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Abstract. For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter
system, multiple gravity assists by moons could be used in conjunction with ballistic capture to
drastically decrease fuel usage. In this paper, we investigate a special class of multiple gravity assists
which can occur outside of the perturbing body’s sphere of influence (the Hill sphere) and which
is dynamically connected to orbits that get captured by the perturber and orbits which escape to
infinity. We proceed by deriving a family of symplectic twist maps to approximate a particle’s motion
in the planar circular restricted three-body problem. The maps capture well the dynamics of the full
equations of motion; the phase space contains a connected chaotic zone where intersections between
unstable resonant orbit manifolds provide the template for lanes of fast migration between orbits
of different semimajor axes. Within the chaotic zone, the concept of a set of reachable orbits is
useful. This set can be considered bounded by, on one end, orbits leading to ballistic capture around
the perturber, and on the other end, the orbits escaping to infinity or a bounding surface at finite
distance.
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1. Introduction. In recent numerical constructions of multi-moon orbiters for
the Jupiter system, multiple gravity assists for a spacecraft in the exterior and inte-
rior Hill’s regions were used to construct low energy transfers between moouns [25, 35].
These gravity assists do not lend themselves to the patched-conics approach of astro-
dynamics as they occur even when the spacecraft remains outside of the perturbing
moon’s sphere of influence or Hill sphere.

In this paper, we investigate such gravity assists by the explicit construction
of an energy kick function approximating the effect of the perturbing moon on a
spacecraft’s jovicentric orbit. We use Picard’s method of successive approximations
to generate a symplectic twist map for the planar restricted three-body problem which
approximates a Poincaré map at the surface of section corresponding to the periapsis
condition. Other authors [23, 6, 16, 36] have considered similar maps to study the
long-time evolution of nearly parabolic comets.

The family of maps we develop are applicable to objects on near-Keplerian ellip-
tical orbits of low, moderate and high eccentricity. We are especially interested in the
dynamics of objects whose periapse or apoapse (closest and furthest approach to the
central body, respectively) grazes the Hill sphere of the perturbing body. The engi-
neering application envisioned is the design of low energy trajectories [7, 2], specifically
between moons in the satellite system of one of the giant planets [15, 12]. Multiple
gravity assists in resonance with the perturber are a key physical mechanism which
could be exploited in future scientific missions [25]. For example, a trajectory sent
from Earth to the Jovian system, just grazing the orbit of the outermost icy moon
Callisto, can migrate using little or no fuel from orbits with large apoapses to smaller
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ones.

The advantage of considering an analytical two-dimensional map as opposed to
full numerical integration of the restricted three-body equations of motion is that we
can apply all the theoretical and computational machinery applicable to phase space
transport in symplectic twist maps [24, 19, 9]. We also make connections with earlier
work on the restricted three-body problem, particularly capture via tube dynamics
[14]. The result is a fuller picture of the global dynamics in the restricted three-body
problem.

The paper is organized as follows. In §2, we write the Hamiltonian for the re-
stricted three-body problem in a form appropriate for application of Picard’s method
and introduce the energy regime we are considering. In §3, we apply Picard’s method
of successive approximations to determine the orbital changes over one orbit. In §4, we
develop a family of area-preserving twist map approximations to the Poincaré return
map which take one periapsis passage to another for orbits exterior to the secondary
mass. The dynamics of the maps are discussed in §§5 and 6, in particular the rela-
tionship of multiple gravity assist trajectories to capture around the secondary mass
and escape to infinity. We discuss our results and indicate future directions in §7.

2. The Hamiltonian. Consider the planar circular restricted three-body prob-
lem (PCR3BP), with a test particle P in the gravitational field of two primary masses,
my and mo, which are on circular orbits about their common center of mass. For il-
lustrative purposes, we take my to be Jupiter, ms to be one of its moons, and the
particle to be a natural object or spacecraft of insignificant mass.

We use the standard system of units; the m-mo distance is scaled to 1, as is their
mean motion about the center of mass, and their mass ratio is g = ma/(mi;+msz) < 1.
The PCR3BP is a perturbation of the two-body Kepler problem, where the particle
is assumed to be on a near-Keplerian orbit around the mj-ms barycenter. We can
write the Hamiltonian in a frame centered on the barycenter,

L—p  p

1 T2

1
(21) Hiner - 5(]73, +p§) -

We can write 7 and 72 in terms of (r,6), where r > pu is the distance between the
particle and the barycenter and 6, as shown in Figure 2.1, is the angle between the
particle and mso, measured from the barycenter. Using r = \/7‘% —2urycosf + p? =

m my

FiG. 2.1. The relationship between distances in the restricted three-body problem.
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r1 — pcosf + O(u?) we can write

1 L p 2
(2.2) —:;—T—QCOSG—FO(M)

1
Our Hamiltonian (2.1) can be rewritten as

1 cos 1

1 1
H. — (2 AN - - 2
iner (2(pz+py) T>+u( 7,2+ 2 +T)+0(u ),
(2.3) = K + uR+ O(u?),

where K = —1/(2a) is the Keplerian part and pR the perturbing part to first order
in u. The particle’s phase space position is given by its instantaneous semimajor
axis a, eccentricity e, argument of periapsis w, and true anomaly v, which have geo-
metric descriptions as given in Figure 2.2. These orbital elements are referred to as
“osculating” or instantaneous orbital elements since they represent an instantaneous
approximation of the motion of the object as a Keplerian orbit, which is the kind of
orbit it would have if other perturbations were not present. In a celestial mechanics
perturbation problem like the one we are considering, these elements are very useful.
For the perturbing function, we have

1 0 1
R:77+COS
) r

2 +;’
1 cosf 1
(2.4) = — +—+-
V1472 —-2rcosf r r

The angle 0 can be related to the traditional osculating elliptic elements of the particle
as § = w+v —t, where v = v(t) is the true anomaly of the particle and a function of
time, w is the particle’s angle of periapsis, r = p/(1 + ecosv) and p = a(1 — €2).

Yrot Yiner
P

periapsis

Xiner

F1a. 2.2. The osculating or instantaneous orbital elements for a particle P in a near-Keplerian
orbit about a massive central body m1. The perturbing body, ma, is in a circular orbit about m1 of
unit frequency and the x axis of the rotating frame is defined as the line from mi to mo, where the
y azxis of the rotating frame completes a right-handed coordinate system.



4 S. D. ROSS AND D. J. SCHEERES

In the frame co-rotating with mso and m; about their barycenter, the time-
dependent Hamiltonian (2.3) can be rewritten in a time-independent form

(2.5) H,ot(a,e,0,v) = K(a) + pR(a,e,o,v) — G(a,e),

where G = \/a(l —e?) = ,/p is the angular momentum of the particle’s orbit and
we drop the O(u?) terms. In the rotating frame, the coordinate conjugate to G is
@ = w — t, the angle of periapsis measured from the mi-mso line. Hamiltonian (2.5)
is time-independent [31] and therefore constant along particle trajectories. We refer
to this constant as the Jacobi constant, C; = —2H,.. Although the invariance of
the Hamiltonian in the rotating frame is useful, we continue to use w (in the inertial
frame) for the computations described in the next section.

The Jacobi constant allows us to obtain a coarse partition of accessible phase
space for the particle. For some values of Cj, there are inaccessible regions in the
rotating frame. The inaccessible regions whose boundaries are zero velocity curves
divide the accessible regions, known historically as Hill’s regions, naturally into three
regions. For a given u there are five basic cases of connectivity between the regions,
corresponding to five intervals of C; (see [14] for details). The cases are shown in
Figure 2.3. The divisions between the cases are given by the Jacobi constant at the
Lagrange points, i.e., C; = Cy(L;).

We are focusing on particle motion which remains in the exterior region. Ac-
cording to the cases, this would mean C; > C5. In the Jupiter-Callisto system
(u = 5.667 x 107°), for example, we have Co = 3.00618. Even though motion from
the exterior to the regions around ms and m; are possible for cases 3 and above we
find that for energies close to but below C5, particle motion can remain in the exterior
region for long times. Transit from the exterior region to the region around ms is
possible for C; < (5, and the connection between multiple gravity assists and capture
orbits will be discussed in §6.

3. Changes in Orbital Elements Over One Orbit. To evaluate changes in
the osculating orbital elements over one orbit, we use the first iteration of Picard’s
method of successive approximations, following [27] and [33].

Picard Iteration. First, we introduce Picard’s method. Let t € R be the time
and z(¢t) and f(z,t) be functions with values in R". Consider the problem of finding
solutions for the following dynamical system,

dx
E = f(l’,t),
(3.1) z(to) = o,

where ty € R and g € R" are the initial time and configuration of the system.
The Picard iterate of a function y(t) with initial condition xq is defined as

(3.2) P.y(t) = xo Jr/t fly(r),7) dr.

a
Let P;foy(t) = P, (P y(t)), Pgoy(t) = P%(Pﬁoy(t)), and so on. If f and a—{ are
continuous, then it can be shown that given any continuous initial curve y(¢), its mth
Picard iterate P;ly(t) converges to the solution of (3.1) as m — oo, if ¢ is in a suitable
interval of values close to to (see for example, [4]).
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Approximating Changes in Orbital Elements. We use Picard’s method as follows.
Suppose y(t) represents the osculating orbital elements of a particle in an orbit about
the large primary body my. The function f includes the perturbation of the secondary
body ms of mass p. The unperturbed orbital elements are a constant function y(t) =
xo over the time interval [tg,t1], t1 > tg. The first iteration of Picard’s method yields

(3.3) Proy(t) = oo + / fwo,7) dr,

where the time variation in the integrand is due to the perturbation of the mo and
the true anomaly v of the particle orbit. Noting that P, y(to) = zo, and making
the approximation y(t1) = P,,y(t1), we derive the first order change in the orbital
elements over one orbit as

ty
(34) Ay = f(ﬁfo, T) dTa
to
where T' = t; — tq is one period of the unperturbed particle orbit.
Perturbations to Particles Exterior to the Orbit of the Secondary. Consider a
particle in the exterior realm, with Jacobi constant close to but above that of Lo;

P,
iy
Case 1: Cp>C, Case2: C>Cp>C,
E
J/ i : ) ° g
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Case 4 : C3 >C]>C4 Case 5: CJ< C4 WL = mass parameter

FiG. 2.3. Regions of possible motion. Zero velocity curves for five values of the Jacobi constant
Cj, one in each of the cases, are shown on the x-y plane for p = 0.3. These curves bound the zone,
in white, accessible by the particle P for a given Cjy. The part of the x-y plane which is shaded is
inaccessible for a given energy and known as the forbidden region. The outermost accessible exterior
region known as the, extends to infinity. In the fifth case, the forbidden region vanishes and motion
over the entire x-y plane is possible. In the last panel, the (u,Cj)-plane is partitioned into the five
cases of Hill’s regions.
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case 2 in Figure 2.3. In this situation, the particle travels on a near-Keplerian orbit
around the central mass m;. The greatest perturbation occurs at periapsis, when
the particle’s orbit comes closest to the orbit of the perturbing mass. We therefore
take the limits of integration to be from apoapsis to apoapsis, with ¢y = t. — T/2,
t1 =t +T/2, where T = 21a?/? is the unperturbed orbital period of the particle and
t. is the time of periapsis passage. We take t, = 0 in general. Periapsis passage occurs
at v =t = 0, and thus at the moment over which the perturbation is evaluated, the
angles w, @, and # coincide.

For our computations, it is useful to use the canonical form of the Lagrange
planetary equations [5], which express the change in G as

dG OR
3.5 = ==
(8:5) dt M ow
where, from (2.4), we calculate
OR 1
(3.6) o= :—gsin(w—ky—t) - ﬁsin(w—l—u—t).

The change in G over one orbit can be computed to first order in y using (3.5) as
the dynamical system for which we apply the approximation (3.4):

T/2
AG= 7#/ g—R dt
T/2 OW

=y /T/2 [7“3 sin(w+v(t) —t) — r%sin(w +u(t) — t)] dt

—-1/2 LT2

po TN
:—% i l() sin(w+1/—t(1/))—sin(w—ku—t(u))] dv

T2

(3.7) —% K/: <:2>3sin(w b —t() du) ~ sinw (2 /Ow cos(v — +(v)) du)] .

If the first integral is expanded as a Fourier series in w, the integrals can be expressed
as functions of Hansen coefficients [28]. However, there is no significant advantage in
this for the current application so the integrals are evaluated by quadratures in their
current form.

Our goal is to compute AK, the change in Keplerian energy over one orbit. By
the invariance of the Jacobi constant we have AH,; = 0 and therefore from (2.5):

(3.8) AK = AG — uAR,
where

AR=R(v=m7)— R(v = —n),

1 1 2
(3.9) = + 5 sinwsinT,

B V1+Q%+2 Qcos(w+7) - V1I+Q2+2Qcos(w—7) @

with @ = a(1 + €) and 7 = 7a®/?, the apoapsis distance and half period of the
unperturbed orbit, respectively.

AK is a function of w, K, and e. The invariance of the Jacobi constant yields a
relationship between these three variables, implying AK = AK¢, (w, K), where C;
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is a parameter. The expression (3.8) can be written as AK¢, = uf(w, K), where f is
the energy kick function following the terminology of [16], [36], and [21]. Physically,
the energy kick AK¢, between consecutive apoapsis passages can be approximated as
a discrete event occurring at periapsis passage. Since w = w at the moment the kick
takes place, we will drop the bar from now on, but will consider w to be the angle of
periapsis as measured in the rotating frame, that is, with respect to the mi-ms line;
in other words, w is the azimuthal separation of the particle and the perturbing body
ms at the moment of periapsis passage and therefore the moment of the kick.

For our application @ > ¢ > 1 and it is straightforward to show that AR is
bounded,

4@ -3 4
QXQR*-1) Q¥

For values of K and Cj used in this study, the maximum contribution of AR is
much smaller than that of AG, so we ignore it for the remainder of the paper, i.e.,

(3.10) IAR| <

(3.11) F(w, K) = AKe, (0, K) /= AG/p,

is assumed.

In Figure 3.1(a), we plot f vs. w for C; = 3 and an example value of semimajor
axis a. Notice that the location and angular width of the greatest perturbations are
anti-symmetric about the my-ms line (w = 0) and are independent of the size of the
perturbation p. As shown in Figure 3.1(c), particle orbits whose periapsis passages
occur slightly ahead of ms in its orbit (w > 0) will decrease their energy, while those
with periapsis passages just behind ms (w < 0) will increase their energy. The location
and magnitude of the maximum kicks are plotted as a function of a in Figure 3.1(b).

We want to look at the cumulative effect of multiple passes near msy. Such a
trajectory has an invariant Jacobi constant, although its orbital elements a and e
may change dramatically over time. In the next section, we consider AK¢, where
Cj; = constant. As the orbital energy K and thus the semimajor axis a changes
according to AK¢, for each kick, e changes to leave invariant (2.5), rewritten as

1 1 1
(3.12) Cr=—-+2va(l—e€2)+2u (7"_7">'
a 2 1

For our application, the terms of O(u) are small and we are left with the Tisserand
parameter from which we obtain the eccentricity.

4. The Keplerian Map Derived. Consider the PCR3BP energy surface given
by the pair (i, Cy), where p < 1 and C; = 3 is close to the Jacobi constant of L. We
want to compute the sequence of pairs (wy, K,), n = 1,2, 3, ... which result from an
initial condition (wp, Kp). These pairs are the azimuthal separation of the particle and
the perturbing mass and the particle’s Keplerian energy at the n*® periapsis passage.

In our approximation, (wy, K, ) represents the particle’s orbit just before receiv-
ing an energy kick. Consider, for example, one of the trajectories in Figure 3.1(c)
before the kick was received. Immediately following the kick, the orbit becomes
(Wn+1, Knt1). The time until the next periapsis passage is now At = 27rai/fl =
27r(—2Kn+1)*3/2. The change in the periapsis angle during this period is Aw = —At
modulo 27. Note, we are neglecting the direct effect of the gravity interaction on the
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argument of periapsis, considering only its indirect effect through the change in Ke-
plerian energy. We therefore obtain a two-dimensional update map (w1, Kpt1) =

.
| | fmax 0°F

20}

(a) (b)

Semimajor Axis vs. Time

K " Aat
P =
/ —
Slight differences in

incoming state can lead
to increase or decrease
of semimajor axis

Fic. 3.1. (a) The energy kick function f vs. w for Cyj = 3 for a = 15. The plot is odd in w,
f(—w) = —f(w). (b) The location and magnitude of the mazimum kicks as a function of a. For
Sfmagx, the vertical azxis is logarithmic. The largest positive kick at —wmaz, €., fmaz = f(—Wmaz)-
The largest negative kick at —wmaz with value —fmaz. Notice that smaller a orbits yield larger
mazimum kicks. (c) Two trajectories with semimagor axis a® begin at the same position with slightly
different velocities, shown here schematically in the rotating frame for energy case 3. The solid
trajectory has its periapsis passage at wWmax, Teceives the largest negative energy kick and drops in
semimajor axis, shown in the time history on the right panel. The dashed trajectory has its periapsis
passage at —wmaz and gets kicked to a larger semimagor axis. As shown schematically in the time
history, the energy kick is nearly instantaneous.
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F(wy, K,,) of the cylinder A = S! x R onto itself, i.e., F': A — A where

1) F wn \ (w1 \ _ [ wn—27(—2K,41)73/? (mod 27)
' K, N Kn+1 N K, + /Jf(wn» Kn) '
The Jacobian determinant of F is 1 + u%. If we assume f is independent of
K then we have a symplectic (area-preserving) twist map, desirable for many known
properties of such maps [19, 8]. For the remainder of this paper, we neglect the K

dependence of f. Given a reference K, we let f(w) = f(w, K) and thereby make F
area-preserving:

oo ()= ()= (g )

This map has twist to the right,

aWn+1
0K,

(4.3) =31 (=2(Kp + puf(wn)) " ? >0,

Wn,

for K,, < —uf(wy). From here on, we will understand F to be defined over the
appropriate section of the cylinder A for which (4.3) holds.

The map (4.2) has been called the Keplerian map by earlier authors who derived
it by other means for the case of near-parabolic orbits [23, 16]. Ref. [21] considered the
large a limit, referring to their map as the eccentric mapping. Our form is appropriate
for elliptical orbits (e < 1), even those of low to moderate eccentricity. For a given
Jacobi constant and reference energy K (where, say, K = Kj), F is a mapping
approximating the dynamics of the PCR3BP for orbits with nearby Keplerian energies,
i.e., K, close to K. Specifically, F' approximates the Poincaré return map of the fully
integrated equations of motion where the surface of section is taken at periapsis, a
map used recently in the study of the Hill problem [34, 22].

5. Dynamics of the Keplerian Map. Other authors have considered similar
maps to study the long-time evolution of nearly parabolic comets [6, 16, 36]. We
apply our map to the identification of transfer trajectories applicable to spacecraft
in a planet-moon system. For example, we can consider a spacecraft in the Jupiter-
Callisto system (u = 5.667 x 107°) with C; = 3. Using semimajor axis as our
vertical coordinate and applying the map (4.2) for several initial values in the (w,a)-
plane results in the left hand plot of Figure 5.1. Throughout the paper we will refer
interchangeably between a and K; the context should make it clear which coordinate
we are using.

For our map computations, we need only calculate f(w) once from (3.11) for a
grid of points w € [—m, 7]. Saving the results in a look-up table, we use interpolation
to obtain f for arbitrary w. The initial values for the left hand side of Figure 5.1 were
chosen in a connected chaotic sea (an irregular component in the sense of Birkhoff),
avoiding the stable islands corresponding to stable mean motion resonances of the
particle’s orbit with Callisto’s. As our phase space is the cylinder, the left and right
sides of plot (w = £) are to be identified. The right hand plot shows trajectories
computed via full integration of the PCR3BP, using a Poincaré surface of section at
periapsis.

The accuracy of the Keplerian map is demonstrated by the resemblance between
the results of the map and fully integrated trajectories of the PCR3BP. The location
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and widths of the resonant islands appear to be in agreement. As discussed below,
the geometrical features directing the motion of phase space regions are approximated
well. The notable difference is the “warping” of trajectories of the map near w = 0,
not seen in the full system. The full system Hamiltonian has a discrete time-reversal
symmetry such that if (wg, ag) maps to (w1, a1) then (—ws,a;) maps to (—wg, ag). In
our approximate map this symmetry is broken, albeit slightly.

Some remarks on the resonant structure of the map are in order. Transport in
the map can be understood in terms of lobe dynamics and resonance zones [10, 25].
Lobes are parcels of phase space bounded by pieces of stable and unstable manifolds
of hyperbolic points. The hyperbolic points of (4.2) occur at s : r mean motion
resonances, a,.s = (r/s)%/3, where in inertial space the moon orbits Jupiter 7 complete
circuits for every s particle orbits. In Figure 5.1, these appear as periodic points of
period r — s > 0. These resonances are also known as being of order » — s. For every
ares, there is a band of at least 2(r — s) alternating elliptic and hyperbolic points,
with stable islands (the holes in Figure 5.1) surrounding the elliptic points.

Let’s consider the lowest order resonance in Figure 5.1, the first order 1:2 reso-
nance. The period-one hyperbolic point (fixed point) corresponding to this resonance
is located at pres = (Wres, Gres), Where wres = 0 and a,es = (2)?/% ~ 1.587. The
stable and unstable manifolds for the hyperbolic point are shown in Figure 5.2. The
shaded region is the resonance zone for this resonance, bounded by pieces of upper
and lower branches of the stable and unstable manifolds, from the point p,.s to a
primary intersection point of the manifolds. The primary intersection points are also
homoclinic orbits doubly asymptotic to pres-

The unstable manifold is produced by first finding the unstable direction in the
neighborhood of p,.s and mapping forward a small seed of points along this direction
using F. Linearizing F' in the neighborhood of p;.s, we obtain

dwn _( 1+psy —v own
(5.1) ( 5Ky )‘( —uf 1 ) ( SK, )

w/7T ‘ - ‘ ' W/

FIG. 5.1. Plot of a vs. w for p = 5.667 x 107°, C; = 3, a = —1/(2K) = 1.35. The left hand
plot shows trajectories computed using the Keplerian map. The right hand plot shows trajectories
computed via full integration of the circular restricted three-body problem, using a Poincaré surface
of section at periapsis. The initial conditions for both were taken initially in the chaotic sea and
followed for 10* iterates, thus producing the ‘swiss cheese’ appearance where holes corresponding to
stable resonant islands reside.
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where 8 = —%b:wm and v = 67(ayes)®/?. The unstable manifold is locally tangent
to the eigenvector belonging to the maximum eigenvalue,

(5.2) A= % (2 + uBy + /By (uBy + 4)) :

The stable manifold is produced similarly, substituting F~! for F in the above pro-
cedure.

A similar picture of intersecting manifolds exists around each horizontal resonance
zone encompassing the stable resonance holes and is similar to the resonance manifolds
computed in the full equations [17]. The manifolds of different resonances intersect
one another, providing the template for the migration of orbits through semimajor
axis.

Finding the Orbits which Yield Maximum Change in Semimagjor Axis. We con-
sider the following problem: for a given ag = —1/(2K)), find the wy which yields the
maximum change |a,, — ag| after n periapses. Given our map F, a diffeomorphism of
the cylinder to itself, we can consider iterates of the circle at ay,

(53) I'y = {(WQ,CL()) cA | wo € Sl}

In Figure 5.3(a), we plot I'g and its images I', = F"(I'g), n > 1, in terms of the
change in semimajor axis Aa = a, — ag vs. wg. The calculations are for a particle
with ag = 1.54, C'; = 3 in the Jupiter-Callisto system, using a = 1.35 for the map
(4.2). The figure shows the effect of multiple periapses, using successive magnifications
to reveal the complex self-similar structure as we follow the region with the greatest
decrease in semimajor axis.

The function Aa,(wp) gets very complex even for small n. For increasing n,
max,,Aay, and min,,Aa, have increased magnitude and the domains of the largest
changes get thinner. We can estimate the size of these domains as follows. Suppose
the local maxima and minima spike features at iterate n have a minimum width a(n)
in w. We can estimate «(1) from the kick function f and then assume a(n) = [a(1)]™.
From Figure 3.1, it is reasonable to approximate «(1) as 2wyq.. For a = 1.35, we
have wpqy = 0.017, thus a(n) = (0.0628)". From simulation, we find that this is

0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2

0
/T

Fic. 5.2. Against the background of Figure 5.1, the stable and unstable manifolds are plotted
of the central black point, the period-one hyperbolic fized point pres = (Wres,Gres) = (0,(2)2/3)
corresponding to the 1:2 mean motion resonance. The closed curves in the gray region are restricted
to the stable island and disconnected from the connected chaotic sea.
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(a)

Fic. 5.3. (a) The total change in semimajor azis Aa after n periapsis passages is shown versus
the initial angle, w, where (1, Cy,a) = (5.667 x 107°,3,1.35). In the top panel, the initial circle To
and its second image I's = F2(T) are shown. The second panel from the top shows a magnification
and the tenth tmage, and so on. The bottom panel shows a portion of w with I'as. We see small
regions of significantly decreased semimagor axis after 25 periapsis passages. (b) Upper panel: the
phase space trajectory of the trajectory marked as b in (a). The initial point is marked with a
triangle and the final point with a square. Lower panel: the configuration space projections in an
inertial frame for this trajectory. Jupiter and Callisto are shown at their initial positions, and
Callisto’s orbit is dashed. The particle migration is from larger to smaller semimajor axes, keeping
the periapsis direction roughly constant in inertial space. Both the particle and Callisto orbit Jupiter
in a counter-clockwise sense.

a very conservative lower bound. Nevertheless, for computations to resolve the thin
features at iterate n, we use adaptive refinement of a mesh of sample points, described
elsewhere [9)].

Figure 5.3(b) shows an example of a trajectory which quickly decreases semimajor
axis over a duration of 25 orbits. This trajectory corresponds to an initial condition
chosen such that it repeatedly experiences a periapsis kick near a minimum of the kick
function, Figure 3.1(a). For a randomly chosen initial condition, the effect of such
kicks tends to average to zero. But trajectories like the one shown in Figure 5.3(b)
can be found which exhibit large increases or decreases over small times, potentially
useful trajectories for space missions.

Multiple Gravity Assists Outside Sphere of Influence. We note that over the
course of these multiple gravity assists, the particle does not come within the sphere
of influence of the perturber. For the example in Figure 5.3(b), the particle at closest
approach to the perturber is at a nondimensional distance of r i, = 0.0341, whereas
the sphere of influence, approximated as the Hill’s radius, is 7, = (1/3)'/® = 0.0266.
The phenomenon involved here is not the typical picture of a gravity assist from the
patched-conic perspective, wherein a particle’s path enters the sphere of influence of a
perturber and can be approximated as a hyperbolic Keplerian trajectory with respect
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to the perturber [1].

6. Reachable Orbits, Capture and Escape. Related to the previous discus-
sion is the question of what is the reachable set of orbits as a function of n for orbits
initially on the circle I'y? In Figure 6.1(a), the maximum and minimum semimajor
axes reached as a function of the number of orbits are plotted for two values of the
Jacobi constant. As particles migrate from an initial semimajor through resonance

24 : : T T 0015
Reachable Orbits oot
0)”1GX/TC
0.005
ol . . : . . . . .
2.982 2.984 2.986 2.988 299 2.992 2.994 2.996 2.998 3
N 10°F .
f max
102 . . . . . . . .
. . . X 2982 2.984 2.986 2988 299 2992 2994 2.996 2998 3
5 10 15 20 25
n Cy
(a) (b)

Fi1G. 6.1. (a) The mazimum and minimum semimagjor axes reached as function of the number
of orbits for a trajectory starting at ag = 1.54. For Cy = 3.00, the reachable orbits are those in the
darker shaded zone; for Cj = 2.99, the lighter shaded zone. The parameters for the map are the
same as in the preceding figures, u = 5.667 x 107° and @ = 1.35. (b) The variation in the location
and magnitude of the mazimum kick with Jacobi constant Cy for three values of @ as labeled (same
line labeling for both panels). Values are independent of .

zones via lobe dynamics, the set of reachable orbits grows. The maximum (minimum)
semimajor axis as a function of n is monotonically increasing (decreasing). Although
our map (4.2) lacks the time-reversal symmetry, we can consider it to be close to
the time-reversal symmetry of the full PCR3BP equations. In the full equations, the
reachable orbit set could be extended to n < 0, and would be the mirror image of
the n > 0 set. This implies that if an orbit of semimajor axis a,, can be reached in n
orbits from ag, an orbit of semimajor axis a_,, = a, can reach ag in n orbits.

For C; = 2.99, the growth is more rapid than for C; = 3. For lower values of
Jacobi constant (higher three-body energies, per eq. (2.5)), we expect migration in
the phase space to be faster since the kick function yields larger maximum kicks; see
Figure 6.1(b).

Variation of wyq, and fine, with @ is also shown in Figure 6.1(b). For each a,
there is a critical value C” corresponding to a periapsis distance of 1 and a singularity
of the map. Below C7 , the kick function changes its character as the particle can
now cross into the interior of the perturber’s orbit, a regime investigated by [16].

Exits Leading to Capture. We can consider what the limits to the growth are for
the reachable set, in terms of a lower and upper bound in a. We first consider the lower
bounds, and consider the full equations of the PCR3BP. For our case of interest, case 3
with C; < C5, a particle beginning in the exterior realm must remain there for all time
in the absence of an outside perturbation (see Figure 2.3); it cannot collide with or
enter the phase space realm around msy. For C; below this value, a bottleneck region
opens up around the Lagrange point Lo, permitting particles to enter into orbit around
ms. In what follows, we summarize the mechanism for this capture as discussed in
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detail by [14]. On each three-dimensional energy surface with C; < Cy, within the
L5 bottleneck region there is a planar clockwise orbit surrounding the location of L,
shown as a dashed curve in Figure 6.2(a). This orbit has two-dimensional stable and
unstable manifolds, with cylindrical (S! x R) geometry. As two-dimensional objects
in a three-dimensional energy surface, these cylinders partition the energy surface,
acting as separatrices for the flow through the bottleneck region [7, 18]. The interior
of these cylinders in the energy surface form three-dimensional tubes of trajectories,
termed Conley-McGehee tubes [17]. Only particles inside the tubes will move from
the exterior realm to the msy realm and vice versa; those outside the tubes will not.

The capture branch of Conley-McGehee tubes associated to the Lo bottleneck is
shown in Figure 6.2(a) as projected onto the configuration space. A tube projection
appears as a strip of varying width. Trajectories within the tubes wind around them
in phase space and their projection appears similar to the example trajectory within
the tube in Figure 6.2(a). There is also an escape branch (not shown) which appears
as the mirror image of the capture branch, reflected across the horizontal axis.

In order to find capture trajectories, we consider the Poincaré surface of section
taken at periapsis. In terms of the Delaunay (action-angle) variables (L, G, [, w) where
L = /a and [ is the mean anomaly, the surface of section at periapsis in the exterior
realm is defined as

(6.1) Ye ={(lw,a) e A|1=0,a>1},

where the condition of periapsis [ = 0 is equivalent to setting the true anomaly v
to zero. The Hamiltonian flow induces a Poincaré return map on X., F : X, — X,
defined for almost all points on ¥.. In X, the last cross-section of a tube before it
enters the realm around msy appears as an exit, diffeomorphic to a disk, as shown
schematically in Figure 6.2(b) and numerically in Figure 6.2(c). When trajectories
of F reach the exit, they are transported to the realm around msy, where we can
consider them emerging within the entrance on ,,,, a suitably defined Poincaré
surface of section in the mo realm.

The Keplerian map F' defined in (4.2) is an approximation to F. When trajecto-
ries of F' reach the exit, the Keplerian map approximation breaks down and the full
equations of motion must be considered. The trajectory can no longer be approxi-
mated as near-Keplerian around the central body; it will instead be in orbit about
the perturber. We can consider the location of an exit in (w, a) space (in 3,.) to give
us an effective lower bound in the growth of a reachable set when C; < Cs.

Escaping to Infinity, Upper Bounds and Rotational Invariant Circles. For large
values of p, there may not be an upper bound to the reachable set as n increases.
Numerically, we have found some particles which escape onto unbound parabolic and
hyperbolic orbits (K > 0) in finite time (n < oo) from orbits with relatively small
a. The set of bound orbits in (w, K) space which will become unbound after their
next periapsis passage is given by lobes bounded above by K = 0 and below by
K = —pf(w) when f(w) < 0 as illustrated in Figure 6.3(a).

If p is smaller than a critical value, circulating trajectories lying on invariant
circles may exist, forming an upper boundary. McGehee [18] proved that for small u
in the PCR3BP, the energy surface is broken up into regions bounded by invariant tori.
These invariant tori project onto the darkly shaded annuli A; and As shown for case
3 in Figure 6.3(b). These annuli separate the Hill’s region into sections corresponding
to the invariant regions in the energy surface. For case 3, masses m; and msy are
separated from each other by an invariant torus, thus making it impossible for a
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particle to pass from arbitrarily close to m to arbitrarily close to meo. Similarly, the
two masses are separated from infinity by an invariant torus, i.e., the exterior realm
phase space is divided by a transport barrier whose projection onto configuration
space is As. Let us call T; that part of the exterior realm outside a neighborhood of
L5 which extends up to the bounding surface As,.

We find such a boundary in the Keplerian map for small p values, understood
from the point of view of absolute transport barriers in symplectic twist maps of the

X, Poincare Section
at Periapsis

Jovian Moon

Jovian ™
Moon

Ballistic
Capture

(a)

Exit

a
{24 Entrance §
0 0.2 0.4 0.6 0.8 1
Z, /T
(b) (c)

FiGc. 6.2. (a) A spacecraft P inside a tube of gravitational capture orbits will find itself going
from an orbit about Jupiter to an orbit about a moon, as shown schematically. The spacecraft is
initially inside a tube whose boundary is the stable invariant manifold of a periodic orbit about Lo.
The tube, made up of individual trajectories, is shown as projected onto configuration space. (b)
Poincaré sections in different realms—in this case in the exterior and mao realms, Xe and Xm,,
respectively—are linked by tubes in the phase space which live in surfaces of constant energy (Cj =
constant). Under the Poincaré map on Y., a trajectory 2o, z1, ... reaches an exit, the cross-section
of the tube of capture orbits at the final periapsis before passage through the Lo bottleneck. Under
the Hamiltonian flow, points in the exit of ¥ map to the entrance of ¥m,. The trajectory then
evolves under the action of the Poincaré map on Ym,. (c) The numerically computed location of
the exit on Y. The axes are the argument of periapsis in the rotating frame w and the semimajor
azis a of the instantaneous conic orbit about Jupiter, as in earlier figures. The location of the exit
in configuration space is labeled in the left panel of (a). This surface of section was generated using
the full equations of motion with u = 5.667 x 10~° and Cj = 3.005.
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K>0 Unbound

K<0 Bound

Unbound after next
periapsis passage

-1 0 1

(a) (b)

Rotational Invariant Circle

(c) (d)

Fic. 6.3. (a) Bound trajectories enclosed by the lobes will become unbound after the next
periapsis passage. (b) The projection of invariant tori (darkly shaded) on position space for case 3.
(¢) A rotational invariant circle (RIC) is an invariant loop that encircles the cylinder, i.e., cannot be
contracted to a point. (d) A stable circulating trajectory forms an upper boundary to the chaotic sea
preventing particles from migrating to large a values. The calculation was done using the Keplerian
map approzimation with parameter values (u, Cy,a) = (5 x 1076,3,2.5).

cylinder, following [19]. An invariant circle is a curve C such that F'(C) = C. A
rotational invariant circle (RIC) is a closed loop that encircles the cylinder (i.e., it
cannot be contracted to a point; see Figure 6.3(c)). Birkhoff’s theorem [3] implies
that any RIC must be the graph of a function, a = A(w). An RIC divides the cylinder
into two invariant regions. In other words, it prevents transport between the upper
and lower “halves” of the cylinder. RICs are in fact the only absolute barriers to
transport for symplectic twist maps of the cylinder. Therefore, in connected chaotic
sets such as those shown in Figure 5.1 where a.,in < @ < Gmaez, We can say that no
RIC can exist entirely in that portion of the cylinder.

If we find an RIC for our map, we have found an upper bound in the phase
space beyond which particles with a greater than but close to 1 cannot pass. As a
computational experiment motivated by calculations of [21], we consider the Keplerian
map for (u,Cy,a) = (5 x 1076,3,2.8). We find an orbit at the top of Figure 6.3(d)
which marches around the cylinder, densely covering a circle. This is an RIC at the
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lower edge of the 1:4 resonance island and is therefore a bounding surface. By the
smoothness of the map F' in its parameter p, we can expect a bounding surface for
all i below at least 5 x 1076 for fixed C; and a.

This result is based on the structure of symplectic twist maps, and not the KAM
theorem [19]. However, we note that in our context the KAM theorem implies that
RIC’s present in the unperturbed integrable area-preserving map, i.e, (4.2) with g = 0,

(6.2) ( Iaé’/ ) _ ( ;.;7%(721()*3/2 (mod 27) )

will persist under small area-preserving perturbations of the unperturbed map For
the unperturbed map, all trajectories lie on RIC’s. The perturbed map for small pu is
written

(6.3) (;; ) _ ( © 17;(@?&3/2#9@,10 (mod 2r) )

where g(w, K) = 67f(w)(—2K)~%/2. In order for there to be invariant circles, we
need the average of f(w) over w to be zero,

(6.4) f(w) dw =0,

which our kick function satisfies, being odd in w. The KAM theorem for our problem
takes the form of [20] which says that for sufficiently small perturbations, most RICs
will persist.

7. Discussion and Conclusions. Using Picard’s method of successive approx-
imations, we derive a family of two-dimensional symplectic twist maps to approximate
a particle’s motion in the planar circular restricted three-body problem with Jacobi
constant near 3. The maps model a particle on a near-Keplerian orbit about a central
body of unit mass, where the spacecraft is perturbed by a smaller body of mass u.
The interaction of the particle with the perturber is modeled as an impulsive kick at
periapsis passage, encapsulated in a kick function f. The maps are identified as an
approximation of a Poincaré return map of the full equations of motion where the
surface of section is taken at periapsis, mapping each periapsis passage to the next in
terms of w, the azimuthal separation of the particle and small perturbing body, and
K, the Keplerian orbital energy of the particle about the central body.

The map captures well the dynamics of the full equations of motion; namely, the
phase space is densely covered by chains of stable resonant islands, in between which
is a connected chaotic zone. The chaotic zone, far from being structureless, contains
lanes of fast migration between orbits of different semimajor axes. The advantage
of having an analytical two-dimensional map over full numerical integration is that
we can apply all the machinery of the theory of transport in symplectic twist maps
[24, 19, 9].

An interesting consequence of the approximation used to construct the map is
that the time-reversal symmetry of the original Hamiltonian system is broken, al-
beit slightly. The origins of this symmetry breaking and development of a modified
approximation process to avoid it are currently under investigation.

Other authors have considered similar maps, so-called Keplerian maps, to study
the long-time evolution of nearly parabolic comets and comet-like objects [6, 36, 21].
By including the dependence of the map on the Keplerian energy K, we have achieved
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one of the goals of [16], which allows us to consider the map for orbits of moderate
eccentricities and semimajor axes.

Our application is different from these papers. We apply our Keplerian map
to the identification of transfer trajectories applicable to spacecraft transfers in a
planet-moon system. The use of subtle gravitational effects described by the map
may be feasible for future missions to explore the outer planet moon systems where
the timescale of orbits is measured in days instead of years and low-energy trajectories
may be considered for inter-moon transfers.

Physically, particles in the regime we study undergo multiple gravity assists of a
different kind than the hyperbolic flybys of, say, the Voyager missions. The gravity
assists we study are for particles on orbits with semimajor axes greater than the
perturber’s and whose periapsis passages occur close to, but beyond, the sphere of
influence of the perturbing body (as conservatively estimated by the Hill sphere). The
effect of gravity assists is largest for particles whose passages occur slightly behind
(resp. in front of) the perturbing body, resulting in a larger (resp. smaller) semimajor
axis. This makes the apoapsis distance grow (resp. shrink) while keeping the periapsis
distance relatively unchanged.

Dramatic orbital changes result from repeated gravity assists which are timed such
that changes accumulate steadily in one direction (e.g., steadily shrinking apoapsis
distance). This process can be understood in terms of phase space transport between
resonance zones, i.e., resonant gravity assist. It is a three-body problem phenomenon
not amenable to a patched-conic approach. This work therefore fills a gap in the
understanding of multiple gravity assist mission design, which has been successful for
Jacobi constants (Tisserand parameters) much less than 3 where the subtle effects
described here play little role [30].

This paper extends earlier work which considered the dynamical connection be-
tween resonances in the exterior realm and interior realm and their relationship to
escape and capture from a planetary or satellite neighborhood [14]. With straight-
forward modifications, the method used here can be applied to orbits entirely in the
interior realm, where the Poincaré map is taken at apoapsis (where the perturbation
due to the small mass is greatest) instead of periapsis.

Future work will consider extension of the Keplerian map to include (i) out of
plane motion, i.e., a four-dimensional symplectic map; (ii) multiple perturbers; (iii)
eccentric orbits for the perturbers; and (iv) control and uncertainty [29]. This will
increase the tools available to space mission designers and may shed light on the
mechanism by which some minor bodies and impact ejecta get handed off between
planets and moons of the solar system [11, 32, 13].

Given the success of the current application to celestial mechanics, we intend
to investigate the general applicability of Picard’s method of successive iterates to
approximations of a Poincaré return map for perturbed Hamiltonian systems and
other dynamical systems.
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