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Abstract
Understanding the dynamical structure of cislunar space beyond geosynchronous orbit is of significant importance

for lunar exploration, as well as for design of high Earth-orbiting mission trajectories in other contexts. A key aspect
of these dynamics is the presence of mean motion resonances, as heteroclinic connections between unstable resonant
orbits are fundamental to changing and understanding the evolution over time of a spacecraft’s semimajor axis. In
this paper, we first compute and analyze several important resonant orbit families within the Earth-Moon system based
on the planar circular restricted 3-body problem. Focusing on interior resonances 4:1, 3:1, and 2:1, we identify a
number of bifurcations of these resonances’ periodic orbit families. Once the aforementioned orbits are computed, we
then compute their stable and unstable manifolds using an osculating orbit perigee Poincaré map. Carrying out these
computations across a range of energy values, we are able to characterize the range of naturally attainable semimajor
axis values for future distant Earth-bound or lunar spacecraft missions.

1. Introduction

In recent years, there has been a rapid and sustained
increase in current as well as future planned activities
in cislunar space. This includes human lunar space-
flight programs such as NASA’s Artemis and Lunar Gate-
way, as well as robotic lunar exploration missions such
as NASA’s Lunar Trailblazer and CADRE, the various
NASA-sponsored Commercial Lunar Payload Services
programs, the Chinese CNSA’s Chang’e series of mis-
sions. ISRO’s Chandrayaan missions, and JAXA’s SLIM
lander. However, in addition to explicitly Moon-focused
exploration missions, the realm of cislunar space has also
captured significant interest from other points of view. In
2022, the US White House released its National Cislu-
nar Science and Technology Strategy [1] which explic-
itly identified space situational awareness in the cislunar
domain as a priority area for development. And further-
more, even spacecraft whose missions are completely non
Moon-focused may operate in regions of cislunar space
where the effects of lunar gravity are significant enough
to cause major orbital changes. This must hence be taken
into account during the mission design. For instance, dur-
ing its initial 2-year nominal mission, NASA’s Interstellar
Boundary Explorer (IBEX) spacecraft was placed into an
orbit whose evolution was found to be chaotic and unpre-
dictable beyond 2.5 years due to lunar perturbations. Thus,

for its extended mission, IBEXwas maneuvered into a sta-
ble 3:1 resonant orbit with the Moon [2].

Given the previous discussion, understanding the
dynamical structure of cislunar space beyond geosyn-
chronous orbit is of significant importance for both lunar
exploration and for design of high Earth-orbiting mission
trajectories in other contexts. A key aspect of these dy-
namics is the presence of mean motion resonances. A
number of prior spacecraft have been placed into stable
lunar resonant orbits, such as the aforementioned IBEX
mission as well as NASA’s Transiting Exoplanet Survey
Satellite (TESS) [3], while some seemingly orbit in the
unstable resonance regime (e.g. Russia’s Spektr-R). Al-
though libration point orbits have been studied extensively
in the Earth-Moon system (e.g. the book of Simo et al [4])
the intricate nature of mean motion resonances, especially
their stable and unstable orbit families and their overlap-
ping heteroclinic connections, is much less explored. A
spacecraft following a heteroclinic connection will natu-
rally change its semimajor axis due to the subtle influence
of the Moon, without use of propulsion. The presence of
such paths can be used beneficially for trajectory design,
but could also be potentially hazardous if unanticipated in
mission planning.

While heteroclinic connections between resonances
[5] are fundamental to changing and understanding the
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evolution of a spacecraft’s semimajor axis, and have been
investigated for trajectory design in the Jovian [6–8] and
Saturnian [9] systems, they remain woefully understudied
in the Earth-Moon case. In this study, we present two pri-
mary contributions: first, we compute and analyze several
important resonant orbit families in the Earth-Moon sys-
tem within the framework of a planar circular restricted
3-body problem model. In this case, unstable resonant or-
bits are periodic and occur in 1-parameter families. Focus-
ing on interior resonances 4:1, 3:1, and 2:1, we identify a
number of bifurcations of these resonances’ periodic orbit
families. We find and describe relationships between un-
stable and stable prograde and retrograde resonant orbits.
Then, once the aforementioned resonant orbits are com-
puted, we compute their stable and unstable manifolds.
This is done using a parameterization method [10] com-
binedwith a Poincarémap at osculating orbit perigee. Car-
rying out these computations across a range of restricted
three-body energy values (Jacobi constants) in the Earth-
Moon system, we are able to characterize the range of nat-
urally attainable semimajor axis values for future distant
Earth-bound or lunar spacecraft missions.

In this paper, we start by briefly reviewing the re-
stricted 3-body model we use as well as some background
on resonant orbits and resonance overlapping in Section 2.
We then give a brief overview of the computational and vi-
sualization methodologies used in this study in Section 3.
Next, we describe the interior resonant orbit families com-
puted in the Earth-Moon system. Finally, after using the
unstable resonant orbit families computed in the previous
step to find their stable and unstable manifolds, we present
the heteroclinic connections generated by these manifolds
at varying energy levels, and discuss the resulting impli-
cations for zero-cost, fully ballistic cislunar trajectory de-
sign.

2. Background
2.1 Planar Circular Restricted 3-Body Problem

For completeness, we include the following descrip-
tion of the well-known planar circular restricted 3-body
problem (PCRTBP) as reproduced from Kumar et al. [11].
The PCRTBP describes the motion of an infinitesimally
small particle (thought of as a spacecraft) under the grav-
itational influence of two large bodies of masses m1 and
m2, which revolve about their barycenter in a circular Ke-
plerian orbit (e.g. a planet and a moon). Units are also nor-
malized so that the distance betweenm1 andm2 becomes
1, their period of revolution becomes 2π, and G(m1+m2)
becomes 1. We define a mass ratio µ = m2

m1+m2
, and use

a synodic, rotating non-inertial Cartesian coordinate sys-
tem centered at the m1-m2 barycenter such that m1 and
m2 are always on the x-axis. In the planar CRTBP, we

also assume that the spacecraft moves in the same plane
as m1 and m2. In this case, the equations of motion are
Hamiltonian with form [12]

ẋ =
∂H

∂px
ẏ =

∂H

∂py
ṗx = −∂H

∂x
ṗy = −∂H

∂y
[1]

H(x, y, px, py) =
p2x + p2y

2
+ pxy − pyx− 1− µ

r1
− µ

r2
[2]

where r1 =
√

(x+ µ)2 + y2 is the distance from the
spacecraft tom1 and r2 =

√
(x− 1 + µ)2 + y2 is the dis-

tance tom2. Form1-m2 as Earth-Moon, respectively, we
use µ = 1.2150584270572× 10−2. The momenta px, py
are the spacecraft velocity components in an inertial refer-
ence frame; they are related to the synodic (non-inertial)
frame velocities ẋ, ẏ as ẋ = px + y, ẏ = py − x.

There are two important properties of Eq. [1]-[2]
to note. First of all, the Hamiltonian in Eq. [2] is
autonomous and is thus an integral of motion. Hence,
PCRTBP trajectories are restricted to 3D energy subman-
ifolds of the state space satisfying H(x, y, px, py) = con-
stant. The quantity C = −2H is referred to as the Ja-
cobi constant, and is generally used in lieu of H to spec-
ify energy levels. The second property is that the equa-
tions of motion have a time-reversal symmetry. Namely,
if (x(t), y(t), t) is a solution of Eq. [1]-[2] for t > 0, then
(x(−t),−y(−t), t) is a solution for t < 0.

2.1.1 Synodic Delaunay coordinates
While Equations [1]-[2] for the PCRTBP are written in

Cartesian coordinates, other coordinate systems can also
be used to express the Hamiltonian and equations of mo-
tion. In certain cases, one of the most beneficial sets of
coordinates to use are the synodic Delaunay coordinates
(L,G, ℓ, g). These coordinates can be most easily defined
in terms of the classical (osculating) orbital elements via
the equations L =

√
(1− µ)a, G = L

√
1− e2, and the

definitions ℓ = mean anomaly and g = argument of pe-
riapse with respect to the rotating frame positive x-axis.
Note that unlike the traditional argument of periapse, in
this case ġ ≈ −1 ̸= 0 as the rotating frame x-axis is con-
stantly moving with respect to an inertial frame.

The main benefits of using synodic Delaunay coordi-
nates stem from the fact that they are action-angle coor-
dinates [12] for the µ = 0 PCRTBP (the Kepler problem
in a rotating reference frame). What this means is that 1)
when µ = 0, the Hamiltonian H can be written solely as
a function of the actions L and G; and 2) the transforma-
tion between Cartesian and synodic Delaunay variables is
canonical, i.e. the equations of motion in synodic Delau-
nay coordinates remain Hamiltonian. Note that the tradi-
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tional osculating orbital elements satisfy above fact (1) but
not (2). Combined, these two facts imply that whenµ = 0,
L̇ = Ġ = 0 and both ℓ̇ and ġ are constants. Further-
more, when µ > 0, the rich existing literature on Hamil-
tonian perturbation theory of near-integrable systems (e.g.
[13]) becomes applicable to the system written in synodic
Delaunay variables. Although in this study we still use
Cartesian coordinates for most computations, we will use
synodic Delaunay variables to help us visualize and then
interpret our results in line with perturbation theory.

2.2 Mean motion resonances and resonance overlap
Resonant motions are ubiquitous in celestial systems.

Among the most important resonant phenomena, espe-
cially for astrodynamics, is that ofmeanmotion resonance
(MMR). Roughly speaking†, an m:n mean motion reso-
nance is a region of a celestial system’s phase space where
one body (in our case the spacecraft) makes approximately
m revolutions around some large central body (Earth in
our case) in the same time that another body (here, the
Moon) makes n revolutions around the same central body.
For spacecraft-moon MMRs, since this is a relation be-
tween orbital periods of two bodies with the second body’s
period being fixed, the different MMRs correspond to cer-
tain spacecraft semimajor axis values, one for each MMR.

In multi-body celestial systems, MMR regions contain
both stable and unstable resonant orbits with various topo-
logical properties. Of these, the unstable resonant orbits
are of special interest for mission design and low-cost or-
bit transfers, as they possess attached stable and unstable
invariant manifolds. If the unstable manifold of an orbit
contained in one MMR intersects the stable manifold of
an orbit contained in another MMR, then one gets a zero-
∆v heteroclinic trajectory from the first MMR to the sec-
ond. This dynamical phenomenon, known as MMR over-
lap, in turn yields a natural change of spacecraft semima-
jor axis. Owing to Chirikov’s overlap criterion [14], over-
lap of MMRs is the key driver of global transport across
phase space in celestial systems, as this overlap also de-
stroys mathematical barriers whose existence would oth-
erwise prevent major changes in semimajor axis. MMR
overlap thus determines the semimajor axis values a space-
craft can reach without using fuel.

In the PCRTBP, at each mean motion resonance, fam-
ilies of stable and unstable resonant orbits exist over a
range of energy levels. The unstable resonant orbits cor-
respond to 1-parameter families of unstable periodic or-
bits, where the parameter along the family of orbits can be
taken as the Jacobi constant [15]. Thus, except for at fold

†More rigorously, MMRs are defined through studying the dynam-
ics of certain combinations of angles derived from osculating orbital el-
ements. See for instance the book [13] of Morbidelli for more details.

bifurcation points (where C reaches an extremum along
the family), locally there will be one unstable resonant pe-
riodic orbit for each Jacobi constant C across some range
of C values. For the m:n MMR, the resonant periodic
orbits will have periods of approximately but not exactly
2πn; the range of periods in fact will vary throughout the
family as a function of Jacobi constant. Unstable orbits
will encounter the Moon at apogee once every m revolu-
tions.

3. Computational and Visualization Methodologies
In the PCRTBP, to understand the structure of resonant

orbit families and the heteroclinic dynamics induced by
the unstable ones, one needs to compute the correspond-
ing periodic orbits as well as their stable/unstable mani-
folds. In order to inform the computations as well as to
aid in visualization and dynamical analysis, an appropriate
Poincaré section also needs to be chosen and used. Here,
we summarize the methods used for these purposes.

3.1 Periapse Poincaré Map
The PCRTBP is a dynamical system on a 4D phase

space (x, y, px, py) with an integral of motion given by
the Jacobi constant C. Thus, any one trajectory will
lie entirely within a single energy submanifold of form
MC = {(x, y, px, py) : −2H(x, y, px, py) = C}, where
C is the Jacobi constant of that trajectory. Stable and
unstable manifolds of a periodic orbit in MC will also
belong to MC , as must any heteroclinic connections to
other periodic orbits. Thus, for the dynamical analysis we
wish to carry out, one can restrict attention to studying the
PCRTBP dynamics withinMC for a variety of C values.

MC is a 3D submanifold, so if one now takes a
Poincaré surface of section Σ for the PCRTBP flow in-
side MC , then Σ will be 2D. Thus, the dynamics of the
resulting Poincaré map will be much easier to study than
those of the flow, as 2D map dynamics can be relatively
easily visualized. Thus, as is standard in PCRTBP stud-
ies (see e.g. [15, 16]), we will follow this approach of
studying the Poincaré map dynamics. However, ideally
the PCRTBP flow should be transverse (i.e. not tangent)
to the chosen Poincaré section at all points of the section,
or otherwise have tangencies at as few points as possible.
The most commonly used Poincaré sections in the litera-
ture (i.e. [15, 16]) are those with fixed x or y, but these
sections generally experience many tangencies with un-
stable resonant periodic orbits’ stable/unstable manifolds,
leading to discontinuities when the manifolds are plotted
on the section for analysis (e.g. [15]).

Given the disadvantages of fixed-x or fixed-y
Poincaré sections in the PCRTBP, in this study, we instead
will use a perigee (Earth-relative osculating true/mean
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anomalies = 0) Poincaré surface of section. Such sections
have been used by, e.g., Ross and Scheeres [17] and How-
ell et al. [18] as well; they have much better transversality
to the PCRTBP flow as compared to the aforementioned
commonly-used sections, as mean anomaly (usually) is al-
ways increasing and thus orbits usually don’t experience
tangencies to the section. The exception to this is in the re-
gion around the Moon where Earth’s gravity is no longer
the dominant influence on the spacecraft; in this case, the
geocentric osculating true/mean anomalies can start de-
creasing, but for the interior resonant orbits and their sta-
ble/unstable manifolds studied here, this is not the primary
region of interest since intersections with the perigee sec-
tion occur away from the Moon.

3.1.1 Identifying crossings of the periapse section
To identify crossings of PCRTBP trajectories with the

aforementioned periapse Poincaré surface of section dur-
ing propagation of orbits, rather than trying to directly
detect when the osculating true/mean anomalies become
zero, we utilize an alternative approach. In particular, it
is known that at perigee and apogee, in an inertial refer-
ence frame the geocentric position and velocity vectors
become perpendicular so that their dot product is zero.
Furthermore, this dot product is positive when ℓ ∈ (0, π)
and negative for ℓ ∈ (π, 2π). Thus, if we assume mean
anomaly is only increasing, then periapse occurs when this
dot product crosses zero in an increasing direction, from
negative to positive; apoapse occurs in the opposite case.
Thus, to detect periapse crossings and distinguish them
from (most) apoapses, we look for when

[(x+ µ), y] · [px, (py + µ)] [3]

crosses from negative to positive during a trajectory prop-
agation. This can be easily implemented in MATLAB or
Julia using those languages Events and Continuous Call-
backs functionalities, respectively. Note that the additions
of µ to x and py in Equation [3] are due to the change from
barycentered to Earth-centered coordinates.

In the Kepler problem, where mean anomaly ℓ is al-
ways increasing, the above strategy will detect every pe-
riapse without any false detections. However, if the as-
sumption of ℓ̇ > 0 is broken, then at times the above
test may detect a “false periapse” in the PCRTBP even
when true/mean anomaly is in fact π rather than zero. This
can occur in particular when (geocentric) ℓ briefly starts
decreasing near apoapse, which as mentioned earlier can
happen when the trajectory closely approaches the Moon.
If ℓ̇ becomes negative near apoapse, then the trajectory
can pass through ℓ = π from ℓ ∈ (π, 2π) to ℓ ∈ (0, π);
in this case the dot product in Equation [3] also crosses
from negative to positive, just as it does when ℓ passes
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Fig. 1. Illustration of perpendicular x-axis crossings
method for computing PCRTBP periodic orbits [20]

through 0 and ℓ̇ > 0. To mitigate these false detections,
one simply adds an additional check to the periapse event
detection algorithm. Namely, if the previous dot product
method detects a potential periapse crossing during prop-
agation, then the mean anomaly ℓ of the resulting state is
computed; only if ℓ is very near 0 or 2π is the periapse de-
tection then confirmed and the propagation stopped. Both
MATLAB and Julia’s event detection capabilities can im-
plement such functionality to decide whether or not to stop
a numerical integration based on an additional test.

3.2 PCRTBP Periodic Orbits
To compute a family of m:n unstable periodic orbits

in the Earth-Moon PCRTBP, we start with an orbit state
from the Earth Kepler problem having semi-major axis
a =

(
n
m

)2/3 and initial argument of periapse and true
anomaly both π (for the interior MMRs considered in this
study); here, the argument of periapse is measured with
respect to the rotating frame positive x-axis. The previ-
ously mentioned Keplerian orbit will be symmetric about
the x-axis and will also be periodic in the rotating Kepler
problem (i.e., PCRTBP with µ = 0). Thus, the method
of perpendicular x-axis crossings can be used to numer-
ically continue this Keplerian orbit to the true value of
µ = 1.2150584270572 × 10−2 for the Earth-Moon sys-
tem; see, for example, Section 2.6.6.2 of Parker and An-
derson [19] for details of this method. A schematic illus-
tration of the method is also given in Figure 1. The same
method is then used to continue the resulting PCRTBP
orbit through the rest of its orbit family, generally using
the perpendicular orbit x-intercept as the continuation pa-
rameter. Occasionally, when encountering a turning point
where this x-intercept reaches an extremum along the fam-
ily, we instead consider the Jacobi constant C as the pa-
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rameter, using an orbit state vs C fit to generate an initial
guess for an orbit on the other side of the x-intercept turn-
ing point. In this paper, we will consider only symmetric
periodic orbits, for which this method is valid.

As a note, an m:n resonant periodic orbit will pass
through periapse m times during one orbital period in
the PCRTBP. Thus, when using the periapse section de-
scribed in Section 3.1, the m:n periodic orbit will have
m intersection points with the section; moreover, these
points will not be fixed points of the section’s Poincaré
map, but become m-iteration periodic orbits under the
map. That is, one will have m points X(k) ∈ Σ ⊂ R4,
k = 0, 1, . . . ,m− 1, satisfying the equation

P (X(k)) = X(k + 1 mod m) [4]

for all k, where P : Σ → Σ is the periapse Poincaré map.
Furthermore, by definition of the pointsX(k), there exist
times-of-flight τ(k) ∈ R+ such that a trajectory starting at
X(k) reaches X(k + 1) in time τ(k) under the PCRTBP
flow; in other words, τ(k) is the first-return time of the
point X(k) under the PCRTBP periapse Poincaré map.

3.3 Stable and Unstable Manifolds
Once the periodic orbits in a family m:n have been

computed as well as their intersection points X(k) with
the periapse section, the computation of the orbits’ sta-
ble/unstable manifolds is carried out. In particular, we
compute the intersection of these manifolds with the pe-
riapse section.

The portions of the periodic orbit stable/unstable mani-
folds lying in the chosen Poincaré section will correspond
to 1D curves — one curve for each of the m points of
the periodic orbit X(k), k = 0, 1, . . . ,m− 1 lying in the
section. To help accurately compute the manifolds, we
extended to them iteration map-periodic case the first au-
thor’s previously developed parameterization method [10,
15] for computing Taylor-series approximations of peri-
odic orbit stable/unstablemanifolds; this extension also in-
corporates many methods from the first author’s previous
work[11] on computing manifolds of invariant tori. Al-
though a full description is beyond the scope of this paper,
in short, we solve for a function W : {0, . . . ,m − 1} ×
R → R4 such that for all k ∈ {0, 1, . . . ,m− 1}

Φτ(k)(W (k, s)) = W (k + 1 mod m,λs) [5]

where Φt(x) is the PCRTBP flow map of a point x ∈ R4

by time t, τ(k) are the first return times of the pointsX(k)
as described in Section 3.2, and λ is the mth root of the
monodromymatrix eigenvalue corresponding to the stable
or unstable manifold. Note that Φτ(k)(x) is not the peri-
apse Poincaré mapping P , as the flow propagation time
τ(k) is fixed to the first return time of X(k), not to the

return time of the arbitrary point x ∈ R4.
Equation [5] can be solved recursively by expressing

W as a set ofm Taylor series depending on the integer k

W (k, s) = X(k)+

∞∑
i=1

Wi(k)s
i k ∈ {0, 1, . . . ,m− 1}

[6]
where W1(k) ∈ R4 are appropriately scaled stable or un-
stable eigenvectors of the periodic orbit monodromy ma-
trix at each of its periapse passages X(k). The Wi(k)s

i

for i ≥ 2 correspond to higher order (nonlinear) terms
in the stable/unstable manifold approximation that are
solved recursively. Due to both finite truncation and ra-
dius of convergence, these series representations of W
will be valid only in a finite radius of validity centered
at s = 0, which can determined by observing the error in
Equation [5] as a function of s; see e.g. [11, 15] for details
of similar radius of validity calculations.

AsΦτ(k)(x)was not the periapse Poincaré map, them
curves parameterized byW lie near but not on the periapse
section of interest Σ. Thus, to finally compute the man-
ifolds on the section, one simply numerically integrates
dense grids of points from the domains of validity of those
curves either backwards or forwards to the section. Then,
further applications of the periapse Poincaré map either
forwards or backwards in time are used to respectively
globalize the full unstable and stable manifolds. As usual,
for each fixed Jacobi constant value C, one can plot these
Poincaré map manifolds of various orbits at that C value
using just 2D coordinates. Intersections of 1D manifold
curves from different orbits on this 2D plot will then give
points lying on true heteroclinic trajectories between those
orbits. In this study, we use the synodic Delaunay vari-
ables (L, g) of Section 2.1.1 as our plotting coordinates.

4. Cislunar Resonant Periodic Orbit Families
As described in Section 2.2, overlap of mean motion

resonances allows for natural changes of semimajor axis
without use of spacecraft propulsion. This overlap, which
corresponds to heteroclinics between unstable resonant or-
bits, can thus be useful for understanding and designing
orbit changes for missions in celestial systems. Thus, a
program for determining the extent of such phenomena in
cislunar space involves computing the unstable resonant
orbits, followed by their stable and unstable manifolds,
and finally detecting heteroclinics or barriers to transport
between the various resonances in the system. In this sec-
tion, we describe the first step: the computation of un-
stable interior resonant orbits, which are periodic in our
Earth-Moon PCRTBP model. In addition, to try to gain
a more complete understanding of how various resonant
periodic orbit families are linked with each other, we will
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Fig. 2. Bifurcation diagram for 4:1 periodic orbits with example orbit plots (Earth and Moon as red circles)

Fig. 3. Poincaré section points for Jacobi C = 3.10

also compute stable resonant periodic orbits.

As described in the introduction, the 2:1 and 3:1 lu-
nar mean motion resonances (MMRs) have been used in
prior space missions like TESS and IBEX (albeit both are
in stable resonant orbits); thus, we will study these two
MMRs. In addition, Poincaré section plots generated by
propagating massive number of points to our perigee sec-
tion also suggested 4:1 as a prominent MMR, which we
thus will study as well. For instance, Figure 3 shows such
a plot generated for Jacobi constantC = 3.10; in this plot,
wide stability islands generated by the 2:1 MMR are vis-
ible centered near L = 0.78, prominent 3:1 islands are
visible centered near L = 0.68, and also-significant 4:1
islands are clearly visible centered near L = 0.625. Note
that an m:n MMR displays m “eye” shaped regions in a
row at its corresponding value of L =

√
(1− µ)a.

4.1 Periodic Orbit Families for 4:1 MMR
The 4:1 resonant periodic orbits were computed us-

ing the methods of Section 3.2, including stable and un-
stable periodic orbits. Both prograde and retrograde or-
bits were computed and numerically continued throughout
their families. Figure 2 displays a bifurcation diagram for
the resulting orbit families, plotting the perpendicular pos-
itive x-axis crossing value of each orbit versus its Jacobi
constant, along with a selection of representative orbits.
First of all, it should be noted that the unstable and stable
prograde 4:1 periodic orbits belong to a single continuous
periodic orbit family, so that the stable orbits are continu-
ations of the unstable ones. The same is true of the unsta-
ble and stable retrograde 4:1 periodic orbits, which also
belong to a single family. The Jacobi constant reaches a
maximum or minimum at points where the periodic orbit
Floquet multipliers pass through 1, i.e. at a fold bifurca-
tion point, as expected; this marks the dividing point be-
tween stable and unstable orbits in each family.

Furthermore, observing the behavior of the x-intercept
vs Jacobi C curves at the bottom and top of the bi-
furcation diagram, it seems likely that in fact the pro-
grade and retrograde orbit families also may connect to
each other through yet-to-be-computed orbits having x-
intercepts near 0 or 0.8. Such orbits would correspond to
collisions or very close approaches with the Earth at peri-
apse (the x-intercepts near 0.8 correspond to apoapse), and
were therefore not computed in this study due to numeri-
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• Computed families of pro/retrograde stable/unstable 4:1 periodic orbits

Cislunar Resonant Periodic Orbit Families
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Fig. 4. Example 4:1 unstable resonant orbit

cal difficulties; likely an approach using regularized equa-
tions of motion (e.g. that of Levi-Civita [12]) would yield
these orbits as well, but we did not implement this yet. Vi-
sually comparing the high-eccentricity unstable prograde
(top center) and retrograde (top left) orbit plots also sug-
gests that there is likely a continuous family of orbits pass-
ing through the Earth singularity joining these two orbits
together. Retrograde orbits occur for lower Jacobi con-
stants (higher energies) than the prograde orbits.

The 4:1 orbits range across a wide range of eccentric-
ities, from near-circular (e.g. the top-right unstable orbit
plot) to very highly eccentric (the top center orbit plot).
An example of a moderate-eccentricity 4:1 unstable orbit
is displayed in Figure 4. Finally, note that the semimajor
axis of the 4:1 MMR is too small to ever reach at or above
the Moon’s orbit; even the highest-eccentricity 4:1 orbits,
shown in Figure 2, have an apoapse well below the Moon
(shown in orbit plots as a red circle at x = 1− µ ≈ 1).

4.2 Periodic Orbit Families for 3:1 MMR
For the 3:1 resonance, again both prograde and retro-

grade stable and unstable periodic orbits were computed
and numerically continued throughout their families. In
this case, the stable and unstable orbits are found to belong
to separate families, and so we get two separate bifurca-
tion diagrams, one for each family. Figure 5 displays the
diagrams for the resulting orbit families, again as a per-
pendicular x-axis crossing vs Jacobi C plot; the unstable
diagram is accompanied by a few unstable periodic orbit
plots. In this diagram, note that though each curve corre-
sponding to a prograde/retrograde orbit family crosses a

0.5 1 1.5 2 2.5 3 3.5
Jacobi constant (dimensionless)

-0.2

0

0.2

0.4

0.6

0.8

1

x-
in

te
rc

ep
t o

f o
rb

it 
at

 s
ym

m
et

ric
 p

oi
nt

3:1 prograde unstable

3:1 retrograde unstable
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

x (dimensionless)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y 
(d

im
en

si
on

le
ss

)

-0.4 -0.2 0 0.2 0.4 0.6 0.8
x (dimensionless)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y 
(d

im
en

si
on

le
ss

)

hi
gh

er
 e

2 points 
of same 
orbit

0.5 1 1.5 2 2.5 3 3.5
Jacobi constant (dimensionless)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

x-
in

te
rc

ep
t o

f o
rb

it 
at

 s
ym

m
et

ric
 p

oi
nt

3:1 prograde stable

3:1 retrograde stable

hi
gh

er
 e

2 points 
of same 
orbit

Fig. 5. Bifurcation diagrams for 3:1 unstable (top) and
stable (bottom) periodic orbits with example orbit plots
(Earth and Moon as red circles)

given Jacobi C twice, both of these crossings correspond
to the same orbit; these two replicated portions of a given
orbit family both come together at fold bifurcation points
where the Floquet multipliers go to 1 and the Jacobi con-
stant reaches a maximum or minimum along the family.

Similar to the 4:1 case described earlier, it is visible
from the bifurcation diagrams that the prograde and ret-
rograde unstable orbits are likely in fact connected with
each other through a continuous family of orbits passing
very near and then through the Earth singularity; the same
also is likely true of the stable prograde and retrograde
orbits. Again, retrograde orbits occur for lower Jacobi
constants/higher energies than prograde orbits. The 3:1
orbits exist over a wide range of eccentricities here as
well, from near-circular to highly eccentric, as is displayed
for the unstable orbits in the example orbit plots on top
right of Figure 5. An example of a moderate-eccentricity
3:1 unstable orbit is displayed in Figure 7. Finally,
once again we see that 3:1 unstable orbits never reach at
or above the Moon’s orbit; even the highest-eccentricity
3:1 unstable orbit shown in top right of Figure 5 has an
apoapse well below the Moon (again shown as a red cir-
cle at x = 1− µ ≈ 1).

4.3 Periodic Orbit Families for 2:1 MMR
While the 4:1 and 3:1 orbit families in many ways had

similar properties, the 2:1 resonant periodic orbit family
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Fig. 6. Bifurcation diagram for orbit family containing 2:1 periodic orbits with example orbit plots (Earth and Moon
as red circles)

demonstrates major differences with them in the Earth-
Moon PCRTBP. A perpendicular x-axis crossing value vs
Jacobi constant C bifurcation diagram for the periodic or-
bit families containing the 2:1 orbits, similarly constructed
to those given earlier for 4:1 and 3:1, is given in Figure 6.

First of all, we discuss the orbits with apoapse below
the Moon (x-intercept below 1−µ in Figure 6), examples
of which are labeled with letters a-ℓ and plotted in the fig-
ure. The orbit family in fact starts with a family of non-
resonant circular orbits around Earth, with vanishingly
small radius as the Jacobi constant goes to infinity; an ex-
ample of one such circular orbit is orbit (a) of Figure 6.
This circular orbit family then continuously morphs into
the 2:1 stable prograde resonant periodic orbits, which are
exemplified by orbits b, c, and d in order of increasing ec-
centricity and decreasing perigee. It is visible that these
stable prograde orbits will then pass through the singular-

ity at Earth and become stable retrograde 2:1 orbits, as also
occurred in the 4:1 and 3:1 cases; examples of this are ret-
rograde stable orbits e and f. These retrograde stable orbits
then continuously join with retrograde unstable 2:1 orbits,
exemplified by g and h, after passing through a fold bi-
furcation corresponding to a minimum in Jacobi C. It is
clear from the bifurcation diagram and orbit plots that the
retrograde unstable orbits’ periapse will pass through the
singularity at Earth again, and will then continuously join
with the prograde unstable 2:1 orbits, for example orbits i,
j, and k in order of decreasing eccentricity. These orbits
eventually encounter another fold bifurcation point where
C reaches a local maximum, after which the unstable pro-
grade 2:1 orbits (very briefly) become stable, followed by
again becoming unstable and continuously joining a fam-
ily of non-resonant orbits exemplified by orbit ℓ. This last
orbit visually seems to be generated by a homoclinic tra-
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Fig. 7. Example 3:1 unstable resonant orbit

jectory to an L1 planar Lyapunov orbit, although further
investigation is needed to confirm this.

Immediately, some key differences with 3:1 and 4:1
orbit families become apparent, First of all, still concen-
trating on the chain of orbits discussed above, the stable
prograde and unstable prograde 2:1 resonant periodic or-
bit families do not end by joining each other at a fold bi-
furcation point as occurred in the 4:1 case; instead they
continuously connect to families of non-resonant orbits.
In the 4:1 case, this fold bifurcation point corresponded to
a near-circular low-eccentricity orbit, but in the 2:1 case
there is instead a large vertical “gap” between orbits b and
k on the plot above. This gap occurs where otherwise one
might have expected to find low-eccentricity 2:1 unstable
prograde orbits, which we believe do not exist in the Earth-
Moon system. Indeed, we also tried continuation by µ
of several low-eccentricity 2:1 prograde unstable resonant
periodic orbits from the µ = 0 rotating Kepler problem;
however, all of these attempts encountered fold bifurca-
tions, where µ would reach a maximum along the curve
of continuation solutions and then would start decreasing
seemingly to negative infinity, thus never reaching the
Moon’s µ value. Other non-continuation based methods
of searching for periodic orbits directly in the PCRTBP
also failed to locate any low-eccentricity 2:1 prograde un-
stable orbits.

Another major difference between the 2:1 resonant pe-
riodic orbits and the 3:1 and 4:1 families discussed earlier
is that there are 2:1 orbits whose apoapses go beyond the
Moon; these correspond to the prograde and retrograde un-
stable orbit family curves having x-intercept greater than
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Fig. 8. 2:1 prograde unstable orbit, apoapse above Moon
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• Computed families of pro/retrograde stable/unstable 2:1 periodic orbits

Cislunar Resonant Periodic Orbit Families
2:1 lunar mean motion resonance

Bifurcation diagram (left) and unstable 2:1 orbit example (right)
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Fig. 9. Example 2:1 unstable resonant orbit

1 − µ in Figure 6. An example of such an orbit is shown
in Figure 8. For these orbits having an apoapse past the
Moon, looking at the bifurcation diagram again strongly
visually suggests that the retrograde and prograde orbit
families will likely join each other continuously after pass-
ing through the singularity at Earth.

As a final example, a 2:1 prograde unstable orbit of
moderate eccentricity is plotted and shown in Figure 9.
We would like to note that the continuous family of orbits
joining orbits a through ℓ together in Figure 6 was com-
puted by Broucke [21] in 1968, where he refers to it as
“Family BD”. They are not identified as belonging to the
2:1 MMR in that work, however, nor are the unstable 2:1
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orbits with apoapse above the Moon calculated either.

5. Resonance overlap and natural transport
With the 4:1, 3:1, and 2:1 families of resonant peri-

odic orbits computed and characterized, we are now ready
to compute and visualize the unstable resonant orbits’ sta-
ble and unstable manifolds and search for heteroclinics
between them, using the methodology described in Sec-
tion 3. As a reminder, we plot all manifolds on a perigee
Poincaré surface of section, using synodic Delaunay coor-
dinates (g, L) for visualization, where L =

√
(1− µ)a

and g is the argument of periapse relative to the synodic
frame x-axis; we plotL rather thanG as orbit size is easier
to interpret from L. We will compute manifolds and plot
them on the perigee section for a variety of Jacobi con-
stants, starting with a discussion of the 3:1 and 2:1 MMRs
and then investigating the 4:1 resonance as well. In this
portion of the study, we will analyze only prograde orbits.

5.1 Stable/unstable manifolds of low-energy 3:1 orbits
As described in Section 4.3, the 2:1 unstable prograde

resonant orbits only exist for higher eccentricities, which
corresponds to higher energies and lower Jacobi constants
C. The 3:1 and 4:1 unstable prograde orbits on the other
hand existed over a wide range of eccentricities. Indeed,
while we found 3:1 unstable orbits even at a Jacobi C of
3.45, the lowest-energy 2:1 unstable orbit found has a Ja-
cobi C of just above 3.15. Thus, there is a significant
range of energy values for which 3:1 (and 4:1) unstable
orbits exist, but not 2:1 unstable orbits.

First consider this range of Jacobi constants C ∈
[3.16, 3.45] between the appearance of the 3:1 unstable or-
bits and the appearance of 2:1 unstable orbits. Computing
the manifolds and plotting them on our perigee section as
shown in Figure 10, we see that for higher Jacobi constants
in that range (the top two plots), the manifolds closely re-
semble the separatrices of amathematical pendulum phase
portrait. This is what perturbation theory [13] predicts
should occur in a region dominated by a single resonance,
without overlapping with other resonances. Even as we
approach the appearance of the 2:1 orbits at C = 3.15,
the 3:1 manifolds retain their similarity to pendulum sepa-
ratrices, except that the homoclinic intersections between
stable and unstable 3:1 orbit manifolds become more and
more transverse; this is shown in the bottom plot of Figure
10, which is for C = 3.158. Note that the top half of the
3:1 orbit manifolds extends significantly further in L than
the bottom half for this last C value.

5.2 Heteroclinics between 3:1 and 2:1 orbits
We now turn our attention to the range of Jacobi con-

stants for which both 2:1 and 3:1 unstable periodic orbits
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Fig. 10. 3:1 stable/unstable manifolds (blue/red), perigee
section, from top to bottom: C = 3.363, 3.251, 3.158

exist, that is forC ≤ 3.15. In Figure 11, we show the com-
puted stable/unstable manifolds of the 3:1 and 2:1 orbits in
green/magenta and blue/red, respectively, plotted on our
perigee Poincaré section for C = 3.15, 3.10, 3.05, 3.00.
The grey background points are other non-manifold tra-
jectory points found by propagating massive number of
trajectories to our section, similar to the previous Figure
3, and help provide context as to the regions of phase space
through which the manifolds generate motions.

In particular, as soon as the 2:1 unstable orbits (and
thus their manifolds) appear for Jacobi constants just
above 3.15, heteroclinics between the 3:1 and 2:1 orbits
are generated. This is visible in the top left plot of Fig-
ure 11 which is for C = 3.15. This is in contrast to the
more standard resonance overlap behaviors observed in
systems with lower µ such as Jupiter-Europa, where there
is a range of low energies/high C values for which two
unstable resonant orbits exist without having any overlap
between them; we suspect that this behavior indicates that
the 2:1 resonance lies in a region where the standard re-
sults from Hamiltonian perturbation theory start to par-
tially break down. As another observation along these
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Fig. 11. 3:1 (green/magenta) and 2:1 (blue/red) orbit stable/unstable manifolds on perigee Poincaré sections along with
other propagated trajectories in gray, for Jacobi constants C = 3.15, 3.10, 3.05, 3.00 (see plot titles for C values)

lines, we see that for both C = 3.15 and 3.10 (the top
two plots of Figure 11, the top portion (above the center
of the 2:1 resonance at L ≈ 0.78) of the 2:1 manifolds
is not at all shaped like a mathematical pendulum; in fact
for C = 3.15, the top part of the 2:1 stable and unsta-
ble manifolds do not even intersect each other except at
the 2:1 periodic orbit points themselves. Further investi-
gations [22] have suggested that this unexpected behavior
for C = 3.10 and 3.15 may be related to tube dynamics
induced by manifolds of planar Lyapunov orbits, although
further study of these cases is still required.

For all the values of C ≤ 3.15, we have heterocilnic
connections between the 3:1 and 2:1 unstable orbits. For
C = 3.10 and lower, we observe that several points from
the 2:1 orbit manifolds also escape towards L = 1, corre-
sponding to the Moon’s semimajor axis value; a smaller
number of points do the same for C = 3.15 as well,
though generally the transport towards theMoon becomes

stronger for lower Jacobi constants/higher energies as one
would expect. For C = 3.05 and 3.00, the top part of
the 2:1 orbit manifolds finally does also develop a homo-
clinic intersection, making the manifolds more similar to
the typical pendulum separatrix shape than was the case
for C = 3.15 and 3.10. The overall picture of the mani-
folds and heteroclinics between them does not change sig-
nificantly between C = 3.05 and 3.00. An example of a
3:1 to 2:1 heteroclinic trajectory for C = 3.05 is shown
in Figure 12, with the starting 3:1 orbit shown in cyan and
destination 2:1 orbit in green.

In summary, for energiesC ≤ 3.15where 2:1 unstable
orbits exist, there exist zero-∆v paths from the 3:1 MMR
to 2:1. And for lower Jacobi constants than C = 3.10,
one can also easily reach the Moon from a 2:1 unstable
resonant orbit. Though here we only demonstrated results
for C = 3.00 to 3.15, the same also holds for lower C
[22]. Thus, one can insert into a sufficiently high-energy
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Resonance overlap and natural transport
Example heteroclinic connection from 3:1 to 2:1 lunar MMR

Fig. 12. Example 3:1 to 2:1 heteroclinic transfer for C = 3.05, synodic frame on left and inertial frame on right

3:1 orbit’s stable manifold, and then surf heteroclinic con-
nections and manifolds to the Moon, which would likely
save significant propellant versus a more direct injection.

5.3 The 4:1 resonance and barriers to transport
Having found that it is possible to transfer without∆v

from the 3:1 to 2:1 resonances given a sufficiently high
energy level, it is natural to ask whether natural transfers
from 4:1 to 3:1 may also be possible. If so, then one would
be able to start in a 4:1 orbit and follow a chain of hetero-
clinics until the Moon without using propellant.

In Figure 13, we show stable and unstable manifolds
of 4:1 unstable resonant orbits for C = 3.15, 3.00, and
2.85 plotted on our perigee Poincaré surface of section.
It is immediately visible that these manifolds are shaped
very similarly to pendulum phase portrait separatrices, as
would be the case in a region dominated by a single res-
onance without other MMRs overlapping. In fact, for
C = 3.15 and 3.00, the 4:1 stable and unstable manifolds
seem to almost lie on top of each other, very much like
the case of an ideal pendulum whose stable/unstable man-
ifolds exactly coincide. This strongly suggests that no het-
eroclinic can occur from these orbits to the 3:1 MMR or
beyond; the same is in fact also visible for the 4:1 orbit at
C = 2.85, whose stable and unstable manifolds intersect
slightlymore transversally than those of 3.00 and 3.15, but
still clearly do not make significant excursions to other L
values. Comparing these 4:1 manifolds to the 3:1 orbit
manifolds computed earlier, we are clearly in a situation
similar to the top two manifold plots of Figure 10 which
had no heteroclinics to 2:1, rather than the case of Figure
11 where heteroclinics first appeared.
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mu=1.215e-02 4:1 Orbit + Manifolds C=2.8500000

Fig. 13. 4:1 stable/unstable manifolds (blue/red), perigee
section, from top to bottom: C = 3.15, 3.00, 2.85

The above evidence suggests that the 4:1 orbits for en-
ergiesC ≥ 2.85 do not have heteroclinics to the 3:1MMR
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Fig. 14. 4:1 unstable resonant orbit at C = 2.85

as one might have hoped. While one might hope that per-
haps further decreasingC (increasing energy) might yield
a 4:1 orbit with a heteroclinic, the C = 2.85 orbit already
has such a high energy and eccentricity that its periapse
passes below the surface of the Earth, as shown in Figure
14. 4:1 prograde unstable orbits with higher energy and
lower C will all have even higher eccentricities than this
one and thus will also collide with the surface of the Earth.
Even after nevertheless studying such orbits, we still did
not detect any heteroclinics between such Earth-collision
4:1 orbits and the 3:1 orbits at such lowC values. Overall,
we believe that there are no heteroclinic connections from
any 4:1 orbit to any 3:1 orbit in the Earth-Moon system.

To understand why no heteroclinics from 4:1 to 3:1
seem to be available, a clue can be seen in the C = 3.10
plot of Figure 11. Here, a continuous curve stretching hor-
izontally across the entire plot, from g = 0 to 2π, seems
to be present just above the 4:1 resonant island (the four
“eye” shaped regions centered near L = 0.625). This
curve seems to be a 1D KAM torus [23], sometimes also
referred to in the 2D map case as a rotational invariant
circle (RIC) [17], of our PCRTBP Poincaré map; these
curves would be formed by Keplerian orbits which per-
sist (after deformation) into the PCRTBP. A key property
of such curves is that they form barriers to transport be-
tween different resonances, as stable/unstable manifolds
cannot intersect them. Thus, this curve is clearly separat-
ing the 4:1 and 3:1 MMRs for this Jacobi constant value
C = 3.10, preventing heteroclinics between them. Al-
though less clear in the figure, a similar curve seems to
also potentially exist for C = 3.05. For C = 3.00 and be-
low, a simple visual identification is not so easy, but we
suspect that similar RICs most likely are the barrier pre-
venting heteroclinics from 4:1 to 3:1 orbits from occurring

over the entire range of C values considered.

6. Conclusions
In this study, we demonstrated that mean motion res-

onances play a major role in the dynamical structure of
cislunar space. After computing and characterizing fam-
ilies of unstable and stable 4:1, 3:1, and 2:1 resonant pe-
riodic orbits, in which the 2:1 family was found to have
a very unique and interesting structure, we computed sta-
ble and unstable manifolds of the prograde unstable res-
onant orbits. By using a periapse Poincaré section with
synodic Delaunay variables, we were able to effectively
visualize the resulting manifolds in a manner that allowed
us to identify and interpret the observed phenomena in line
with Hamiltonian perturbation theory. Heteroclinics be-
tween 2:1 and 3:1 unstable resonant orbits were found to
occur for Jacobi constants below 3.15, whereas it was also
shown that the 4:1MMR does not have any natural hetero-
clinics with the 3:1 MMR for any energy. Hence, we have
identified the 3:1 mean motion resonance as truly being a
“gateway to the Moon” for lower-energy mission design.

Also in this study, we found that the Earth-Moon
PCRTBP resonant orbit and heteroclinic structure can at
times vary quite significantly from that of previously-
studied systems with much smaller µ values, e.g. outer
planet-moon or star-planet CRTBPs, which usually follow
perturbation theory-type dynamics fairly closely. Thus,
a CRTBP-based analysis of the Earth-Moon system is
shown to be crucial to understanding the resonant dynam-
ics of cislunar space. Our additional recent work [22]
leveraging the manifolds computed in this study has fur-
ther demonstrated that a full CRTBP-based analysis of cis-
lunar space is of great import, as comparisons with a per-
turbed Kepler problem-based semi-analytical approach
showed that the latter tends to greatly underestimate the
widths and effects of the 2:1 and 3:1 resonances.

While this study as well as [22] both considered only
the planar Earth-Moon CRTBP, many spacecraft actually
orbit in inclined orbits relative to the Earth-Moon orbital
plane. This is in fact the case for the TESS and IBEX
spacecraft mentioned earlier which orbit in inclined stable
2:1 and 3:1 resonant orbits. Thus, a generalization of this
study to the spatial CRTBP would be the most significant
future direction for this research. This will also require the
development of new tools to handle the greater dimension-
ality of the system, as even after reduction to a Poincaré
map on an energy submanifold, the spatial CRTBP re-
mains a 4D symplectic map. Apart from the spatial ex-
tension, it may also be of interest to investigate the effect
of other less significant MMRs such as 5:2 or 7:2. Finally,
although it was observed that the unstablemanifolds of the
2:1 orbits do lead towards the Moon, a better understand-
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ing of heteroclinic connections from 2:1 resonant orbits
to L1 Lyapunov orbits would also be of utility for future
lunar missions as well as for potentially explaining some
of the dynamical behaviors observed in this study.
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