Figure 4.2, the LS
plumes in these moderately unstable and mixed cases are visibly broader than in cases 1-2
and show clear lateral dispersion about the centerline. Yet both formulations still tend to
produce plumes that are too narrow compared with the wider, more irregular LES footprints,

especially in case 5.

4.3.3 Strongly unstable cases

In the strongly unstable cases (6 and 7), buoyancy dominates over shear, and the LES
plumes reflect classic convective boundary-layer behavior (Figure 4.3). A larger proportion of
particles released near the surface are lofted upwards by convective updrafts, resulting in less
downwind transport and shorter wider plumes compared to the moderately unstable cases
(3, 4, and 5). Compared with the deep, shear-influenced convective case 4 and the shallow
convective cases 3 and 5, cases 6 and 7 are both more strongly unstable and, especially for
case 7. In case 6 (Figure 4.3a), a deep, strongly convective boundary layer with moderate
mean wind still produces an elongated plume, but it is noticeably wider than previous cases,

with 0, = 131.6 m and o, = 37.5 m. In case 7 (Figure 4.3b), where the mean wind is the



same as in case 6, but the convective velocity is greater, convection plays and even greater
role, yielding the largest crosswind spread of all seven cases (0, = 52.6 m) and the smallest

downwind spread of o, = 106.0 m.

For these strongly unstable cases, both LS formulations strongly underpredict downwind
spread o, relative to LES. In case 6, the SL. and CBL models yield o, = 96.3 m and 93.1 m,
corresponding to underestimates of about 27% and 29%, respectively. In case 7, the SL and
CBL values are 91.1 m and 82.8 m, underpredicting LES by roughly 14% and 22%. Thus,
while both schemes reproduce the correct order of magnitude for downwind dispersion in
strongly unstable conditions, SL is slightly closer to LES than CBL for o,, and both models

tend to shorten the plume considerably relative to LES.

Lateral spread is represented more accurately. In case 6, the SL and CBL crosswind spreads,
o, =40.7 m and 38.3 m, are within about +9% and +2% of the LES value, indicating that
both formulations closely match the LES lateral dispersion, with CBL slightly closer. In case
7, SL gives 0, = 51.3 m, only about 3% below LES, whereas CBL underestimates somewhat
more strongly with ¢, = 45.1 m, about 14% lower. Compared with the near-neutral and
moderately unstable regimes, the LS plumes in cases 6 and 7 therefore provide their best
match to LES lateral spread: both formulations recover realistic crosswind plume widths,

with SL performing slightly better overall across the two strongly unstable cases.

4.3.4 Comparing across models using the Jaccard Index

In Figure 4.4, we use the Jaccard index to quantify how well the LS models reproduce the
two-dimensional deposition distribution from LES. For a given threshold, 7', the Jaccard
index J(T') is defined as the ratio of the area where both LES and LS footprints exceed 7" to

the area where at least one of them exceeds T'. Thus, when J(7T) = 1, there is perfect overlap



of the two plumes within that threshold 7', and when J(7') = 0, there is no spatial overlap
at all. We repeat this calculation at four thresholds (1078, 1077, 107¢, and 10~°), which are
also annotated as contour lines in the deposition heat maps (Figures 4.1- 4.3). Figure 4.4
shows the Jaccard index J(T') for each case at each threshold 7" for both LS formulations

(SL is dotted, CBL is solid).

Figure 4.4 also includes box plots summarizing LES ensemble variability for case 3 specifi-
cally. We ran the case 3 LES five times with different random seeds and computed the same
Jaccard index at each threshold between each of the ensembles and the initial simulation.
These box plots represent the best attainable model performance under this setup by com-

paring LES to itself across ensemble members, and they serve as a benchmark to evaluate

the LS models.

In Figure 4.4, the LES ensemble runs for case 3 have Jaccard indices ranging between 0.7-
0.8, or a best possible overlap of only 70-80%. The 10~8 and 10~7 thresholds for case 3 are
nearly on par with the ensemble values (J(T') = 0.67). The 107® threshold is the contour
surrounding the outermost lowest-deposition parts of the distribution. When the Jaccard
index for this threshold is high, it indicates that the LS captures the overall shape of the
plume well. The higher thresholds (1077, 107%, 107°) successively delineate areas of the
distribution closer to the center with more deposition. When these are high, it means that
the center of the plume is also reproduced well. In Figure 4.4, low thresholds more frequently
have high Jaccard indices, which shows that LS reproduces the overall shape of the deposition

distribution more accurately than the center of the plume.

The Jaccard index trends across stability regimes mirror the spread statistics and heat maps.
Cases 1 and 2—which completely collapse for the SL model and are overly narrow for the
CBL model—have the lowest Jaccard indices, and the CBL model clearly performs better

in Figure 4.4. We observe a general trend of increasing performance as cases become more



convection-dominated for the higher 10~7, 1075, and 10~° thresholds. In short, the more
convective cases better capture the core of the deposition distribution, with some caveats.
Namely, case 3 performs better than case 4, which has a dip in performance, followed by
an increase for cases 5, 6, and 7. The performance dip for case 4 is not clear in the spread
statistics, but the corresponding heat map shows that both SL and CBL models are over-
predicting the downwind extent of deposition for these thresholds. This trend also does not
hold for the highest 1078, which shows a steady decrease in Jaccard index for in cases 3-7.
For the latter most convective cases 6 and 7, this is due to LS under-predicting the overall

downwind extent of deposition.

Finally, for the convective cases of interest, the two LS formulations are effectively inter-
changeable in terms of Jaccard performance. For Cases 3-6, the SL (dotted) and CBL
(solid) curves almost lie on top of each other at each threshold, and the dominant variations
in J(T) come from the choice of threshold and stability regime rather than from the choice

of LS formulation.

131.6 375 96.3 40.7 -26.8 8.5 93.1 383 -29.2 2.1
106.0  52.6 91.1 51.3 -14.1 -2.5 82.8 45.1 -21.9 -14.3

LES SL CBL

Case Oy oy Oy oy, %Ao,  %Ao, o o, %NAo,  %Ao,
1 1984 21.2 3.1 3.0 -98.4 -85.8 236.4 5.0 19.1 -76.3
2 2004 24.5 16.8 4.0 -91.6 -83.7 232.8 6.7 16.1 -72.8
3 127.6 31.3 114.8 254 -10.1 -19.1 110.8 24.3 -13.1 -22.3
4 139.3 35.9 153.9 33.0 10.5 -8.0 162.6 33.6 16.7 -6.4
5 1454 47.9 1346 36.3 -7.5 -24.1 115.7 31.2 -20.4 -34.8
6

7

Table 4.3: Downwind (o,,) and crosswind (o, ) spread statistics from LES and two Lagrangian
stochastic (LS) formulations: surface-layer (SL) and convective boundary layer (CBL). Per-
centage differences Ao are relative to the LES spread.
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Figure 4.1: Deposition flux maps for the near-neutral cases (Cases 1-2) from LES, SL, and
CBL models, rotated into the mean wind direction.
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Figure 4.2: Deposition flux maps for moderately unstable to unstable cases (Cases 4, 3, and
7) from LES, SL, and CBL models, rotated into the mean wind direction.
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CBL models, rotated into the mean wind direction.
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convective boundary-layer (CBL) formulation and the dotted curve shows the surface-layer
(SL) formulation (same color). Colored box plots show the variability of the LES ensembles
for case 3 at each threshold, which demonstrates the best possible model performance for
that case.



4.4  Discussion

All together, the seven LES simulations capture how the ground-level plume and associated
deposition distributions evolve as the daytime boundary layer transitions from near-neutral,
shear-dominated flow to deep, strongly convective ABL structures. In the near-neutral,
high-wind Cases 1 and 2, the combination of small surface heat flux and —z;/L < 1 means
that turbulence in the surface layer is organized primarily into long, wind-aligned low-speed
streaks, as in the neutral and weakly unstable shear-driven boundary layers of Moeng and
Sullivan (1994) and Khanna and Brasseur (1998), and for Case 1, the subcritical (—z;/L <
0.43) cases of Jayaraman and Brasseur (2020) [157, 158, 165, 166]. In Case 2, where —z;/L =~
0.8, buoyancy becomes slightly more comparable to shear, horizontal roll vortices appear
[158], and the plume becomes somewhat wider than in Case 1 but still very elongated. In
Cases 3 and 4, the boundary layer becomes definitively unstable (considered —z;/L > 20)
[165] as in the mostly convective regimes reported by Moeng and Sullivan (1994), Salesky
et al. (2017), and Pan et al. (2013) [157, 159, 161]. In these cases, thermal updrafts break
up the purely streak-dominated structure, and the ground-level plume becomes noticeably
shorter and broader, with stronger cross-wind spread and faster vertical dilution than in
Cases 1-2. Case 7 occupies a similar instability range but with a shallower, low-wind CBL
which still allows substantial lateral spreading near the source. Cases 5 and 6 lie in strongly
and very strongly convective, deep CBL regimes comparable to the most unstable simulations
in Khanna and Brasseur (1998), and the near-free-convective LES of Salesky et al. (2017)
[159, 166]. Here, the CBL structure completely transitions from rolls to cells, and the
plume becomes very wide and relatively insensitive to the exact mean-wind speed. Salesky
et al. (2017) [159] write that the most dramatic change in CBL structure happens up to

—z;/L = 15 — 20, which highlights a considerable gap in our cases. However, we still cover



several important regimes, and the changes in ground-level dispersion is notable.

Because all simulations use a near-surface release height of 2 m, the resulting plumes remain
strongly coupled to surface-layer turbulence. While this is representative of a vegetative
release, pollen released from trees is also often studied in allergenic and gene-flow contexts
with release heights up to 16 m [44, 171, 172, 173], where pollen feels an increasing sensitivity
to convective updrafts [85]. It is important to note that the model evaluation in this study
is not generalizable to higher release heights. The comparison between models here applies

only to near-surface particle emission.

In the near-neutral, shear-dominated Cases 1-2, the SL model fails because the jointly
Gaussian velocity PDF that underlies its formulation [75, 79, 88] is no longer realizable with
our prescribed statistics. This formulation assumes that u,v, and w are jointly Gaussian
with variances and covariances defined by the Reynolds stress tensor, which must form a
“symmetric, non-negative definite, and non-singular covariance matrix|79|”. In the surface-
layer formulation, this appears in, A = 2 (aiafu — (W)Q) which is only well-defined when
lu'w'| < 0,0,. The merged surface-to-convective wind statistics profiles we use for o2 (2)
and v/w’ violate this constraint for the SL formulation, resulting in unrealistic vertical and
horizontal particle velocities. Previous successful SL formulation applications did not have
this issue [31, 53| as they used profiles for just the surface layer. We also make use of the SL
formulation with solely surface-layer wind statistics in our field experiment (Chapter 4), and
encounter no issues. Our results suggest that the SL framework is highly sensitive to wind
statistics, and would require a sensitivity analysis to determine if it is actually inappropriate

in shear-dominated ABL regimes.

Similarly, the CBL formulation faces issues in the shear-dominated cases 1 and 2 due to a dif-
ferent set of wind statistics. While it reproduces realistic downwind deposition distributions,

it critically underestimates crosswind spread o,,. For crosswind dispersion, both SL and CBL



formulations are entirely dependent on the variance of the crosswind velocity fluctuations,

2

0;(z), for which we use the Luhar (2002) convective scalings for the horizontal components,

02 = 02 = (0.6w,)?. This means that in both the CBL and SL runs the horizontal turbulent
fluctuations are tied only to the convective velocity scale w,, with no explicit dependence on
the friction velocity u, or shear-generated variances. In the near-neutral Cases 1-2, where
u, dominates and w, is very small, this yields near-zero cross-wind velocity variance and
both the CBL and SL formulations severely underpredict o,. In the definitively convective
cases 3—7, where w, is large and turbulence is well-mixed throughout the boundary layer,

the same parameterization results in deposition distributions with crosswind spread that is

much more consistent with the LES.

For downwind spread for cases 3-7, both formulations are consistent with the LES as well.
Table 4.3 shows that, aside from the shear-dominated cases, the predicted downwind spreads
from SL and CBL are very similar, with no systematic advantage of one formulation over the
other. The SL and CBL models have considerably different formulations in the downwind
direction; in the SL model, the downwind and vertical velocities are correlated, whereas in
the CBL they are independent. In theory, this added complexity would mean that the SL
might perform better in conditions where shear is a factor (cases 3-5). Our results show,
however, that the dominant control on downwind spread in our setup is again the shared

wind statistics rather than the detailed differences in the formulations.

Across all seven regimes, the Jaccard index clearly quantifies the skill with which SL and
CBL formulations reproduce LES deposition distributions. It captures the collapse of the
shear-dependent near-neutral cases 1 and 2, as well as performance trends for the more
convective cases. In the more convective cases (3-7), the consequences of model choice are
more nuanced. Both LS formulations reproduce the overall plume structure and footprint

reasonably well: downwind and crosswind spreads are typically within 10-30% of the LES



values, and the Jaccard index curves in Figure 4.4 reach maxima of about 0.6-0.7 in the mixed
and strongly convective regimes. In practical terms, that means that at certain deposition
thresholds, roughly 60-70 % of the LES deposition area above that threshold is correctly
identified by the LS model. For the more convective cases, both LS models reproduce the
overall extent of the distribution more accurately than its inner structure, although this
improves as cases become convection-dominated. For these cases, we also find that the two

LS formulations perform similarly when comparing to the LES benchmark.

Atmospheric LES simulations are most-often used by researchers and modelers who are
trying to better understand the physical phenomena of airborne dispersal. For operational
users making real-time decisions, or for regulators and risk assessors who would require
many simulations, LES is computationally prohibitive. Each of our LES simulations required
approximately 20 hours of wallclock time using 250 CPU cores on Virginia Techs TinkerCliffs
cluster, whereas each LS simulation finished within 20 minutes on a single core on the same
cluster. This is 15,000 times less computationally expensive than the LES simulations and

could easily be run on a personal computer.

The kinds of decisions that motivated this chapter (how far and wide a bioaerosol plume can
spread near the ground) are typically made instead with lower-cost models. Applications
include agricultural disease-forecasters [33], bioaerosols and particulates affecting human
health [9, 35|, and agricultural and environmental stakeholders looking to preempt, evaluate

the risk of, or litigate gene flow [58, 91, 92].

If the wrong low-cost model is used in these settings, it might result in incorrect decision-
making. For example, in near-neutral conditions, the LS formulations as presented in this
chapter would yield overly narrow or collapsed plumes and thus underestimate the gene
flow distances or disease spread. In strongly sheared, near-neutral boundary layers, neither

formulation achieves sufficient overlap with LES to justify replacing a dedicated simulation,



without reevaluation of the wind statistics used to drive the models. In deep, strongly con-
vective mixed layers, by contrast, a carefully calibrated LS model can reproduce the main
qualitative features of the LES deposition distribution—overall extent, lateral footprint, and
the location of the highest deposition—at a fraction of the computational cost. For decision-
makers who care primarily about whether a receptor lies within a broad deposition zone
(isolation distances around a pollen or disease source), this degree of agreement may be
acceptable, especially when weighed against the orders-of-magnitude difference in computa-

tional cost.

In this context, the role of these LS models for pollen and bioaerosol deposition is best viewed
as a controlled trade-off between computational requirements and accuracy. LS models are
well-suited for rapid, low-cost mapping of the main plume envelope and for scenario screening
in convective regimes. Because our Jaccard analysis is threshold-dependent, it also provides
a more flexible way to use LS outputs in practice. A decision-maker can focus on the part of
the plume and the range of deposition magnitudes that are operationally relevant and then
read off how much of the LES benchmark the LS model captures at those thresholds. Given
that the best Jaccard scores correspond to only moderate agreement, these LS models are
most appropriate for tasks where relative patterns matter more than exact agreement, such
as in early-stage risk assessment, sensitivity studies, or screening of management options.
This study allows users to quantify and report the level of error in their LS simulations of

deposition.

4.5 Limitations and Future Work

In this study, we deliberately used the same wind-statistics profiles to drive both the SL

and CBL models in order to directly compare the formulations themselves. In theory, this



choice should make the comparison clearer, but in practice it produced unrealistic behavior
in the SL model under strongly shear-dominated conditions. A more rigorous, determin-
istic comparison of the wind-statistics parameterizations—examining how different choices
for mean profiles, variances, and covariances affect each model in the absence of stochas-
tic noise—would help clarify the regimes in which each formulation remains mathemati-
cally and physically well behaved. It would also be useful to drive the LS models directly
with time-averaged wind-statistics profiles directly from the LES, which would allow us to
separate errors from the models themselves from those introduced by imperfect analytical

wind-statistics parameterizations.

Beyond the wind statistics, several limitations remain. The SL and CBL schemes were
originally developed for one- or two-dimensional dispersion and only later extended to three
dimensions, so including an evaluation of vertical dispersion is needed, even though this
chapter has focused on deposition patterns. Our seven LES cases sample near-neutral and
strongly convective conditions but leave a gap across the transition from near-neutral to
weakly and moderately unstable regimes, where both models begin to improve; additional
cases in this range would better constrain where each LS formulation can credibly replace
LES. Finally, the current comparison is restricted to a single ground-level point source and
a downwind extent of order 1 km; extending the analysis to longer distances, elevated or
distributed sources, and a broader range of particle properties would provide a more complete
picture of when these 3D LS models can safely stand in for LES in bioaerosol and pollen-

deposition applications.



4.6  Conclusion

This chapter has evaluated two Lagrangian stochastic (LS) particle dispersal models—a
surface-layer (SL) formulation [31, 79, 88| and a convective boundary layer (CBL) formulation
[86, 87, 119]—against LES-driven particle dispersal in seven different atmospheric bound-
ary layer conditions spanning near-neutral, transitional, and strongly convective regimes.
Specifically, we examined crosswind and downwind ground-level concentration, which is pro-
portional to deposition flux. To the best of our knowledge, there is not a validation study
for the 3-D extension of these LS models which also considers the lateral spread of the
plume. We found that in the near-neutral, high-wind, shear-dominated cases, the particular
merged wind-statistics parameterization used here caused the SL formulation to collapse
the plume near the source and made the CBL plume unrealistically narrow, so that nei-
ther model provided an acceptable substitute for LES. In more strongly convective regimes,
where the boundary layer is deep and buoyancy-dominated, both LS formulations produced
plume shapes and deposition footprints that were qualitatively similar to LES, capturing
the main extent and orientation of the deposition pattern when driven with wind statistics
consistent with their underlying assumptions. Based on the metrics used here, the SL and
CBL LS models achieve moderate but consistent agreement with LES. Still, their substantial
computational efficiency means they remain highly useful for applications that require a full

three-dimensional plume and deposition field but do not require perfect accuracy.



Chapter 5

Conclusions and future work

This dissertation integrates regional-scale Lagrangian stochastic (LS) modeling, local-scale
field measurements, and large-eddy simulation (LES)-LS model comparisons to quantify and
interpret windborne pollen transport and deposition across spatial scales relevant to cross-

pollination, with broader applicability to any bioaerosol dispersal.

In Chapter 2, we characterized the seasonal and spatial patterns in windborne hemp pollen
dispersal spanning the conterminous United States (CONUS). By leveraging meteorological
data obtained through mesoscale model simulations, we used Lagrangian Stochastic models
to simulate wind-borne hemp pollen dispersion across CONUS on a county-by-county basis
for five months from July to November, encompassing the potential flowering season for
industrial hemp. Our findings revealed that pollen deposition rates escalate from summer to
autumn due to the reduction in convective activity during daytime and the increase in wind
shear at night as the season progresses. We found diurnal variations in pollen dispersion:
nighttime conditions favor deposition in proximity to the source, while daytime conditions
facilitate broader dispersal albeit with reduced deposition rates. These shifting weather
patterns give rise to specific regions of CONUS more vulnerable to hemp cross-pollination.
Such variability complicates the establishment of uniform isolation distances, suggesting
the superiority of adaptive risk management strategies. These strategies could incorporate
weather pattern considerations to mitigate cross-pollination risks more effectively and could

include measures like intertemporal zoning, farm quotas, cross-pollination damage insurance,
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and regulatory policies.

The patterns we observed directly apply to any airborne particle of similar size (~ 30 pm),
and can be used to identify regions and times of the year where those particles might travel
farther and deposit in greater quantities. In a biosecurity and defense context, this is of vital
interest to contain the spread of airborne agricultural diseases which can decimate fields, as
well as human illnesses originating from animal or water bodies such as Legionnaires disease,
Q-fever, and harmful algal blooms |9, 26, 27, 35|. These results could extend to any tracer

released intentionally or not, to predict high-risk regions.

The Chapter 2 framework is intentionally simplified and leaves several open questions. More
resolved, albeit more computationally expensive models, could incorporate detailed physics
such as release of pollen from the anthers, dispersal within a canopy, wet deposition, and even
conditions specific to a farms location like topography. Our vulnerability metric assumed
one hemp pollen source per county. More detailed information on source locations and
sizes would fuel a sophisticated vulnerability metric, or even an on-demand tool for risk-
assessment for growers. Our study used meteorological data from 2016 only; performing
this same study over multiple years would provide insight into yearly variation. Specifically,
a long-term climatological study might reveal how warming temperatures and other trends

change the seasonal spatial patterns we observed.

In Chapter 3, we moved from a regional-scale (up to 50 km) purely modeling approach to a
highly local scale (< 25 m) study that combines modeling with field measurements. In this
study, three field campaigns were conducted around a very small field of genetically modified
switchgrass tagged with orange-fluorescent protein for traceability. Switchgrass pollen was
sampled up to 25 meters from the field using both traditional and novel volumetric samplers,
including a drone-mounted sampler which collected pollen at a fixed height of 10 meters.

Lagrangian stochastic dispersal simulations were run during sampling periods driven by high-



resolution wind measurements taken at the field. Our results from this unique experimental
setup showcase several lessons that may guide future studies. Persistent low-wind meandering
conditions were recorded throughout the campaign, and reducing the averaging window for
simulations significantly improved pollen emission rate estimations by better incorporating
shifting wind directions. The pollen emission rate was estimated by combining simulated and
measured pollen concentrations, and strong diurnal trends were observed. Diurnal emission
rate trends were positively correlated with wind speed, temperature, and vapor pressure
deficit, and negatively correlated with relative humidity. This study highlights the potential
for drone-based pollen sampling and GMO pollen tracking using fluorescence measurements.
The findings provide insight into the effectiveness of different sensor types with respect
to source strength and sampling distance, advancing the understanding of pollen dispersal

dynamics and measurement techniques.

These results have important implications for allergen monitoring, cross-pollination risk as-
sessment, and broader bioaerosol surveillance strategies. With unlimited resources, the nat-
ural next step would be a scaled up version of this same experiment focused on validation:
a large, well-established source containing only PSYBINla to maximize the OFP signal,
multi-year sampling on the same dates and times to quantify repeatability of diurnal emis-
sion patterns, and colocated Hirst-type gold-standard samplers deployed alongside the novel
samplers to provide independent concentration estimates for model validation and rigorous
sampler inter-comparison. A substantially larger source would allow meaningful comparisons
between low- and high-volume samplers, with one set used to estimate the particle release
rate and another for validating modeled concentrations. It would also enable more effective
use of impinger-type samplers (IMP and DRN), which could preserve pollen for downstream
viability studies, although isolated siting requirements for transgenic work would continue

to pose limits for long-distance tracking. Focusing solely on PSYBIN1a switchgrass, with its



stronger OFP fluorescence in pollen, could further enhance tracking accuracy via automatic

fluorescence-based quantification.

In Chapter 4, we evaluated two Lagrangian stochastic (LS) particle dispersal models, namely
a surface-layer (SL) formulation [31, 79, 88| and a convective boundary layer (CBL) formu-
lation [86, 87, 119], against an LES-driven stochastic particle dispersal model (PALM-LES)
in seven different atmospheric boundary layer conditions spanning near-neutral, mixed shear
and convective, and strongly convective regimes. To the best of our knowledge, there has not
been a validation study for the 3-D extension of these LS formulations which also considers
the lateral spread of the plume. In the near-neutral, shear-dominated cases, the merged
wind-statistics parameterization caused the SL plume to collapse near the source and the
CBL plume to become unrealistically narrow, so neither model was an acceptable substitute
for LES. In more strongly convective, buoyancy-dominated regimes, both LS formulations
produced plume shapes and deposition footprints that were qualitatively similar to LES and
captured the main extent and orientation of the deposition pattern. Based on the metrics
employed in this study, they achieved moderate agreement, so they are best viewed as com-
putationally efficient tools for three-dimensional plume and deposition fields when perfect

accuracy is not required.

In this study, we deliberately used the same wind-statistics profiles to drive both the SL
and CBL models in order to directly compare the formulations themselves. In theory, this
choice should make the comparison clearer, but in practice it produced unrealistic behavior
in the SL model under strongly shear-dominated conditions. A more rigorous, determin-
istic comparison of the wind-statistics parameterizations—examining how different choices
for mean profiles, variances, and covariances affect each model in the absence of stochastic
noise—would help clarify the regimes in which each formulation remains mathematically

and physically well behaved. It would also be useful to drive the LS models directly with



time-averaged wind-statistics profiles directly from the LES, which would allow us to sepa-
rate errors from the models themselves from those introduced by imperfect analytical wind-
statistics parameterizations. The current comparison is restricted to a single ground-level
point source and a downwind extent of 1 km; extending the analysis to longer distances,
elevated or distributed sources, and a broader range of particle properties would provide a
more complete picture of when these 3D LS models can safely stand in for LES in bioaerosol

and pollen-deposition applications.

These three chapters are organized around a single theme: using Lagrangian stochastic
modeling, driven by realistic meteorology, to explore bioaersol dispersal at different scales—
from regional dispersal patterns of cross-pollination risk, to what can actually be measured
around a single small field, to when reduced-cost LS formulations can reasonably replace
LES. In doing so, all three chapters operate at the intersection of engineering mechanics,
atmospheric science, and plant biology: treating pollen as a mechanically transported particle
in a turbulent boundary layer, while keeping the biological and agricultural context of hemp
and switchgrass at the forefront. These results show how weather-informed modeling can
support cross-pollination risk assessment and broader bioaerosol dispersal applications. It is
a case-study for future collaborations across disciplines such as biosurveillance, agriculture,

and human health.
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Appendix A

Lagrangian Stochastic (LS) Model

Formulations

A.1 Overview

The Lagrangian stochastic (LS) model is an application of Brownian motion to turbulent
diffusion [79], in which the trajectories of many particles through the air are modeled as
random walks. Each step of a particle’s path is influenced by both random and deterministic
motions, guided by the statistics of the local wind field. By releasing thousands of particles
and computing an ensemble average of their trajectories, we can determine the relative

concentration at any point in the domain and the mean shape of the plume.

The position increments for particles in the x (downwind) and z (vertical) directions are as

follows [75],

dz = (' + T)dt, (A1)
dz = (v + V)dt, (A.2)
dz = (w' — vy)dt, (A.3)

where u/ v/, and w’ represent the fluctuating horizontal and vertical velocities, U is the mean

horizontal wind velocity described further in Section B.3, and v, is a constant settling velocity

134



for the particle.

Particle velocity increments|31| in the x and z directions are computed using the Langevin

equation,

du' = a,dt + b, N (0, dt), (A4)
dv' = a,dt + b,N (0, dt), (A.5)
dw' = a,dt + b,N (0, dt), (A.6)

which describes the incremental changes in «/, v/, and w’ fluctuating particle velocities. The
Langevin coefficients, a,, a,,a, and by, b,, b,,, account for the deterministic and stochastic
components of particle acceleration, respectively. The stochastic timestep is drawn from a

normal distribution with a mean of 0 and variance dt.

The timestep, dt is computed as a fraction|31, 87| of the lagrangian timescale 7:

dt = 0.02r, (A7)
2
g
—9_w A.

where we chose the constant Cy = 3 [54, 119] and o2 is the vertical velocity variance and
¢ is the turbulent dissipation rate, described in Appendix B, which explicitly lists the wind

statistics used in the LS simulations in each chapter.

In this dissertation, we often refer to two specific formulations of the LS model, which are
described further in appendices A.3 and A.2. Both LS model formulations referenced in this
dissertation are based on the well-mixed condition of Thomson (1987) [79, 86, 88|, which
requires “particles that are well-mixed remain so” [86, 88]. This means that the Eulerian

velocity pdf Pg(u}, z) of the fluid, which is the probability of the fluctuating fluid velocity



components ', v', and w’ taking on certain values as a function of position, should be exactly
the same as the probability of fluctuating particle velocities v/, v/, and w’ taking on the same
values at the same positions, P,(u}, z) [86]. With these assumptions, Thomson [88| derived
the following general form for the Langevin coefficients from the Fokker-Planck equation.
In the stationary, horizontally homogeneous case adopted here (so that Pr depends only on

height z), they can be written as

. 1Ce%e
= i 4270 du ’ (A.9)
Pg Pg

b= G, (.10

a;

where € denotes the turbulent kinetic energy dissipation rate and ¢; is also computed from

Pg and are described further in [79, 86, 83, 100].

The two LS model formulations differ in their assumptions for Pr and the resulting expres-

sions for the Langevin coefficients. These specifics are covered in the following sections.

A.2  Surface Layer (SL) Formulation

The SL model incorporates a Gaussian pdf with jointly Gaussian velocity components (u, v,

and w), as described in [31, 79, 88|, giving a Pg,

1 1 B
ij

where 7;; is the mean Reynold’s stress tensor, and contains terms for the variances and

covariances of the wind velocity.



This yields the Langevin coefficients used in Aylor & Flesch (2001) [31].

b2 1 ouv'w'
Ay = Z“(u’w’ w' —ou') + 5 g:}
1 Ho2 Ho2 ou'w' ou'w’
+ (Ji%u’w’ — u’w’%w'2 — u’w’g—;ﬂu’ "+ o? g:) w’z), (A.12)
1 ,v 13902 v
,=—=b — 4 = —0 A.13
¢ 2 %02 20z o ( )
b2 ) 2
Ay = Z“’(u’w’ u— o) + 5 —;Zw
1 ou'w’ ou'w’ Ho2 do?
+ (Ufu g:] u'w' — uw’ g:] w? — u'w’ aazw u'w' + O’Z%’LUQ), (A.14)
A=2(clo) — u’w’Q). (A.15)

A.3  Convective Boundary Layer (CBL) Formulation

The CBL model was developed by Luhar et al. (1989) [86], and computes Pg(u}, z) as the
sum of two Gaussian pdfs to represent convective updrafts and downdrafts in the boundary

layer, shown in (A.16),

Pp = AP, + BPg,

1 —(w’ — EA)Q)
Py = exp | ————~ ),
4 V210 4 P ( 204 (A.16)
1 o ! 5. )\2
Py — exp (L;w))
2mop 203

It is extended to 3 dimensions based on Luhar (2002) [54, 119|, which takes the horizontal



and vertical velocity fluctuations to be independent. The Langevin coefficients then become,

9 5CoeQ
Ay = Py P, (A.17)
—U’Co&
a’U == 20_12] 9 (A.18>
—U/C()E
= Al
u 20?2 (A-19)

The ¢ term has been adapted to heavy particles in Boehm et al. (2005) [100]. The full
closure method to find A, B, Wy, Wg, 04, op is shown in Luhar et al. (1996) [87]. These are
functions of the wind velocity profiles, which vary with height and are described in Appendix
B. Although the original CBL LS model [86, 87| was a one-dimensional model intended for
the well-mixed boundary-layer, Boehm et al. (2008) [54] incorporated wind statistics into
this model which transition smoothly from the surface layer to the convective boundary layer

above.



Appendix B

Wind statistics profiles by chapter

To compute the Eulerian velocity pdf Pg(ul, z), we need to specify the wind statistics at
every point in the domain, i.e., the mean, variances, covariances, and skewness. Assuming
stationarity and horizontal homogeneity, the wind field statistics remain constant over time
and vary only with height. Under this assumption, boundary layer scaling techniques such as
Monin-Obukhov similarity theory, mixed layer, and surface layer scaling can be employed to
generate vertical profiles of wind statistics. As a result, only 5 meteorological parameters are
required to drive the LS simulation: the friction velocity u,, the Monin-Obukhov length L,
the convective velocity scale w,, the surface roughness length zy, and boundary layer height

Zi-

B.1 Chapter 1. Stable and Unstable Wind Statistics Applied to

the Full Boundary Layer

In chapter 1, we applied the 2D SL and CBL formulations to stable and unstable conditions
respectively. The wind statistics profiles used for each are included below with their sources

for reproducibility.
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Horizontal wind velocity profile

To model the mean horizontal wind-velocity profile, U, we use the logarithmic wind velocity

profile from Monin-Obukhov similarity theory [108] with the stability correction function,
Y-

— U z
U= In| — . B.1
v (2) +ou] (B.1)
For stable conditions, we use the stability function as reported in Beljaars & Holtslag
(1991)[80], where @ = 1, b = 2/3, ¢ = 5, and d = 0.35. In this paper, they compare
the resulting velocity profiles with field measurements and find that this parameterization
performs well throughout the boundary layer despite the fact that surface-layer scaling is

used. Optis et al. (2016) [174] also compared various stable wind profiles, including the one

presented below, and show that it performs well up to 200 meters above the surface.

z z c 2 be

For unstable conditions, we use the stability function given by Paulson (1970) [162]. This
has previously been used for other unstable LS simulations [31, 54|, and is considered to

approximate measurements well [80].

1 1 2
(VS —2111( —g&) —1In ( —;Q ) +2tan () — g, (B.3)

where,

a=(1- 152%%1/4. (B.4)



Horizontal wind velocity variance

In stable conditions, we use the following relationship from Kantha and Clayson for the

horizontal velocity variance (2000)[82],

L\ 3/2
o2 = 4u,? (1 — —) . (B.5)

<

In unstable conditions, we use the following parameterization from Luhar et al. (2002) [119]

for the horizontal wind velocity variance.

o2 = (0.6w,)>. (B.6)
Vertical wind velocity variance
In stable conditions, for the vertical wind velocity variance, we use a relationship from

- 3/2
o2 = 3u,’ (1 - —) : (B.7)

Zi

Kantha and Clayson [82],

In the HYSPLIT model, this parameterization is provided as one option for simulating
velocity variances in stable conditions. Oneto et al. (2020) compared dispersal results using
the Kantha and Clayson (2000) scheme with other parameterizations offered by HYSPLIT,

and found that there was little sensitivity.

In unstable conditions, we apply the merged parameterization from Boehm et al. (2005)[54].
This combines surface-layer scaling with that of the convective boundary layer, so that the

conditions ranging from very unstable to neutral can be accurately modeled.



o cBL = 1.7w,2(2/2%)?2(1 — 0.92/ )3, (B.8a)

U?u,neutral = w2 (1.7 — z/2), (B.8b)
9 o (1 - eXp(Z/L))w*so-?u,CBL +95 exp(z/L)u*go-%u,neutral (B ] )
O-uhmerged - (1 _ exp(z/L))w*?’ +5 exp(z/L)u*?’ .0C
(B.&d)

Velocity covariance

In unstable conditions, the covariance between downwind and vertical velocities is required.

We use the following parameterizations used in Aylor and Flesch (2001) [31],

v = —u?

Lagrangian Timescale

In all stabilities, we compute the Lagrangian time scale using[31, 87|,

2
20,

T

(B.10)

Turbulence kinetic energy dissipation rate

In stable conditions, we use the profile suggested by Rodean (1996) [79] for the entire stable

> z 2\ /2
€= 0.4*2(1—%3.53) (1—0.85*;) : (B.11)

boundary layer,




Rodean (1996) discusses that this profile was formed by fitting to a second-order turbulence

model[175], and has generally agreed with measurements and other simulations.

In unstable conditions, we apply the merged surface layer/convective boundary layer profile
described by Boehm et al. (2008) [54] to LS modeling, and found previously using Large
Eddy Simulations|[157],

w,> w3 (1 — 2/2)

. B.12
zi  0.4z(1—15%z/L)Y/4 ( )

B.2 Chapter 2: Unstable Wind Statistics Applied to the Surface

layer

In chapter 2, we applied the 3D SL formulation to unstable daytime conditions to simulate
near-source dispersal. The wind statistics profiles used are included below for reproducibility,

and come entirely from Aylor and Flesch (2001) [31].

Horizontal wind velocity profile

To model the mean horizontal wind-velocity profile, U, we use the logarithmic wind velocity

profile from Monin-Obukhov similarity theory [108] with the stability correction function,
Yum-

U= 5‘4 [m (Zio) + sz}. (B.13)

We use the stability function given by Paulson (1970) [162]. This has previously been used



for other unstable LS simulations [31, 54|, and is considered to approximate measurements

well [80].

1 1 2
1/1M:—21n( ;a) —ln( —|—2a ) —|—2tan_1(a)—g, (B.14)

where,

—d /4'

a=(1- 15ZT) (B.15)

Horizontal wind velocity variance

We use the following parameterizations used in Aylor and Flesch (2001) [31] for the horizontal

wind velocity variances,

02 =02 = ul(4+0.6 % (—z/L)*3. (B.16)

u

Vertical wind velocity variance

In unstable conditions, we use the following parameterization used in Aylor and Flesch (2001)
[31],
02 = 1.56u(1 — 3% (z/L)*3. (B.17)

Vertical wind velocity variance

We use the following parameterization used in Aylor and Flesch (2001) [31],

02 = 1.56u(1 — 3% (z/L)*3. (B.18)



Velocity covariance

For this model, the covariance between downwind and vertical velocities is included. We use

the following parameterizations used in Aylor and Flesch (2001) [31],

u'w' = —u? (B.19)

Lagrangian Timescale

We compute the Lagrangian time scale as follows with the timescale correction as written in

Aylor and Flesch (2001) [31], where they take 3 to be 1.5.

0.5 1/4
T, = 2~ (1 . 63> : (B.20)
Ow L
/T . (B.21)
T = L = s .
V14 (Bus/ow)?
Turbulence kinetic energy dissipation rate
We compute the turbulence kinetic energy dissipation rate using|31, 87],
2 2
g = w (B.22)



B.3 Chapter 3: Unstable wind statistics Applied to the Full Bound-

ary Layer

In chapter 3, we applied the 3D SL and CBL formulations to unstable daytime conditions
to simulate disperal within about 1 km of the source. The wind statistics profiles used for

each are included below with their sources for reproducibility.

Horizontal wind velocity profile

To model the mean horizontal wind-velocity profile, U, we use the logarithmic wind velocity

profile from Monin-Obukhov similarity theory [108] with the stability correction function,
Y.

U= {m (i) + ¢M]. (B.23)

0.4 20
For unstable conditions, we use the stability function given by Paulson (1970) [162]. This
has previously been used for other unstable LS simulations [31, 54|, and is considered to

approximate measurements well [80].

@DM:—QIn(l—gQ) —ln(1+&2)+2tan_1(0z)—z, (B.24)

where,

a=(1- 152%1)1/4. (B.25)



Horizontal wind velocity variance

We use the following parameterization from Luhar et al. (2002) [119] for the horizontal wind

velocity variance.

o2 = (0.6w,)>. (B.26)

Vertical wind velocity variance

We apply the merged parameterization from Boehm et al. (2005)[54]. This combines surface-
layer scaling with that of the convective boundary layer, so that the conditions ranging from

very unstable to neutral can be accurately modeled.

Ui,CBL = L7w.2(2/2)* (1 = 0.92/2)"?, (B.27a)
U?y,neutral = u*2(17 - Z/Zi)7 <B27b>
2 <1 o eXp(Z/L))w*3G121) CBL + 5 eXp(Z/L)u*gagu neutral
Ow,merged — 7 . . (BQ?C)
mers (1 —exp(z/L))w,3 + 5exp(z/L)u,3

(B.27d)



Velocity covariance

In unstable conditions, the covariance between downwind and vertical velocities is required.

We use the following parameterization described in Rodean (1996) [79, 81],

v = —u?x (1 —z/z)%*, (B.28)
= — B.29
i ") (B.29)
(B.30)

Lagrangian Timescale

We compute the Lagrangian time scale using|31, 87|,

2
20,

T

(B.31)

Turbulence kinetic energy dissipation rate

In stable conditions, we use the profile suggested by Rodean (1996) [79] for the entire stable

u,® z 2\*?
=— 1 SH—=1(1-0. — . B.32
€ 0.4*2( +35L)( 085*2) (B.32)

Rodean (1996) discusses that this profile was formed by fitting to a second-order turbulence

boundary layer,

model[175], and has generally agreed with measurements and other simulations.

In unstable conditions, we apply the merged surface layer/convective boundary layer profile
described by Boehm et al. (2008) [54] to LS modeling, and found previously using Large
Eddy Simulations|157],



w,> w3 (1 — 2/2)
2z 04z(1—15%z/L)V*

e=04 (B.33)



Appendix C

Supplementary Figures For Chapter 1

Supplementary Figure S1

Sensitivity analysis by varying release height. In the main manuscript, we ran all simulations
with a release height of 2 m. To explore sensitivity of our results to variations in release
height, we randomly selected one county from each of the nine climate zones and reran
simulations for day and night conditions for all months from July to November using release
heights of 1.5, 2, and 2.5 meters. We found that reducing the release height resulted in less
deposition throughout the domain for both day and night conditions, except in the first bin
within 250 m from the source, where depositions increased. Increasing the release height had
the opposite effect, with increased deposition throughout the domain. Figure C.1(A) shows
pdfs of the change in percent-deposited at 5, 10, 20, and 35 km downwind, while Figure
C.1(B) quantifies the change, showing mean and median differences and the percent-change

at the same downwind distances.

While it is notable that changing the release height reduces depositions considerably, the
shape of the deposition kernels after the first bin remains the same. This means that the
spatial patterns we observe with 2 m release heights in the paper remain valid for this range
of release heights. To demonstrate this, we also ran simulations for every county in the
CONUS for day and night conditions, only for the month of July, using release heights of

1.5, 2, and 2.5 meters. In Figure C.1(C), heat maps for each of these release heights show that
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although magnitudes change, spatial patterns remain the same. In our manuscript, we kept
a fixed value of 2-meter release height in all simulations in order to focus on meteorological
parameters. In our vulnerability analysis, we also incorporated land area and planted hemp
acreage. However, to truly estimate cross-pollination risk and vulnerability, we recommend
incorporating crop height, and additional factors such as location of farms, land topography;,

frequency of weather events like gusts or precipitation, and timing of pollen release.
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Figure C.1: Sensitivity analysis conducted by varying the release height, where 2 m is the
height originally used in the paper. (A) pdfs of the change (from a 2-m release height)
in percent-deposited at 5, 10, 20, and 35 km downwind for both day and night conditions
together. (B) Mean and median change in percent-deposited, and the percent-change for
each release height, for both day and night conditions together. (C) Heatmaps showing
depositions at 5, 10, 20, and 35 km distances from the source for three release heights for

the month of July.



Supplementary Figure S2
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Figure C.2: Scatterplots of five meteorological parameters for all day simulations vs. the
percentage of particles deposited at distances downwind of the source. The Spearman cor-
relation coefficients relating depositions at each downwind distance with the respective me-
teorological parameter are denoted for each plot. Decreasing deposition is most correlated

with decreased boundary layer height z; and w, beyond 1 km from the source.



Supplementary Figure S3
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Figure C.3: Scatter plots of meteorological input parameters vs. depositions for night cases.
Scatterplots of five meteorological parameters for all night simulations vs. the percentage
of particles deposited at distances downwind of the source. The Spearman correlation co-
efficients relating depositions at each downwind distance with the respective meteorological
parameter are denoted for each plot. At night, greater boundary layer height z;, friction
velocity wu,, and obukhov length |L| correlate with pollen travelling further - less deposition
close to the source and increased deposition at all downwind distances beyond 1 km. The
convective velocity scale, w, is zero or a very small negative number for all night-time con-
ditions, which make up the vast majority of nighttime case, and is not incorporated in the
stable LS model.
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Figure C.4: Distances at which dispersal kernels first fall below a threshold for each month:
(a) 1%, (b) 0.1%, and (c) 0.01%. Red represents day simulations, while blue represents
night. Seasonal variation is most pronounced for the 0.01% threshold distances, where the
frequency of daytime distances beyond 30 km progressively increases from July to November.
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Figure C.5: Median cumulative depositions for each month during (a) day and (b) night,
separated by US climate region: Northeast (NE), Upper Midwest (UM), Ohio Valley (OV),
Southeast (SE), Northern Rockies & Plains (NRP), South (S), Southwest (SW), Northwest
(NW), and West (W). Shading represents data between the 10th and 90th percentiles. Note
that the vertical axis is a log scale. There is a pronounced increase in total depositions in
nighttime cases - most curves reach 100% within the domain. During the day, the kernels
level out below 90%, although there is an increase in depositions from July to November.
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Figure C.6: Heat maps of five meteorological parameters for all (a) daytime and (b) nighttime
simulations over five months from July to November. The spatial and seasonal patterns
visualized here mirror the deposition patterns shown in the main paper. During the day,
the Southwest region maintains the highest convective velocity scale, w, and boundary layer
height, z; throughout the season, and therefore the lowest daytime depositions overall. At
night, the Southeast and Southwest regions have high friction velocity, u,, high boundary
layer height, z;, lower roughness length, z, and high Monin-Obukhov length |L|, which
results in less deposition in our simulations.



C.1  Supplementary Figure S7
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Figure C.7: Components of the vulnerability metric. (a) The acreage of hemp, Apepy, planted
in each county as of 2023 [2|, where darker colors indicate greater planted hemp acreage.
(b) The dispersal area Ags,, or area within a circle of radius equal to the average 0.01%-
threshold distance, where darker colors indicate a greater dispersal area. (c) The ratio of
Agisp to the land area of each county A;q,q, where red colors indicate regions where more

Adisp > Aland .
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