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Summary6

NumbaCS (Numba Coherent Structures) is a Python package that efficiently implements a7

variety of methods for studying material transport in time-dependent fluid flows. It leverages8

Numba – a high performance Python compiler for generating optimized machine code from9

Python functions – along with other Numba-compatible packages behind the scenes, producing10

fast and user-friendly implementations of coherent structure methods. “Coherent structure11

methods” refer to any method which can be used to infer or extract Lagrangian and objective12

Eulerian coherent structures. The theory behind these methods have been developed over13

the last few decades with the aim of extending many of the important invariant objects from14

time-independent dynamical systems theory to the more general setting where a system may15

have arbitrary time dependence and may only be known or defined for some finite time. These16

time-dependent systems are ubiquitous in the context of geophysical and engineering flows17

where the evolution of the velocity field depends on time and velocity data representing these18

flows is not available for all time. By extending the ideas from the time-independent setting to19

the more general time-dependent setting, important transient objects (coherent structures) can20

be identified which govern how material is transported within a flow. Understanding material21

transport in flows is of great importance for applications ranging from monitoring the transport22

of a contaminant in the ocean or atmosphere to informing search and rescue strategies for23

persons lost at sea.24

Statement of need25

As theory and implementations of coherent structures have been developed (Farazmand &26

Haller, 2012; Haller, 2011; Haller et al., 2016; Haller & Beron-Vera, 2013; Haller & Poje,27

1998; Mathur et al., 2007; Nolan, Serra, et al., 2020; Schindler et al., 2012; Serra & Haller,28

2016; Shadden et al., 2005) and the utility of these tools has been demonstrated over the last29

two decades (Curbelo & Rypina, 2023; Du Toit & Marsden, 2010; Günther et al., 2021; Liu30

et al., 2018; Nolan, Foroutan, et al., 2020; Peacock & Haller, 2013; Pretorius et al., 2023;31

Rutherford et al., 2012; Serra et al., 2017), there has been a steadily growing interest in using32

these methods for real-world applications. Early on, software implementations were largely33

contained to in-house packages developed by applied mathematicians and engineers advancing34

the theory. Over the years, there have been a number of software packages developed in an35

attempt to provide implementations of some of these methods for practitioners outside of the36

field. Some provide a friendly interface for users (Dynlab – Nolan (2024); LCS MATLAB Kit –37

Dabiri (2009)), others aim to provide efficient implementations of specific methods (sometimes38

in specific circumstances) (Lagrangian – Briol & d’Ovidio (2011); Newman – Du Toit (2010);39

Aquila-LCS – Lagares & Araya (2023)), and a few implement a variety of methods (Tbarrier40

– Bartos et al. (2022); LCS Tool - Onu et al. (2015)). NumbaCS intends to unite these41

aims by providing efficient and user-friendly implementations of a variety of coherent structure42

Jarvis, & Ross. (2025). NumbaCS: A fast Python package for coherent structure analysis. Journal of Open Source Software, ¿VOL?(¿ISSUE?),
7948. https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0009-0006-8770-6728
https://orcid.org/0000-0001-5523-2376
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/7948
https://github.com/alb3rtjarvis/numbacs
https://doi.org/
https://vknight.org
https://orcid.org/0000-0002-4245-0638
https://github.com/janfb
https://github.com/slayoo
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
methods. By doing this, the hope is to provide a powerful tool for experienced practitioners43

and a low barrier of entry for newcomers. In addition, as new methods/implementations arise,44

the framework laid out in NumbaCS provides a straightforward environment for contributions45

and maintenance. Also of note is another package called CoherentStructures.jl (Junge et46

al., 2020), which is fast, user-friendly, and implements a variety of methods. This package47

has some overlap with NumbaCS but they both implement methods which the other does not.48

CoherentStructures.jl is a powerful tool that should be considered by users who perhaps49

prefer Julia to Python or are interested in computing some of the methods not implemented in50

NumbaCS. For a more detailed breakdown of how all of the mentioned packages compare with51

NumbaCS, see the documentation.52

Functionality53

NumbaCS implements the following features for both analytical and numerical flows:54

• Standard flow map computation55

• Flow map composition method (Brunton & Rowley, 2010)56

• Finite time Lyapunov exponent (FTLE) (Shadden et al., 2005)57

• instantaneous Lyapunov exponent (iLE) (Nolan, Serra, et al., 2020)58

• Lagrangian averaged vorticity deviation (LAVD) (Haller et al., 2016)59

• Instantaneous vorticity deviation (IVD) (Haller et al., 2016)60

• FTLE ridge extraction (Schindler et al., 2012; Steger, 1998)61

• Variational hyperbolic LCS (Farazmand & Haller, 2012; Haller, 2011)62

• Variational hyperbolic OECS (Serra & Haller, 2016)63

• LAVD-based elliptic LCS (Haller et al., 2016)64

• IVD-based elliptic OECS (Haller et al., 2016)65

For flows defined by numerical velocity data:66

• Simple creation of JIT compiled linear and cubic interpolants67

All of these implementations are relatively straightforward to use and quite efficient. This is due68

to three key dependencies NumbaCS utilizes to speed up computations. The first is Numba (Lam69

et al., 2015), a JIT compiler for Python which can drastically speed up numerical operations70

and provides a simple framework for parallelizing tasks. Next, numbalsoda (Wogan, 2021) is71

a Python wrapper to ODE solvers in both C++ (LSODA) and FORTRAN (DOP853) that72

bypasses the Python interpreter and can be used within Numba functions (common Python73

ODE solvers, such as those provided by the SciPy package, cannot be executed within Numba74

functions). This package is crucial to the efficiency of NumbaCS as particle integration is often75

the most costly part of finite-time coherent structure methods. Finally, the interpolation76

package (Winant et al., 2017) provides optimized interpolation in Python and is utilized in77

NumbaCS to create JIT compiled interpolant functions, producing efficient implementations of78

methods even for flows defined by numerical data. By taking advantage of these packages79

behind the scenes, NumbaCS is able to maintain the simplicity and readability of an interpreted80

language while achieving runtimes closer to that of a compiled language.81

Examples82

A User Guide is provided which details the workflow in NumbaCS and a number of examples83

demonstrating the functionality are covered in the Example Gallery. Here we show the output84

of a few examples, provide the runtime of each, and breakdown the runtime based on the parts85

of each method. “Flowmap” refers to the particle integration step, “C eig” and “S eig” refer86

to the eigenvalue/vector step for Lagrangian and Eulerian methods respectively (this time will87

be roughly equal to the FTLE and iLE times), and the last is the extraction time for a given88

method. For examples that require particle integration, the default solver (DOP853) was used89
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with the default error tolerances (relative tolerance = 1e-6, absolute tolerance = 1e-8). All90

runs were performed on an Intel(R) CoreTM i7-3770K CPU @ 3.50GHz (which has 4 cores and91

8 total threads). Warm-up time1 is not included in the timings.92

Analytical Flow (Double Gyre)93

94

Left: DG FTLE ridges at t0 = 0, integration time T = -10. Total runtime per iterate: ~0.424s95

(flowmap: ~0.390s; C eig: ~0.025s; FTLE ridge extraction: ~0.009s). Right: DG hyperbolic96

LCS at t0 = 0, integration time T = -10. Total runtime per iterate: ~5.219s (flowmap (aux97

grid): ~1.83s; C eig (aux grid): ~0.039s; hyperbolic LCS extraction: ~3.350s). Both are98

computed over a 401x201 grid.99

Numerical Flow (QGE)100

101

Left: QGE FTLE ridges at t0 = 0, integration time T = 0.1. Total runtime per iterate:102

~2.461s (flowmap: ~2.400s; C eig: ~0.038s; FTLE ridge extraction: ~0.023s). Middle: QGE103

hyperbolic OECS at t0 = 0.15. Total runtime per iterate: ~2.238s (S eig: ~0.038s; hyperbolic104

OECS extraction: ~2.200s). Right: QGE elliptic OECS at t0 = 0.5. Total runtime per iterate:105

~0.0452s (IVD: ~0.0002s; elliptic OECS extraction: ~0.045s). All are computed over a 257x513106

grid.107

1Since many functions in NumbaCS are JIT compiled, these functions are optimized and compiled into machine
code on the first function call. This initial delay is often referred to as “warm-up time”. After the first call,
subsequent function calls are much faster.
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Analytical Flow (Bickley jet)108

109

Bickley jet elliptic LCS at t0 = 0, integration time T = 40 days. Total runtime per iterate:110

~5.065s (flowmap: ~4.490s; LAVD: ~0.565s; elliptic LCS extraction: ~0.010s). Computed over111

482x121 grid.112

Numerical Flow (MERRA-2)113

114

MERRA-2 FTLE ridges at t0 = 06/16/2020-00:00, integration time T = -72hrs. Total runtime115

per iterate: ~7.835s (flowmap: ~7.480s; C eig: ~0.085s; FTLE ridge extraction: ~0.27s).116

Computed over 902x335 grid.117

Datasets118

Two datasets are provided with NumbaCS to test the functionality for flows defined by numerical119

velocity data. One is a numerical simulation of the quasi-geostrophic equations (QGE). We120

thank the authors of Mou et al. (2021) for providing us with this dataset, which was used121

extensively during development, and allowing a piece of the dataset to be included in the122

package. The full dataset was over the time span [10,81] with dt = 0.01. We provide the123

velocity fields over the much shorter time span of [10,11] with the same dt. For details on124

parameters used in the simulation, refer to the cited paper. The other dataset is a MERRA-2125

vertically averaged reanalysis dataset (Gelaro et al., 2017; GMAO, 2015), which was used as126

part of a paper (Jarvis et al., 2024) coauthored by the authors of this paper. Wind velocity127

fields were vertically averaged over pressure surfaces ranging from 500 hPa to 800 hPa. The128

corresponding latitude, longitude, and date arrays are also provided. All data can be downloaded129

from the data folder on the GitHub page.130

Usage in ongoing research131

As of the writing of this paper, NumbaCS has not been public for long but has been utilized132

in one publication (Jarvis et al., 2024) where it was the computational tool for all coherent133
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structure methods. In addition, it is currently being used in an ongoing project focused on134

airborne invasive species traveling from Australia to New Zealand titled “Protecting Aotearoa135

from wind-dispersed pests”. This is a five year (October 2023 - October 2028) Scion-led and136

Ministry of Business, Innovation and Employment (MBIE)-supported program.137
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