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Numerical and Theoretical Developments for Coherent Structures

Albert J. Jarvis

(ABSTRACT)

The field of nonautonomous dynamical systems has undergone an exceptional amount of

growth over the last few decades, with the geometric viewpoint leading to the development

of Lagrangian and objective Eulerian coherent structures. This theory extends notions de-

veloped for autonomous systems to those that may have arbitrary dependence on time and

whose flow data may not be known or available for all time. The structures obtained from

this theory are material surfaces that have an exceptional effect on the contents of a flow

and are key for understanding transport. These structures organize the contents of a flow

and lead to a qualitative description of the fate of material under the influence of a flow.

While these methods have been adopted in geophysical and engineering applications, the

theory is still relatively new. This dissertation aims to contribute to the maturation of this

theory and its numerical implementations by providing an efficient and user-friendly soft-

ware package for these tools, demonstrating the usefulness of these methods on a large-scale

transport application, further extending the theory in a specific context, and presenting a

new numerical framework for computing LCS from their variational theory.
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Albert J. Jarvis

(GENERAL AUDIENCE ABSTRACT)

Understanding how some material moves through a fluid flow has wide-reaching applications

in the physical sciences. Dust or smoke moving through the atmosphere, oil drifting through

the ocean, or even a missing person carried by ocean currents can all be studied through the

lens of material transport in a fluid flow. When the velocity field that describes the fluid

flow does not change in time (time-independent), there is a rich theory dating back over

a hundred years that defines key regions and structures in a flow, leading to a qualitative

understanding of the fate of material being transported in that flow. However, when the

velocity field changes with time (time-dependent) in a complex way, this classical theory

falls short, as it was not developed with such flows in mind. These time-dependent flows

are the rule rather than the exception in many geophysical applications (like those described

above). Over the last few decades, a new theory has been developed to extend many of

the notions of the time-independent setting to the more general time-dependent setting.

This dissertation aims to contribute to the maturation of this theory and its numerical

implementations by providing an efficient and user-friendly software package for these tools,

demonstrating the usefulness of these methods on a large-scale transport application, further

extending the theory in a specific context, and presenting a new numerical framework for

computing certain versions of these structures.
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Chapter 1

Introduction

Understanding how material will be transported under the influence of a flow is of great

importance in a variety of applications ranging from contaminant transport in a geophysical

flow (an oil spill in the ocean [113, 114, 117] or dust containing unwanted pathogens moving

through the atmosphere [75]) to developing search and rescue strategies for a person lost

at sea [145]. When the underlying flow does not change with time, there is rich theory,

originating in the late 1800s with Poincaré’s work on celestial mechanics [122, 123], which

allow one to obtain a full qualitative understanding of the long-term fate of particles advected

by the flow. This theory relies on identifying important invariant objects (such as fixed

points, corresponding stable and unstable manifolds, limit cycles, attractors, etc.) by looking

at asymptotic properties of trajectories. These structures partition the state-space and

provide a way to delineate dynamically distinct regions of the flow. Once these structures

are obtained, a complete qualitative description of the fate of trajectories can be inferred.

When the underlying flow has general time-dependence, and may not be defined for all

time, the asymptotics from which these structures are derived become ill-defined. This is

precisely the setting we find ourselves in for many “real-world” geophysical and engineering

flows. Over the last few decades, extending the notions from autonomous dynamical systems

theory to the more general nonautonomous setting has received a great deal of attention

and has seen a great deal of success1. Though many have contributed to this extension

1We note that there is a complementary viewpoint in dynamical systems which can be viewed as the

1
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of the theory over the years, much of the pioneering work was done by various researchers

at Cal Tech at the turn of the century (Haller, Shadden, Lekien, Marsden, Ross, etc.).

Much of the variational theory was developed by George Haller and collaborators through

his definition and refinement of Lagrangian coherent structures (LCS), and later by Serra

and Haller through their definition of objective Eulerian coherent structures (OECS). These

structures (which will be defined precisely below) can loosely be thought of as the finite-time

and instantaneous analogues of the important invariant objects defined by Poincaré over a

century ago. These structures are not invariant (unless viewed in the extended phase space)

since they move through the state-space and come in and out of existence, but can provide

similar qualitative information as their autonomous counterparts. This dissertation focuses

on the numerical implementation of these methods, applying these methods to “real-world”

scenarios, and contributing to further extending the theory.

For the remainder of this chapter, we mathematically set up the problem to be solved and

cover the relevant theory which serves as the foundation upon which this dissertation is built.

1.1 Setup

Consider the following initial value problem, viewed as a dynamical system over some general

n-dimensional smooth manifold M ,

statistical or probabilistic point of view, known as ergodic theory. This too has a rich history, originating with
Boltzman’s work on statistical mechanics and the ergodic hypothesis, and later put on rigorous mathematical
footing by Birkhoff and Von Neumann. Applying this viewpoint to nonautonomous systems has also seen a
great deal of attention and success over the last few decades through important work on transfer operators
by Froyland (Perron-Frobenius) and Mezić (Koopman), among others. This dissertation will not focus on
this viewpoint.
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d

dt
x = v(x, t), x ∈ U ⊂ M, t ∈ I ⊂ R

x(t0) = x0

(1.1)

For the majority of this dissertation, M = R
2, though for the sake of generality, we will often

define things in terms of an arbitrary smooth manifold M . We require v(x, t) be uniformly

Lipschitz continuous in x on U and continuous in t so that solutions exist and are unique

∀x ∈ U and ∀t ∈ I (by the Picard-Lindelöf theorem [56]). Then, there exists a family of (at

least local) diffeomorphisms {Ft
t0
} (known as the flow maps) associated with the dynamical

system given by,

Ft
t0
: U → U

: x0 7→ x(t; t0,x0)

(1.2)

in which either t > t0 (mapping forward in time) or t < t0 (mapping backward in time). Ft
t0

maps initial positions to final positions under the action of the flow,

Ft
t0
(x0) := x0 +

∫ t

t0

v(x(s), s)ds (1.3)

To gain insight into material transport, we look at the linearized flow map (often called the

deformation gradient)

∇Ft
t0
(x0) : Tx0U → TxU

: ux0 7→ ux

(1.4)
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∇Ft
t0
(x0) acts on elements of the tangent space (tangent vectors) at x0 and maps them to

elements of the tangent space downstream at x = Ft
t0
(x0) (i.e., the deformation gradient

maps material vectors to spatial vectors). Due to the conditions we impose on v(x, t),

it follows that ∇Ft
t0
(x0) exists almost everywhere (by Rademacher’s theorem [43]). We

also require that det(∇Ft
t0
(x0)) > 0 (we will often require det(∇Ft

t0
(x0)) = 1 to impose

incompressibility).

1.1.1 Example flow

Throughout the rest of this chapter we will cover the theory behind many coherent struc-

ture methods. We will use the double gyre equations as an example flow from which we

will illustrate the effect these structures have on material moving with the flow. In subse-

quent chapters, we will see these methods applied to a variety of analytical and numerical

flows (flows represented by numerical velocity data). The double gyre equations produce

an ocean-like gyre flow which consists of two counter rotating gyres. When t = 0, there is

an instantaneous seperatrix which acts as a boundary between the two gyres. As t varies,

this seperatrix oscillates back and forth in a volume preserving manner. While this flow is

time-periodic (and not aperiodic), it serves as a good test bed for many of these methods

and is often used as a common benchmark. The double gyre is typically defined over the

domain U = [0, 2]× [0, 1] with its velocity field given by

v(x, y, t) =



u(x, y, t)

v(x, y, t)


 =



−πA sin(πf) cos(πy)

πA cos(πf) sin(πy) df
dx


 (1.5)

where

f(x, t) = ϵ sin(ωt)x2 + (1− 2ϵ sin(ωt))x



1.2. HYPERBOLIC LAGRANGIAN COHERENT STRUCTURES 5

A determines the magnitude of velocity vectors, ϵ determines the magnitude of the oscillation,

and ω determines the period of the oscillation. The parameters used in all examples in this

chapter are A = 0.1, ϵ = 0.25, and ω = 2π
10

. In Figure 1.1 we show the velocity field at a

few select times for the given parameters. Notice the ω value we use results in a period of

10 units of time.

Figure 1.1: Velocity field for double gyre flow at t = (a) 0.0, (b) 3.3, (c) 6.7, (d) 10.0.

1.2 Hyperbolic Lagrangian coherent structures

In the finite-time setting, we seek influential material surfaces (co-dimension 1) that show

exceptional hyperbolic behavior relative to nearby material surfaces [65]. More precisely,

we seek material surfaces that attract or repel nearby particles maximally, in a local sense.
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These surfaces will act analogously to stable manifolds (repelling LCS) or unstable manifolds

(attracting LCS) locally, over the the finite time window from which they were derived. We

turn to the linearized flow map as the first step in defining these structures.

The linearized flow map encodes information about how infinitesimal perturbations to initial

conditions grow under the influence of the flow and provides a linear approximation to

the action of the flow map. Finding regions of the domain in which these infinitesimal

perturbations grow or shrink the most can illuminate regions that will repel or attract nearby

material in an extreme way. Following Shadden et al. [147], let x0+δx0 be an infinitesimally

nearby point to x0 at t0 where δx0 = δx(t0) is an arbitrarily oriented small perturbation to

x0 s.t. ||δx0|| << 1. Then, after time T , this perturbation evolves under the action of the

flow map as,

δx(t0 + T ) = Ft0+T
t0

(x0 + δx0)− Ft0+T
t0

(x0)

= Ft0+T
t0

(x0) +∇Ft0+T
t0

(x0)(x0 + δx0 − x0) +O(||δx0||2)− Ft0+T
t0

(x0)

= ∇Ft0+T
t0

(x0)δx0 +O(||δx0||2)

(1.6)

where we Taylor expanded Ft0+T
t0

(x0 + δx0) around x0. Since δx0 is an infinitesimal pertur-

bation, the O(||δx0||2) term is negligible. The magnitude can be computed by looking at

the norm of this evolved perturbation

‖δx(t0 + T )‖ =
√〈

∇Ft0+T
t0

(x0)δx0,∇Ft0+T
t0

(x0)δx0

〉
(1.7)

Using properties of the inner product, this can be rewritten as,

‖δx0(t0 + T )‖ =

√〈
δx0,

(
∇Ft0+T

t0
(x0)

)∗ ∇Ft0+T
t0

(x0)δx0

〉
(1.8)
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where ()∗ denotes the conjugate transpose. Then,

Ct0+T
t0

(x0) =
(
∇Ft0+T

t0
(x0)

)∗ ∇Ft0+T
t0

(x0) (1.9)

is the right Cauchy-Green strain tensor which is both symmetric and positive-definite. This

implies that Ct0+T
t0

(x0) has real eigenvalues λi and corresponding orthonormal eigenvectors

ξi with i ∈ {1, 2, ..., n} such that,

λ1 ≥ ... ≥ λn > 0 and, (1.10)

〈ξi, ξj〉 = δij. (1.11)

Now to find the direction in which an infinitesimal perturbation will grow the most, we note

that Eq. (1.8) is maximized when δx0 aligns with ξ1, the eigenvector corresponding the the

maximum eigenvalue of Ct0+T
t0

(x0). Let δx∗
0 = ‖δx0‖ ξ1. Then,

max
δx0

‖δx(t0 + T )‖ =
√

〈δx∗
0, λ1δx∗

0〉 =
√

λ1 ‖δx0‖ (1.12)

Therefore, for any x0 ∈ U , the maximum an infinitesimal perturbation to x0 will grow over

the time window [t0, t0 + T ] will be
√
λ1 and this will occur when the direction of the initial

perturbation aligns with ξ1.

For a perhaps more geometrically intuitive viewpoint, we note that the preceding result can

equivalently be arrived at by looking at the SVD of the linearized flow map. Recall the

spectral norm of a matrix A (equivalent to the induced vector 2-norm [73]) represents the

maximum magnitude that A can stretch a vector by (and is given by the largest singular

value). Therefore, to obtain the linear approximation to the action of the flow map on

infinitesimal perturbations, we note that the most a perturbation will be deformed is given
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by its largest singular value and this will happen when the initial perturbation aligns with

the corresponding right singular vector. To see this, let ∇Ft0+t
t0

(x0) = UΣV∗ be the SVD

of the linearized flow map where U,V ∈ Mn(R) are unitary (they are in fact orthogonal

since ∇Ft0+t
t0

(x0) is real) and Σ ∈ Mn(R) is a nonnegative diagonal matrix (it is in fact

positive diagonal since ∇Ft0+t
t0

(x0) is nonsingular). Then, ∇Ft0+t
t0

(x0) (applied to a set of

n orthogonal basis vectors of the tangent space represented by an infinitesimal n-sphere)

can be viewed as an initial rotation (by V∗), followed by pure scaling in the coordinate

directions (by Σ), and a final rotation (by U) resulting in the final deformed ellipsoid. In

this viewpoint, the linear approximation to the action of the flow map will cause specific

initial vectors given by the the right singular vectors (vi) to grow (or shrink) according to the

corresponding singular values (diag(Σ)) and deform into the left singular vectors (ui) scaled

by those singular values. Therefore, the meaning of the eigenvalues and eigenvectors of Ct0+T
t0

can equivalently be seen through the SVD of ∇Ft0+T
t0

by noting the singular values (diag(Σ))

are equal to the square root of the eigenvalues (
√
λi) of Ct0+T

t0
and the right singular vectors

(vi) are equal to the eigenvectors (ξi) of Ct0+T
t0

. Therefore, the maximum argument made in

Eq. (1.12) could equivalently be made with the leading right singular vector in Eq. (1.7).

For n = 2, we show this in Figure 1.2.

Figure 1.2: Behavior of flow map (left) and linearized flow map (right) on an infinitesimal
set.
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1.2.1 Finite time Lyapunov exponent

Note that Eq. (1.12) can be written as,

max
δx0

‖δx(t0 + T )‖ = eσ
t0+T

t0
(x0)|T | ‖δx0‖ (1.13)

where

σt0+T
t0

(x0) :=
1

2|T | log(λ1) (1.14)

is the finite-time Lyapunov exponent (FTLE), a finite-time version of the classic Lyapunov

exponent. The FTLE at a point x0 will provide information about how nearby particles will

behave over the time window of interest. Where there is high FTLE values, the flow will be

very sensitive to perturbations to the initial condition. The FTLE is often computed for the

entire spatial domain and can be computed both forward and backward in time. Regions of

high FTLE reveal dominant repelling structures in forward time and dominant attracting

structures in backward time (see Figure 1.3). This idea of using finite-time stretching to

diagnose mixing and coherence was first proposed by Pierrehumbert [120, 121], later used

in the original definition of LCS by Haller and Yuan [57], and further expanded on by

Shadden et al. [147]. These works, among others, laid the foundation for the modern theory

of hyperbolic LCS. Even today, FTLE is still the most common method used for hyperbolic

LCS detection due to its efficiency and simplicity.

We make a note here that the requirements we put on v(x, t) have been sufficient up to

this point but in many of the subsequent arguments, additional smoothness will be required.

From here on out we require that v(x, t) be C2 in space and C1 in time.
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Figure 1.3: (a) Forward and (b) Backward FTLE for double gyre at t = 0 with integration
time |T | = 10

1.2.2 FTLE ridges

In Shadden et al. [147], the authors proposed that LCS are ridges of the FTLE field. Ar-

guable issues were eventually raised with this definition when a later variational formulation

defined them as extremizing material curves of a certain functional [59] (covered below in

Sect. 1.2.3). The main argument was that FTLE ridges are not true material curves and

therefore not Lagrangian. Shadden et al. comment on this in their work and show that the

material flux through the ridge is proportional to the inverse of integration time and more

“well-defined” ridges tend to be more Lagrangian. This FTLE ridge definition provides a

different school of thought than what will be defined later by Haller and arguments could

be made in favor of either one. One clear advantage of the FTLE ridge method is that it is

relatively simple to apply and extremely efficient – the same cannot be said for variational

LCS as we will see later. Below, we detail the evolution of FTLE ridge extraction methods.

FTLE ridge extraction methods use differential geometric properties of the FTLE field

(viewed as a surface in 3 dimensions) to extract the ridges of interest. These methods

follow the methods developed in the image processing community designed to extract ridges

from images [76, 93, 118, 148]. In image processing, images are usually converted to gray
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scale and the gray values are essentially used as a discrete height function. Most methods

suggest smoothing the data with a Gaussian, providing a scale-space representation. From

here, first and second derivatives of this height function are computed, often with derivatives

of the Gaussian, and these derivatives are used to extract differential geometric properties of

the height field. These ridges are often referred to as height ridges (or sometimes, a second-

derivative ridge). Given a height function f in 2 dimensions, height ridge points are defined

as all x0 ∈ U such that,

1. 〈∇f,ηmax〉 = 0;

2. 〈ηmax,Hf · ηmax〉 < 0

(1.15)

where Hf denotes the Hessian of f at x0, ηmax is the eigenvector of the Hessian corresponding

to the largest (in magnitude) eigenvalue (representing the direction normal to the ridge), and

it is implied that all quantities are evaluated at x0. The first condition guarantees that the

point is at an extrema of f (in the ηmax direction) and the second, that f is concave down

(in the ηmax direction). Shadden et al. [147] first defined second-derivative FTLE ridges

with these ideas in mind, using the FTLE field σ as the height field (though Haller first

proposed the idea of using FTLE ridges as LCS [58]). Later Haller [59] defined FTLE ridges

in a similar fashion to second-derivative ridges but required ∇λ1 be tangent to the ridge and

replaced ηmax with ξ1 in the second condition. Finally, Schindler et al. [134] further refined

the criteria by using ξ1 in the first condition (they referred to these as C-ridges), resulting

in the most common definition of FTLE ridges today,

1. 〈∇σ, ξ1〉 = 0;

2. 〈ξ1,Hσ · ξ1〉 < 0

(1.16)
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Figure 1.4: Forward FTLE ridges (red) overlaid on FTLE field for double gyre at t = 0 with
integration time T = 10

An approach first proposed by Mathur et al. [105], and later revisited by Senatore and Ross

[140] using a scale-space representation which they called dynamical sharpening, is another

way to obtain accurate FTLE ridges that uses the fact the FTLE ridges are attractors of the

gradient dynamical system given by,

dx0

ds
= ∇σ(x0). (1.17)

This approach allows for accurate extraction of FTLE ridges that gets around some of the

numerical issues with the previous definitions (numerical details will be covered in Ch. 2).
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1.2.3 Variational Hyperbolic LCS

While the above method provides an efficient way to extract approximations of hyperbolic

LCS, the extracted curves are often not truly Lagrangian (they are not material curves –

the material flux through them is, in general, nonzero [59, 147]). In addition, FTLE may

lead to false positives (due to regions of high shear, see [59]). In practice, the FTLE often

captures the most influential structures. That being said, providing a precise definition of

hyperbolic LCS and a numerical algorithm based off of this definition remained important to

the development of the theory. Haller provides the precise definition in [59] and Farazmand

and Haller provide a numerical implementation in [41]. Below we briefly cover the definition

of hyperbolic LCS. Details about the numerical implementation are covered in Ch. (2). Here

we present the relaxation of Theorem 1 from [41] as this is what is often implemented in

practice. Assume we have a dynamical system given by Eq. (1.1) and the resulting Cauchy-

Green tensor defined in Eq. (1.9) with eigenvalues and eigenvectors given in Eq. (1.11).

Recall we seek material curves that repel or attract nearby fluid maximally in a local sense.

For a given compact material curve M(t), let ρt0+T
t0

denote the normal repulsion rate, given

by,

ρt0+T
t0

(x0,n0) =
〈
nt0+T ,∇Ft0+T

t0
(x0)n0

〉
=

1√〈
n0, [Ct0+T

t0
(x0)]−1n0

〉 (1.18)

with n0 and nt0+T denoting the normal to M(t) at t = t0 and t = t0+T respectively. Then,

a normally repelling material line is a compact material curve over M(t) over [t0, t0 + T ]

which satisfies,

ρt0+T
t0

(x0,n0) > 1, ρt0+T
t0

(x0,n0) >
∣∣∇Ft0+T

t0
ux0

∣∣ (1.19)

for any x0 ∈ M0 and ux0 ∈ Tx0M0. The first condition guarantees that M(t) is normally
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repelling over the time window and the second guarantees the normal growth is larger than

the tangential growth. Then, hyperbolic LCS are defined as compact material curves that

are normally repelling material curves and obtain a maximum of the normal repulsion rate

relative to nearby material curves. This is summed up in Theorem 1 from [41]. Consider

a compact material line M(t) ∈ U evolving over the interval [t0, t0 + T ]. Then M(t) is a

repelling LCS over the [t0, t0 + T ] if an only if all the following hold for all initial conditions

x0 ∈ M(t0):

(A) λ2(x0) 6= λ1(x0) > 1;

(B)
〈
ξ1(x0),∇2λ1(x0)ξ1(x0)

〉
≤ 0;

(C) ξ2(x0)||M(t0);

(D) λ1(γ), the average of λ1 over a curve γ, is maximal on M(t0)

among all nearby curves γ satisfying γ||ξ2(x0).

(1.20)

M(t) is an attracting LCS if these conditions hold for the backward time window [t0, t0−T ].

As covered in [41], condition (A) guarantees M(t) is a normally repelling material line.

Condition (B) ensures that λ1 achieves local maxima at x0 relative to nearby curves in the

perpendicular direction (ensuring ρt0+T
t0

achieves a local maxima). Condition (C) ensures

that the curve is normal to the maximum strain eigenvector field (recall ξ1 ⊥ ξ2)), and

condition (D) picks out the strongest and most influential material curves by ensuring M(t)

is the curve on which the averaged normal repulsion rate is maximal relative to nearby

curves. Therefore, hyperbolic LCS are solution curves of the following ODE,

r′(s) = ξ2(r(s)), |ξ2| = 1 (1.21)
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given they satisfy conditions (A), (B), and (D) (condition (C) is satisfied by Eq. (1.21)).

These curves are often referred to as shrinklines in the repelling case (as their image under

the flow will shrink drastically) and stretchlines in the attracting case (as their image under

the flow will stretch drastically). Repelling LCS overlaid on the FTLE field for the double

gyre are shown in Figure 1.5.

We note that what was presented above would be referred to as the “local variational theory”

for hyperbolic LCS in which the variational problem sought extremizing curves of the normal

repulsion rate. Haller and Beron-Vera proposed a global theory [67] in which all types of LCS

are found as extremizing curves of the advected length functional and the type is determined

by the proposed boundary conditions. Their results showed that the curves resulting from

the global theory with hyperbolic boundary conditions agree with those from the local theory.

Figure 1.5: Repelling LCS (red) overlaid on FTLE field for double gyre at t = 0 with
integration time T = 10

The influence of a repelling LCS on material moving with the flow can be seen in Figure
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1.6 with a set of initial conditions (green circle) straddling a repelling LCS and another

set of initial conditions (orange circle) away from a repelling LCS. Clearly the set of initial

conditions straddling the LCS stretch, spread out, and mix with the rest of the flow while

the set away from the LCS does not show such extreme behavior.

Figure 1.6: (a) Initial particles straddling (green) a repelling LCS (red) and initial particles
away (orange) from a repelling LCS. Advected images of those initial sets at t = (b) 3.3, (c)
6.7, and (d) 10.0 for double gyre with integration time T = 10. See video.

What conditions guarantee that a FTLE ridge is a hyperbolic LCS? Haller showed that the

definition of an FTLE ridge leads to necessary (but not sufficient) conditions for hyperbolic

LCS. He provided additional conditions which are sufficient for hyperbolic LCS detection

[59] and later, Karrasch [79] further simplified these conditions in the case of differentiable

eigenvectors. He showed that, given γ is a FTLE ridge as defined above, if all x0 ∈ γ satisfy

conditions A and C from the variational definition for hyperbolic LCS (Eq. (1.20)), then γ

https://youtu.be/_BViPwfE4JY
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is a hyperbolic LCS. Given that ∇σ approximates the tangent to the ridge and that ξ1 ⊥ ξ2,

condition C is satisfied in an approximate sense and then the method employed simply needs

to only consider points at which σ > 0 (equivalent to condition A).

1.3 Hyperbolic objective Eulerian coherent structures

All of the diagnostics and structures defined in what was presented up to this point were

concerned with finite-time transport and tied to a specific time window [t0, t0+T ] (and thus,

specific integration time). A natural question would be about what is obtained when one

takes the limit of these structures as the integration time goes to zero. This idea was first

explored by Serra and Haller [141] in defining objective Eulerian coherent structures (OECS)

and later by Nolan et al. [112] when defining the instantaneous Lyapunov exponent (iLE).

We review these works below.

1.3.1 Variational Hyperbolic OECS

Serra and Haller [141] define hyperbolic OECS in a similar manner to hyperbolic LCS. They

are curves which extremize attraction or repulsion but this time, instantaneously rather than

over some finite time window. We begin by introducing an important Eulerian tensor. Given

our setup, let

S(x, t) = 1

2

(
∇v(x, t) + (∇v(x, t))⊤

)
(1.22)

be the Eulerian rate-of-strain tensor, i.e., the symmetric part of the gradient of the velocity.

Since S is symmetric, it has real eigenvalues si and corresponding orthonormal eigenvectors

ei with i ∈ {1, 2, ..., n} such that,
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s1 ≥ ... ≥ sn and, (1.23)

〈ei, ej〉 = δij. (1.24)

In a 2D incompressible flow, s1 = −s2. It can easily be shown that S is objective (see [55]).

Much like Ct0+T
t0

encodes information about how infinitesimally nearby particles will diverge,

S encodes information about the rate at which infinitesimally nearby particles will diverge

at the initial time. Also, note that for small integration time |T | << 1,

Ct0+T
t0

(x0) = I + 2TS(x0, t0) +O(T 2) (1.25)

showing that for short times, the deviation of Ct0+T
t0

from the identity is governed by S

to leading order. Now let a material curve γ be parameterized by r(s) with s ∈ [0, σ] s.t.

γ = r(s) and r′(s) represents the tangent to γ at r(s). Then, Serra and Haller define two

important material deformation rates, namely the material stretching rate

q̇(r(s), r′(s), t) = 〈r′(s),S(r(s), t)r′(s)〉
〈r′(s), r′(s)〉 (1.26)

and the material shear rate

ṗ(r(s), r′(s), t) = 〈r′(s), [S(r(s), t)R − RS(r(s), t)]r′(s)〉
〈r′(s), r′(s)〉 (1.27)
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where R =



0 −1

1 0


 is a 90◦ rotation matrix. For the hyperbolic case, we focus on the

material shear rate. The averaged material shear-rate is given by

Ṗt(γ) =
1

σ

∫

γ

ṗ(r(s), r′(s), t)ds (1.28)

By looking for curves on which the first variation vanishes (i.e., δṖ = 0) and applying specific

boundary conditions, Serra and Haller define hyperbolic OECS as curves which extremize the

material shear-rate. They show that these curves are solutions to the differential equations

r′(s) = ei(r(s)), i = {1, 2} (1.29)

where the ei are the eigenvectors of the Eulerian rate-of-strain tensor. Attracting OECS are

defined as solution curves obtained from the e1 field that contains a local minima of the

s2 field but contains no other local minima of s2. Similarly, repelling OECS are defined as

solution curves of the e2 field that contains a local maxima of the s1 field but contains no

other local maxima of s1. As mentioned, in the case of 2D incompressible flow, s2 = −s1 and

the extrema will coincide. In this case, structures of particular interest tied to these extrema

points are referred to as objective saddle points (generalizing the notion of classic saddle

points from time-independent flows) and highlight cores of short term hyperbolic behavior.

In Figure 1.7 we show the objective saddles for the double gyre flow at t = 0. The red and

blue curves correspond to the repelling and attracting OECS respectively. It can be seen that

the small circle around the objective saddle quickly is attracting to the attracting OECS,

highlighting short term hyperbolic behavior. The numerical implementation is covered in

Ch. 2.



20 CHAPTER 1. INTRODUCTION

Figure 1.7: Repelling (red) and attracting (blue) OECS and initial points on the objective
saddle at t = (a) 0.0, (b) 3.3, (c) 6.7, and (d) 10.0 for double gyre with t0 = 0

1.3.2 Instantaneous Lyapunov exponent

Shortly after the work on OECS, Nolan et al. [112] defined the instantaneous Lyapunov

exponent (iLE) as the limit of FTLE as the integration time goes to zero. They do this by

Taylor expanding the FTLE and show that, to leading order, the FTLE is governed by the

iLE for short integration times. Therefore, they define the iLE as,

lim
T→0±

σt0+T
t0

(x0) = ±s±(x0, t0) (1.30)

where s+ = s2, s− = s1 and the superscript ± on 0 denotes whether the limit is from above

(+) or below (−). Much like FTLE, the iLE provides a diagnostic field that highlights
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extreme regions of instantaneous attraction and repulsion. They go on to define iLE ridges

in essentially the same manner as we defined FTLE ridges in sec. (1.2.2). In Figure 1.8 we

show the iLE field with the objective saddles from the last section overlaid

Figure 1.8: Repelling (red) and attracting (blue) OECS overlaid on the iLE field for double
gyre at t = 0

1.4 Elliptic coherent structures

Elliptic coherent structures are co-dimension 1 surfaces that bound sets which remain co-

herent under the influence of the flow. These curves are important features of the flow and

allow one to identify sets which contain material that resists mixing with the rest of the flows

contents. These curves serve as boundaries of persistent vortex structures. There have been

two main definitions of these structures (in the purely advective setting). The first defines

these curves as solutions to a variational problem in which exceptional curves that extremize
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the averaged tangential strain [61] (in the finite-time case, these are material curves) or the

averaged tangential stretch rate [141] (in the instantaneous case, these curves are in general

not material). The second defines these curves as closed convex level sets of an objective

measure of vorticity deviation [64] (from the spatial average of vorticity). We briefly cover

each below.

1.4.1 Coherent Lagrangian vortices

Haller and Beron-Vera [61] sought exceptional closed material curves that showed no appre-

ciable variability in their average tangential strain in an infinitesimal belt around the curve

(i.e., for a small perturbation of size ϵ to a curve γ, the variability of the average tangential

strain to the perturbed curve should be at most O(ϵ2)). To define these structures, given

our setup (1.1), Let γ ∈ U be a closed material curve. Let r(s) be a parametrization of the

curve where s ∈ [0, σ] and r′(s) represents the tangent vector to γ at s. Then let

q(s) =

√〈
r′(s),Ct0+T

t0
r′(s)

〉
√

〈r′(s), r′(s)〉
(1.31)

denote the pointwise tangential material strain from t0 to t0 + T . Then, the averaged

tangential material strain is given by

Q(γ) =
1

σ

∫ σ

0

q(s)ds (1.32)

Now the proposed definition of coherence (at most O(ϵ2) variability in average tangential

strain of an ϵ-close material curve) can be formulated as finding curves γ such that the first

variation of Q is zero,
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δQ(γ) = 0 (1.33)

Solutions to this problem are solutions to a complicated set of differential equations. By

invoking results on quotient functionals [23], Haller and Beron-Vera show that any curve γ

satisfying Eq. (1.33) will also satisfy,

δEλ = 0, Eλ(γ) =
∫ σ

0

〈r′(s),Eλ(r(s))r′(s)〉 ds (1.34)

where

Eλ(x0) =
1

2

(
Ct0+T

t0
(x0)− λ2I

)
(1.35)

is a generalization of the Green-Lagrange strain tensor (λ = 1).

After proceeding with the variational calculus, they show that extremizing curves of this

functional that coincide with extremizing curves of Q(γ) are limit cycles of the following

differential equations,

r′(s) = η±
λ (r(s)), η±

λ =

√
λ2 − λ2

λ1 − λ2

ξ1 ±
√

λ1 − λ2

λ1 − λ2

ξ2 (1.36)

defined on the domain

Uλ = {x0 ∈ U : λ1 6= λ2, λ2 < λ2 < λ1} (1.37)

While extracting these curves is challenging in practice, a number of approaches have been

developed which simplify the processes in two dimensions [80, 81, 142]. Using the approach

detailed in [142], we show extracted elliptic LCS overlaid on the FTLE field in Figure 1.9.
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In Figure 1.10 we show elliptic LCS (blue curves) and the sets they bound (green) advected

through the flow. We also show the advection of sets not enclosed by elliptic LCS (orange).

The green sets remains coherent while the orange sets do not.

Figure 1.9: Elliptic LCS overlaid on FTLE field for integration time T = 10.

1.4.2 Lagrangian-averaged vorticity deviation

In a later paper Haller and coauthors [64] set out to obtain an objective definition of coherent

vortices derived from vorticity. The essence of their argument is that coherent vortices should

consist of concentric layers of material such that each of these layers undergoes uniform

material rotation relative to the spatial mean of vorticity. The most significant of these

vortices should highlight regions which remain exceptionally coherent. To this end, they

define the Lagrangian-averaged vorticity deviation (LAVD), an objective measure of the

integrated vorticity deviation from the spatial mean over some time window of interest.
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Figure 1.10: Elliptic LCS (blue) and sets they bound (green) along with other sets (orange)
advected under flow for T = 10. See video.

Given our set up, the vorticity at any point x ∈ U is given by ω(x, t) = ∇× v(x, t). Then,

the instantaneous spatial mean of vorticity is defined as

ω(t) =

∫
U
ω(x, t)dx∫

U
dx (1.38)

Then the LAVD is defined as,

LAVDt
t0
(x0) :=

1

|t− t0|

∫ t

t0

|ω(x(s;x0), s)− ω(s)|ds (1.39)

which provides an objective measure of vorticity deviation from the instantaneous spatial

mean along a trajectory. Level sets of this field surrounding local maxima of LAVD provide

https://youtu.be/MK7JKjUASv8
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Figure 1.11: LAVD-based vortex centers and LAVD-based elliptic LCS overlaid on LAVD
field for integration time T = 10.

the sought after concentric closed curves. With this in mind, to extract rotationally coher-

ent Lagrangian vortices, local maxima of the LAVD field are identified and the outermost

closed convex level curve around each of these local maxima are extracted. The maxima

are referred to as LAVD-based vortex centers and the outermost curves are referred to as

LAVD-based elliptic LCS (or sometimes rotational LCS). In Figure 1.11 we show the LAVD-

based vortex centers and elliptic LCS overlaid on the LAVD field. While curves extracted

via this method and those extracted using the black hole vortices method will in general

not perfectly coincide, often they will identify the same structures. In Figure 1.12 we show

LAVD-based elliptic LCS (blue curves) and the sets they bound (green) advected through

the flow. We also show the advection of sets not enclosed by elliptic LCS (orange). Much

like the elliptic LCS from the previous section, the green sets remains coherent while the

orange sets do not.



1.4. ELLIPTIC COHERENT STRUCTURES 27

Figure 1.12: LAVD-based elliptic LCS (blue) and sets they bound (green) along with other
sets (orange) advected under flow for T = 10. See video.

1.4.3 Variational Elliptic OECS

Like the hyperbolic case, Serra and Haller [141] propose Eulerian counterparts to elliptic

LCS. These are co-dimension 1 surfaces that, over short times, resist mixing and bound

coherent sets. Let a material curve γ be parameterized by r(s) with s ∈ [0, σ] s.t. γ = r(s)

and r′(s) represents the tangent to γ at r(s). Then, as previously mentioned, Serra and

Haller define the material stretching rate

q̇(r(s), r′(s), t) = 〈r′(s),S(r(s), t)r′(s)〉
〈r′(s), r′(s)〉 (1.40)

https://youtu.be/HGXHxlrx1rM
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Then, for a given γ the averaged material stretch-rate is given by

Q̇t(γ) =
1

σ

∫

γ

q̇(r(s), r′(s), t)ds (1.41)

They make the same arguments made in [61] (reviewed in Sec. (1.4.1)) about at most O(ϵ2)

in a O(ϵ) belt. This implies the sought after curves are those on which the first variation

of Q̇t vanishes (i.e., δQ̇t = 0). Noting similarities with the variational problem from the

Lagrangian case in Sec. (1.4.1), they conclude that elliptic OECS can be extracted as limit

cycles of the following differential equations,

r′(s) = χ±
µ (r(s)), χ±

µ =

√
µ− s2

s1 − s2
e1 ±

√
s1 − µ

s1 − s2
e2 (1.42)

defined on the domain

Uµ = {x0 ∈ U : s1 6= s2, s2 < µ < s1} (1.43)

The numerical developments which simplify the extraction of elliptic LCS mentioned previ-

ously apply to the Eulerian structures as well.

1.4.4 Instantaneous vorticity deviation

In the LAVD paper mentioned earlier [64], the authors also define an instantaneous Eulerian

counterpart to the LAVD which they call the instantaneous vorticity deviation (IVD). This

is simply defined as,

IVD(x, t) := |ω(x, t)− ω(t)| (1.44)
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providing an objective instantaneous measure of vorticity deviation. They also show that

the IVD is the instantaneous limit of the LAVD, much like the link between iLE and FTLE.

Figure 1.13: IVD-based elliptic OECS for the double gyre at t0 = 0.0.

1.5 Research overview

In the following chapters we cover the main contributions which this dissertation highlights.

In Chapter 2, we introduce NumbaCS, an efficient Python package that implements many of

the methods covered in this chapter. This work is currently under review with the Journal

of Open Source Software. Due to stringent length requirements from this journal, we present

an extension of the submitted manuscript. Chapter 3 is in manuscript form and is the

published article Atmospheric transport structures shaping the ‘Godzilla’ dust storm. This

chapter retains much of the information from that manuscript. Chapter 4 is a manuscript

still in preparation titled Diffusive flux-rate barriers for general diffusion structure. Chapter



30 CHAPTER 1. INTRODUCTION

5 is also a manuscript still in preperation titled Accurate and Efficient extraction of LCS

from their variational theory using Automatic Differentiation. Finally, Chapter 6 provides a

review of the contributions and future directions.

Readers primarily interested in numerical tools and implementations will find relevant ma-

terial in Chapters 2 and 5. Those looking for a large-scale atmospheric transport application

can focus on Chapter 3. Chapter 4 will appeal to readers interested in theoretical develop-

ments and extensions.



Chapter 2

NumbaCS: A fast Python package for

coherent structure analysis

Attribution

This chapter, a collaborative work with Shane Ross, is an extension of a manuscript currently

under review with the Journal of Open Source Software.

Author Contributions

Jarvis and Ross conceived this project. Jarvis designed the numerical framework, imple-

mented existing algorithms, designed and implemented original algorithms, optimized code,

designed examples, wrote documentation, handled package development and maintenance,

and wrote the original manuscript. Jarvis and Ross contributed to revisions.

2.1 Summary

NumbaCS (Numba Coherent Structures) is a Python package that implements a variety of

coherent structure methods in an efficient and user-friendly manner. “Coherent structure

31
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method” refers to any method which can be used to infer or extract Lagrangian and objective

Eulerian coherent structures. The theory behind these methods has been developed over the

last few decades with the aim of extending many of the important invariant objects from time-

independent dynamical systems theory to the more general setting where a system may have

arbitrary time dependence and may only be known or defined for some finite time. These

time-dependent systems are ubiquitous in the context of geophysical and engineering flows

where the evolution of the velocity field depends on time and velocity data representing these

flows is not available for all time. By extending the ideas from the time-independent setting

to the more general time-dependent setting, important transient objects (coherent structures)

can be identified which govern how material is transported within a flow. Understanding

material transport in flows is of great importance for applications ranging from monitoring

the transport of a contaminant in the ocean or atmosphere to informing search and rescue

strategies for persons lost at sea.

User

2.2 Statement of Need

As theory and implementations of coherent structures have been developed [41, 59, 61, 62,

64, 105, 112, 134, 141, 147] and the utility of these tools has been demonstrated over the

last two decades [33, 38, 54, 95, 111, 117, 124, 129, 144], there has been a steadily growing

interest in using these methods for real-world applications. Early on, software implemen-

tations were largely contained to in-house packages developed by applied mathematicians

and engineers advancing the theory. Over the years, there have been a number of software

packages developed in an attempt to provide implementations of some of these methods for

practitioners outside of the field. Some provide a friendly interface for users (Dynlab [110];
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LCS MATLAB Kit [34]), others aim to provide efficient implementations of specific methods

(sometimes in specific circumstances) (Lagrangian [16]; Newman [37]; Aquila-LCS [89]), and

a few implement a variety of methods (TBarrier [8]; LCS Tool [116], BarrierTool, [83]).

NumbaCS intends to unite these aims by providing efficient and user-friendly implementa-

tions of a variety of coherent structure methods. By doing this, the hope is to provide a

powerful tool for experienced practitioners and a low barrier of entry for newcomers. In ad-

dition, as new methods/implementations arise, the framework laid out in NumbaCS provides

a straightforward environment for contributions and maintenance. Also of note is another

package called CoherentStructures.jl [78], which is fast, user-friendly, and implements a

variety of methods. This package has some overlap with NumbaCS but they both implement

methods which the other does not. CoherentStructures.jl is a powerful tool that should

be considered by users who perhaps prefer Julia to Python or are interested in computing

some of the methods not implemented in NumbaCS. For a more detailed breakdown of how

all of the mentioned packages compare with NumbaCS, see the documentation.

2.3 Functionality and Implementation

This section provides an overview of the functionality in NumbaCS and covers details about

the numerical implementation. In the documentation, a User Guide is provided which details

the workflow in NumabCS, a Theory and Implementation section provides an overview of the

theory behind the implemented methods and some details on the numerical implementation,

and a number of examples demonstrating the functionality are covered in the Example

Gallery. Much of what is covered here will overlap with these sections and we refer the

reader to the Introduction (Ch. 1) of this dissertation for a more detailed treatment of the

theory.

https://numbacs.readthedocs.io/en/latest/index.html
https://numbacs.readthedocs.io/en/latest/userguide.html
https://numbacs.readthedocs.io/en/latest/theory.html
https://numbacs.readthedocs.io/en/latest/auto_examples/index.html
https://numbacs.readthedocs.io/en/latest/auto_examples/index.html
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NumbaCS implements the follow features for both analytical and numerical flows:

– Standard flow map computation

– Flow map composition method [17]

– Finite time Lyapunov exponent (FTLE) [147]

– Instantaneous Lyapunov exponent (iLE) [112]

– FTLE ridge extraction [134, 148]

– Lagrangian averaged vorticity deviation (LAVD) [64]

– Instantaneous vorticity deviation (IVD) [64]

– Variational hyperbolic LCS [41, 59]

– Variational hyperbolic OECS [141]

– LAVD-based elliptic LCS [64]

– IVD-based elliptic OECS [64]

For flows defined by numerical velocity data:

– Simple creation of JIT-compiled linear and cubic interpolants

We now briefly cover the implementation of each noteworthy feature and provide some

examples. We assume we have a velocity field v(x, t) (either given by an analytical expression

or by numerical velocity data) as in Eq. (1.1) and we are computing the desired quantity over

a nx by ny discretized grid G = X × Y ⊂ U where × refers the the Cartesian product and

X = (x0, ..., xnx−1) and Y = (y0, ..., yny−1) refer to the x and y grid-points respectively. We

assume constant grid spacing in x given by dx and constant in y given by dy. We can then

represent each x0 ∈ G by the point (X[i], Y [j]) for some i, j ∈ {0, ..., nx−1}×{0, ..., ny−1}.
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The core of many coherent structure methods relies on approximation of gradients (usually

by finite differencing). Assume we have a vector-valued function f(x0, t). Then, given f(x0, t)

has x-component f0[i, j] and y-component f1[i, j] at (x0, t) for some fixed t, the gradient is

computed by simple finite differencing,

∇f(x0, t) ≈




f0[i+ 1, j]− f0[i− 1, j]

2dx

f0[i, j + 1]− f0[i, j − 1]

2dy

f1[i+ 1, j]− f1[i− 1, j]

2dx

f1[i, j + 1]− f1[i, j − 1]

2dy


 (2.1)

and f(x0, t) is replaced with the appropriate vector-valued function for the method being ap-

plied. Unless otherwise stated, all methods are computed in parallel with the parallelization

being applied over the grid and JIT-compiled versions of these functions are used to speed

up computations.

2.3.1 Notes on integration

For any Lagrangian method we first compute the flow map for all x0 ∈ G. This is done by

looping over all X and Y and applying an ODE solver for each initial condition. For many

of these methods, this particle integration step (i.e., solving Eq. (1.1)) is the most costly

step. To provide efficient implementations of these methods, the default ODE solver called

is a high order explicit Runge-Kutta method (DOP853) with adaptive stepping and optional

dense output. This method is invoked as compiled FORTRAN code which bypasses the

Python interpreter [162], leading to quite drastic speed ups for this portion of Lagrangian

methods. In addition, by default the solver will be invoked in parallel with the parallelization

applied over the grid.
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2.3.2 FTLE

FTLE is computed via finite differencing of neighboring trajectories and then a subsequent

eigenvalue problem. First, we obtain flow maps for all x0 ∈ G Then, we compute the

gradients using neighboring flow maps to obtain the linearized flow map for each x0. From

here, we construct the Cauchy-Green tensor, compute its largest eigenvalue and apply the

FTLE formula (1.14).

2.3.3 iLE

The iLE field is computed in essentially the same way as the FTLE field except the finite

differencing is done with the velocity field itself (yielding the gradient of the velocity field),

rather than the final integrated positions. Using the velocity gradient, we construct the

Eulerian rate-of-strain tensor and find its maximum eigenvalue. This is returned for the

iLE.

2.3.4 FTLE ridges

Much like FTLE, we begin by obtaining flow maps for all initial conditions, computing

gradients using neighboring trajectories, constructing the Cauchy-Green tensor, and then

computing eigenvalues and eigenvectors. Following that, we apply a ridge extraction method.

There are three main methods to extract FTLE ridges from an FTLE field. All methods

identify the same ridge points but differ in how they filter these ridge points and connect

ridge points to form ridges (if the method does this). We will cover the main algorithm.

Ridge points are extracted as described in Sec. (1.2.2). To review, a point is a ridge point
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if,

1.) 〈∇σ, ξ1〉 = 0 (2.2)

2.) 〈ξ1,Hσξ1〉 < 0 (2.3)

Due to condition (2.2) being strict, applying these conditions directly in a numerical context

will lead to a substantial underestimation of ridge points since a grid point will rarely be

exactly on a ridge. If instead this conditions is relaxed and we look for points such that the

magnitude of the inner product is below some threshold, many points around ridges (and

some on ridges) will be identified. Neither of these results are desirable. A contour generating

algorithm is sometimes suggested (e.g., marching squares) to find zeros of condition (2.2) but

this comes with its own challenges due to the orientation discontinuities in the eigenvector

field. To get around these issues, NumbaCS follows an approach detailed by Steger [148] to

extract ridges from images. This approach obtains ridge points with subpixel accuracy by

Taylor expanding the height field (in our case the FTLE field) at a grid point to find if

condition (2.2) is satisfied near that grid point and if so, where exactly it is satisfied. This

approach yields accurate FTLE ridges that are extremely cheap to compute. NumbaCS also

follows the approach in Steger to order and link points which belong to the same ridge. In

addition, another optional step will connect ridges if they are “close enough” and “in-line”.

Therefore, the NumbaCS implementation can be seen as a hybrid of the Schindler et al. [134]

C-ridges and the algorithm put forth by Steger [148] for computing and linking ridge points

with an additional (optional) ridge linking step.
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2.3.5 Variational Hyperbolic LCS

Computing hyperbolic LCS from their variational theory is far more complex and involved

than simply computing FTLE. There are two main reasons for this. The first is has to do

with errors arising from approximating derivatives with finite differencing as is done in Eq.

(2.1). It turns out that the eigenvalues obtained from Ct0+T
t0

(used to compute FTLE) are

quite robust to the spacing used in the finite differencing (the underlying grid spacing) but

the eigenvector directions are very sensitive to this spacing. Since candidate hyperbolic LCS

are computed as solution curves in one the eigenvector fields of Ct0+T
t0

, obtaining accurate

eigenvectors is of the utmost importance if one wants to obtain accurate LCS. To solve this

issue, Farazmand and Haller [41] propose integrating an auxiliary grid of 4 particles around

each x0 ∈ G where the auxiliary grid spacing is much smaller than the initial grid spacing

(i.e., haux << min(dx, dy)). Lekien and Ross [92] show that using a grid spacing this fine

will result in inaccurate computation of the FTLE though, due to the fact that, in general,

all of these auxiliary grid points will be on one side of a hyperbolic LCS. To remedy this, it

is suggested that both the main grid and auxiliary grid around each point are used and the

eigenvalues are computed from the main grid while the eigenvectors are computed from the

auxiliary grid.

The second main hurdle has to do with the direction field from which these solution curves

are obtained. Since these direction fields are obtained from eigenvectors, the eigenvector

direction is not uniquely defined (i.e., if ξ is an eigenvector than so is −ξ). For this reason,

there will be orientation discontinuities in the direction field and, in general, these orientation

discontinuities cannot be globally rectified. The proposed solution is to rectify orientation

discontinuities in-place as the ODE is being solved. This is done at each stage of the solver

and is done by identifying the nearest grid points, checking that the eigenvectors at these

surrounding grid points do not have an orientation discontinuity (if they do, rectify this
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discontinuity by flipping the eigenvector(s) that cause the discontinuity), then use these

surrounding grid points to interpolate the eigenvector at the current point using a linear

interpolant, and confirm it is ”in-line” with the eigenvector from the previous step (if it is

not, flip it). In addition, points where λ1 = λ2 are referred to as degenerate points of the

tensor field induced by Ct0+T
t0

(since this results in eigenvector directions being ill-defined).

So in practice, the differential equation we actually solve is

r′(s) = sign(〈ξ2(r(s)), r′(s−∆s)〉)α(r(s))ξ2(r(s)) (2.4)

where

α(x) =
(
λ1(x)− λ2(x)
λ1(x) + λ2(x)

)2

(2.5)

and ∆s is the step size used in the ODE solver. Due to the new differential equation

we are solving, which requires an eigenvector orientation check (and possible correction)

for each stage of the method, we can no longer employ fancy pre-built adaptive methods

since they do not allow us access to the intermediate stages. For this reason, a custom

explicit fixed step-size 4th order Runge-Kutta method is used that performs these checks

(and possible corrections) at each step. NumbaCS uses a JIT-compiled version of this custom

solver in an attempt to speed up computations. The NumbaCS implementation closely follows

the algorithm put forth by Farazmand and Haller [41] with additional options for filtering

candidate LCS and a different approach to initial conditions.

2.3.6 Variational Hyperbolic OECS

Computing hyperbolic OECS from their variational theory is similar to the procedure for

hyperbolic LCS but due to the instantaneous nature of OECS, some of the challenges associ-

ated with finite-time structures do not exist in the instantaneous case. The most important
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is that particle integration does not need to be performed so we obviously avoid the need

for auxiliary grid particle integration required for the finite-time case. Instead, we proceed

by computing the Eulerian rate-of-strain tensor by performing spatial finite differences of

the velocity field. If using numerical data, it is suggested that the grid be sufficiently re-

solved and if it is not, create an interpolant of the velocity field so finite differencing can be

computed with sufficiently small spacing, resulting in accurate eigenvectors. Once we have

computed the Eulerian rate-of-strain tensor, we compute eigenvalues and eigenvectors. For

repelling OECS, we solve the differential equation,

r′(s) = sign(〈e2(r(s)), r′(s−∆s)〉)(r(s)) (2.6)

with initial conditions given by local maxima of the s1 field. Integration continues until a

boundary is reached or the magnitude of s1 is no longer monotonically decreasing. Attracting

OECS are computed in the same fashion but with e1 and s2. NumbaCS closely follows the

algorithm put forth by Serra and Haller [141].

2.3.7 LAVD-based Elliptic LCS

To compute LAVD-based elliptic LCS we first need to compute LAVD. This begins with

computing particle trajectories Ft0+T
t0

(G). Then compute vorticity1 for the time window

of interest and for the domain given by the range of Ft0+T
t0

(G). Then we compute the

instantaneous spatial mean of vorticity for the time window [t0, t0 + T ]. Finally, for each

trajectory, apply the LAVD formula (1.39). Once the LAVD field is obtained, local maxima

are identified. Then, a contour generating algorithm is employed which will extract level

1If vorticity data is readily available, as is often the case for geophysical flows, it is recommended to use
this data as it will be more accurate and more efficient to use
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sets of the LAVD field. For each local maxima, find all level sets that form closed curves

around that maxima. Finally, extract the outermost convex closed curve enclosing that local

maxima. In practice, we allow for a small convexity deficiency which can be prescribed by

the user. The convexity deficiency is computed as the relative difference in area between

the candidate curve and its convex hull. The NumbaCS implementation closely follows the

algorithm put forth by Haller et al. [64].

2.3.8 IVD-based Elliptic OECS

For IVD-based elliptic OECS, one simply needs to compute the vorticity at t = t0, compute

the spatial mean of vorticity at this time, and compute the pointwise magnitude of the

difference between these two quantities. Once the IVD field is obtained, the extraction of

curves is performed in the same way as described in the previous section 2.3.7. The NumbaCS

implementation closely follows the algorithm put forth by Haller et al. [64].

2.3.9 Flow map Composition

As mentioned previously, the most expensive portion of any finite-time coherent structure

method is typically the particle integration step required to solve Eq. (1.1) and obtain flow

maps (Eq. (1.2)). If the coherent structure quantity to be computed is only desired at a

single instant, there is not much one can do to cheapen this step aside from using more

efficient solvers, relaxing error tolerances, or using a coarser grid. Often, the quantity of

interest is desired in a time series though, rather than at just a single frame. When this is

the case, Brunton and Rowley [17] noted that redundant computation is being performed in

the particle integration step that could be circumvented by interpolating the flow map (see

Figure 1 in the cited article for a clear picture of the redundancy). This is done by exploiting
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the semigroup property of the flow maps,

Ft0+T
t0

= FtN
tN−1

◦ · · · ◦ Ft2
t1
◦ Ft1

t0
(2.7)

where tN = t0+T and the associative binary operation is the composition operation. There-

fore, the flow map over some time window [t0, t0 + T ] can be obtained by composing a

collection of intermediate flow maps of shorter time windows. This is not very useful when

only a single flow map is desired but if a time series of flow maps is needed, this can

cut down the computational cost quite substantially. Note that if a time series of FTLE

was desired for times t0, t1, ..., tn, derived from flow maps over the following time windows

[t0, t0 + T ], [t1, t1 + T ], ..., [tn, tn + T ], these could be computed as,

Ft0+T
t0

= FtN
tN−1

◦ · · · ◦ Ft2
t1
◦ Ft1

t0

Ft1+T
t1

= FtN+1

tN
◦ · · · ◦ Ft3

t2
◦ Ft2

t1

...

Ftn+T
tn

= FtN+n

tN+n−1
◦ · · · ◦ Ftn+2

tn+1
◦ Ftn+1

tn .

(2.8)

Clearly, for each full flow map Ftk+T
tk

, all but the first intermediate flow map (Ftk+1

tk
) used to

create this full flow map can be recycled and used to create the successive flow map Ftk+1+T
tk+1

.

Given that the flow map is being computed on a grid G, it is necessary to interpolate each

intermediate flow map (after the first) since, in general, Ftk+1

tk
(G) 6→ G and this will be

the input to the next intermediate flow map. Therefore, Brunton and Rowley define the

interpolation operator I which acts on a discrete map FGk
:= Ftk+1

tk
(G) and returns the

interpolated map, i.e.,
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I : FGk
7→ IFk where

IFk : U → U

(2.9)

and IFk is the interpolated flow map Ftk+1

tk
. Then, for any tk ∈ {t0, t1, ..., tn}

F̃tk+T
tk

(G) = IFN+k−1 ◦ · · · ◦ IFk+1 ◦ FGk

≈ Ftk+T
tk

(G)
(2.10)

They call this the unidirectional method and also define a bidirectional method. They show

that the bidirectional method is not as accurate or as fast so we omit any further discussion

here. In addition, they suggest an alternative method for storage of smaller composed

intermediate flow maps called the multi-tier (as opposed to single-tier) method. NumbaCS

implements the single-tier unidirectional method which is what was described above. For

examples using this method, refer to the Time series section from the Examples Gallery.

2.4 Examples

Here we show the output of a few examples, provide the runtime of each, and breakdown

the runtime based on the parts of each method. “Flowmap” refers to the particle integration

step, “C-eig” and “S-eig” refer to the eigenvalue/vector step for Lagrangian and Eulerian

methods respectively (this time will be roughly equal to the FTLE and iLE times), and the

last is the extraction time for a given method. For examples that require particle integration,

the default solver (DOP853) was used with the default error tolerances (relative tolerance =

https://numbacs.readthedocs.io/en/latest/auto_examples/index.html#time-series
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1e-6, absolute tolerance = 1e-8). All runs were performed on an Intel(R) CoreTM i7-3770K

CPU @ 3.50GHz (which has 4 cores and 8 total threads). Warm-up time2 is not included in

the timings.

Double Gyre (Analytical Flow)

We briefly cover this flow in Sec. 1.1.1.

Figure 2.1: Left: DG FTLE ridges at t0 = 0, integration time T = −10. Total runtime
per iterate: ∼ 0.424s (flowmap: ∼ 0.390s; C-eig: ∼ 0.025s; FTLE ridge extraction: ∼
0.009s). Right: DG hyperbolic LCS at t0 = 0, integration time T = −10. Total runtime per
iterate: ∼ 5.219s (flowmap (aux grid): ∼ 1.83s; C eig (aux grid): ∼ 0.039s; hyperbolic LCS
extraction: ∼ 3.350s). Both are computed over a 401x201 grid.

2Since many functions in NumbaCS are JIT compiled, these functions are optimized and compiled into
machine code on the first function call. This initial delay is often referred to as ”warm-up time”. After the
first call, subsequent function calls are much faster.

https://numbacs.readthedocs.io/en/latest/auto_examples/ftle/plot_dg_ftle_ridges.html
https://numbacs.readthedocs.io/en/latest/auto_examples/hyp_lcs/plot_dg_hyp_lcs.html
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Bickley jet (Analytical Flow)

Figure 2.2: Bickley jet elliptic LCS at t0 = 0, integration time T = 40 days. Total runtime per
iterate: ∼ 9.200s (flowmap: ∼ 5.050s; LAVD: ∼ 4.140s; elliptic LCS extraction: ∼ 0.010s).
Computed over 482x121 grid.

MERRA-2 (Numerical Flow)

Figure 2.3: MERRA-2 FTLE ridges at t0 = 06/16/2020 − 00 : 00, integration time T =
−72hrs. Total runtime per iterate: ∼ 7.835s (flowmap: ∼ 7.480s; C-eig: ∼ 0.085s; FTLE
ridge extraction: ∼ 0.270s). Computed over a 902x335 grid.

https://numbacs.readthedocs.io/en/latest/auto_examples/elliptic_lcs/plot_bickley_elliptic_lcs.html
https://numbacs.readthedocs.io/en/latest/auto_examples/ftle/plot_merra_ftle_ridges.html
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QGE (Numerical Flow)

Figure 2.4: Left: QGE FTLE ridges at t0 = 0, integration time T = 0.1. Total runtime per
iterate: ∼ 2.461s (flowmap: ∼ 2.400s; C-eig: ∼ 0.0.038s; FTLE ridge extraction: ∼ 0.023s).
Middle: QGE hyperbolic OECS at t0 = 0.15. Total runtime per iterate: ∼ 2.238s (S eig:
∼ 0.038s; hyperbolic OECS extraction: ∼ 2.200s). Right: QGE elliptic OECS at t0 = 0.5.
Total runtime per iterate: ∼ 0.0452s (IVD: ∼ 0.0002s; elliptic OECS extraction: ∼ 0.045s).
All are computed over a 257x513 grid.

2.5 Key dependencies

All of these implementations are relatively straightforward to use and quite efficient. This

is due to three key dependencies NumbaCS utilizes to speed up computations. The first is

Numba [90], a JIT compiler for Python which can drastically speed up numerical operations

and provides a simple framework for parallelizing tasks. Next, numbalsoda [162] is a Python

wrapper to ODE solvers in both C++ (LSODA) and FORTRAN (DOP853) that bypasses the

Python interpreter and can be used within Numba functions (standard Python ODE solvers

https://numbacs.readthedocs.io/en/latest/auto_examples/ftle/plot_qge_ftle_ridges.html
https://numbacs.readthedocs.io/en/latest/auto_examples/hyp_oecs/plot_qge_hyp_oecs.html
https://numbacs.readthedocs.io/en/latest/auto_examples/elliptic_oecs/plot_qge_elliptic_oecs.html
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cannot be executed within Numba functions). This package is crucial to the efficiency of

NumbaCS as particle integration is often the most costly part of finite-time coherent structure

methods. Finally, the interpolation package [161] provides optimized interpolation in

Python and is utilized in NumbaCS to create JIT-compiled interpolant functions, producing

efficient implementations of methods even for flows defined by numerical data. By taking

advantage of these packages behind the scenes, NumbaCS is able to maintain the simplicity

and readability of a dynamically-typed language while achieving runtimes closer to that of

a statically-typed language.

2.6 Road map

As of the writing of this dissertation, NumbaCS is currently on version 0.1.1. Development

continues with the main aims being extending functionality, implementing new features,

and further streamlining and optimizing current features, especially those related to large-

scale geophysical applications. We will list possible additions below and break them into

three categories: features/improvements already under development, features/improvements

not currently under development but with plans to develop sometime in the future, and

features/improvements which have no current plans for development.

Under development

– Elliptic LCS and OECS via null geodesics (Serra and Haller [142])

– DBS and diffusive transport barriers (Haller et al. [68])

– Direct use of netCDF files for geophysical flows

– Support for masked data



48 CHAPTER 2. NUMBACS: A FAST PYTHON PACKAGE FOR COHERENT STRUCTURE ANALYSIS

– Rewrite hyperbolic LCS for efficiency

Planned

– FTLE on non-Eucledian manifolds (Lekien and Ross [92])

– Shape coherent sets (Ma and Bollt [101])

– Elliptic LCS and OECS via index theory (Karrasch and Schilling [80])

– Extend diagnostic methods to 3D

– Option to cache JIT-compiled functions

No current plans

– Finite time coherent sets via FEM method (Froyland and Junge [47])

– Parabolic LCS (Farazmand et al. [42])

– Active transport barriers (Haller et al. [69])

– Extend extraction methods to 3D

2.7 Datasets

Two datasets are provided with NumbaCS to test the functionality for flows defined by numer-

ical velocity data. One is a numerical simulation of the quasi-geostrophic equations (QGE).

We thank the authors of Mou et al. [107] for providing us with this dataset, which was used

extensively during during development, and allowing a piece of the dataset to be included

in the package. The full dataset was over the time span [10, 81] with dt = 0.01. We provide
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the velocity fields over the much shorter time span [10, 11] with the same dt. For details

on the parameters used in the simulation, refer to the cited paper. The other dataset is a

MERRA-2 vertically averaged reanalysis dataset [1, 50], which was used as part of a paper

[75] coauthored by the authors of this paper. Wind velocity fields were vertically averaged

over pressure surfaces ranging from 500 hPa to 800 hPa. The corresponding latitude, longi-

tude, and date arrays are also provided. All data can be downloaded from the data folder

on the GitHub page.

2.8 Usage in ongoing research

As of the writing of this paper, NumbaCS has not been public for long but has been utilized in

one publication [75] where it was the computational tool for all coherent structure methods.

In addition, it is currently being used in an ongoing project focused on airborne invasive

species traveling from Australia to New Zealand titled “Protecting Aotearoa from wind-

dispersed pests”. This is a five year (October 2023 - October 2028) Scion-led and Ministry

of Business, Innovation and Employment (MBIE)-supported program
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Abstract

Saharan dust events, having great ecological and environmental impacts, are the largest

producers of the world’s dust by far. Identifying the mechanisms by which the dust is

transported across the Atlantic is crucial for obtaining a complete understanding of these

important events. Of these events, the so-called “Godzilla” dust intrusion of June 2020

was the largest and most impactful in the last two decades and underwent a particularly

interesting transport pattern. By uncovering dominant, organizing structures derived from

the wind velocity fields, known as Lagrangian coherent structures, we demonstrate the ability

to describe and qualitatively predict certain aspects related to the evolution of the dust plume

as it traverses the atmosphere over the Atlantic. In addition, we identify regions of high

hyperbolicity, leading to drastic changes in the shape of the plume and its eventual splitting.

While these tools have been quite readily adopted by the oceanographic community, they

have still yet to fully take hold in the atmospheric sciences and we aim to highlight some of

the advantages over traditional atmospheric transport methods.

3.1 Introduction

On the third week of June 2020, Aerosol Optical Depth (AOD) measurements of numer-

ous AErosol RObotic NETwork (AERONET) sun photometers located in the Caribbean

recorded levels above the long-term background AOD. The observed increase in AOD was

caused by a plume of dust, which departed from the western coast of Africa on June 17.

The unusual extent and concentration of this African dust plume gave it the “Godzilla”

nickname and pushed the 24h average PM2.5 concentration far above the U.S. Environmen-

tal Protection Agency’s (EPA) 35 µg/m3 air quality standard in more than 70 air quality
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measurement stations located in the southeast U.S. on June 26-27 [166]. The Godzilla dust

plume traveled across the Atlantic Ocean, sliding above the marine boundary layer with a

maximum plume altitude of 6-8 km and an approximate layer thickness of 3.4 km, showing

the characteristics of the Saharan Air Layer (SAL) [21, 82]. Back trajectory analysis of the

receptor regions impacted by this plume denote an average travel speed of 15 m/s, which en-

abled the plume to travel across the Atlantic Ocean in approximately 8-9 days [39]. Outside

the African continent, the plume maximum density was reached on June 18 with average

AOD value reaching as high as 1 and a maximum AOD value above 1.5 (unitless), over an

area between 5◦N − 30◦N and 50◦W − 10◦W based on NASA Moderate Resolution Imaging

Spectroradiometer (MODIS) data. For the mentioned area, such high amounts of AOD were

unprecedented during the month of June since 2002 [4].

It would be challenging to locate the exact origin of the emissions leading to the Godzilla

dust plume but a deep look into the MODIS satellite imagery of days prior to the incident

hints at central and western regions of North Africa as the origin of the plume [127]. Even

though the Godzilla dust intrusion into the Caribbean is categorized as a historic event, dust

emissions leading to the formation of the plume did not show such extreme characteristics.

Yu et al. [166] suggests the modulation of synoptic meteorological conditions as the reason

behind the accumulation of dust near the coast of Africa. In their study, the location

of a North Atlantic Sub-tropical High (NASH) synoptic system is probed via the NASA

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2)

reanalysis geopotential height at 600 hPa on the days prior to the release of the Godzilla

dust plume toward the Caribbean. They note that June 2020 NASH geopotential heights

are on average 80 m higher than the 1980-2020 climatology. This study concludes that

the specific location of the NASH system, north of the plume and co-occurrence of this

geopotential anomaly combined with strong dust emissions from Africa have led to the
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historic Godzilla dust intrusion. This example of the synoptic condition role in historic dust

intrusions further motivates the analysis of air flow over the Atlantic Ocean to determine

the inter-connectedness between the flow regime and dust intrusions.

Organizing Structures in the Atmosphere. Identifying the organizing structures within

a geophysical flow is an important part of understanding the transport of a given material

under the action of that flow. For example, in the ocean, to know how warm water from

the Gulf of Mexico is transported to higher latitudes in the Atlantic ocean, it is important

to identify the Gulf Stream and understand its mixing process [95]. Similarly, in the at-

mosphere, the spread of wildfire smoke over large distances is determined by atmospheric

structures, which may not have a specific nomenclature associated with them [32, 124]. To

identify these structures and understand how they evolve, an ensemble air parcel trajectory-

based—or so-called Lagrangian—point of view must be taken; this incorporates the time

evolution of the flow as the material is transported in it. Streamlines, vector fields, and

wind barbs come from velocity data at only an instant in time and often provide little in-

sight for material transport over some finite time window in highly time-dependent flows,

like wind velocity fields [54, 65]. In addition, these quantities are frame-dependent and

conclusions drawn from them can be skewed based on the frame of reference. As pointed

out by Bujack and Middel in a review of flow visualization techniques in the environmen-

tal sciences [18], these instantaneous (or so-called Eulerian) techniques are commonplace

within the atmospheric science community. But they suggest atmospheric flow visualization

could benefit from using feature-based extraction techniques and topological methods, like

Lagrangian coherent structures.

In fact, transport feature-based methods (LCS and finite-time coherent sets) have been

applied to atmospheric applications. The applications have ranged from transport of mi-
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crobes and aerosols [49, 111, 119, 124, 135, 137, 154], to hurricane intensification and en-

trainment [38, 128, 129, 133], and the dynamics of the Arctic and Antarctic polar vortices

[77, 92, 132, 144]. However, most of these listed studies were performed by nonlinear dynami-

cists rather than atmospheric scientists, demonstrating that the atmospheric community has

not adopted these methods as readily as the oceanographic community. With this work,

we seek to add to the growing body of literature demonstrating the usefulness of these

techniques for atmospheric science in the hopes that practitioners will integrate them into

their toolboxes. We refer the reader to Günther et al. [54] for a more detailed comparison

of some of the common methods in quantifying atmospheric transport and the benefits of

using coherent structure methods.

To study the transport of African dust across the Atlantic Ocean, studies have incorporated

a trajectory-based approach to either isolate the source region of dust plumes [3, 27, 39]

or study the transport pattern and geographic region impacted by transported dust [52].

To establish a connection between source and receptor regions, either backward trajectories

are computed from locations downwind along the prevalent dust transport path or forward

trajectories are computed from known source regions during an intense dust emission inci-

dent. The robustness of the linkage between the source and receptor regions can be further

evaluated using retrievals of dust plumes from satellite remote sensing [13, 164, 165]. In

addition, some groups take an Eulerian approach in an attempt to discover the underlying

mechanisms of trans-Atlantic dust transport. In this approach, the focus of analysis is on the

synoptic conditions from a few days prior to the the emission of dust until the dust plume

has reached the receptor region. In studies done on the Godzilla storm [44, 166], comparison

of anomalies in geopotential height and wind velocity fields relative to the long-term his-

toric climatology (1991-2020) in conjunction with the analysis of the streamlines reveals the

underlying atmospheric circulation patterns responsible for emission and transport of dust
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incidents. In most cases, these patterns point to an anomaly in seasonal weather patterns as

possible indicators of historic dust transport incidents. While not a study specific to dust,

Chakraborty et al. [24] identified major aerosol transport pathways across the globe by

extending the concept of atmospheric rivers (ARs) for water vapors to aerosol atmospheric

rivers (AARs). By doing so, the authors were able to develop a framework to identify extreme

aerosol transport events for different major aerosol species and identified AARs specific to

dust at the time of the Godzilla storm. Similar to the Lagrangian approach, remote sensing

retrievals serve as a real world evaluation for the Eulerian analysis [126].

Regardless of the approach, identifying possible indicators of anomalous dust incidents can

facilitate prediction of them in the future. While these studies are all useful and make

major contributions towards the goals they set out to achieve, none tackle the problem

of understanding these dust events through the lens of Eulerian and Lagrangian coherent

structures. In this paper, we look at the Godzilla dust event and focus mainly on the

Lagrangian approach, coupled with some Eulerian diagnostics, with the aim of obtaining

a large-scale template for transport while the dust plume was present. By identifying key

attracting, repelling, and bounding structures (described below), we obtain a qualitative

road map for dust transport during this historic event.

3.2 Methods

For this work, we mainly focus on methods which we will refer to as “coherent structure

methods” which will be described more thoroughly below. We present these tools and their

applications in a high-level manner to familiarize the reader with the simplest implementation

of these methods. There is a good deal of nuance relating to how certain methods are

implemented, differences between some methods, and when it is appropriate to use one over
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another. We omit most of this discussion from the main text but provide more details for

the interested reader in supplemental material.

3.2.1 Finite Time Coherent Structures

Lagrangian techniques for uncovering patterns related to material transport have become

powerful tools over the last few decades [36, 45, 46, 59, 63, 65, 100, 103, 117, 136, 146,

147, 154]. These techniques were born out of the desire to generalize asymptotic methods

from autonomous dynamical systems theory [151, 160] and transfer them to the finite time,

nonautonomous setting, appropriate for realistic geophysical flows. Of these methods, the

finite-time Lyapunov exponent (FTLE) and closely related Lagrangian coherent structures

(LCS) have emerged as among the most widely used. These methods provide objective (i.e.,

frame-invariant) diagnostics for extracting the most influential material curves (in a 2D flow)

or surfaces (in a 3D flow). The hyperbolic1 structures derived from the mentioned methods

can produce a skeleton for transport in unsteady time-dependent flows, identifying material

curves or surfaces responsible for attracting, repelling, and bounding regions of the flow over

a time window of interest. To define them, first consider the following initial value problem,

viewed as a dynamical system over some general n-dimensional smooth manifold M (e.g.,

R
3 or S2),

d

dt
x = v(x, t), x ∈ U ⊂ M, t ∈ I ⊂ R

x(t0) = x0

(3.1)

1‘Hyperbolic’ means that the structures exponentially attract or repel nearby material.
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Then, there exists a family of diffeomorphisms {Ft
t0
} (known as the flow maps) associated

with the dynamical system given by,

Ft
t0
: I × I × U → U

: x(t0; t0,x0) 7→ x(t; t0,x0)

(3.2)

in which either t > t0 (mapping forward in time) or t < t0 (mapping backwards in time).

The flow maps, as depicted in Figure 3.1, take points x0 (or regions A0) in the fluid at an

initial time t0 and map them to their locations at some other time t = t0 + T (where T

can be positive or negative). To extract features from the flow map, we define the right

Figure 3.1: Left: Action of the flow map on a point x0 and enclosing set A0 over the time
window [t0, t0 + T ]. Ft0+T

t0
acts on elements of the domain and maps them to the domain.

Its action on a set can be defined in the following manner: Ft0+T
t0

(A0) := {Ft0+T
t0

(x0) ∈
U |x0 ∈ A0}. Right: Action of the linear approximation of the flow map acting on an
infinitesimal circle defined by vectors v1, v2 over the time window [t0, t0+T ]. The derivative
of the flow map, ∇Ft0+T

t0
, acts on elements of the tangent space (i.e., vectors) based at

x0 and maps them to elements of the tangent space downstream at x = Ft0+T
t0

(x0). The
meaning of the eigenvalues and eigenvectors of Ct0+T

t0
can equivalently be seen through the

SVD of ∇Ft0+T
t0

= UV∗. The singular values (diag(U)) are equal to the square root of the
eigenvalues (

√
λi) and the right singular vectors (vi) are equal to the eigenvectors (ξi).

Cauchy-Green deformation tensor in terms of the linearized flow map (again see Figure 3.1),

Ct0+T
t0

(x0) = (∇Ft0+T
t0

)⊤∇Ft0+T
t0

(x0). (3.3)
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where ∇ represents the derivative with respect to the initial position x0 and T = t − t0

is the flow map duration or so-called integration time (which could be positive or nega-

tive). The matrix Ct0+T
t0

(x0) is symmetric and positive-definite with real eigenvalues λi and

corresponding orthonormal eigenvectors ξi with i ∈ {1, 2, ..., n} such that,

λ1 ≥ ... ≥ λn > 0 and, (3.4)

〈ξi, ξj〉 = δij. (3.5)

There is a variational theory for hyperbolic LCS [59] wherein the structures are found by

identifying solution curves of the maximum and minimum eigenvector fields of Ct0+T
t0

(x0)

which satisfy certain conditions relating to their influence on material deformation relative

to nearby solution curves. The variational LCS method provides a way to find the pre-

cise surfaces which dominate fluid-parcel deformation over the interval T of interest, but

such surfaces are often quite costly to compute, can be challenging to implement, and have

recently been shown to lack robustness to uncertainty in velocity data relative to other co-

herent structure methods [5]. Alternatively, the FTLE (a finite-time analogue of the classic

Lyapunov exponent) field is a scalar field that is related to the average exponential rate of

stretch of initially (infinitesimally) nearby particles over the time window of interest. Note

that the maximum eigenvector of Ct0+T
t0

(x) gives the direction in which an infinitesimal per-

turbation will undergo the maximum growth (given by
√
λ1 or equivalently eσ|T |) over the

finite time window [t0, t0 + T ] where σ is the FTLE, defined as,

σt0+T
t0

(x0) =
1

2 |T | log(λ1) (3.6)

While the FTLE field still requires a significant amount of particle integration, the numerical

implementation can be optimized via parallel computing, significantly reducing the compu-
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tation time. We use an in-house python package, that makes use of parallelization and

just-in-time compilation, that allows for quick computation even with very large data sets,

and in spherical coordinates appropriate for global geophysical flows.

Often, ridges of the FTLE field can be used as a proxy for hyperbolic LCS [147] and the

easiest way to identify ridges is to simply use a thresholding method which only looks at

FTLE values above a certain threshold, yielding regions of high stretching in forward or

backward time. Other methods exist to extract curves (in 2D) that usually coincide with

hyperbolic LCS. Care should be taken when implementing these methods and one should be

aware of potential pitfalls as they can sometimes result in false positives in regions of high

shear if additional criteria is not satisfied along the ridge [59]. Later on, we link to a video

of LCS overlaid on FTLE which confirms that all of the important structures we focus on

are indeed attracting LCS.

For this work, we start by focusing on backward time FTLE fields, yielding attracting co-

herent structures (see Figure 3.2). The main reason we do this is to elucidate the predictive

capabilities of these methods and demonstrate their usefulness for real-time decision making.

These structures are computed over the time window [t0−T, t0] where t0 is the current time.

Attracting structures are computed using only current and past velocity data and therefore

can be implemented in (essentially) real-time to inform decision making in time-sensitive

applications, since the velocity data is readily available. By contrast, repelling structures

(think the inverse behavior of Figure 3.2) are computed over the time window [t0, t0+T ] and

therefore require future velocity data for their computation. This necessitates forecasting of

the velocity fields to make use of them for real-time decision making, introducing further

error and uncertainty.

While attracting structures are computed from the backward time system, due to the conti-

nuity of the flow and their dominance relative to nearby material lines, they tend to persist
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for at least some portion of the future time window, preserving their usefulness in the predic-

tive setting, as will be demonstrated. In addition, in recent work [124], attracting structures

have been shown to act as “air bridges” (see Figure 3.2, left) in large-scale (∼ 1,000 km)

atmospheric flows, behaving as pathways for material to be transported along. We were

interested to see if these air bridges persisted on much larger scales (a few thousand kilome-

ters). What we found suggests that the “air bridge” concept may still be relevant, but its

role in transport depends on which side of the bridge the material of interest began on (see

Figure 3.2).

Figure 3.2: Behavior of initial blob A0 straddling an attracting LCS (left) which acts as an
“air bridge” and an initial A0 below the same attracting LCS (right) after some finite time
window of interest.

3.2.2 Instantaneous Coherent Structures

In addition to computing the structures mentioned above which require a certain duration

T , one can compute instantaneous structures, requiring the velocity only at a single instant

t0. These instantaneous structures are the finite-time coherent structures as the finite-time

T goes infinitesimally to zero and like their finite time counterparts, they are also objective,

providing an attractive alternative to other common Eulerian quantities. Using only the

current data frame, they are simple to compute and often can illuminate important short
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time structures/regions within the flow. These structures arise out of the eigenvalues and

eigenvectors of the Eulerian rate-of-strain tensor, given by:

S(x0, t) =
1

2

(
∇v(x0, t) + (∇v(x0, t))

⊤
)

(3.7)

where S(x0, t) is a symmetric matrix with real eigenvalues si and corresponding orthonormal

eigenvectors ei with i ∈ {1, 2, ..., n} such that,

s1 ≥ ... ≥ sn and, (3.8)

〈ei, ej〉 = δij. (3.9)

Following Nolan et al. [112], in a n = 2 dimensional flow, denote s1 (respectively, s2) by s+

(resp., s−), which are instantaneous Lyapunov exponents (iLEs). The iLE field is the limit

of the FTLE field as integration time goes to 0,

lim
T→0±

σt0+T
t0

(x0) = ±s±(x0, t0) (3.10)

where the superscript ± on 0 denotes whether the limit is from above (+) or below (−).

In this work, we compute the iLE field to identify a region of the plume which undergoes

significant instantaneous hyperbolic deformation.

3.2.3 Vortex Identification

Throughout our analysis, we identify vortex structures in the FTLE field that play an im-

portant role in the evolution of the dust plume. Identifying vortices by way of FTLE is

not standard and we make an attempt to use more common methods to confirm the struc-

tures we are focusing on are indeed vortices. In addition, while we make no claims that
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the storms we find are cyclones (or anticyclones), we show that they exhibit some common

characteristics of cyclones, further demonstrating the strength of these storms. We look at

a few basic diagnostics for identifying storms. Mean sea level pressure (MSLP) maps are

looked at during the formation of these vortices to see if low pressure systems can be iden-

tified. Low level (850 hPa) vorticity is also probed to find highs in these fields, a common

characteristic of strong storms and cyclones. Cyclone identification involves considerably

more complexity than just these diagnostic methods, and there are many different schemes

to detect these storms [9, 20, 25, 159], but we are not concerned with whether or not the

structures we identify are properly defined cyclones. Our main focus is on how other struc-

tures in the FTLE field interact with these storms. To this end, we simply aim to confirm

that these storms behave like vortices. With this in mind, the final diagnostic we look at

is the Lagrangian averaged vorticity deviation (LAVD), an objective quantity used to find

rotationally coherent vortices in a flow, known as elliptic LCS [64]. Assuming we have a

system (3.1) with corresponding flow map (3.2), the vorticity at any point x will be given

by ω(x, t) = ∇× v(x, t). Then, the instantaneous spatial mean of vorticity is given by:

ω̄(t) =

∫
U
ω(x, t)dV
vol(U)

, (3.11)

where vol(·) represents the volume (3d) or area (2d) and dV represents either a volume or

area element. From there, the LAVD is defined as

LAVDt
t0
(x0) :=

1

|t− t0|

∫ t

t0

|ω(x(s,x0), s)− ω̄(s)|ds, (3.12)

which can be computed either forward or backward in time but, it has been noted that

the different time direction calculations will generally result in different elliptic LCS [66].

To identify the boundaries of these coherent vortices, the outermost closed, convex contour
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surrounding a local maxima is extracted to serve as the elliptic LCS. In this work, we are

less interested in extracting the curves themselves and use the LAVD field as a diagnostic

for identifying coherent vortices.

3.2.4 Data and Software

NASA MERRA-2 data (see Figure 3.3) is used to create the wind velocity fields with a

0.5◦ × 0.625◦ horizontal resolution, 42 pressure levels of vertical resolution, and a 3-hourly

temporal resolution. MERRA-2 is a continuation of the former NASA MERRA reanalysis

dataset with an improved meteorology and atmospheric model, generated by the NASA

Global Modelling and Assimilation Office [14, 50]. MERRA-2 wind data [1] is chosen due to

nominal coverage and widespread application and validation in the literature [22, 84]. MSLP

and low level vorticity are obtained from the ERA5 dataset [71, 72], which is the European

Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis dataset

for the global climate and weather of the past eight decades. Datasets are available hourly in

a gridded format with a spatial resolution of 0.25◦ x 0.25°◦ and vertical coverage of 1000 hPa

to 1 hPa on 37 vertical pressure levels. For streamfunction and vorticity calculations from

MERRA-2 data shown later, the windspharm python package [35] is used which utilizes

spherical harmonics to compute these quantities. All other diagnostics (FTLE, iLE, and

LAVD) and feature extraction (LCS) are performed by an in-house software package available

on GitHub.

To isolate the dust plume, the ultraviolet Aerosol Index (AI) values from the Ozone Mapping

and Profiling Suite (OMPS), installed on the Suomi-NPP satellite are used, which is the offi-

cial AI product provided by NASA [156] (see Figure 3.4). Suomi-NPP has a sun-synchronous

orbit, meaning that it passes the equator at the same local mean solar time on each pass with

https://github.com/alb3rtjarvis/numbacs
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Figure 3.3: From MERRA-2 for 2020-06-18-15:00:00. Left: Velocity field in region of interest.
Right: Corresponding streamfunction

multiple swathes covering Earth’s surface on each day. Hence, to create daily dust plume

images, multiple swathes covering a region between 5◦S − 45◦N and 100◦W − 35◦E on each

day are selected and averaged to a pixel size of 0.5◦. The OMPS AI product is a unitless

columnar value representing the atmospheric aerosol concentration from Earth’s surface up

to the sensor height, with higher AI values representing higher aerosol concentrations. Both

dust and smoke aerosols are UV absorbing and therefore contribute to the AI values [163]

but considering our latitudes of interest and extent of the dust plume, we believe the im-

pact from other types of aerosols are negligible. As we seek a comparison with 2D vertical

column-averaged aerosol index data, we use column-averaged vector fields [111] where the

averaged velocity fields come from pressure surfaces ranging from 500 hPa - 800 hPa. These

pressure surfaces are where the dust was mostly present, as estimated from a previous study

[126].

3.2.5 Caveats with Implementation

The approach mentioned above results in a 2D time-varying column averaged quasi-velocity

field. This vector field is no longer a true velocity field as it does not describe the velocity

of a true fluid parcel anymore. Care should be taken when employing an approach like this.

The resulting vector field need not be incompressible anymore and it is perhaps possible,
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depending on the velocity fields being averaged, to obtain structures in the FTLE field which

are artifacts of the averaging. In our case, we show that the field is indeed incompressible and

the main structures we focus on are not artifacts of the averaging by comparing with FTLE

obtained from a common pressure surface used in the literature for this event (600 hPa). For

more details on why we chose this approach and potential problems this could cause if due

diligence is not performed, we refer the reader to section S2 of the Supplementary Material.

The dust concentration we focus on evolves due to the both advective and diffusive processes.

FTLE and standard LCS were developed solely in the context of advective transport. More

recently, theory has been developed which takes diffusion into account in the weakly diffusive

case [68]. Out of this work comes the diffusive barrier strength (or sensitivity) field (DBS),

which acts as a diffusive counterpart to FTLE. Although utilizing DBS could potentially

offer greater accuracy and relevance, this paper focuses on presenting the simplest and most

commonly recognized technique among Lagrangian coherent structure methods: FTLE. It is

important to clarify that DBS is not inherently complex; it merely involves additional steps

beyond FTLE, along with some increases in memory overhead and computational cost.

However, considering our goal to engage practitioners effectively, we suggest that readers

might prefer using existing FTLE codebases. There are numerous FTLE implementations

available, compared to the relatively limited number for DBS. This availability could be a

decisive factor in the choice of methods for practical application. Furthermore, it has been

noted in Haller et al. [68] that, unless the diffusion structure tensor is sufficiently anisotropic

or the underlying velocity field has significant temporal aperiodicity, the DBS field will not

differ significantly from the FTLE field. To be sure we are not missing anything substantial,

we compare the FTLE to the DBS over a large domain used in a later section (see video).

In addition to the diffusive considerations, dust particles are inertial (not neutrally buoyant)

and their density differs from that of air. For this reason, a more accurate representation

https://youtu.be/FbgiHVMYWl0


66 CHAPTER 3. ATMOSPHERIC TRANSPORT STRUCTURES SHAPING THE “GODZILLA” DUST PLUME

of the structures could be obtained by computing inertial FTLE (iFTLE) or inertial LCS

which uses the Maxey-Riley equations in the particle integration step of the FTLE compu-

tation to capture the inertial effects of the particles [152, 153]. Along with the additional

computational expense, doing this would require estimating the Stokes number and size of

the dust particles. However, we show that using the simplified2 method captures dominant

structures related to transport and evolution of the dust plume.

Figure 3.4: Left: Godzilla dust plume, June 18, 2020 (Credit: NASA). Right: Aerosol Index
data (unitless) from OMPS (see video). These values are used throughout the paper.

3.3 Results

Using data retrieved from MERRA-2, we begin by computing backward FTLE for an inte-

gration time of 96 hours (4 days) from June 5, 2020 to June 30, 2020. The integration time

chosen should generally be tied to some characteristic time scale of the flow or the material

being transported by the flow. If too short a time is chosen, there is a risk of missing im-

portant structures, and if too long of a time, often one ends up with an overly complicated

set of LCSs from which it is hard to derive meaning. The plume takes ∼8 days to traverse
2We note that we are in the density regime in which particles will more strongly be attracted to passive

attracting ridges (dust is an “aerosol” or a heavier particle than the carrier fluid and the Stokes number
is not small) as opposed to the case when the inertial particles are lighter than the carrier fluid (known
as “bubbles”), in which case passive attractors act more like repellers and the inertial particles aggregate
away from these structures. See the mentioned references for more details. In the regime we are in, the
simplification becomes more justified.

https://svs.gsfc.nasa.gov/4849
https://youtu.be/FrzAI9D48ZQ
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the Atlantic Ocean. We tested a variety of integration times ranging from 1 day to 8 days.

We settled on 4 days since this was roughly half the time it took for the dust to traverse the

Atlantic and produced satisfactory FTLE fields. See S3 of the Supplemental Material for

more details. Here, we demonstrate a simplified implementation of the coherent structure

methods for the problem at hand to highlight the robustness of these methods.

We focus on the affected area where latitude runs from 5◦S− 45◦N and longitude runs from

100◦W − 35◦E but use the global velocity field in our FTLE calculations (see Figure 3.5).

The aerosol index data provided by OMPS representing the actual extent of the dust plume

was overlaid on the region of interest. For the coherent structures we present, a simple

thresholding method is used for both the fields of interest (to obtain ridges corresponding to

dominant attracting/repelling structures) and the aerosol index data (in an attempt to focus

on the dust plume itself) with the aim of demonstrating the effectiveness of a comparatively

simple-to-use and computationally inexpensive approach for real-time decision making. If

one is interested in obtaining actual curves instead of visible ridges of a scalar field, which

is useful when quantities normal and tangent to the ridge are desired, a ridge detection

algorithm can be deployed [105, 140, 147, 148] to obtain these structures from the FTLE

field. Alternatively, LCS be found with the variational method. We show both approaches

in Figure 3.5. Note that the relatively high threshold value we have adopted may result in

the omission of numerous LCS, but these are of lower strength (as the FTLE, and thus ridge

height inherently measures). These omitted structures are generally of lesser importance for

the analysis of large-scale transport phenomena that we aim to investigate. This thresh-

olding approach was deliberately chosen to prioritize the identification and analysis of the

most influential and large-scale structures, aligning with our research objectives. If one was

interested in obtaining more of the LCS, ridge detection could be performed without any

thresholding.
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Figure 3.5: (a): Backward FTLE field (hr−1) at same time as composite image via satellite
(see FTLE video). (b): Attracting LCS (purple) found via variational method overlaid on
backward FTLE field. (c): Simple thresholding method used to obtain dominant regions.
(d): Ridge detection algorithm used to obtain ridges of interest. These values in the colorbar
are used for the remainder of the paper.

The results are organized as follows: we discuss the backward FTLE field overlaid with

OMPS aerosol index data in the region of interest, making note of significant features,

some of which we will analyze in greater detail in later sections. This subsection represents

what could be done with FTLE in essentially real-time with enough computing power (only

current and past data is used) and access to relatively accurate velocity data. Following

this, we include the forward FTLE field to see what is gained by incorporating forecast wind

data3. Then, we make comparisons with Eulerian quantities by highlighting areas where

they provide insight and demonstrate that the FTLE field helps us understand, and in some

cases predict, phenomena which the Eulerian quantities simply cannot. In subsequent figures

we will highlight certain features we are describing with arrows or boxes if we feel they are

not obvious from their description alone. In S4 of the Supplemental Material, we produce

3Here we still use MERRA-2 reanalysis data so this would be assuming the forecast data is as accurate
as reanalysis data. Results would be effected if true forecast data was used.

https://youtu.be/_u4YXh8k0Ok
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the same figures that will be covered in sections 3.1 and parts of 3.2 but using velocity fields

from the 600 hPa pressure to make sure we are not missing any important structures or

observing any artifacts due to the averaging.

3.3.1 FTLE

On June 1, 2020, a vortex starts to form to the north-northwest of the plume, off the

northwest coast of Africa. We refer to this as the early June vortex in later sections. We

omit the figures showing its formation as this is less important. A video of the backward

FTLE ridges overlaid on OMPS aerosol index data can be seen here. In addition, we provide

a video of attracting LCS, computed using the variational method, overlaid on the backward

FTLE field to confirm the structures we are focused on are true hyperbolic structures and not

FTLE false positives due to shear. The vortex hovers in this area until about June 5 (Figure

3.6a), when a FTLE ridge forming the northern piece of this vortex (green arrow in 3.6a))

forms another vortex (green box Figure 3.6b) and they are both shepherded to the east while

the original early June vortex dissipates and has little effect on the plume. As this happens,

the secondary vortex breaks off a piece of the plume over northern Africa and pushes it

towards southeast Asia (green arrow in Figure 3.6c). These type of vortex structures, made

up of regions of high deformation, will be important in describing the evolution of the plume.

In addition, there is a strong attracting ridge acting as the northern boundary for the plume.

This ridge persists throughout a large portion of the plume’s lifetime and prevents transport

to the north.

For the next two days, the plume does not change in shape much and hovers over northwest

Africa, moving north slightly as it is attracted to the strong ridge acting as its northerly

boundary. On June 12, a new vortex begins to form in roughly the same place as the early

https://youtu.be/TAldqpPqOpg
https://youtu.be/sZ6kUxqmHvQ
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Figure 3.6: Backward FTLE ridges overlaid on aerosol index data obtained from OMPS,
June 5-8, 2020. See text for details.

June vortex (off the coast of northwest Africa). We will refer to this vortex as the mid June

vortex and first show it on June 15 (Figure 3.7a). At first, this vortex seems quite similar

to the early June vortex and one might expect a similar minor effect on the plume. But this

time, as the northern attracting ridge is attracted towards the vortex, the vortex is propelled

towards the plume and collides with it directly. As it does, the vortex dissipates and spreads

out but its effect on the plume is substantial. The vortex pushes down on the plume and

drastically deforms its northern boundary, flattening and elongating it as it propels the

western portion further west at a more rapid rate than it was originally traveling. We see

the results of this collision in Figure 3.8. A mushrooming effect is taking place on June 19

(Figure 3.8a) as the western portion grows and begins to separate from the rest of the plume.

This becomes more pronounced on June 20 (Figure 3.8b) and then a split happens on June

21 (Figure 3.8c); all the while a strong attracting ridge bounds the main plume to the north,

its shape changed by the earlier collision. By June 23 (Figure 3.9a), the plume has fully split

into separate pieces. As this happens a strong ridge runs between the two. Starting on June
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24 (Figure 3.9b) a new feature becomes evident. We see a ridge running through the middle

of the plume, acting in a similar manner to the air bridges seen in other transoceanic smoke

transport [124]. Furthermore, a “FTLE front” becomes apparent (Figure 3.9c,d) that ushers

the new mushrooming portion of the plume westward towards the Americas.

Figure 3.7: Backward FTLE ridges overlaid on aerosol index data obtained from OMPS,
June 15-18, 2020.

In Figures 3.10, 3.11 and 3.12, both backward and forward FTLE ridges are overlaid with

dust data (see video) to see what is gained from incorporating future (originally, forecast)

data. On June 11 (Figure 3.10a) we notice some repelling ridges near the southwestern

portion of the plume. On June 12 (Figure 3.10b), these ridges connect and, on the 13th

(Figure 3.10c), we notice there are some repelling ridges intertwined with the strong mid

June vortex structure mentioned previously. This behavior is usually indicative of cyclonic

storm behavior (e.g., hurricanes) but storms in this region are not classified by NOAA so

there is no mention of it in the literature. In addition, we can see the repelling ridge near the

southern portion of the plume being drawn to and eventually connecting with the repelling

ridges in the vortex. This connection creates “turnstile lobes” [31, 91, 102, 106] that could

https://youtu.be/XRbNbZa7M3I
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Figure 3.8: Backward FTLE ridges overlaid on aerosol index data obtained from OMPS,
June 19-22, 2020.

be useful for identifying sets of particles that will remain separate from the vortex and those

which will be entrained into it; see [38, 128, 129, 133]. For example, had this storm been

over the plume and one had information about the locations of dust associated microbes

present, predictions could be made about which of these would be ejected from the plume

and subsequently entrained into the vortex as it traversed the Atlantic [135, 154].

On June 15 (Figure 3.11a), repelling ridges can be seen in between the vortex structure

and the northern attracting ridge. On June 16 (Figure 3.11b), we can see one of these

repelling ridges essentially being sandwiched between the two dominant attracting structures

and being ejected towards the east at a rapid rate. This is behavior that is indicative of

strong stretching (in dynamical systems terms, hyperbolic) events and we see this play out

in subsequent days as the plume stretches and undergoes strong hyperbolic deformation,

especially at the northern portion. We see similar behavior on June 18 (Figure 3.11d) with a

few ridges intersecting the northerly attracting ridge and being pulled to the east, producing

further hyperbolic deformation. Finally, during June 19-21 (first shown as green arrow in
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Figure 3.9: Backward FTLE ridges overlaid on aerosol index data obtained from OMPS,
June 23-26, 2020.

Figure 3.12a), there is a repelling ridge intersecting the main attracting ridge. It is hard

to say for sure with the temporal resolution for the dust data limited to 24 hour averages,

but it seems this intersection point may lead to more hyperbolic behavior and assist in the

eventual splitting of the plume.

3.3.2 Eulerian Combined with Lagrangian Analysis

In this subsection, we focus on some of the phenomena mentioned above and observe where

Eulerian information is useful and where it falls short when compared to the Lagrangian

diagnostics mentioned above. There are three main phenomena to discuss. First, we will

compare the early June and mid June vortices and attempt to uncover why two seemingly

similar structures had drastically different effects on the fate of the plume. Then, we will

see if the strong northern ridge, which bounded the plume for most of its lifetime, could

have been identified using Eulerian information. Finally, we will focus on the splitting of the
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Figure 3.10: Forward and Backward FTLE ridges overlaid on aerosol index data obtained
from OMPS, June 11-14, 2020.

plume in late June and again see if any Eulerian quantities could have indicated that this

would happen.

Early June and Mid June Vortex Comparison. In the following figures, we take a

wider view and focus on the area where latitude runs from 5◦S − 75◦N and longitude runs

from 120◦W − 80◦E to better see the effects of other FTLE features on the plume. We

begin by identifying the vortices by looking at the mean sea level pressure (MSLP), low

level vorticity (at 850 hPa), and backward Lagrangian averaged vorticity deviation (LAVD),

which is computed for an integration time of 1 day using the averaged velocity fields. For

these figures, the focus is on the region with center around 25◦W, 35◦N, off the northwest

coast of Africa. On June 3, we notice a low in the MSLP (Figure 3.13a). On June 14, the

MSLP (Figure 3.13b) in the region of the vortex is not quite as low, but is a low relative to

the surrounding high. For the low level vorticity, we notice highs for both June 3 (Figure

3.13c) and June 14 (Figure 3.13a). In addition, we see local maxima in the LAVD field
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Figure 3.11: Forward and Backward FTLE ridges overlaid on aerosol index data obtained
from OMPS, June 15-18, 2020.

on both dates (Figure 3.13e,f), indicating a coherent vortex in the center of the storm that

has persisted from at least one day ago. These figures seem to indicate that the early June

vortex is the stronger of the two with a lower low and more coherent/strong center as seen

in the vorticity and LAVD fields. Much of the same is drawn from the following day. Again

the early June vortex shows as a low in the MSLP (Figure 3.14a) and the mid June vortex

shows as a relative low while surrounded by a strong high (Figure 3.14b). Highs are again

seen in both low level vorticity fields (Figure 3.14c,d) and local maxima can be seen in the

LAVD fields (Figure 3.14e,f). The mid June vortex seems to be strengthening as can be

seen by its more coherent vortex center. Through these figures we can confirm that we are

indeed looking at true vortex structures. In addition, these storms can be seen in the satellite

imagery as apparent on the NASA page for this dust event. Now, we move on to focusing

on other features in the FTLE field which interact with these structures.

In the subsequent figures, the early and mid June vortex patterns are in different columns

(early June left, mid June right), while we show the velocity field and FTLE field in the

https://svs.gsfc.nasa.gov/4849
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Figure 3.12: Forward and Backward FTLE ridges overlaid on aerosol index data obtained
from OMPS, June 19-22, 2020. See text for details.

rows (velocity top, FTLE bottom). A full video of the comparison of these two fields was

also produced. The reader is encouraged to watch the comparison video as much of what

is described in this section is much easier seen in the video. In addition, we again provide

a video of attracting LCS overlaid on the backward FTLE field to confirm the structures

we are focused on are truly hyperbolic. Looking at the velocity fields (Figure 3.15a,b), a

counter-rotating vortex pattern is apparent [109], both in the early and mid June vortices

identified earlier, but also in a larger vortex over northern Africa that kept the plume in

place before the collision with the mid June vortex. Interestingly, one might argue the early

June vortex is the “stronger” of the two and therefore would be the one having a greater

effect on the plume. Observations could be made about the velocity field above the vortex

structures, over Europe, and to the northwest, over North America. In early June there is

a strong vortex to the north while this does not exist in mid June. In early June there are

more vortex patterns to the northwest and more of a jet feature in mid June. In both of

these cases it is hard to say with any confidence how these patterns will effect the early and

https://youtu.be/ugsGIEmtJbs
https://youtu.be/t4dJCh6qHvU
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Figure 3.13: MSLP (hPa, top), low level vorticity at 850 hPa (10−5×s−1, middle), and LAVD
(10−5×s−1, bottom) on June 3, 2020 (left) and June 14, 2020 (right).

mid June vortices. Conversely, the FTLE ridges yield influential material lines that will be

advected with the flow and affect nearby particles as they come in contact. In early June,

the ridge making up the northern portion of the vortex is long and is connected to other

regions of the flow running north through eastern Europe (green box in Figure 3.15c) while

the mid June vortex is less “connected” as its northern ridge remains separate from the

strong ridge off the western coast of Europe and the one running through eastern Europe

(green arrow Figure 3.15d). While not of immediate interest, we note the FTLE activity

over North America. There is quite a bit more going on in mid June compared to early June

which can be most easily seen in the video, where a jet feature is present in the FTLE field.

In Figure 3.16, we begin to fully see the distinction between the effects of the early and mid

June vortices on the fate of the plume. There is a similar story in the velocity fields; one
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Figure 3.14: MSLP (hPa, top), low level vorticity at 850 hPa (10−5×s−1, middle), and LAVD
(10−5×s−1, bottom) on June 4, 2020 (left) and June 15, 2020 (right).

notices differences between the early and mid June features. In early June (Figure 3.16a) it

is difficult to see why the vortex was simply pulled towards the east in comparison to the

trajectory of the mid June one (Figure 3.16b). There is a jet feature present in mid June

to the northwest that is somewhat apparent in the Eulerian data but one cannot conclude

from this data alone that it would have as great of an effect on the mid June vortex as it

did. When we look at the FTLE fields, things become more clear. In early June, the vortex

is being pulled along by the secondary vortex mentioned earlier, to which it is connected.

In addition, it is being influenced and swept along by a large FTLE pattern over Europe

(green box in Figure 3.16c). In mid June, the jet feature is now more apparent (magenta

box in Figure 3.16d) with a small vortex being created at the end of the jet. This leads to a

mushrooming effect with a FTLE ridge leading the way (green box in Figure 3.16d), which
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Figure 3.15: Velocity field (top) and backward FTLE ridges (bottom) overlaid on OMPS
aerosol index data on June 5, 2020 (left) and June 16, 2020 (right). See text for details.

pushes on the vortex and propels it into the plume. In the final figure (Figure 3.17) we see

the effects of these interactions and the drastic difference in the shape of the plume after the

early and mid June vortices run their courses. The key difference here is that the velocity

field shows the direction and instantaneous speed of a fixed point in space, allowing one

to loosely infer where/how particles in the flow are actually moving while the FTLE field

actually shows us how material in the flow is moving (by identifying the most influential

material lines and seeing them move through space), allowing for much more detail and

insight to be extracted when focusing on transport events.

Dust Plume Northern Boundary. There are other Eulerian quantities which can be

used to compare to FTLE or help better analyze this transport event. We go through them

briefly here, providing only a frame for each but with an accompanying video if the reader is

interested. Consider the video performing the same comparison as was done between FTLE

and velocity fields, but with the corresponding streamfunction instead. Many of the same

https://youtu.be/jAHVSEunkag
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Figure 3.16: Velocity field (top) and backward FTLE ridges (bottom) overlaid on OMPS
aerosol index data on June 6, 2020 (left) and June 17, 2020 (right). See text for details.

conclusions are drawn as with the previous comparison. Note that the streamfunction does

not identify the northern boundary (see Figure 3.18 and video mentioned previously).

On the other hand, the vorticity field provides significant insight, capturing the strong

northerly boundary FTLE ridge as a curve of vanishing vorticity; see Figure 3.19 (left)

and the full video. Note that there are many other zero vorticity contours not associated

with FTLE ridges. The FTLE ridge as the northern plume boundary instills confidence that

it will indeed be a significant transport barrier, as it is objective (independent of the frame

of reference) whereas vorticity is not objective and the FTLE takes into account information

from the entire past time window.

Finally, we turn to an objective Eulerian diagnostic, the instantaneous Lyapunov exponent

(iLE) field mentioned earlier. The iLE field quantifies instantaneous deformation and gives

credence to the large effect of the mid June vortex collision with the plume. As seen in

Figure 3.19 (right), as the mid June vortex collides with the plume we see very large iLE

values along the plume’s northern portion. Recall the iLE is the limit of the FTLE field as

https://youtu.be/DicvKpOzj34


3.3. RESULTS 81

Figure 3.17: Velocity field (top) and backward FTLE ridges (bottom) overlaid on OMPS
aerosol index data on June 7, 2020 (left) and June 18, 2020 (right).

Figure 3.18: Left: Streamfunction overlaid on OMPS aerosol index data. Right: Backward
FTLE overlaid on aerosol index data.

the integration time goes to zero, providing an objective diagnostic for identifying regions

of high attraction and repulsion at an instant in time. The high values along the northern

portion confirm that the plume underwent large scale deformation at the time of impact

with the vortex. A full video of the iLE field overlaid on the dust data and backward FTLE

ridges is provided here.

Plume Splitting Event. We end our analysis by looking at the splitting event of the

plume around June 21. Recalling Figure 3.12a, we see an intersection point (green arrow)

https://youtu.be/qvsnHb9U6-Q
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Figure 3.19: Left: Backward FTLE ridges (purple) overlaid on vorticity (10−5×s−1, blue
and red). Right: iLE (10−6×s−1, purple) field overlaid on backward FTLE ridges (blue) and
OMPS aerosol index data (copper) on June 18, 2020.

between the forward and backward FTLE ridges near where the splitting takes place. For-

ward and backward FTLE ridges can essentially be considered as time-dependent analogues

of stable and unstable manifolds [19, 131, 147] and therefore, their intersections can be

thought of as time-dependent analogues of saddle points4. These points can be important as

they sometimes behave as moving, transient saddle points, having a similar effect, locally,

on the flow nearby. Clearly they can be identified by looking for intersections between the

forward and backward FTLE ridges (attracting and repelling LCS intersections are some-

times referred to as “generalized saddles”) but we were curious if we could find these points,

or regions near these points, by using only current and past data. We focus on the specific

point we refer to at the beginning of this section as we believe it played a role in the splitting

of the plume. We did not find any Eulerian data on its own that identified this point or

captured its effect on nearby parcels. That being said, when we look at velocity vectors

along the backward FTLE ridges, we can notice an inflection point in the direction of veloc-

ity vectors along the main northern boundary ridge, right around the intersection point (see

Figure 3.20, left). While looking at velocity vectors along a moving Lagrangian ridge can

sometimes be misleading, it is clear here that this point identifies an area of high stretching

4In addition to saddle-like points, these points can also behave like homoclinic orbits, homoclinic tangles,
and primary intersection points (PIPs). Further investigation is needed to decipher when an intersection
point behaves as one of the mentioned candidate points.
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as seen by the large magnitude velocity vectors on either side of this point farther down the

ridge. This point can be found by looking at the zero point of the tangential velocity along

a ridge as seen is Figure 3.20, right. Note in this figure that the black dots represent the

intersection point between the forward and backward ridges. The zero tangential velocity

point lags slightly behind due to general westward motion in the flow. This is an example

of when using Lagrangian and Eulerian data in conjunction can be beneficial.

Figure 3.20: Left: Backward FTLE ridges (blue) with velocity vectors along ridge (green
arrows) overlaid on forward FTLE ridges (red) and OMPS dust data (copper) on June 19,
2020. Black dot represents the intersection point while green dot represents zero tangential
velocity point along ridge. Right: Tangential velocity value along portion of main northern
ridge of the plume intersecting repelling ridge. The black dots represent the intersection
point between the backward and forward ridge which led to the splitting of the plume with
the dotted line representing the zero tangential velocity point. Shades of green represent
date-time in 3 hour increments. Bold line corresponds to same date-time as left figure.

3.4 Discussion

Throughout the lifespan of the dust plume, a dominant ridge of the backward FTLE field acts

as a northern boundary for the plume and plays a role in its evolution and eventual splitting.

In addition, a vortex structure visible on June 15-16 moves south, intersecting the plume.

This structure has a major effect on the plume, drastically changing its shape by flattening
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and elongating it, propelling the western half towards the Americas at a more rapid rate,

and leading to the eventual splitting of the plume. Overall, insight is gained from computing

backward time Lagrangian coherent structures, which rely on only current and past velocity

data. These structures can be of use in making qualitative, time-sensitive decisions. Had

one been able to compute these structures as the event was occurring, one could identify the

strong northern ridge and surmise it would act as a barrier, preventing any dust transport

farther north. In addition, the identification of the strong vortex structure on June 15 and

the jet-core to its northwest suggests an eventual drastic plume shape change, the speed-up

of the western portion, and eventual plume splitting. After the fact, the backward FTLE

field assists in understanding the drivers of transport during this massive dust event by

identifying the key structures responsible for the fate of the plume.

What additional information do we gain from the utilizing the forward time FTLE struc-

tures, which would depend on wind forecasts? Interestingly, the main structures acting as

boundaries and those acting as catalysts for deformation are captured within the backward

FTLE field itself. The forward FTLE does offer some useful insight however, further demon-

strating the strength of the mid June vortex and helping understand why it collided with

the plume in the manner it did. The movement of air masses due to the vortical motion can

be related to intersection points of attracting and repelling ridges and the resulting “lobe

dynamics” [38, 108, 128].

As demonstrated by the velocity (similarly, streamfunction) and FTLE comparisons, it is

clear that the FTLE field, being derived from current and past data, can provide more insight

into transport events like this one. The velocity fields give simply a snapshot of data with no

information about its past evolution. The FTLE ridges identify the material curves within

the flow that are most influential on plumes of transported material, its deformation, and

fate. As the most significant material lines, in terms of repulsion or attraction of nearby
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material lines, they have a strong influence on material-laden fluid parcels that come near.

This is apparent in mid June as a cascading effect takes place. A strong jet-core propels

influential material lines and air mass towards the east, creating a small vortex which leads

to a mushrooming effect that eventually collides with the mid June vortex, driving it into

the plume and drastically effecting the evolution of the dust storm (see Figure 3.16). With

this info in real time, a qualitative prediction could have been made about the effect the

mid June vortex had on the plume. Using only the velocity fields, no such prediction was

evident. For instance, there was not a streamline which acted as a northern plume boundary

nor were insights about the fate of the plume captured in the velocity fields.

This is not to say the velocity fields are not useful; they highlight the counter-rotating

vortex pattern and made it clear why the plume lingered for as long as it did. In addition,

the vorticity field provided insight related to the strength of the counter-rotating vortex

pair pattern and the potential alignment of zero vorticity curves with the plume northern

boundary attracting ridge.

A number of different approaches could be used to study and perhaps attempt to predict

transport in an event like this. Synoptic maps have been used to uncover patterns related to

transport. Anomalies relative to the climatology in fields shown in these maps can point to

potential exceptional dust events and highlight significant circulation features which play a

role in the evolution of the plume [44, 126, 166]. These works mainly focus on anomalies in

pressure conditions (geopotential heights, NASH) and resulting wind features (strong African

eastetly jet (AEJ) and anomalous streamfunction patterns). These methods are very useful

and highlight indicators of an extraordinary event while providing a coarser view of the

transport. By contrast, FTLE provides finer detail by identifying the structures responsible

for transport in a more precise manner. For example, these works point to the anomalous

strength and position of the NASH and the associated anticyclonic circulation causing an
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exceptionally strong AEJ which favored transport to the Americas [166]. Using FTLE, we

identified the strong jet above North America which forced the vortex structure into the

plume, causing it to split and propel each portion to the west and east respectively. Indeed,

the anticyclonic circulation did strengthen the AEJ but our results suggest that the true

culprit to its exceptional strength was the jet we identified that caused the storm to impact

the plume. To the authors’ knowledge, no work identified this interaction and the significance

of these two features beyond noting the role of the anticyclonic circulation in strengthening

the AEJ. In addition, we are not aware of any work that uncovered the northern boundary

of the plume as the FTLE field did.

For another Lagrangian approach, trajectory models can be used which can calculate particle

transport and dispersal in the atmosphere. In most of the literature, tools like these, e.g.,

the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model [149], are

often used to compute backward trajectories and identify possible source regions for these

exceptional events [39, 94]. In addition, forward trajectory models can be used to verify

conclusions drawn from remote-sensing data and modeling [11], and to investigate long-term

seasonal trends of dust plumes [104]. Using trajectory models like this can identify persistent

source regions and transport pathways after an event which can be useful information for

future events.

The HYSPLIT model has the ability to forecast particle trajectories but the authors are

not aware of any work being done utilizing this propagator to forecast long-range dust

transport, though it would be interesting to see the accuracy of this tool in a real-time

prediction context. Since it would rely on forecast data, it can only be as accurate as the

forecast data. One could argue that computing backward FTLE on forecast data would

be more advantageous due to the information FTLE provides while relying on less forecast

data (FTLE only needs 2D wind velocity while HYSPLIT will need 3D wind velocity and
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additional meteorological conditions) and being relatively robust to uncertainty in velocity

data [5]. As noted, we are not aware of this being done but would be interested to see the

comparison.

Though we do not use FTLE in a true prediction context, applying FTLE in the manner we

did (using only current and past data) in real-time could lead to qualitative inferences in a

situation like this (e.g., the “northern boundary ridge” would act as a boundary and impede

transport to the north, the unfolding of the jet-vortex interaction could imply the splitting

of the plume and speed up transport to the Americas, etc.). Using it in this manner would

be quick to implement as well as it would only necessitate the computation of the FTLE field

at the current time (given we have computed backward FTLE up to the current time). We

do not see how using HYSPLIT on only current and past data could provide similar insight

in real-time.

We suggest that the FTLE field (and other coherent structure methods) be integrated as

part of the atmospheric scientists toolbox when studying transport events like this and that

Eulerian and Lagrangian diagnostics should be used in tandem to get the most out of the

information available. This will provide the most complete picture of the transport after the

fact and, more importantly, could provide the best information for making predictions in

real-time.

3.5 Conclusion

Using NASA data for velocity fields (MERRA-2) and aerosol index values (OMPS) to rep-

resent the “Godzilla” dust plume of 2020, we demonstrated a simple implementation of the

FTLE method for transport in geophysical flows. Even with significant simplification, these

tools can be employed, essentially in real-time to assist in prediction of the transport of
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dust or any other contaminant in the atmosphere (e.g., wildfire smoke [124]). Additionally,

these tools can be used after the fact to identify key features responsible for the evolution

of this massive dust plume and assist in better understanding the mechanisms by which the

transport occurred.

We have shown the advantages of Lagrangian coherent structure (LCS) methods over tra-

ditional flow visualization techniques in the atmospheric sciences. By computing quantities

which incorporate data outside of the current frame, a more complete picture of transport

can be obtained. We do not suggest an abandonment of traditional techniques—far from it.

Using Lagrangian tools such as the finite-time Lyapunov exponent (FTLE) field in conjunc-

tion with traditional methods and other Eulerian quantities mentioned previously provides

the most comprehensive assessment of transport. We suggest researchers use all the tools

and techniques available in an optimal manner to get the most out of the available data.

In future work, a more detailed analysis can be performed to obtain a more accurate portrait

of the most influential structures of interest. As a caution, the FTLE does not provide

information on parabolic and elliptic structures which may be important. Thus, performing

parabolic and elliptic LCS computation could yield other important structures that were not

captured in the purely hyperbolic investigation. We were able to infer the presence of a jet-

core using the attracting structures by its effect on nearby material lines but parabolic LCS

would have identified it without the need for inference. In addition, we identified coherent

vortices using the LAVD for just a few frames. Employing this tool or other methods to find

elliptic LCS for the entire time window could yield more insight. One could also compute

FTLE at a number of different pressure surfaces to see how much the structures differ from

the ones we obtain from the averaged velocity field and 600 hPa surface. In addition, these

FTLE fields could be “stiched” together to create an approximation of the 3D structures.

For a higher fidelity analysis, the FTLE could be computed from the 3D velocity field itself
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and inertial particle effects of dust could be incorporated. However, comparison with ground

truth data would be difficult as the dust data available here via satellite was only a 2D vertical

column-averaged data, and only once every 24 hours, with little to no vertical resolution.

Though not mentioned here, there is a complementary viewpoint which seeks to identify the

coherent material sets themselves rather than the material curves that often bound them

[48, 53, 150, 155] which has seen improvements in computationally efficiency in recent years

[47]. A study performing a comparison of these methods in the atmospheric setting would

be useful. Like the the work done for this dust event, we could perform similar computations

for other large scale dust events and see if similar structures persist or different phenomena

is observed. Coupling this transport modeling with microbiological analysis could assist in

understanding similar past events and mitigating possible negative effects of future ones as

well.

We will aim to pursue some of these avenues in future work with most of the focus on

computing FTLE over the entire globe for some significant portion of the past to see if we

can identify recurrent transport patterns to assist in prediction and obtain a historical record

of global atmospheric FTLE. In addition, we have hopes that this data may shed some light

on storm formation and intensification. By doing this and other studies, we intend to further

demonstrate the usefulness of coherent structure methods to the atmospheric community in

hopes of adding to the researchers toolkits when talking problems of this kind.
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Abstract

The identification of transport barriers in fluid flows has long focused on Lagrangian coherent

structures (LCS), which describe barriers to purely advective transport. More recently,

the notion of coherence has been revisited to account for diffusive effects, leading to a

theory of elliptic transport barriers that extremize diffusive transport in advection-dominated

91
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regions. While this theory has been developed in the finite-time setting for general diffusion

structures, an analogous instantaneous (Eulerian) formulation has remained lacking. In

the special case of steady, homogeneous, isotropic diffusion, it has been shown that barriers

extremizing the diffusive flux-rate coincide with purely advective, objective Eulerian coherent

structures. In this work, we extend the framework to define diffusive flux-rate barriers in

the instantaneous case for general, potentially anisotropic, unsteady, and inhomogeneous,

diffusion structures. We illustrate how these barriers can differ significantly from their

isotropic counterparts through a toy example designed to highlight the impact of complex

diffusion structure on transport barrier geometry.

4.1 Introduction

Understanding how a nonautonomous flow’s contents are organized over some finite time

window can be very useful for determining where a substance under the action of the flow

may or may not go over that time window. Applications range from analyzing some geophys-

ical phenomena [38, 49, 95, 129, 130, 132, 144] to better understanding transport of some

contaminant in a geophysical flow [32, 75, 111, 117, 124, 135]. In these examples, and many

others in geophysical and engineering applications, the material being transported through

the flow is influenced by both advective and diffusive contributions, though the diffusive

contributions are orders of magnitudes smaller than the advective ones. The theory of LCS

was developed in the purely advective setting and did not account for diffusion. With this

in mind, standard LCS were defined via a variational formulation which proposed them as

material surfaces which extremized the normal repulsion or attraction rate [59] in the hyper-

bolic case and as closed material surfaces which stretch by a uniform factor (to leading order)

over the finite time window in the elliptic case [61]. More recently, theory was developed for
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the instantaneous case which looks at these structures as the integration time τ → 0. Out

of this work, objective Eulerian coherent structures were born [141] which characterize im-

portant short-term transport structures. Both the Lagrangian and Eulerian structures have

received a great deal of attention and been used extensively, to great success, in physical

applications like those mentioned above. More recently, Haller et al. [68] extended the con-

cept of transport barriers by incorporating diffusion in the weakly diffusive regime—a regime

relevant to many physical transport processes. They introduced a new tensorial framework

(based on the transport tensor and the averaged diffusion-weighted Cauchy-Green strain

tensor), which yields material surfaces that extremize diffusive transport. This formulation

overcomes a limitation of the purely advective case, in which material flux is always zero

and thus ill-defined as a measure of coherence. In their work, Haller and coauthors devel-

oped a theory of material barriers to diffusive and stochastic transport for general diffusion

structure in the finite-time setting, and for steady, homogeneous, isotropic diffusion in the

instantaneous (Eulerian) case. While this latter setting will be the more common case, we

extend their framework to define instantaneous barriers for general diffusion structure. This

effort provides a step toward developing general Eulerian counterparts to Lagrangian diffu-

sive barriers. This paper is organized as follows: we begin with a brief overview of coherent

structures in the purely advective setting. We then review the recent developments in the

diffusive and stochastic transport framework. Following this, we present our extension of

the instantaneous theory to general diffusion structure. We illustrate the key differences

through an example comparing barriers arising from isotropic and general diffusive theories.

We conclude with remarks and directions for future work.
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4.2 Background

We will start by (very briefly) reviewing elliptic advective coherent structures in 2 dimensions.

We refer the reader to the cited articles [61, 141] for more details. Assume we have a time-

varying velocity field v(x, t) that is C2 in space and C1 in time. Consider the initial value

problem,

d

dt
x = v(x, t), x ∈ U ⊂ R

n, t ∈ I ⊂ R (4.1)

Then there exists a family of diffeomorphisms {Ft
t0
} associated with velocity field v(x, t)

known as the flow maps which advect particles through the flow,

Ft
t0
: U → U

: x0 7→ x(t; t0,x0)

(4.2)

We can define the linearized flow map as the gradient of the flow map with respect to initial

conditions,

∇0Ft
t0
(x0) =

∂Ft
t0
(x0)

∂x0

. (4.3)

The right Cauchy-Green deformation tensor is defined as,

Ct
t0
(x0) =

(
∇0Ft

t0
(x0)

)⊤ ∇0Ft
t0
(x0) (4.4)

which is symmetric and positive-definite. This implies that Ct
t0
(x0) has real eigenvalues λi
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and corresponding orthonormal eigenvectors ξi with i ∈ {1, 2, ..., n} such that,

λ1 ≥ ... ≥ λn > 0 and, (4.5)

〈ξi, ξj〉 = δij. (4.6)

The Eulerian rate-of-strain tensor is defined as the symmetric part of the spatial gradient of

velocity,

S(x, t) = 1

2

(
∇v(x, t) + (∇v(x, t))⊤

)
(4.7)

which is symmetric, implying it has real eigenvalues si and corresponding orthonormal eigen-

vectors ei with i ∈ {1, 2, ..., n} such that,

s1 ≥ ... ≥ sn and, (4.8)

〈ei, ej〉 = δij. (4.9)

For short times, S quantifies the deviation of C from the identity, i.e.,

Ct
t0
(x0) = I + 2S(x0, t0)(t− t0) +O(|t− t0|2).s (4.10)

4.2.1 Lagrangian

Lagrangian elliptic coherent structures are defined in terms of the averaged tangential ma-

terial strain for a given closed curve γ [61]. To start, parameterize a closed curve γ such

that γ = r(s) for s ∈ [0, σ] and γ(σ) = γ(0). Let r′(s) represent the tangent vector to γ at

r(s) and let d
ds

Ft
t0
(r(s)) denote the corresponding tangent vector along the advected curve
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Ft
t0
(γ). Then, the lengths of these vectors can be calculated by,

‖r′(s)‖ =
√

〈r′(s), r′(s)〉,
∥∥∥∥
d

ds
Ft

t0
(r(s))

∥∥∥∥ =
√〈

r′(s),Ct
t0

r′(s)
〉
. (4.11)

Let,

q(r(s), r′(s), t) =

√〈
r′(s),Ct

t0
(r(s))r′(s)

〉
√
〈r′(s), r′(s)〉

, (4.12)

represent the pointwise tangential strain. Then, the averaged tangential strain along γ is

given by,

Q(γ) =
1

σ

∫

γ

q(r(s), r′(s), t)ds. (4.13)

Proceeding with the variational calculus, Haller and Beron-Vera [61] show that extremizers

of this functional are limit cycles of the following differential equations,

r′(s) = η±
λ (r(s)), η±

λ (r(s)) =

√
λ2 − λ2

λ1 − λ2

ξ1(r(s))±
√

λ1 − λ2

λ1 − λ2

ξ2(r(s)), (4.14)

defined on the domain,

Uλ = {x0 ∈ U : λ1 6= λ2, λ2 < λ2 < λ1}. (4.15)

.
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4.2.2 Eulerian

The Eulerian formulation follows a similar setup, but the objective shifts to identifying closed

curves that extremize the averaged tangential material stretch-rate [141],

Q̇(γ) =
1

σ

∫

γ

q̇(r(s), r′(s), t)ds, (4.16)

with,

q̇(r(s), r′(s), t) = 〈r′(s),S(r(s), t)r′(s)〉
〈r′(s), r′(s)〉 , (4.17)

Noting similarities to the variational problem in the Lagrangian case from the previous

section, the authors conclude extremizers of Q̇(γ) will coincide with limit cycles of the

following differential equations,

r′(s) = χ±
µ (r(s)), χ±

µ (r(s)) =
√

µ− s2

s1 − s2
e1(r(s))±

√
s1 − µ

s1 − s2
e2(r(s)) (4.18)

defined on the domain,

Uµ = {x0 ∈ U : s1 6= s2, s2 < µ < s1}. (4.19)

4.3 Advection-diffusion transport

Next we present what was done for diffusive barriers in the Lagrangian case by Haller

et al. [68]. Then, we apply similar arguments as in [141] to define instantaneous Eulerian

diffusive barriers.
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4.3.1 Lagrangian

For a given time-varying velocity field v(x, t), the tracer field c(x, t) evolves according to the

classic advection-diffusion equation,

∂c

∂t
+∇ · (cv) = ν∇ · (D∇c), c(x, t0) = c0(x), (4.20)

where x ∈ U ⊂ R
n and D(x, t) ∈ Mn(R) is the symmetric, positive definite diffusion-

structure tensor. The parameter ν > 0 represents the diffusivity and is assumed to be small

so that the transport of c(x, t) is dominated by advection. For our purposes, we assume

both the concentration c(x, t) and diffusion structure tensor D(x, t) are C2. Then we have

the flow maps {Ft
t0
} as defined above (Eq. (4.2)), for an arbitrary smooth material surface

Mt = Ft
t0
(M0) with initial condition given by M0 = Mt0 ⊂ U , the total transport of c(x, t)

through this surface, over the time window [t0, t1], is given by,

Σt1
t0
(Mt) =

∫ t1

t0

∫

Mt

νD∇c · n dAdt (4.21)

where n(x, t) is the normal to the surface Mt for all x ∈ Mt with n0(x0) the normal to

M0 for all x0 ∈ M0. Then, we can reformulate the total transport in terms of Lagrangian

coordinates by noting n dA = det(∇0Ft
t0
)[∇0Ft

t0
]⊤n0dA0 [55] and applying the chain rule to

∇0c to obtain ∇c in terms of the material coordinates. Note that ∇ = ∂
∂x represents the

spatial gradient and ∇0 = ∂
∂x0

represents the material gradient. The material and spatial

gradients are related in the following manner [55],

∇0c = (∇0Ft
t0
)⊤∇c =⇒ ∇c = (∇0Ft

t0
)−⊤∇0c (4.22)
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Then, the total transport is given by,

Σt1
t0
(M0) = ν

∫ t1

t0

∫

M0

D(Ft
t0
, t)[∇0Ft

t0
]−⊤∇0c(Ft

t0
, t) · [∇0Ft

t0
]−⊤n0 dA0 dt

= ν

∫ t1

t0

∫

M0

〈
D(Ft

t0
, t)[∇0Ft

t0
]−⊤∇0c(Ft

t0
, t), [∇0Ft

t0
]−⊤n0

〉
dA0 dt

= ν

∫ t1

t0

∫

M0

〈
∇0c(Ft

t0
, t), [∇0Ft

t0
]−1D(Ft

t0
, t)[∇0Ft

t0
]−⊤n0

〉
dA0 dt

= ν

∫ t1

t0

∫

M0

[∇0c(Ft
t0
, t)]⊤Tt

t0
n0 dA0 dt,

(4.23)

where Tt
t0
:= [∇0Ft

t0
]−1D(Ft

t0
, t)[∇0Ft

t0
]−⊤ is a symmetric positive-definite tensor which we

will refer to as the diffusive Lagrangian flux tensor.

As shown by Haller et al. [68], this can be rewritten as,

Σt1
t0
(M0) = ν

∫ t1

t0

∫

M0

[∇0c0]
⊤Tt

t0
n0 dA0 dt+ o(ν) (4.24)

To find material surfaces that extremize diffusive transport across them, the authors propose

an initial concentration such that M0 is a level set of the initial concentration (this implies

∇0c0(x0) = Kn0(x0) for K > 0 and n0 defined previously) and therefore, the concentration

will diffuse directly through M0 (due to Fick’s law) and will identify barriers that will impede

(or enhance) diffusion maximally in the most diffusive prone context. The total transport

then becomes,

Σt1
t0
(M0) = Kν

∫ t1

t0

∫

M0

n⊤
0 Tt

t0
n0 dA0 dt+ o(ν) (4.25)

From here, Haller rewrites this in the following manner,

Σt1
t0
(M0) = νK(t1 − t0)

∫

M0

〈
n0, T̄t1

t0
n0

〉
dA0 + o(ν) (4.26)
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where the diffusive transport tensor T̄t1
t0

is the the time average of Tt1
t0

,

T̄t1
t0
=

1

t1 − t0

∫ t1

t0

Tt
t0
dt (4.27)

The total transport is normalized by dividing by the diffusivity parameter ν, the integration

time (t1 − t0), the magnitude of the initial concentration gradient K, and the area of the

material surface A(M0). This yields a dimensionless characterization of transport,

Σ̃t1
t0
(M0) :=

Σt1
t0
(M0)

νK(t1 − t0)A(M0)
= T t1

t0
(M0) +O(να), (4.28)

for some α ∈ (0, 1). The normalized transport functional is defined as,

T t1
t0
(M0) :=

∫
M0

〈
n0, T̄t1

t0
n0

〉
dA0∫

M0
dA0

, (4.29)

which provides a leading-order estimate of diffusive transport through Mt over the time

interval [t0, t1].

Solving the corresponding variational problem leads to identifying limit cycles of a modified

tensor field defined by T̄t1
t0

, analogous to the advective case, but with the transport tensor

replacing the Cauchy-Green tensor.

Importantly, this approach detailed above yields a predictive measure of diffusive trans-

port barriers in advection-dominated flows, without requiring explicit simulation of the full

advection-diffusion dynamics. That is, the barrier structures can be computed by solving

low-dimensional ordinary differential equations (ODEs) derived from the variational formu-

lation, bypassing the need to numerically solve the advection-diffusion partial differential

equations (PDEs) directly.
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While not a focus of this paper, based on necessary conditions for transport barriers, the

authors also defined the diffuisve barrier strentgh (DBS) which can be viewed as the diffusive

counterpart to the finite-time Lyapunov exponent (FTLE) and is defined as the trace of the

transport tensor,

DBS(x0) := trace
(
T̄t1

t0
(x0)

)
. (4.30)

Much like the FTLE field, the DBS can highlight regions of strong hyperbolic behavior.

4.3.2 Eulerian

We now seek structures that instantaneously extremize the normalized diffusive transport as

integration time approaches zero. We note that the normalized transport functional can also

be viewed as the time-averaged diffusive Lagrangian flux functional. Therefore, identifying

structures that extremize instantaneous diffusive transport is equivalent to seeking those

that extremize the time-averaged diffusive Lagrangian flux T̄t1
t0

and, in the limit as t1 → t0,

this reduces to extremizing the diffusive flux rate at time t0.

We highlight two important results that will be used in what follows. First, the limit of the

time derivative of the diffusive transport tensor as the integration time approaches zero is

given by,

lim
t1→t0

d

dt1
T̄t1

t0
= Ṫt0 , (4.31)

and the limit of the time derivative of the Lagrangian flux tensor as the integration time

approaches zero is given by,

Ṫt0(x0) := lim
t1→t0

d

dt1
Tt1

t0
= −2SD(x0, t0), (4.32)
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where SD is the diffusion-weighted Eulerian rate-of-strain tensor, which we define as,

SD :=
1

2

(
[∇v]D − Ḋ + D[∇v]⊤

)
. (4.33)

Details of these derivations can be found in Appendix B.1 and Appendix B.2, respectively.

The tensor SD is symmetric and objective (see Appendix B.3), and encodes information anal-

ogous to the standard Eulerian rate-of-strain tensor S, but with weighting by the diffusion

structure tensor. As such, it captures both temporal and spatial variations in D.

Since SD is real and symmetric, it has only real eigenvalues si and corresponding orthonormal

eigenvectors ei with i ∈ {1, 2, ..., n}, satisfying,

s1 ≥ ... ≥ sn and, (4.34)

〈ei, ej〉 = δij (4.35)

We note that, for an incompressible flow, the standard Eulerian rate-of-strain tensor has

zero trace as a consequence of the zero divergence condition—implying, for example in 2D,

that its eigenvalues are equal in magnitude and opposite in sign. This property does not

generally hold for SD.

We now take a time derivative of the normalized transport functional and examine the limit

as the integration time approaches zero,

lim
t1→t0

d

dt1
T t1
t0
(M0) =

∫
M0

〈
n0,

d
dt1

(
T̄t1

t0

) ∣∣
t1=t0

n0

〉
dA0

∫
M0

dA0

=
−2
∫
M0

〈n0,SDn0〉 dA0∫
M0

dA0

, (4.36)

which leads to the definition of the diffusive flux-rate functional (or diffusive transport-rate
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functional),

Ṫt0(M0) :=

∫
M0

〈n0,−SDn0〉 dA0∫
M0

dA0

, (4.37)

where we have used the previously stated results (4.31) and (4.32), and divided out the factor

of 2, which has no effect on the stationary curves of the functional. This functional provides

a universal, objective measure of the averaged diffusive flux rate over a surface M0 at time

t0. Objectivity is inherited from the tensor SD.

This variational problem closely parallels those considered in [61, 68, 141], and we adopt a

similar approach to solving it. However, the general-dimensional proof strategy in [68] is

not directly applicable here, as it relies on the symmetry and positive definiteness of the

transport tensor Tt
t0

, which ensures the existence of a unique, real-valued symmetric matrix

square root. In contrast, SD is real and symmetric, but not necessarily positive definite.

We therefore focus on the two-dimensional case and exploit the reparameterization invariance

of the functional, allowing us to proceed with a normal-based formulation. We also draw on

the results from [61, 68], which show that stationary curves of similar functionals coincide

with null-geodesics of an associated Lorentzian metric. Our structures are defined based on

this correspondence, and we refer the reader to the those works for additional detail.

To find extremizers of Ṫt0(M0), we seek surfaces for which the first variation vanishes,

δṪt0(M0) = 0. (4.38)

Since the diffusive flux-rate functional is a quotient functional, this extremum problem is

equivalent to that of extremizing the following energy functional [23],

δĖṪ0 = 0, ĖṪ0 :=
∫

M0

[
〈n0,−SDn0〉+ Ṫ0

]
dA0, (4.39)
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where Ṫ0 is the (constant) value of the functional (see Eq. (4.37)) for the minimizing solution

M∗
0,

Ṫ0 = −
(∫

M∗
0
〈n0,−SDn0〉 dA0∫

M∗
0
dA0

)
. (4.40)

The functional ĖṪ0 can be interpreted as a diffusive flux-rate energy functional, and its

stationary curves coincide with those of Ṫt0(M). We may rewrite this as,

ĖṪ0 =
∫

M0

〈
n0,SṪ0

n0

〉
dA0, (4.41)

where SṪ0
= −SD + Ṫ0I. The scalar quantity

〈
n0,SṪ0

n0

〉
defines a Lorentzian metric, and

the stationary curves of the diffusive flux-rate functional correspond to null-surfaces of this

metric.

In two dimensions, these curves are closed orbits (limit cycles) of the following differential

equations,

r′(s) = χ±

Ṫ0
(r(s)), χ±

Ṫ0
(r(s)) =

√
s1 − Ṫ0

s1 − s2

e1(r(s))±

√
Ṫ0 − s2

s1 − s2

e2(r(s)), (4.42)

defined on the domain,

UṪ0
= {x0 ∈ U : s1 6= s2, s2 < Ṫ0 < s1}. (4.43)

See Appendix B.4 for more details.
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4.3.3 Compatibility and parallels with Elliptic OECS

Haller and coauthors observed that, when D = I, elliptic OECS coincide with diffusive flux-

rate barriers. Our results are consistent with this observation: in the case D = I, we recover

SD = S, the standard rate-of-strain tensor. Furthermore, many results and computational

techniques developed for elliptic OECS apply equally well to diffusive flux-rate barriers.

In particular, the computational methods proposed by Karrasch et al. [81], refined by Kar-

rasch and Schilling [80], and the null-geodesic approach of Serra and Haller [142], are all

applicable here, with −SD replacing the tensor of interest in those formulations.

Shortly after introducing OECS, Serra and Haller [143] proposed a non-dimensional metric

to quantify the expected persistence of elliptic OECS as they evolve with the flow. Since

elliptic OECS (and by extension, diffusive flux-rate barriers) are not material curves or

surfaces, their advection under the flow does not generally coincide with the elliptic OECS

computed at a later time. That is, advecting the material curve identified as the elliptic

OECS at t0 for a time ∆t typically yields a different curve than the elliptic OECS computed

at t = t0 +∆t.

By comparing the advected image of the OECS at t = t0 with the one computed at t = t0+∆t,

a measure of relative “material leakage” can be obtained. Serra and Haller approximate this

quantity instantaneously by computing the pointwise instantaneous material flux density

through an elliptic OECS γ(t). This is derived by comparing the velocity of the material

curve with the (apparent) “velocity” of the OECS induced by the eigenvector strain-rate

fields.

We do not review the full derivation here, but refer the reader to [143], where they define
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the relative material leakage as,

Γγ(t) :=

∮
γ(t)

|φ(x(s, t), t)|ds
Aγ(t)

(4.44)

where φ represents the velocity difference, x(s, t) is a parametrization of γ(t), and Aγ(t) is

the area enclosed by γ(t).

In addition, inspired by objective measures of vorticity [64], they define the rotational co-

herence of an elliptic OECS γ(t) as,

ωγ(t) :=

∣∣∣
∫
Aγ(t)

ω(x, t)− ω(t)dA
∣∣∣

Aγ(t)

, (4.45)

where ω is the scalar vorticity field and ω(t) is its spatial average over Aγ(t).

Using these two quantities, they define the persistence metric of an elliptic OECS γ(t),

Θγ(t) :=
ωγ(t)

Γγ(t)
=

∣∣∣
∫
Aγ(t)

ω(x, t)− ω(t)dA
∣∣∣

∮
γ(t)

|φ(x(s, t), t)|ds . (4.46)

Selecting the candidate elliptic OECS that maximizes Θγ(t) yields the optimal structure for

identifying barriers surrounding long-lived Lagrangian vortices.

We note that this metric is also appropriate for diffusive flux-rate barriers, since their deriva-

tion assumes the advection-dominated regime. In future work, one could define diffusion-

weighted analogues of rotational coherence and material leakage to construct a similar per-

sistence metric for the diffusive case. However, we leave this as an open direction beyond

the scope of the present paper.
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4.4 Numerical Example

To highlight these structures we look at an ocean flow example and create a contrived

diffusion structure tensor to observe a clear difference between these diffusion weighted

structures and those that are obtained from the isotropic diffusion case (these are equivalent

to advective elliptic OECS). In most fluid flow problems, diffusion will be isotropic and

therefore the advective elliptic OECS will be the correct structures to look at. It is only

in atypical cases that the diffusion structure will take on a more complicated form (flow

through porous media, diffusion through tissue structure, etc.). We simply demonstrate an

application of the theory here without a particular real-word diffusion structure example in

mind.

4.4.1 Agulhas Leakage

As is commonly done in the coherent structure literature focusing on elliptic structures we

look at the Agulhas Rings – anticyclonic eddies generated by the Agulhas current, a current

which flows along the southeastern coast of Africa carrying very warm salt water. When the

current flows past the tip of Africa, it approaches the roaring forties and most of the contents

carried by this current double back to the east (this process is called “retroflection”). Some of

the warm salt water “leaks” out in the form of long-lived vortices generated by retroflection

which carry this warm salt water north and west through the Atlantic. These eddies can

persist for months as they travel through the Atlantic, all the while keeping the warm salt

water they carry in their cores isolated from the surrounding flow. We use the geostrophic

assumption and derive velocities from the sea surface height (SSH) by treating the SSH h as

the streamfunction,
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ϕ̇(ϕ, θ, t) = − g

R2
efc(θ) cos(θ)

∂h(ϕ, θ, t)

∂θ
, θ̇(ϕ, θ, t) =

g

R2
efc(θ) cos(θ)

∂h(ϕ, θ, t)

∂ϕ
(4.47)

where fc(θ) = 2Ω sin(θ) represents the Coriolis force with Ω representing the angular velocity

of the Earth. Re represents the average radius of the Earth.

We use AVISO data provided by the TBarrier package [8] for a direct comparison to the orig-

inal diffusive barrier paper [68]. This dataset comes from an earlier AVISO product (no longer

available). For up-to-date versions of these datasets, see https://www.aviso.altimetry.fr.

4.4.2 Diffusion Structure

Due to the construction of these structures (being defined in terms of diffusive transport

while being in the advection dominated regime), it will only be in exceptional cases that

complicated diffusion structure actually creates transport barriers. The more common sce-

nario would be that the diffusion structure destroys transport barriers. We focus on this

case and define a diffusion structure tensor that will destroy transport barriers. We do this

by first identifying these barriers and then creating extreme diffusion structure where one of

these barriers is initially present. The extreme diffusion structure we use is constructed out

of a radial super Gaussian. This a generalization of a standard 2D Gaussian. Recall the 2D

gaussian is given by,

f(x, y) = A exp
(
−
(
(x− x0)

2

2σ2
X

+
(y − y0)

2

2σ2
Y

))
(4.48)

where A denotes the maximum magnitude, (x0, y0) denotes the center and σX and σY de-

https://www.aviso.altimetry.fr/en/data.html
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termine the x and y spread of the Gaussian respectively. Assuming σ = σX = σY , the super

Gaussian is a generalization given by,

fS(x, y;n) = A exp
(
−|x− x0|n + |y − y0|n

σn

)
(4.49)

As n gets larger, the peak spreads out more and the drop off becomes steeper, though the

shape tends towards a square rather than a circle. To remedy this, we use a radial super-

Gaussian to maintain the behavior but keep the circular shape. This is given by,

fSr
(x, y;n) = A exp

(
−((x− x0)

2 + (y − y0)
2)n/2

σn

)
(4.50)

As mentioned, we identify a strong transport barrier at the initial time and then we apply

this radial super-Gaussian in region which the transport barrier encapsulates to create highly

anisotropic diffusion structure in this region. For our case, x∗
0 = (x0, y0) = (2.8,−32.0),

A = 100, σ = 1.5, and n = 8, resulting in the following function,

fSr
(x) = 100 exp

(
−‖x − x∗

0‖4
1.58

)
(4.51)

where ‖ · ‖ represents the standard 2-norm. Let

Cr(x) = 1 + fSr
(x) = 1 + 100 exp

(
−‖x − x∗

0‖4
1.58

)
(4.52)

We then construct the diffusion tensor in the following manner,

D(x) =




1
Cr(x) 0

0 Cr(x)


 (4.53)
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This leads to diffusion structure that is highly anisotropic (with extreme y-direction prefer-

ence) within the transport barrier, and isotropic everywhere else in the domain.

4.4.3 Transport and Transport-Rate Barriers Simulation

We now compute transport barriers and transport-rate barriers for both homogeneous isotropic

diffusion and for the diffusion structure tensor we created above. We use the null geodesic

approach developed by Serra and Haller [142] to compute all coherent structures and finite-

time structures are computed using an integration time of T = 25 days. Following this,

we initialize a concentration of a passive diffusive scalar field that evolves according to the

advection diffusion equation. Then, we use FEM to simulate the transport of the concentra-

tion on a simple 541× 401 rectangular grid with longitude running from [−7.5◦, 6◦], latitude

running from [−34◦,−24◦], dt = 0.2 days, and Pe = O(104). We solve the advection diffu-

sion equation using an implicit midpoint Crank-Nicolson method and, considering we are in

the advection dominated regime, we add streamline upwind Petrov-Galerkin (SUPG) sta-

bilization to minimize spurious oscillations. All FEM simulations are performed using the

FEniCS Python package [2, 86, 87, 88, 96, 97, 98, 99, 115], an open-source package which is

essentially a wrapper for the C++ backend DOLFIN1. Initial concentrations are defined by

using an indicator function which is 1 inside a coherent set and 0 outside, followed by the

application of Gaussian filter which replaces infinite gradients at coherent set boundaries

with steep gradients, again with the aim of minimizing spurious oscillations. Three addi-

tional circular sets are initialized in the same way to highlight the difference in behavior

between a concentration inside a coherent set and one outside it. We overlay the elliptic

barriers and advect them under the flow map. In addition, we provide the DBS field for

1We note that there are new versions of both FEniCS and DOLFIN called FEniCSx and DOLFINx that
improve on the previous packages [2, 6, 138, 139].
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completeness. All advective particle integration is performed by the current public version

of NumbaCS [74] and all coherent structure methods are performed by a development version

that will be included in the next public release. For all figures, a link to the accompanying

video is provided in the caption.

Isotropic diffusion barriers

We begin by computing elliptic diffusive transport barriers at the initial time when diffusion

is isotropic (D = I) and initialize the concentrations we describe above (see Figure 4.1, left).

Notice all the diffusive barriers act as they should and largely contain the diffusive substance

in a coherent manner while the other initialized concentrations show more complicated be-

havior and mix with the rest of the flow. We note that there is a strong diffusive barrier

with center at roughly x∗
0 = (2.8,−32).

Figure 4.1: Left: Lagrangian elliptic diffusion barriers overlaid on initial concentration at
t0 = 11/24/2006. Right: Advected image of elliptic diffusion barriers and evolved concen-
tration at t = t0 + 25 days. See video.

The corresponding DBS fields can be seen in Figure 4.2. To see the DBS field overlaid on

the diffusive simulation, see the following video.

In Figure 4.3, we see the initial Eulerian elliptic diffusion barriers at the initial time and the

https://youtu.be/IRVEHWgbETA
https://youtu.be/BRFmYT3GI4Q
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Figure 4.2: Left: DBS field at t0 = 11/24/2006. Right: DBS field at t = t0 + 25 days. See
video.

images of under the flow for a period of 10 days. We note that these are barriers derived from

a single velocity snapshot so the fact that they appear less coherent than their Lagrangian

counterparts is not surprising and it is actually quite impressive that they at least identify

similar structures and remain somewhat coherent for as long as they do. If we employed the

persistence metric put forth by Serra and Haller [143] and briefly described in Sect. 4.3.3,

we would identify structures that remained even more coherent for longer and, if we used

a threshold of this metric, structures that quickly lose their coherence could be filtered out

(like the one centered at (2.5,−29.3)). The strong Lagrangian barrier centered at x∗
0 is also

roughly identified.

Inhomogeneous, anisotropic diffusion barriers

Next, both Lagrangian and Eulerian diffusive barriers are computed for the diffusion struc-

ture tensor from Eq. (4.53). We first show how the Lagrangian and Eulerian barriers

computed for isotropic diffusion will incorrectly identify a diffusive barrier with center at

x∗
0. While the Lagrangian theory can account for this by simply using the correct diffusion

structure tensor in the calculation, there is no equivalent Eulerian calculation that accounts

https://youtu.be/CBHtLTd7hoQ
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Figure 4.3: Left: Eulerian elliptic diffusion barriers overlaid on initial concentration at t0 =
11/24/2006. Right: Advected image of elliptic diffusion barriers and evolved concentration
at t = t0 + 10 days. See video.

for this complicated diffusion structure. The diffusive flux-rate barriers for general diffusion

structure we have presented in this work fill this need. In Figure 4.4, we again see the same

initialization on the left. In the same figure on the right, we see that the strong coherence

of the barrier with center at x∗
0 no longer persists, and the concentration within that barrier

diffuses quite dramatically through the barrier.

Figure 4.4: Left: Lagrangian elliptic diffusion barriers computed from isotropic diffusion
overlaid on initial concentration at t0 = 11/24/2006. Right: Advected image of elliptic
diffusion barriers and evolved concentration using the more complicated diffusion structure
tensor at t = t0 + 25 days. See video.

The corresponding DBS fields can be seen in Figure 4.5. Notice the high DBS values near the

https://youtu.be/mtw0DktWXio
https://youtu.be/U24NL9b3lqE
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highly anisotropic diffusion region. To see the DBS field overlaid on the diffusive simulation,

see the following video.

Figure 4.5: Left: DBS field at t0 = 11/24/2006. Right: DBS field at t = t0 + 25 days. See
video.

We perform the same simulation with the Eulerian barriers and the same issue persists, a

structure is incorrectly identified with center at x∗
0. This can be seen in Figure 4.6.

Figure 4.6: Left: Eulerian elliptic diffusion barriers computed from isotropic diffusion over-
laid on initial concentration at t0 = 11/24/2006. Right: Advected image of elliptic diffusion
barriers and evolved concentration using the more complicated diffusion structure tensor at
t = t0 + 10 days. See video.

Finally, we show the diffusive barriers computed using the complicated diffusion structure

tensor. The Lagrangian barriers can be seen in Figure 4.7 and the Eulerian barriers in Figure

https://youtu.be/wTYYdaY2SEc
https://youtu.be/Yq4frvlmztE
https://youtu.be/i7GNy8rxeBw
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4.8.

Figure 4.7: Left: Lagrangian elliptic diffusion barriers computed from the complicated diffu-
sion structure overlaid on initial concentration at t0 = 11/24/2006. Right: Advected image
of elliptic diffusion barriers and evolved concentration using the more complicated diffusion
structure tensor at t = t0 + 25 days. See video.

Figure 4.8: Left: Eulerian elliptic diffusion barriers computed from the complicated diffusion
structure overlaid on initial concentration at t0 = 11/24/2006. Right: Advected image of
elliptic diffusion barriers and evolved concentration using the more complicated diffusion
structure tensor at t = t0 + 10 days. See video.

In both of these cases, when the appropriate diffusion structure tensor is taken into account,

both the Lagrangian and Eulerian structures correctly do not identify a transport barrier

centered at x∗
0 and the sets whose boundaries these methods identify stay largely coherent,

as expected.

https://youtu.be/u-AD0R8nxJA
https://youtu.be/ALTNo7wplbU
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4.5 Conclusion

We have developed an instantaneous approximation of material diffusive transport barriers

by differentiating the appropriate functional and proceeding with the variational problem,

much like what was done in the purely advective case. By defining diffusive flux-rate barri-

ers in terms of a diffusive weighted version of the classic Eulerian rate-of-strain tensor, we

show that these Eulerian structures can capture complicated spatial and temporal depen-

dencies in the diffusion structure tensor. While true physical application of this theory will

most likely be in exceptional circumstances, we have appropriately defined the instantaneous

counterparts to finite-time diffusive barriers.

We see a few main directions of work moving forward. First, defining a persistence metric

similar to what was done for elliptic OECS (or showing that the elliptic OECS persistence

metric is the appropriate measure of persistence for these structures as well) is a worthwhile

endeavor. While not explored here, there seems to be a range of Péclet numbers for which

this theory (and the finite-time case) identify what would physically be seen as the “correct”

structures. In the original derivation of material diffusion barriers, when non-dimensonalizing

the functional the diffusivity parameter is divided out and is only assumed to be small such

that transport is happening in the advection dominated regime. One could construct a case

where the diffusion structure tensor destroys many coherent sets (in both the instantaneous

and finite-time case) but the Péclet number is so large that this diffusion structure has little

practical effect on the transport of a concentration. From the few numerical experiments

we performed, this seems to be more pronounced for the Eulerian structures but does affect

the Lagrangian structures as well. Exploring the appropriate range of couplings between

diffusion structure and Péclet numbers for both instantaneous and finite-time structures

would be a useful line of work. Finally, though we did not delve into it here, this theory
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applies equally well to instantaneous barriers to stochastic transport. Rigorously stating this

and demonstrating the theory with applications will be a main focus for future work, and

we expect this context may give rise to more applications for the general diffusion structure

case.
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Abstract

Lagrangian coherent structures (LCS) computed from their variational theory provide pre-

cise material surfaces that are extremizers of the associated functional from which they were
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defined, though their computational implementations are challenging, expensive, and prone

to errors due to how derivatives of the flow map are computed with respect to initial con-

ditions. An area of research in the overlap of mathematics and computer science called

Automatic Differentiation (AD) has seen an explosion in popularity in recent years due its

use in training deep neural networks (backpropagation can be viewed as a special case of AD)

by providing an accurate (up to machine precision) and efficient way to compute derivatives

of functions with respect to function parameters. The applicability of this technique to vari-

ational LCS has only very recently been explored for hyperbolic structures in 3 dimensions,

though this work has largely gone unnoticed. Here we attempt to highlight the utility of this

technique for coherent structures and explore the application to hyperbolic and elliptic co-

herent structures in 2 dimensions. We also present an easy-to-use Python framework which

implements these methods.

5.1 Introduction

The identification and extraction of influential material curves has emerged as a powerful tool

for understanding how a flow’s contents are organized through the development of Lagrangian

coherent structures. These structures were defined as extremizers of functionals relating to

the strain experienced by material curves over a given time window. Hyperbolic structures

are defined as material curves that extremize the averaged normal repulsion rate and elliptic

structures are those which extremize the averaged tangential strain. These structures can be

obtained as solution curves in the appropriate direction fields made up of the eigenvectors

(scaled in the elliptic case) of the Cauchy Green strain tensor.

While this may seem straightforward at first glance, there are a number of nontrivial chal-

lenges associated with this algorithm. We will focus on the one that incurs the highest
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computational cost. To compute the Cauchy Green tensor, gradients of the flow map must

be computed and this is typically done with finite difference approximations by using neigh-

boring grid points in the divided differences. This is simple and somewhat efficient but is

highly prone to error. It was shown that the eigenvalues are robust to grid spacing and in

fact, one can argue, benefit from using a larger grid spacing to capture dominant regions

in the FTLE field on a discretized grid [92]. On the other hand, the eigenvectors of C are

extremely sensitive to this grid spacing and given that LCS are computed as solution curves

in the eigenvector fields of C, it is of paramount importance that these eigenvector directions

are accurate [41].

The two options to remedy this are to use an extremely fine grid, which would be prohibitively

expensive, or use an auxiliary grid around each grid point to compute the finite differences.

The latter is clearly the better approach, but results in a 5× increase (in 2D) in computation

time as now, for each grid point, we need to compute 5 particle trajectories instead of 1. In

addition, while we are getting a more accurate approximation to the gradient of the flow

map, we are still performing a finite difference, with an extremely small spacing (due to

the small auxiliary grid spacing) which is prone to round-off errors. An ideal solution would

avoid the need for additional particle integration while still providing accurate gradients with

respect to initial conditions. At first glance, this might seem like an unrealistic expectation

– a case of wanting to have our cake and eat it too.

However, automatic differentiation (also known as algorithmic differentiation) offers an ele-

gant solution to this problem and, thanks to recent advancements in its implementation, can

do so in a highly efficient manner. AD is an approach that sits somewhere in between numer-

ical and symbolic differentiation and provides a way to obtain derivatives of functions that

are accurate up to machine precision. A specific version of this method (backpropagation)

serves as the backbone for training deep neural networks and is essentially the mechanism
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by which they learn. While this method has become more mainstream due to the explo-

sion in popularity of deep learning models, the utility of this tool for Lagrangian coherent

structure methods has gone largely unnoticed. We note Gilpin presented on this topic in

2021 [51] with a focus on the finite-time Lyapunov exponents, and more recently, Tyler and

Wittig [158] developed an improved numerical method for 3D hyperbolic LCS which utilize

similar underlying ideas. In this work, we propose these ideas as a foundation to improve all

Lagrangian coherent structure methods and, by presenting this work in terms of automatic

differentiation and neural ODEs, open up the possibility for a number of off-the-shelf numer-

ical implementations as these tools have seen huge amounts of development in recent years.

We also note that this approach can be extended to a number of other coherent structure

type methods which rely on accurate linearized flow maps.

5.2 Background

We will begin covering the concept of automatic differentiation by following [10] and [40].

We refer the readers to the many great surveys on the topic (e.g., [7, 10, 28, 40]) for a more

detailed treatment. Then, we briefly cover the the recent emergence of neural differential

equations. Finally, we review the standard approach for obtaining linearized flow maps used

for LCS extraction methods in 2 dimensions and refer the reader to earlier sections in this

dissertation for more details (see Ch. 1 and Ch. 2).

5.2.1 Computational Differentiation

A crucial step in many computational methods involves finding derivatives of some func-

tion with respect to function parameters or initial conditions. Certain applications require
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extreme accuracy while others benefit more from efficient algorithms.

For deep neural networks, the basic idea is to train a model, consisting of many layers,

each with many nodes, and with unique weights on each of these nodes, to approximate

some complicated underlying process which the data is derived from. This training happens

via gradient descent, typically by minimizing some loss (usually just the error between the

model output and known target output data). The “learning” happens by finding which

combinations of weights minimize the loss. How is this done? By differentiating the loss

with respect to all weights of the network (leading to the gradient of the loss with respect

to weights), and moving the weights in the opposite direction of the gradient (the gradient

will tell us which direction a function is growing the most), and repeating this process until

the loss is below some set threshold. In essence, this boils down to computing derivatives of

deeply composed functions with respect to possibly millions or billions of weights. In this

application, efficiency is key.

The three main methods to compute derivatives in a computational setting would be to

use either symbolic differentiation, numerical differentiation, or automatic differentiation. In

symbolic differentiation, derivative rules (like power rule, transcendental derivatives, chain

rule, product rule, etc.) are essentially hard-coded into a program and these rules are used

to compute derivatives of algebraic expressions very similar to how one would compute them

by hand. We will largely focus on numerical and automatic differentiation as these are the

most relevant to our application but we note that while symbolic differentiation will yield

accurate derivatives, the function needs to be represented by closed-form expressions. In

addition, this method can suffer from a problem known as expression swell (see [10] for more

details).
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Numerical Differentiation

Numerical differentiation simply involves using a finite difference approximation of a the

derivative. Say we have a function f : Rn → R
m and we would like to compute the derivative

of this function with respect to the vector x. This would result in the Jacobian matrix,

[
∂f
∂x

]

ij

=
∂fi

∂xj

≈ fi(x + hej)− fi(x − hej)

2h
(5.1)

which, since we are using a centered difference, will have truncation error O(h2) and would

perform O(nm) evaluations. So this is rather expensive for the above application but it seems

the error could essentially be driven to zero by making h smaller and smaller. Unfortunately,

this is not the case and this is due to finite differencing being an inherently ill-conditioned

and unstable numerical procedure. While the truncation error for finite differencing shrinks

as h → 0, the round-off error grows due to limited machine precision leading to loss of

significance. This happens because we are subtracting two numbers the are nearly identical

(numerator of Eq. (5.1)) and dividing this by a number that is near zero (h). When we

subtract two numbers that are nearly identical using a computer, the leading significant

bits representing these numbers cancel out and the result is represented by lower order, less

significant bits, leading to round-off error. Then, when we divide by a number near zero,

this error is amplified.

We look at a simple example to illustrate this. Let f(x) = sin(x), then f ′(x) = cos(x).

If we want the derivative at x = 1, we would just plug 1 into the derivative, leading to

the value f ′(1) = cos(1) = 0.5403023058681398, which is exact (up to machine precision).

Now, pretending we do not actually have access to the derivative function we can apply Eq.

(5.1) for varying h values. In Figure 5.1, we can see that the truncation error shrinks as h

gets smaller but beyond some optimal value for h, the error actually gets worse and when
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h is near machine precision (for double precision) the error becomes worse than the largest

spacing we used! Clearly this procedure depends on a parameter h and if this parameter is

not within some optimal window, the error can quickly get outside of an acceptable range,

requiring recomputation with a different h.

Figure 5.1: Finite difference spacing vs. relative error for finite difference approximation of
derivative of f(x) = sin(x) at x = 1.

Automatic Differentiation

Automatic differentiation can be viewed as a hybrid of symbolic and numerical differentia-

tion. In this approach, the function f is treated as a computer program involving a series of

elementary operations (sometimes called primitives) for which the derivatives of each of these

operations is known (addition, multiplication, trigonometric or exponential operations, etc.).
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Evaluating a function this way is often referred to as the evaluation trace or primal trace

(see Figure 5.2, left). A computational graph is also generated from the evaluation trace to

identify dependencies between the elements of the evaluation trace (see Figure 5.2, right).

Using this evaluation trace, we can compute the derivative of the function with respect to

some parameter by tracking the derivative of each of these composed elementary operations

and combining them through the chain rule to produce the final derivative we seek. This

essentially amounts to performing symbolic differentiation on the the elementary operations

and keeping track of the numerical value, without the need to compute or store the entire

symbolic derivative. This can result in efficient computations of derivatives while maintain-

ing perfect accuracy (up to machine precision). There are two modes of AD, forward mode

and reverse mode. We cover forward mode AD first and in more detail as this mode is simpler

to understand. We refer the reader to any of the cited surveys for a more detailed treatment.

We will follow the example covered in [10] and [40] with f(x1, x2) = log(x1) + x1x2 − sin(x2)

and seek this function’s derivative with respect to x1 at (x1, x2) = (2, 5).

Figure 5.2: Left: Primal trace. Right: Corresponding computational graph. Source: Fang
et al. [40], licensed under CC BY 4.0.

In forward mode AD, one computes the evaluation trace of f as in Figure 5.3, left. To

do this, let x1 and x2 be themselves and let vi represent intermediate variables (sometimes

called primals) that when composed, result in the final function value. Then, in tangent,

one computes the derivatives of the intermediate variables vi, generating the tangent trace
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and keeping track of the numerical values. This can be viewed as propagating derivatives

through the computational graph through a Jacobian-vector product. Say we are interested

in computing the derivative of the final value y = f(x1, x2) with respect to x1. For each vi,

let v̇i =
∂vi

∂x1

and then (ẋ1, ẋ2) = (1, 0) is the vector we propagate through the computational

graph. As we move through the evaluation trace on the left, we compute derivatives of

the primals on right by using symbolic differentiation (see Figure 5.3). When we make our

way through the primal and tangent traces, we arrive at y = v5 = 11.652 on the left, the

function value f(2, 5), and the corresponding derivative on the right, ẏ = v̇5 = 5.5, which is

the derivative of the function f with respect to x1, evaluated at (2, 5). Since f is a simple

function, we can compute its derivative by hand and get ∂f

∂x1

=
1

x1

+ x2. When we evaluate

this at (2, 5), we get fx1(2, 5) = 5.5. We now have the derivative exactly (up to machine

precision). Conversely, if we compute the derivative using finite differences, we get error

behavior very similar to Figure 5.1. Forward mode requires a tangent trace for each input

variable/parameter.

Figure 5.3: Left: Primal trace. Right: Corresponding tangent trace. Source: Fang et al. [40],
licensed under CC BY 4.0.

For reverse-mode, we first compute the evaluation trace forward using a forward pass. Then,

we perform a backward pass to compute the derivative. This pass is often referred to as the

adjoint trace. Let v̄i =
∂y

∂vi
. We set v̄5 = ȳ = 1 and perform the reverse adjoint trace using

dependencies from the computational graph to arrive at the derivative of y with respect to
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both x1 an x2 (see Figure 5.4) that is accurate up to machine precision. Backpropagation

can be viewed as a special case of reverse-mode AD. Reverse mode requires an adjoint trace

for each output variable.

Figure 5.4: Left: Adjoint trace. Right: Corresponding computational graph. Source: Fang
et al. [40], licensed under CC BY 4.0.

If our function f : Rn → R
m, forward mode will be computationally advantageous when

n << m and reverse mode will be more efficient when n >> m. Since f will usually

represent a loss (a scalar value) in the context of neural networks and the input space will

consist of millions or billions of weights (sometimes even trillions for LLMs), reverse mode

is the go-to mode for most machine learning applications.

5.2.2 Neural Ordinary Differential Equations

A very recent field coming out of the deep learning boom is the field of neural differential

equations (NDEs). These can be viewed as differential equations in which the vector field

is parameterized by a neural network. These equations arise naturally when looking at the

dynamics of hidden states in certain types of neural networks and observing what happens

when one looks at the limit of the hidden state dynamics as layer depth goes to infinity.

We will only very briefly cover the basics of this work as we are really only interested in

a viewpoint this theory provides and tools that arose from this theory. For the interested
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reader, we suggest the seminal paper by Chen et al. [26] and the wonderful dissertation of

Kidger [85] for more details.

Let’s say we have input data x ∈ R
n and corresponding output data y ∈ R

m and we want

to train a network f that approximates the underlying process that produced y from x in

an optimal way (we ignore possible networks for initial and final layers for simplicity). In

certain types of neural networks (RNNs, ResNet, normalizing flows, etc.) the dynamics of

hidden states ht can be represented by a difference equation. For residual networks [70], this

looks like,

ht+1 = ht + f(ht, θt) (5.2)

where θt denotes the parameters for layer t, with t ∈ {0, ..., T} (discrete). By passing data

through the network and tuning the θt’s via a form of backpropagation, one can obtain a

more accurate f that maps the initial data h0 = x to target data hT such that the loss with

respect to y is minimal. This can be viewed as an Euler step (with ∆t = 1) corresponding

to the following differential equation

dh(t)
dt

= f(h(t), t, θ) (5.3)

where now t ∈ [0, T ] (continuous). This correspondence with continuous system allows the

use of more sophisticated ODE solvers that can potentially speed up the training process (by

taking larger steps ∆t where the dynamics are not so complicated). In this formulation, f

can be thought of as a parameterized vector field that trajectories h(t) evolve in. By tuning

the vector field, one can better model the underlying governing process that generates y

from x by minimizing the loss between h(T ) and y. In addition, the continuous nature
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of this formulation can generally allow f to be a simpler network, with fewer parameters

compared to a standard residual network, for example. Consider an ODE with a relatively

simple RHS which, when integrated, can result in complex, highly nonlinear behavior. This

roughly captures the idea of how a neural ODE can capture complicated behavior with a

simpler network. Now the steps of the solver can be seen as the evaluation trace and one

can apply AD to this computational graph to obtain accurate derivatives with respect to

parameters1.

This is the key takeaway for us: automatic differentiation can be performed on numerical

solutions to differential equations to obtain accurate derivatives of the solution (or some

function of the solution) of the differential equation with respect to some parameters. In the

neural ODE world, they are typically interested in derivatives of the loss with respect to the

network parameters, though one could obtain derivatives of the final state with respect to

the initial state as well. We focus on this viewpoint.

To make this more explicit, we can view numerical solutions of differential equations as

composed function evaluations of the initial conditions. For example, if we have the system

dx(t)

dt
= f(x(t), t) (5.4)

and wish to solve this numerically using an Euler scheme,

xi+1 = xi + hf(xi, ti) (5.5)

1In Chen et al. [26], the authors suggest another method to do this called the adjoint sensitivity method
that is more memory efficient. The torchdiffeq package implements this method by default. Conversely,
Kidger [85] advocates for directly applying reverse-mode AD to the solver trace using checkpointing for
better memory efficiency. This is the default in the Diffrax package.
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we could write the final position as at tf = tn+1,

x(tn+1) = x0 +
n∑

i=0

hf(xi, ti) (5.6)

We can rewrite this in terms of the initial condition for clarity,

x(tf ) = x0+hf(x0, t0)+hf(x0+hf(x0, t0), t1)+hf(x0+hf(x0+hf(x0, t0), t1), t2)+. . . (5.7)

Now we have a representation of x(t) which depends on the initial condition x0, though it

is in terms of deep function compositions which only become more complicated when using

more sophisticated solvers. Taking derivatives w.r.t. x0 by hand or symbolically becomes

very messy (especially as n increases). AD allows us to solve this simply, without the need

to rewrite the solution in terms of initial conditions or compute any derivatives by hand

by differentiating the steps of the solver. Simply solve the differential equation and apply

the desired AD method to obtain accurate (up to machine precision and accuracy of the

solver) derivatives of the final state with respect to the initial state. Due to the boom

in deep learning, many powerful tools exist designed to perform AD for machine learning

applications and neural ODEs. We can take advantage of these tools for our application.

5.2.3 LCS Extraction

Now we review how to obtain 2-dimensional hyperbolic and elliptic LCS from their variational

theory and cover the standard numerical approach. Given we have a dynamical system

dx(t)
dt

= v(x(t), t), x ∈ U ⊂ M, t ∈ I ⊂ R

x(t0) = x0

(5.8)



5.2. BACKGROUND 131

where we assume v(x, t) is sufficiently smooth and M is a smooth manifold. Then, we can

define the flow maps {Ft
t0
} associated with the dynamical system given by,

Ft
t0
: U → U

: x0 7→ x(t; t0,x0)

(5.9)

which are solutions to the differential equation in Eq. (5.8), i.e.,

Ft
t0
(x0) := x0 +

∫ t

t0

v(x(s), s)ds (5.10)

We can take derivatives of these flow maps with respect to initial conditions to obtain the

linearized flow maps,

∇Ft
t0
(x0) : Tx0U → TxU

: ux0 7→ ux

(5.11)

and the corresponding right Cauchy Green strain tensor,

Ct0+T
t0

(x0) =
(
∇Ft0+T

t0
(x0)

)⊤ ∇Ft0+T
t0

(x0) (5.12)

which, as previously mentioned, is both symmetric and positive-definite. This implies that

Ct0+T
t0

(x0) has real eigenvalues λi and corresponding orthonormal eigenvectors ξi with i ∈
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{1, 2, ..., n} such that,

λ1 ≥ ... ≥ λn > 0 and, (5.13)

〈ξi, ξj〉 = δij. (5.14)

Recall that hyperbolic LCS are obtained as solution curves of the following differential equa-

tion,

r′(s) = ξ2(r(s)), |ξ2| = 1 (5.15)

and elliptic LCS can be obtained as closed solution curves (limit cycles) in the following

differential equations,

r′(s) = η±
λ (r(s)), η±

λ =

√
λ2 − λ2

λ1 − λ2

ξ1 ±
√

λ1 − λ2

λ1 − λ2

ξ2 (5.16)

defined on the domain

Uλ = {x0 ∈ U : λ1 6= λ2, λ2 < λ2 < λ1}. (5.17)

Clearly, the accuracy of these eigenvector fields of C is of the utmost importance if one

wants to obtain accurate LCS. Before the importance of the eigenvectors was understood,

the typical approach to finding coherent structures was to compute the FTLE field and then

look for regions of high FTLE (sometimes extract FTLE ridges) to obtain approximations

of LCS. When the variational theory of LCS was developed [41, 59, 61, 67], the importance

of the eigenvectors became clear.
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When computing FTLE, the typical process involved computing particle trajectories for a

grid of initial conditions and then approximating the gradient of the flow map with finite

differences of final positions of trajectories coming from neighboring initial conditions. From

here the maximum eigenvalue can be computed and the FTLE formula applied (Eq. (1.14)).

This relatively coarse spacing ended up being fine for the FTLE and could actually be seen as

preferable [92]. It quickly became clear that, while the eigenvalues of the linearized flow map

are relatively robust to the finite difference spacing, the eigenvectors are extremely sensitive

to this spacing. To obtain more accurate eigenvectors, Farazmand and Haller [41] suggested

using an auxiliary grid around each main grid point where the auxiliary spacing h is very

small. Then, when performing the particle integration step, integrate the main grid point

along with this small auxiliary grid and use these trajectories to compute finite differences

of the flow map to obtain a more accurate approximation of the gradient of the flow map

(Eq. (5.11)).

This approach has served as a fix up to this point, but there are still arguably issues with

this. For one, if the gradient of the flow map needed to be computed on a nx × ny grid

of initial conditions, with the main grid this would result in nxny particle integrations.

However this becomes 5nxny particle integrations when using the auxiliary grid method – a

5× increase in the most expensive step! In addition, as mentioned above, finite differencing

is an inherently ill-conditioned and unstable numerical procedure. If one does not choose

an optimal h to began with, they may need to run the simulation multiple times to find

a suitable h. This means one would need to perform the expensive particle integration for

at least the auxiliary grid multiple times, resulting in potentially long computation times

when viewed as a whole. Another consideration here is that we are not performing finite

differencing on a simple, explicit function. The auxiliary grid method involves integrating

a number of nearby points to an initial condition and using the final positions of these
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trajectories for finite differencing. In the hyperbolic case, the regions we are most interested

in (high FTLE regions) are extremely sensitive to perturbations to the initial condition (this

is essentially what FTLE measures) and therefore, different auxiliary grid spacings could

theoretically result in very different trajectories for the auxiliary grid points. Clearly, an

approach that circumvents these shortcomings would be highly beneficial.

5.3 AD LCS

Now that we have laid the framework, the idea is quite simple: solve the ODE using the

neural ODE framework – generate an evaluation trace of the ODE solver steps and perform

automatic differentiation by computing either the forward tangent trace or the reverse ad-

joint trace. Instead of applying AD to some neural network and computing derivatives with

respect to parameters, we apply AD to the solutions of our ODE and compute the derivatives

of the final positions with respect to initial conditions. This gives us approximations of the

linearized flow map that are as accurate as possible given the ODE solver and precision. We

then use these accurate linearized flow maps to obtain accurate eigenvectors of C, and use

these eigenvectors to compute accurate LCS. This approach also eliminates the parameter

h, avoiding the potential need to re-run the simulation to find an acceptable h. We can

quite easily take advantage of existing powerful tools created for the neural ODE workflow

to implement this method. Some of these tools allow us to use interpolants that are differ-

entiable in the AD framework, allowing us to apply this method to flows for which we only

have numerical velocity data. We refer to LCS obtained from this method as Automatic

Differentiation Lagrangian Coherent Structures (AD LCS).

We mainly focus on 2D hyperbolic and elliptic LCS here but note that this method can

be used for a flow of any dimension and can be used for any type of coherent structure
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method which relies on linearized flow maps (parabolic LCS [42], 3D hyperbolic and elliptic

LCS [12], diffusive transport barriers [68], active transport barriers [69], shape coherent sets

[101], etc.).

For deep neural networks, AD is advantageous largely due to its efficiency compared to other

computational differentiation methods. In our application, the accuracy of the derivatives is

the key advantage over other methods. As we will see, in our implementation AD remains

efficient and often outperforms the auxiliary grid method in terms of computation times.

While our implementation utilizes highly efficient libraries (detailed below), which provide

state-of-the-art implementations for general-purpose AD and neural ODEs, we acknowledge

that further optimizations to our specific context may be possible. These libraries are often

optimized for large-scale machine learning problems with high-dimensional state spaces (large

n). Our application involves low-dimensional systems (n = m = 2 or n = m = 3). These

are cases that are not given much attention in the machine learning world and there may be

different optimizations to the workflow in this context that would provide greater efficiency.

In addition, there may be more efficient ways to implement and deal with interpolants of

velocity fields in this context. We do not comment on these topics further here and leave

these open as a directions for future work.

5.3.1 Implementation

The current implementation makes use of JAX [15] for automatic differentiation and Diffrax

[85] for differentiable ODE solvers. JAX is a powerful library, developed by Google Research

teams, that provides a unified interface and syntax for numerical array computations that

can run on CPUs, GPUs or TPUs. JAX provides built-in JIT compilation (via Open XLA

[29]), automatic vectorization, and, most importantly to us, efficient automatic differen-
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tiation. We make use of the JIT compilation and automatic vectorization for improved

computation speeds. Diffrax is a Python library, developed by Patrick Kidger, for solving

a wide variety of differential equations that implements a number of efficient solvers and

integrates seamlessly with JAX. All AD is performed via reverse-mode AD directly applied

to the solver trace with checkpointing for improved memory handling, the default in Diffrax

(see Chapter 5 in [85] for more details, this is referred to as the “discretise-then-optimise”

approach in the cited work).

JAX currently implements a gridded linear interpolant that we use for numerical flows. There

is a package interpax [30], that implements splines as well, though we have not yet had

success with this package due to memory issues that arise when applying it in our context

to the flows we are using. We are actively exploring ways to implement efficient interpolants

in this framework. For now, we just use the gridded linear interpolant provided by JAX.

5.3.2 Related Work

As mentioned, the earliest appearance of these ideas that we are aware of are from an abstract

for an APS DFD talk by Gilpin in 2021 [51]. From a brief correspondence with the author,

he was primarily interested in computing FTLE using a similar method and was able to get

it working with ODEs which have a closed form RHS. In the following year, Tyler and Wittig

[158] published a very nice paper that tackled these ideas through the lens of Differential

Algebra, and they coined the method they developed DA-LCS. While many of the underlying

ideas are similar to our method (they go a step further by applying DA to the eigenvectors as

well since derivatives of eigenvectors are needed for 3D LCS), the implementations are rather

different. Surprisingly, this work has not received much attention. This is perhaps because

Differential Algebra is a more niche field, because they focus specifically on hyperbolic 3D
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LCS, or because their software implementation could be seen as harder to get up and running

for a practitioner. Whatever the case, we hope to shed light on this excellent work. A key

difference between our work and those mentioned above is that we have successfully applied

our method to flows defined by numerical data. While this could theoretically be done in

the DA-LCS framework, the authors did not address this case.

5.4 Results

Since we are most interested in using AD to compute LCS, we focus on the eigenvectors of

the Cauchy Green tensor, though we note one could compute FTLE with this method as well.

As a baseline, we use AD with a high order solver (DOPRI8 [125]), strict error tolerances

(relative tolerance = 1E-14, absolute tolerance = 1E-16), and double precision and compare

all other methods to this. For AD, we use both the DOPRI8 method (an explicit 8th

order Runge-Kutta method with a 7th order embedded method for error correction) and

TSIT5 [157] (a relatively new explicit 5th order Runge-Kutta method with an embedded 4th

order method for error correction). These solvers are all provided by the Diffrax package.

For numerical differentiation, we use the same exact solvers provided by Diffrax, but we

compute the gradient of the flow map with standard finite differencing instead of AD.

For all methods, we use 7 evenly spaced (on a log scale) relative tolerances ranging from 1E-

3 to 1E-11 and corresponding absolute tolerances from 1E-5 to 1E-13 for the ODE solvers.

For numerical differentiation we use 7 evenly spaced (on a log scale) auxiliary grid spacings

ranging from 1E-2 to 1E-8. We perform all these simulations using both single and double

precision.

We look at the QGE flow [107] as a test bed to compare AD and numerical differentiation

for computing linearized flow maps. We look at this flow at t0 = 0.0 (this corresponds to
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t0 = 10.0 in the original data set) and use an integration time of T = 0.1. The flow is defined

on the domain [0, 1]× [0, 2] and the velocity data is on a 257× 513 grid with even spacing.

Refer to the cited paper for more details.

All computations are performed on a single GPU, as JAX is designed to leverage the high-

performance capabilities of GPUs and TPUs through XLA compilation. The GPU used for

these computations is a NVIDIA GeForce(R) GTX 1080Ti (Founder’s Edition) with 11 GB

VRAM (GDDRX5), CC 6.1, and 3584 CUDA cores. We make use of JAX's automatic vec-

torization for both the direct ODE solve (for numerical differentiation) and the AD method

(for automatic differentiation) for improved performance.

As a measure of error, we compute the absolute value of the difference between the angle

of the baseline (high order, strict tolerance AD method) eigenvectors and the estimated

eigenvectors (all other methods), accounting for the sign ambiguity, and then averaging

these errors over all grid points (excluding boundary points) and refer to this as the mean

absolute error (MAE). The results can be seen in Figure 5.5. For more clarity, we break up

the plots by ODE solver in Figure 5.6 (TSIT5) and Figure 5.7 (DOPRI8).

Figure 5.5: Comparison of mean absolute error for TSIT5 and DOPRI8 with different tol-
erances and auxiliary grid spacings (for numerical differentiation). Left: single precision,
Right: double precision. Dashed lines correspond to numerical differentiation, solid lines
correspond to automatic differentiation.
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It is immediately clear that, with the exception of a few specific pairings of auxiliary grid

spacings and tolerances, the AD method produces errors that are consistently below that

of their numerical differentiation counterparts at the same tolerances. We can see that the

numerical differentiation methods are quite sensitive to the auxiliary grid spacing h being

used and the optimal spacing seems to be somewhere between h = 1E-3 to h = 1E-4 (see

Appendix C.2). This sensitivity holds true for choosing auxiliary grid spacing both too

small and too large. For this flow, choosing an auxiliary grid spacing too large results in an

essentially consistent error on the order of 100 degrees (regardless of tolerance) while choosing

h too small results in extremely large average errors near π/2 (45◦). The AD methods do not

have to worry about choosing an h and thus shows steadily decreasing errors with tolerance.

Figure 5.6: Comparison of mean absolute error for TSIT5 with different tolerances and
auxiliary grid spacings (for numerical differentiation). Left: single precision, Right: double
precision. Dashed lines correspond to numerical differentiation, solid lines correspond to
automatic differentiation.

We notice something surprising when we compare methods that used different precisions. In
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Figure 5.8 and Figure 5.9 we look at how precision affects errors for TSIT5 and DOPRI8

respectively. For numerical differentiation, as the tolerance becomes more stringent, the

single precision methods begin to perform worse (this is more pronounced for the DOPRI8

method). Surprisingly, for AD methods, precision has little effect on the error; in fact, the

single-precision variants often outperform their double-precision counterparts while running

in about half the time (see Appendix C.1). We do not currently have an explanation for this

result and this is an area that requires further investigation.

Figure 5.7: Comparison of mean absolute error for DOPRI8 with different tolerances and
auxiliary grid spacings (for numerical differentiation). Left: single precision, Right: double
precision. Dashed lines correspond to numerical differentiation, solid lines correspond to
automatic differentiation.

In Table 5.1, we compare the top 7 performers (in terms of average error) for each method

that have a runtime below 60 seconds. The full tables for the AD methods and numerical

differentiation methods can be found in Appendices C.1 and C.2 respectively.

The top-performing methods from both AD and numerical differentiation produce errors on

roughly the same order, but again we note that this is for specific auxiliary grid values for

numerical differentiation. We can also see that runtimes for AD and numerical differentiation

are about the same (when considering the same ODE solver with the same tolerances) and

in fact, AD is slightly faster in most cases. In addition, for the numerical differentiation

methods, different combinations of auxiliary grid sizing and tolerances produce the lowest
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Figure 5.8: Comparison of mean absolute error for TSIT5 with different tolerances, auxiliary
grid spacings (for numerical differentiation), and precision. Dashed lines correspond to single
precision (32-bit) and solid lines correspond to double precision (64-bit).

errors and if one does not pick a “good” combination on the first run, the user would need

to re-run their simulation to find a more optimal combination. On the other hand, AD

consistently produces low errors, and sometimes does so with fast runtimes (e.g., the single-

precision TSIT5 method with rtol = 1E-6 and atol = 1E-8 has an MAE on the order of 10−1

degrees with a 4.85s runtime and the single-precision DOPRI8 method with rtol = 1E-4 and

atol = 1E-6 also has MAE on the order of 10−1 degrees with a runtime of 4.04s).

To get a grasp on what these errors mean in reality, we look at a few plots as the top

performers table can be somewhat misleading. In Figures 5.10 and 5.11, we observe how the

grid spacing affects the eigenvectors using the double precision DOPRI8 method with relative

tolerance = 1E-8, absolute tolerance = 1E-10, and auxiliary grid spacings h = 1E-2, h = 1E-

4, h = 1E-8. We overlay the eigenvector field corresponding to the smaller eigenvalue, as this

is the field used to extract hyperbolic LCS (the eigenvectors should be aligned with FTLE

ridges). In Figure 5.10, we can clearly see that when h is too small, the eigenvector field is
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Table 5.1: Comparison of Top Performers by Average Error (Runtime < 60s)

Differentiation Method Precision h Rel Tol Abs Tol Avg Err (rad) Avg Err (deg) Runtime (s)
Automatic TSIT5 Single — 1E-9 1E-11 7.95× 10−4 0.0455 47.49
Automatic TSIT5 Single — 1E-8 1E-10 1.91× 10−3 0.1095 24.74
Automatic TSIT5 Double — 1E-8 1E-10 2.03× 10−3 0.1164 58.61
Automatic TSIT5 Single — 1E-7 1E-9 4.59× 10−3 0.2631 11.63
Automatic TSIT5 Double — 1E-7 1E-9 4.74× 10−3 0.2714 21.82
Automatic TSIT5 Single — 1E-6 1E-8 1.15× 10−2 0.6599 4.85
Automatic TSIT5 Double — 1E-6 1E-8 1.18× 10−2 0.6776 8.51
Automatic DOPRI8 Single — 1E-7 1E-9 9.78× 10−4 0.0560 42.80
Automatic DOPRI8 Single — 1E-6 1E-8 2.33× 10−3 0.1333 19.37
Automatic DOPRI8 Double — 1E-6 1E-8 2.46× 10−3 0.1411 38.65
Automatic DOPRI8 Single — 1E-5 1E-7 5.02× 10−3 0.2876 9.23
Automatic DOPRI8 Double — 1E-5 1E-7 5.30× 10−3 0.3039 16.47
Automatic DOPRI8 Single — 1E-4 1E-6 8.01× 10−3 0.4590 4.04
Automatic DOPRI8 Double — 1E-4 1E-6 8.42× 10−3 0.4822 7.51
Numerical TSIT5 Single 1E-3 1E-9 1E-11 1.43× 10−3 0.0818 47.02
Numerical TSIT5 Single 1E-3 1E-8 1E-10 1.50× 10−3 0.0857 25.79
Numerical TSIT5 Double 1E-3 1E-8 1E-10 1.50× 10−3 0.0860 41.00
Numerical TSIT5 Single 1E-4 1E-9 1E-11 1.95× 10−3 0.1118 46.15
Numerical TSIT5 Single 1E-3 1E-7 1E-9 2.60× 10−3 0.1490 12.22
Numerical TSIT5 Double 1E-3 1E-7 1E-9 2.62× 10−3 0.1503 16.78
Numerical TSIT5 Single 1E-4 1E-8 1E-10 3.26× 10−3 0.1867 26.30
Numerical DOPRI8 Single 1E-3 1E-7 1E-9 1.41× 10−3 0.0810 44.44
Numerical DOPRI8 Single 1E-4 1E-7 1E-9 1.76× 10−3 0.1007 44.78
Numerical DOPRI8 Single 1E-3 1E-6 1E-8 1.80× 10−3 0.1029 21.26
Numerical DOPRI8 Double 1E-3 1E-6 1E-8 1.81× 10−3 0.1035 34.61
Numerical DOPRI8 Single 1E-3 1E-5 1E-7 5.21× 10−3 0.2986 11.23
Numerical DOPRI8 Double 1E-3 1E-5 1E-7 5.27× 10−3 0.3022 16.20
Numerical DOPRI8 Single 1E-4 1E-6 1E-8 7.30× 10−3 0.4184 21.76
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extremely inaccurate and will not extract any LCS (at least not any true LCS). It may seem

that the larger grid spacing (h = 1E-2) would work, but upon further inspection we see that

is not the case. In Figure 5.11, we focus in a hyperbolic LCS (the high FTLE ridge) and can

see that the larger grid spacing is mostly correct, but sometimes produces eigenvectors not

aligned with the FTLE ridge. This would lead to the LCS algorithm terminating solution

curves that pushed the trajectory off the ridge, leading to a failed extraction of the full

hyperbolic LCS. The middle plot (h = 1E-4) produces satisfactory eigenvectors and would

lead to accurate extraction of LCS.

Figure 5.9: Comparison of mean absolute error for DOPRI8 with different tolerances, auxil-
iary grid spacings (for numerical differentiation), and precision. Dashed lines correspond to
single precision (32-bit) and solid lines correspond to double precision (64-bit).
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Figure 5.10: Eigenvectors overlaid on FTLE field for double precision DOPRI8 method with
relative tolerance = 1E-8, absolute tolerance = 1E-10, and auxiliary grid spacings Left: h =
1E-2, Middle: h = 1E-4, and Right: h = 1E-8.

Figure 5.11: Eigenvectors overlaid on FTLE field for double precision DOPRI8 method with
relative tolerance = 1E-8, absolute tolerance = 1E-10, and auxiliary grid spacings Left: h =
1E-2, Middle: h = 1E-4, and Right: h = 1E-8. Focus on a hyperbolic LCS.
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When we look at the AD case, we focus again on the DOPRI8 method as this showed the

best results. We produce the same overlay plots, but this time use the baseline eigenvectors

which were treated as the “true” values and compare to the single precision DOPRI8 method

with the laxest tolerances (relative tolerance = 1E-3 and absolute tolerance = 1E-5). This

is arguably the most important point. When using the DOPRI8 method, even when using

the laxest tolerances and single precision, we can obtain eigenvectors with sufficiently low

errors (MAE = 0.7548◦) with a very low runtime (2.14 seconds). In both Figure 5.12 and

Figure 5.13, we can see that these eigenvectors fields are nearly indistinguishable and, even

with these very lax tolerances, accurate LCS can be extracted. Therefore, for an optimal

balance of accuracy and efficient, we advocate to use a high-order method (like DOPRI8)

with relatively lax tolerances.

Figure 5.12: Eigenvectors overlaid on FTLE field for Left: double precision DOPRI8 method
with relative tolerance = 1E-14, absolute tolerance = 1E-16, and Right: single precision
DOPRI8 method with relative tolerance = 1E-3, absolute tolerance = 1E-5.
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Figure 5.13: Eigenvectors overlaid on FTLE field for Left: double precision DOPRI8 method
with relative tolerance = 1E-14, absolute tolerance = 1E-16, and Right: single precision
DOPRI8 method with relative tolerance = 1E-3, absolute tolerance = 1E-5. Focus on a
hyperbolic LCS.

5.5 Conclusion

We have presented a new framework for computing LCS which provides more accurate lin-

earized flow maps needed for LCS extraction. By using the neural ODE framework and

applying AD to numerical solutions of ODEs, we can obtain accurate LCS with one less pa-

rameter (auxiliary grid spacing) and no need to re-run simulations to find acceptable values

for this parameter. Furthermore, we have demonstrated that the AD method yields satisfac-

tory results across a wide range of error tolerances, the same of which cannot be said for the
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numerical differentiation approach. We have shown this methodology can be implemented

quite simply using existing AD and neural ODE packages, allowing this approach to be

adopted by a wider audience. In addition, we have shown this approach works well for flows

which are represented by numerical velocity data, a case that had not been demonstrated

before.

There is still much to do moving forward. The main focuses will be on integrating efficient

cubic spline interpolants to further decrease our true errors with respect to reality, streamline

this implementation and release a public package which makes this easy for non-experts to

use, compare the actual LCS that is computed from the various methods to find what is

an “acceptable” error for the eigenvectors, and do all of these comparisons on a variety of

different flows with a deeper analysis. In addition, there are some subtle points relating to

robustness to precision and the fact that numerical differentiation produced lower errors than

AD for any runs (when the tolerances and solvers were equal) that need to be investigated

further. The robustness to precision may be due to the tolerances being larger than the loss

of precision when going from double to single precision and the avoidance of the numerical

differentiation routine that causes this to become an issue at lower tolerances. The slightly

better errors achieved by numerical differentiation for the few isolated cases may be due to

the linear interpolant being used and how JAX is dealing with differentiating this interpolant.

At this time, we cannot say for sure if any of these explanations are the true reasons and a

deeper dive is required to settle these questions.

In the end, the goal here was really to demonstrate that using AD for LCS extraction is the

optimal way moving forward. LCS extraction relies on precise and accurate eigenvectors of

the Cauchy Green tensor and standard numerical differentiation is not the best tool for this

job. AD provides derivatives that are as accurate as possible given the numerical setting,

and this is precisely what is needed for accurate LCS extraction. We hope this approach is
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adopted the LCS community and are excited to see these tools used in practice.



Chapter 6

Conclusions

6.1 Summary

This dissertation made a number of contributions to the numerical framework for coherent

structures and furthering the theory. In Ch. 2, we presented NumbaCS, a Python package

that efficiently implements many coherent structure methods in a user-friendly manner. This

package provides an easy-to-use starting point for those new to the theory and a powerful

tool for experienced practitioners. By making use of various open-source Python packages,

NumbaCS is able to maintain the simple user experience provided by dynamically-typed lan-

guages while achieving runtimes closer to that of a statically-typed language.

In Ch. 3, a number of coherent structure methods are applied to a large-scale atmospheric

transport event, the 2020 “Godzilla” dust storm. We demonstrated the utility of these tools

on an atmospheric phenomena at a scale not previously seen for Earth’s atmosphere. We

showed that, even with a simplified implementation of these tools, key transport structures

responsible for the evolution of this historic dust storm could be identified, some of which

had gone unnoticed in the literature. Through this presentation, we aimed at making a

wider audience of atmospheric scientists aware of these tools and their potential utility.

In Ch. 4, we presented an extension of the theory of finite-time diffusive transport barriers to

the instantaneous case, much like what was done with objective Eulerian coherent structures.
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By defining the appropriate functional, we derived barrier equations for instantaneous elliptic

diffusive flux-rate barriers for general diffusion structure, the instantaneous analogues of

diffusive transport barriers. By looking at an example with nontrivial diffusion structure,

we demonstrated that these instantaneous barriers correctly did not identify diffusive barriers

that were destroyed by the diffusion structure, much like finite-time structures.

Finally, in Ch. 5, we presented a new framework for computing LCS from their variational

theory. By leveraging automatic differentiation and ideas coming from neural differential

equations, a new method to compute accurate linearized flow maps needed for LCS extrac-

tion is detailed. We demonstrated the usefulness of this approach on a complicated flow

represented by numerical velocity data, a case not previously tackled. We showed this ap-

proach consistently produces sufficiently low errors in eigenvector angles (when using the

higher order solver) while eliminating the auxiliary grid spacing parameter needed for the

traditional method. By removing this parameter, this method also eliminates the potential

need to re-run simulations to find an acceptable window for this parameter, a computation-

ally expensive process. We argue this is the optimal way to compute linearized flow maps

for LCS extraction moving forward. In addition, we present a straightforward framework for

implementing this method in Python.

While each chapter addresses a specific aspect of the emerging field of objective coherent

structures, together they help build a more complete and refined picture of how to un-

derstand, model, and compute key transport structures in fluid flows. This dissertation

advances the field through the development of new powerful numerical tools and methods, a

demonstration of coherent structure methods in a large-scale transport application – reveal-

ing previously unseen structure, and extending the theory for instantaneous diffusive and

stochastic transport barriers. By integrating numerical innovation, theoretical development,

and practical application, this work improves the computation and application of coherent
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structure theory and helps extend its reach to wider audiences and broader contexts.

These contributions collectively strengthen the analytical and computational foundations

of the coherent structure framework. NumbaCS provides a highly efficient and user-friendly

package for computing and extracting coherent structures, making these tools accessible

to a wider audience while being easily applicable to large-scale, real-world scenarios. The

“Godzilla” dust application demonstrates a simple implementation for a practitioner, and

the power of these tools for identifying key transport structures. The theoretical extension

opens the door to studies of instantaneous transport barriers in diffusive and stochastic

environments, widening the applicability. The new AD LCS methods provides a more robust

and consistent method for extraction of LCS and is equally applicable to any extraction

method which relies on accurate linearized flow maps. Through these contributions, this

dissertation assists in the maturation of the coherent structure theory and helps further

establish these tools as essential components for advancing our understanding of transport

in fluid flows.

6.2 Future Directions

While this dissertation contributes to the maturation of the theory of Lagrangian and ob-

jective Eulerian coherent structures and their implementations, it also identifies key avenues

for research moving forward and further optimizations of presented implementations.

NumbaCS was presented in Ch. 2 and detailed a road map for development. Implementing

many of these methods is the main direction moving forward. In addition, there a few already

implemented methods that could benefit from further optimizations that will be tackled in

the coming months. We wish to emphasize that the automatic differentiation framework

presented in Ch. 5 does not impede any plans for development of NumbaCS moving forward.
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We understand that not everyone has access to GPUs capable of being utilized within the

JAX framework and therefore, the CPU focused implementation of NumbaCS remains useful

to a wider audience. In addition, though not a true apples to apples comparison, NumbaCS

is able to achieve similar runtimes to the GPU implementation we put forth in Ch. 5. We

are actively investigating efficient CPU implementations of AD that could be integrated into

NumbaCS or utilized in a new CPU focused coherent structure package.

The atmospheric application of coherent structures in Ch. 3 aimed to demonstrate the use-

fulness of these tools to a wider audience of atmospheric scientists, though some interesting

potential directions came out of this work. While we don’t claim coherent structures are the

solution to every problem, we do believe they provide valuable insight lacking from many tra-

ditional methods in the geophysical sciences. With this in mind, a push to demonstrate how

these tools can be incorporated into the standard atmospheric scientist’s or oceanographic

scientist’s workflow remains an important focus. For real-time applications and data produc-

tion, much like “real-time” velocity, temperature, pressure, vorticity, etc. are provided by

various national atmospheric and oceanographic agencies, backward time coherent structure

information could just as easily be provided by these agencies if coherent structure methods

were introduced into their workflows. By using something like the flow map composition

method detailed in Ch. 2, this data could be produced rapidly. Providing these tools and

the data they output to a wider audience may produce interesting and novel applications

not previously seen before and could potentially improve certain forecasts in these fields.

By defining diffusive flux-rate barriers in Ch. 4, we have successfully expanded the theory of

diffusive transport barriers to the instantaneous case for general diffusion structure. Possible

avenues moving forward could be defining an appropriate persistence metric (or showing the

advective persistence metric is appropriate), properly defining the instantaneous version

of the diffusive barrier strength field, and further studying the coupling between diffusion
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structure and diffusivity for which this theory produces satisfactory results. In addition, we

hope practitioners find novel applications for the general diffusion structure case, whether

they be in diffusive or stochastic settings.

The work which provides the most opportunity moving forward is the AD LCS presented

in Ch. 5. This work is relatively new and there is much we wanted to do that could not

be completed in time to fit in this dissertation. The clearest is to do a deeper and more

systematic study of the accuracy boost over numerical differentiation. We would like to

test on more flows (both analytical and numerical) and for more frames to obtain a better

picture of the advantages. Another important step moving forward is to fully develop an

open-source package that implements the methods detailed in this chapter as well as the

LCS extraction techniques. Along the way, we would like to dive further into optimizations

tailored to the specific low-dimensional systems arising from our application. Some more

subtle points warrant further investigation; the main two being the precision robustness

of AD, and the fact that numerical differentiation outperformed AD for any cases (when

ODE solver and tolerance were the same). We could speculate on why that happened, but

that would be only speculation and requires a deeper dive to produce a satisfactory answer.

This AD LCS work is the topic we are most excited about moving forward as it provides a

substantial improvement over the traditional method and many avenues for future research.

Although the theory of coherent structures is relatively new (in the grand scheme of science),

we believe it is at an important stage in its maturation. Most of the base theory has been

put on rigorous footing and the numerical implementations have become more efficient and

accurate. The next step is implementing these tools into existing workflows in various

geophysical disciplines. It is through this integration and wide availability to experts in

the geophysical sciences that the true power of these tools can be realized. The main aim

of this dissertation has been to contribute to bringing these methods to the next level of
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maturation through efficient and user-friendly numerical implementations, demonstrating

their application in a large-scale geophysical context, extending the theory in specific cases,

and the development of a new and improved numerical framework for computation. It is

my hope that this work has fulfilled that aim, at least in part, and that it will serve as a

stepping stone for continued growth in this field and its real-world applications.
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Appendix A

Supplemental Material: Atmospheric

transport structures shaping the

“Godzilla” dust storm

A.1 Implications of Column-averaged velocity fields

In the text, we mainly focus on FTLE fields derived from column-averaged velocity fields.

These velocity fields are averaged from pressure surfaces between 500 hPa - 800 hPa. This

is done for a number of reasons. The main reason we do this is because we are comparing

with column-averaged aerosol index data and wanted to make an attempt to capture the

influence of the wind at all levels at which dust was present. An additional reason we do

this is because, most of these pressure surfaces intersect with the ground at some point

and velocity data is not provided where this happens. While these regions were often not

in the area we were focused on, we were performing particle integrations starting from a

grid within the region we are focused on and therefore, these particle paths sometimes enter

these regions of ground interference. Using the averaged velocity field allows us to have a

velocity field that is defined all over the globe since averaging at a given point only includes

those levels for which we have data. Alternatively, when using a single pressure surface with

missing data, one is forced to find some way to deal with these areas. Since there is ground
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interference we just set the velocity to 0 at these points so when particles enter this area

they stop right where they enter. This is what we did for the 600 hPa pressure surface and

it resulted in some artificial looking areas because of it.

By performing this averaging, we are no longer solving our system over a well defined man-

ifold. This is in some sense a mathematical formality and can be avoided by imposing a

manifold over which our new vector field is defined (say at the average pressure of pressure

surfaces used, 650 hPa). In addition, since we are using velocity fields from the atmosphere

on a pressure surface, they are essentially incompressible and are treated as such. It is pos-

sible to introduce non-negligible compressibility into our averaged vector field by way of the

averaging. We checked for this and found that the average divergence over all grid points and

all times used in our calculations was 4.60×10−8 s−1 for the averaged fields and −2.01×10−8

s−1 for a single pressure surface (600h Pa). The maximum divergence (in magnitude) over

all grid points and times was 2.90× 10−4 s−1 for the averaged fields and 4.90× 10−4 s−1 for

the 600 hPa velocity fields. Therefore, we conclude that the averaged fields are roughly as

compressible as a single pressure surface and this amount is insignificant. While all these

concerns could be quelled in our case, it is wise to check these things if taking an approach

like this.

A.2 Integration Time

As mentioned, the integration time chosen should be tied to some characteristic time scale

of the transport. We settled on approximately half the time it took for the plume to traverse

the Atlantic (i.e., half of ∼ 8 days) as we were interested in structures that influenced the

transport of the plume on this time scale. Often, there is more than one integration time

that can be chosen that yields satisfactory results. In Figure A.1 below, we show the effect
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of integration time on the resulting FTLE field. In general, as can be seen in the figure,

shorter integration time magnitudes |T | reveal an FTLE field that is broader, with fewer—

and shorter—ridges. In fact, the FTLE field shows “instantaneous” structure in the |T | → 0

limit, as discussed in [112], which give the short-time attracting (T → 0−) or repelling

(T → 0+) structures. As the integration time magnitude |T | is increased, the FTLE field is

sharper, with more—and longer—ridges. For our application, picking a shorter time such as

T =−1, or −2 days ((a) and (b) from Figure A.1) could potentially miss important structures

and produce less well-defined ridges. Choosing a much longer time such as T = −5, −6, −7,

or −8 days ((e), (f), (g), and (h) from Figure A.1) results in an overly complicated FTLE

field. Choosing an integration time of T = −3 or −4 days ((c) and (d) from Figure A.1)

yields results that capture all structures of importance while not being overly complicated.

Picking T = −3 days would have been reasonable for the entirety of this paper and in some

applications, choosing between candidate integration times comes down to user decision when

a single time is not obvious. One could argue that choosing a shorter time is advantageous as

this results in a cheaper computation, yet at the risk of missing out on potentially important

small scale features. This computational advantage continues when performing ridge or LCS

extraction, as shorter integration times result in fewer ridges.
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Figure A.1: Backward FTLE field from column-averaged velocity fields on June 17, 2020 for
integration times T = (a) -1 day, (b) -2 days, (c) -3 days, (d) -4 days, (e) -5 days, (f) -6
days, (g) -7 days, (h) -8 days,

A.3 600 hPa

In this section, we provide figures that were used in the analysis of the dust storm from the

3.1 (FTLE) and 3.2 (Eulerian Combined with Lagrangian Analysis - Early June and Mid
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June Vortex Comparison) sections of the main text but instead with all of the calculations

and comparisons performed on a single pressure surface (600 hPa) instead of the averaged

vector field we mainly focused on. No further analysis is presented as the same conclusions

are drawn regardless of which underlying vector field was used.
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3.1 - FTLE

Figure A.2: Backward FTLE ridges overlaid on aerosol index data obtained from OMPS,
June 5-8, 2020. See text for details.

Figure A.3: Backward FTLE ridges overlaid on aerosol index data obtained from OMPS,
June 15-18, 2020.
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Figure A.4: Backward FTLE ridges overlaid on aerosol index data obtained from OMPS,
June 19-22, 2020.

Figure A.5: Backward FTLE ridges overlaid on aerosol index data obtained from OMPS,
June 23-26, 2020.
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Figure A.6: Forward and Backward FTLE ridges overlaid on aerosol index data obtained
from OMPS, June 11-14, 2020.

Figure A.7: Forward and Backward FTLE ridges overlaid on aerosol index data obtained
from OMPS, June 15-18, 2020.
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Figure A.8: Forward and Backward FTLE ridges overlaid on aerosol index data obtained
from OMPS, June 19-22, 2020. See text for details.

3.2 - Eulerian Combined with Lagrangian Analysis

Early June and Mid June Vortex Comparison

Figure A.9: Backward LAVD (10−5×s−1, integration time = 1 day) on June 3, 2020 (left)
and June 14, 2020 (right).
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Figure A.10: Backward LAVD (10−5×s−1, integration time = 1 day) on June 4, 2020 (left)
and June 15, 2020 (right).

Figure A.11: Velocity field (top) and backward FTLE ridges (bottom) overlaid on OMPS
aerosol index data on June 5, 2020 (left) and June 16, 2020 (right). See text for details.
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Figure A.12: Velocity field (top) and backward FTLE ridges (bottom) overlaid on OMPS
aerosol index data on June 6, 2020 (left) and June 17, 2020 (right). See text for details.

Figure A.13: Velocity field (top) and backward FTLE ridges (bottom) overlaid on OMPS
aerosol index data on June 7, 2020 (left) and June 18, 2020 (right).
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Appendices: Diffusive Flux-Rate

Barriers for General Diffusion

Structure

B.1 Time derivative of T̄t
t0

as t → t0

Recall

T̄t
t0
=

1

t− t0

∫ t

t0

Ts
t0
ds (B.1)

Then we take a derivative w.r.t. t

d

dt
T̄t

t0
=

d

dt

(
1

t− t0

∫ t

t0

Ts
t0
ds

)

=
−1

(t− t0)2

∫ t

t0

Ts
t0
ds+

1

t− t0
Tt

t0

=
Tt

t0
− T̄t

t0

t− t0

(B.2)
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Dropping the t0 subscript and writing in index notation we have,

[
d

dt
T̄t

t0

]

ij

=
T t
ij − T̄ t

ij

t− t0
(B.3)

By the mean value theorem for integrals, ∀i, j ∈ {1, ..., n} × {1, ..., n} ∃t∗ ∈ [t0, t] such that

T t∗

ij = T̄ t
ij (t∗ may be different for each i, j). Therefore,

T t
ij − T̄ t

ij

t− t0
=

T t
ij − T t∗

ij

t− t0

=
T t
ij − T t∗

ij

t− t∗
t− t∗

t− t0

(B.4)

Now we can take a limit as t → t0 (this implies t∗ → t0 for each i, j)

lim
t→t0

[
d

dt
T̄t

t0

]

ij

= lim
t→t0

(
T t
ij − T t∗

ij

t− t∗
t− t∗

t− t0

)

= lim
t→t0

(
T t
ij − T t∗

ij

t− t∗

)
lim
t→t0

(
t− t∗

t− t0

)

= Ṫij

=
[
Ṫt0

]
ij

(B.5)

where we use the fact that limits of products are products of limits when the limit of each

factor exists. Therefore,

lim
t→t0

d

dt
T̄t

t0
= Ṫt0 (B.6)
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B.2 Taylor expansion of Tt
t0

for general D

For the general case of the diffusion tensor when D = D(Ft

t0
, t), the diffusive flux tensor is

given by

Tt
t0
(x0) =

[
∇0Ft

t0
(x0)

]−1 D(Ft
t0
(x0), t)

[
∇0Ft

t0
(x0)

]−⊤
, (B.7)

where t = t0 + τ . Now we aim to expand T through first order in τ . First we must compute

the first derivative w.r.t. τ ,

dT
dτ

=
d(∇F)−1

dτ
D(∇F)−⊤ + (∇F)−1dD

dτ
(∇F)−⊤ + (∇F)−1Dd(∇F)−⊤

dτ

= −(∇F)−1L1D(∇F)−⊤ + (∇F)−1dD
dτ

(∇F)−⊤ − (∇F)−1DL⊤
1 (∇F)−⊤

= − (∇F)−1

(
L1D − dD

dτ
+ DL⊤

1

)
(∇F)−⊤

(B.8)

where it is understood L1 = L1(x, t0 + τ) = ∇v(x, t0 + τ) and D = D(x, t0 + τ) where

x = Ft0+τ
t0

(x0) is the spatial point occupied by the material point x0 at time t0+ τ before we

evaluate at τ = 0. dD
dτ

= ∇D · v + ∂D
∂τ

is the material derivative of D. Evaluating at τ = 0

we have,
dT
dτ

∣∣∣∣
τ=0

= −
(

L1D − dD
dτ

+ DL⊤
1

)
= −2SD (B.9)

where everything is now evaluated at (x0, t0) and SD is the diffusion weighted Eulerian

rate-of-strain tensor, defined as

SD :=
1

2

(
L1D − dD

dτ
+ DL1

⊤

)
(B.10)

Though not currently needed, we extend to second order as well. For second order, we need
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the second derivative w.r.t. τ ,

d2T
dτ 2
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dτ
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where A = L1D − dD
dτ

+ DL⊤
1 . Therefore, for dA

dτ
we have,
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where we used the fact that dL1

dτ
= L2 − L2

1,
dL⊤

1

dτ
= L⊤

2 − (L⊤
1 )

2 and L2 = ∇a where a is the

material derivative of v (i.e. dv
dτ
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∂τ

). Putting it all together, we have,
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Evaluating at τ = 0 we have,
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dτ 2
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where everything is now evaluated at x0 and t0. For simplicity, we will just write T̈ for this

tensor. Then we can write the Taylor expansion as
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T = T
∣∣
τ=0

+ τ
dT
dτ

∣∣∣∣
τ=0

+
τ 2

2

d2T
dτ 2

∣∣∣∣
τ=0

+O(τ 3)

= D − 2τSD +
τ 2

2
T̈ +O(τ 3)

(B.15)

B.3 Objectivity of SD

Here we show that the diffusion weigthed Eulerian rate-of-strain tensor SD is objective.

Consider a general frame change x 7→ y given by,

x = Q(t)y + b(t) (B.16)

where Q(t) is a time-dependent rotation ( =⇒ Q(t)Q(t)⊤ = Q(t)⊤Q(t) = I) and b(t) ∈ R
n

is a time dependent translation. Then, an Eulerian tensor A(x, t) is objective (or frame

indifferent) if under a general frame change (B.16) the transformed tensor Ã(y, t), is similar

to A(x, t) with Q(t) as the similarity transformation matrix, i.e.,

Ã(y, t) = Q(t)⊤A(x, t)Q(t) (B.17)

By differentiating Eq. (B.16) w.r.t. t and rearranging we can obtain the transformed velocity,

v(x, t) = ẋ = Q̇(t)y + Q(t)ẏ + ḃ(t)

=⇒ ṽ(y, t) = ẏ = Q(t)⊤(v(x, t)− Q̇(t)y − ḃ(t))
(B.18)

which is not objective (for a vector field v(x, t) to be objective it must satisfy ṽ(y, t) =

Q⊤(t)v(x, t)). From here on out we will suppress arguments and it will be implied that

quantities with˜are functions of y and those without are functions of x. Take a y derivative
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of the transformed velocity to obtain the transformed velocity gradient,

∇̃ṽ = Q⊤

(
∇vdx

dy − Q̇
)

= Q⊤∇vQ − Q⊤Q̇ (B.19)

where ∇̃ = ∂
∂y . So clearly, ∇v is not objective. It is a classic result that the Eulerian rate-

of-strain tensor S = 1
2
(∇v + (∇v)⊤) is objective [55]. Note that Haller [60] shows that the

diffusion structure tensor D is objective, as a consequence of requiring the diffusive flux to

be objective. So we have,

D̃(y, t) = Q(t)⊤D(x, t)Q(t) (B.20)

and its material derivative transforms as,

˙̃
D = Q̇⊤DQ + Q⊤ḊQ + Q⊤DQ̇ (B.21)

showing the classic result that even for an objective field, in general, its material derivative

will not be objective [55]. Before we proceed, we state some properties of rotation tensors

that will be useful to us. Note,

˙QQ⊤ = Q̇Q⊤ + QQ̇⊤ = 0

=⇒ Q̇Q⊤ = −QQ̇⊤ = −[Q̇Q⊤]⊤
(B.22)

showing that Q̇Q⊤ is skew-symmetric. This implies

Q⊤Q̇Q⊤ = −Q̇⊤ (B.23)
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Also note that the skew-symmetric property allows us to write the transpose of the trans-

formed velocity gradient as

(∇̃ṽ)⊤ = Q⊤(∇v)⊤Q + Q⊤Q̇ (B.24)

To slightly simplify notation we will use the common continuum mechanics notation for the

spatial gradient of the velocity field, L = ∇v. Recall we defined the diffusion weighted

Eulerian rate-of-strain tensor as

SD =
1

2

(
LD − Ḋ + DL⊤

)
(B.25)

leading to the transformed version

S̃D =
1

2

(
L̃D̃ − ˙̃D + D̃L̃⊤

)
(B.26)

Now substituting in using eqs. (B.19), (B.20), (B.21), and (B.24)

S̃D =
1

2

(
(Q⊤LQ − Q⊤Q̇)(Q⊤DQ)

−(Q̇⊤DQ + Q⊤ḊQ + Q⊤DQ̇)

+(Q⊤DQ)(Q⊤L⊤Q + Q⊤Q̇)

)
(B.27)

Simplifying yields,

S̃D =
1

2

(
Q⊤LDQ − Q⊤ḊQ + Q⊤DL⊤Q

)

+
1

2

(
−Q⊤Q̇Q⊤DQ − Q̇⊤DQ − Q⊤DQ̇ + Q⊤DQQ⊤Q̇

) (B.28)
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We focus on the bottom term and use properties of Q as shown in Eq. (B.23). We ignore

the 1/2 factor our front and have,

− Q⊤Q̇Q⊤DQ − Q̇⊤DQ − Q⊤DQ̇ + Q⊤DQQ⊤Q̇

= Q̇⊤DQ − Q̇⊤DQ − Q⊤DQ̇ + Q⊤DQ̇ = 0
(B.29)

Therefore the bottom term is the zero matrix and we have,

S̃D =
1

2

(
Q⊤LDQ − Q⊤ḊQ + Q⊤DL⊤Q

)

= Q⊤1

2

(
LD − Ḋ + DL⊤

)
Q

= Q⊤SDQ

(B.30)

Hence SD is objective.

B.4 Barrier equations in 2D

Here we go through the variational problem to arrive at the equations for diffusive flux-rate

barriers. Recall we seek stationary solutions of the following functional,

Ṫt0(M0) =

∫
M0

〈n0,−SDn0〉 dA0∫
M0

dA0

, (B.31)

Using results about quotient functionals, stationary curves of this functional will coincide

with stationary curves of,

ĖṪ0 =
∫

M0

[〈n0,−SDn0〉 − µ] dA0 (B.32)

where µ is the constant value of the functional found by a minimizing solution M∗
0,
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µ =

∫
M∗

0
〈n0,−SDn0〉 dA0∫

M∗
0
dA0

(B.33)

Stationary curves will be null-geodesics of this metric, i.e.,

〈n0, (−SD − µI)n0〉 = 0 (B.34)

We now need to rewrite this in terms of tangents rather than normals. Let Q be a 90◦

counterclockwise rotation matrix. Then, we can rewrite Eq. (B.34) as

〈Qr′, (−SD − µI)Qr′〉 = 0

〈
r′,Q⊤(−SD − µI)Qr′

〉
= 0

〈
r′, (−Q⊤SDQ − µI)r′

〉
= 0

(B.35)

Following Haller and Beron-Vera [61], we rewrite the tangents in terms of the eigenvectors

of SD and scalars α, β such that α2 + β2 = 1, i.e.,

〈
αe1 + βe2, (−Q⊤SDQ − µI)(αe1 + βe2)

〉
= 0

〈αe1 + βe2,−αs2e1 − βs1e2 − µαe1 − µβe2〉 = 0

− α2
s2 − µα2 − β2

s1 − µβ2 = 0

(B.36)
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Letting β2 = 1− α2 we have,

− α2
s2 − µα2 − (1− α2)s1 − µ(1− α2) = 0

α2(s1 − s2) = s1 + µ

α =

√
s1 + µ

s1 − s2

=⇒ β =

√
−(µ+ s2)

s1 − s2

(B.37)

These constants would define differential equations on the following domain,

Uµ = {x0 ∈ U : s1 6= s2, −s1 < µ < −s2}. (B.38)

By letting Ṫ0 = −µ, the constants become

α =

√
s1 − Ṫ0

s1 − s2

=⇒ β =

√
Ṫ0 − s2

s1 − s2

(B.39)

with corresponding domain of existence,

UṪ0
= {x0 ∈ U : s1 6= s2, s2 < Ṫ0 < s1}. (B.40)

Since we seek curves r(s) along which this metric is null, this leads to the differential equa-

tions in Eq. (4.42)

r′(s) = χ±

Ṫ0
(r(s)), χ±

Ṫ0
=

√
s1 − Ṫ0

s1 − s2

e1 ±

√
Ṫ0 − s2

s1 − s2

e2 (B.41)
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C.1 AD Table

Table C.1: Performance using Automatic Differentiation

Method Precision Rel Tol Abs Tol Avg Err (rad) Avg Err (deg) Runtime (s)
TSIT5 Single 1E-3 1E-5 1.32× 10−1 7.5535 1.17
TSIT5 Single 1E-4 1E-6 3.88× 10−2 2.2223 1.55
TSIT5 Single 1E-5 1E-7 2.21× 10−2 1.2660 2.35
TSIT5 Single 1E-6 1E-8 1.15× 10−2 0.6599 4.85
TSIT5 Single 1E-7 1E-9 4.59× 10−3 0.2631 11.63
TSIT5 Single 1E-8 1E-10 1.91× 10−3 0.1095 24.74
TSIT5 Single 1E-9 1E-11 7.95× 10−4 0.0455 47.49
TSIT5 Double 1E-3 1E-5 1.32× 10−1 7.5481 2.11
TSIT5 Double 1E-4 1E-6 3.89× 10−2 2.2268 2.54
TSIT5 Double 1E-5 1E-7 2.25× 10−2 1.2876 4.00
TSIT5 Double 1E-6 1E-8 1.18× 10−2 0.6776 8.51
TSIT5 Double 1E-7 1E-9 4.74× 10−3 0.2714 21.82
TSIT5 Double 1E-8 1E-10 2.03× 10−3 0.1164 58.61
TSIT5 Double 1E-9 1E-11 1.13× 10−3 0.0648 128.91
DOPRI8 Single 1E-3 1E-5 1.32× 10−2 0.7548 2.14
DOPRI8 Single 1E-4 1E-6 8.01× 10−3 0.4590 4.04
DOPRI8 Single 1E-5 1E-7 5.02× 10−3 0.2876 9.23
DOPRI8 Single 1E-6 1E-8 2.33× 10−3 0.1333 19.37
DOPRI8 Single 1E-7 1E-9 9.78× 10−4 0.0560 42.80
DOPRI8 Single 1E-8 1E-10 3.78× 10−4 0.0216 75.90
DOPRI8 Single 1E-9 1E-11 1.67× 10−4 0.0095 263.53
DOPRI8 Double 1E-3 1E-5 1.32× 10−2 0.7541 3.67
DOPRI8 Double 1E-4 1E-6 8.42× 10−3 0.4822 7.51
DOPRI8 Double 1E-5 1E-7 5.30× 10−3 0.3039 16.47
DOPRI8 Double 1E-6 1E-8 2.46× 10−3 0.1411 38.65
DOPRI8 Double 1E-7 1E-9 1.04× 10−3 0.0594 104.98
DOPRI8 Double 1E-8 1E-10 4.36× 10−4 0.0250 226.66
DOPRI8 Double 1E-9 1E-11 2.38× 10−4 0.0136 377.21
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C.2 Numerical Differentiation Tables

Table C.2: Performance of TSIT5 (single) using Numerical Differentiation

Method Precision h Rel Tol Abs Tol Avg Err (rad) Avg Err (deg) Runtime (s)
TSIT5 Single 1E-2 1E-3 1E-5 1.66× 10−1 9.5187 1.36
TSIT5 Single 1E-2 1E-4 1E-6 5.45× 10−2 3.1204 1.59
TSIT5 Single 1E-2 1E-5 1E-7 3.62× 10−2 2.0753 2.82
TSIT5 Single 1E-2 1E-6 1E-8 3.43× 10−2 1.9636 5.36
TSIT5 Single 1E-2 1E-7 1E-9 3.42× 10−2 1.9585 12.18
TSIT5 Single 1E-2 1E-8 1E-10 3.42× 10−2 1.9584 25.70
TSIT5 Single 1E-2 1E-9 1E-11 3.42× 10−2 1.9583 48.14
TSIT5 Single 1E-3 1E-3 1E-5 5.71× 10−1 32.7002 1.41
TSIT5 Single 1E-3 1E-4 1E-6 2.69× 10−1 15.4056 1.61
TSIT5 Single 1E-3 1E-5 1E-7 6.33× 10−2 3.6261 2.75
TSIT5 Single 1E-3 1E-6 1E-8 1.16× 10−2 0.6635 5.38
TSIT5 Single 1E-3 1E-7 1E-9 2.60× 10−3 0.1490 12.22
TSIT5 Single 1E-3 1E-8 1E-10 1.50× 10−3 0.0857 25.79
TSIT5 Single 1E-3 1E-9 1E-11 1.43× 10−3 0.0818 47.02
TSIT5 Single 1E-4 1E-3 1E-5 7.04× 10−1 40.3508 1.35
TSIT5 Single 1E-4 1E-4 1E-6 7.04× 10−1 40.3305 1.64
TSIT5 Single 1E-4 1E-5 1E-7 4.49× 10−1 25.7462 2.65
TSIT5 Single 1E-4 1E-6 1E-8 1.07× 10−1 6.1147 5.36
TSIT5 Single 1E-4 1E-7 1E-9 1.67× 10−2 0.9581 12.03
TSIT5 Single 1E-4 1E-8 1E-10 3.26× 10−3 0.1867 26.30
TSIT5 Single 1E-4 1E-9 1E-11 1.95× 10−3 0.1118 46.15
TSIT5 Single 1E-5 1E-3 1E-5 7.13× 10−1 40.8441 1.44
TSIT5 Single 1E-5 1E-4 1E-6 7.69× 10−1 44.0789 1.69
TSIT5 Single 1E-5 1E-5 1E-7 7.65× 10−1 43.8429 2.65
TSIT5 Single 1E-5 1E-6 1E-8 5.89× 10−1 33.7666 5.27
TSIT5 Single 1E-5 1E-7 1E-9 1.62× 10−1 9.2965 12.02
TSIT5 Single 1E-5 1E-8 1E-10 3.21× 10−2 1.8387 25.44
TSIT5 Single 1E-5 1E-9 1E-11 1.92× 10−2 1.0981 46.16
TSIT5 Single 1E-6 1E-3 1E-5 7.55× 10−1 43.2325 1.36
TSIT5 Single 1E-6 1E-4 1E-6 7.77× 10−1 44.5053 1.66
TSIT5 Single 1E-6 1E-5 1E-7 7.85× 10−1 45.0000 2.66
TSIT5 Single 1E-6 1E-6 1E-8 7.79× 10−1 44.6558 5.33
TSIT5 Single 1E-6 1E-7 1E-9 6.83× 10−1 39.1095 12.17
TSIT5 Single 1E-6 1E-8 1E-10 2.95× 10−1 16.9136 25.75
TSIT5 Single 1E-6 1E-9 1E-11 1.80× 10−1 10.2884 47.14
TSIT5 Single 1E-7 1E-3 1E-5 7.77× 10−1 44.5125 1.43
TSIT5 Single 1E-7 1E-4 1E-6 7.78× 10−1 44.6027 1.65
TSIT5 Single 1E-7 1E-5 1E-7 7.83× 10−1 44.8685 2.65
TSIT5 Single 1E-7 1E-6 1E-8 7.84× 10−1 44.9226 5.24
TSIT5 Single 1E-7 1E-7 1E-9 7.86× 10−1 45.0478 12.29
TSIT5 Single 1E-7 1E-8 1E-10 7.43× 10−1 42.5517 24.99
TSIT5 Single 1E-7 1E-9 1E-11 6.74× 10−1 38.6374 46.73
TSIT5 Single 1E-8 1E-3 1E-5 7.85× 10−1 44.9776 1.42
TSIT5 Single 1E-8 1E-4 1E-6 7.85× 10−1 45.0007 1.61
TSIT5 Single 1E-8 1E-5 1E-7 7.86× 10−1 45.0179 2.63
TSIT5 Single 1E-8 1E-6 1E-8 7.86× 10−1 45.0132 5.21
TSIT5 Single 1E-8 1E-7 1E-9 7.85× 10−1 45.0009 11.94
TSIT5 Single 1E-8 1E-8 1E-10 7.85× 10−1 45.0017 24.43
TSIT5 Single 1E-8 1E-9 1E-11 7.85× 10−1 44.9602 45.61
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Table C.3: Performance of TSIT5 (double) using Numerical Differentiation

Method Precision h Rel Tol Abs Tol Avg Err (rad) Avg Err (deg) Runtime (s)
TSIT5 Double 1E-2 1E-3 1E-5 1.67× 10−1 9.5533 2.07
TSIT5 Double 1E-2 1E-4 1E-6 5.44× 10−2 3.1150 2.38
TSIT5 Double 1E-2 1E-5 1E-7 3.62× 10−2 2.0766 3.67
TSIT5 Double 1E-2 1E-6 1E-8 3.43× 10−2 1.9637 7.06
TSIT5 Double 1E-2 1E-7 1E-9 3.42× 10−2 1.9586 17.01
TSIT5 Double 1E-2 1E-8 1E-10 3.42× 10−2 1.9584 42.54
TSIT5 Double 1E-2 1E-9 1E-11 3.42× 10−2 1.9584 89.31
TSIT5 Double 1E-3 1E-3 1E-5 5.69× 10−1 32.5994 2.06
TSIT5 Double 1E-3 1E-4 1E-6 2.66× 10−1 15.2441 2.38
TSIT5 Double 1E-3 1E-5 1E-7 6.36× 10−2 3.6456 3.66
TSIT5 Double 1E-3 1E-6 1E-8 1.16× 10−2 0.6651 7.03
TSIT5 Double 1E-3 1E-7 1E-9 2.62× 10−3 0.1503 16.78
TSIT5 Double 1E-3 1E-8 1E-10 1.50× 10−3 0.0860 41.00
TSIT5 Double 1E-3 1E-9 1E-11 1.38× 10−3 0.0789 89.88
TSIT5 Double 1E-4 1E-3 1E-5 7.05× 10−1 40.4091 2.11
TSIT5 Double 1E-4 1E-4 1E-6 6.84× 10−1 39.2123 2.30
TSIT5 Double 1E-4 1E-5 1E-7 4.53× 10−1 25.9368 3.66
TSIT5 Double 1E-4 1E-6 1E-8 1.07× 10−1 6.1552 6.82
TSIT5 Double 1E-4 1E-7 1E-9 1.71× 10−2 0.9794 16.46
TSIT5 Double 1E-4 1E-8 1E-10 3.36× 10−3 0.1926 41.93
TSIT5 Double 1E-4 1E-9 1E-11 6.50× 10−4 0.0372 88.79
TSIT5 Double 1E-5 1E-3 1E-5 7.16× 10−1 41.0464 2.08
TSIT5 Double 1E-5 1E-4 1E-6 7.46× 10−1 42.7153 2.46
TSIT5 Double 1E-5 1E-5 1E-7 7.64× 10−1 43.8013 3.65
TSIT5 Double 1E-5 1E-6 1E-8 5.89× 10−1 33.7323 6.80
TSIT5 Double 1E-5 1E-7 1E-9 1.64× 10−1 9.3869 16.35
TSIT5 Double 1E-5 1E-8 1E-10 3.30× 10−2 1.8895 40.90
TSIT5 Double 1E-5 1E-9 1E-11 5.89× 10−3 0.3375 88.57
TSIT5 Double 1E-6 1E-3 1E-5 7.24× 10−1 41.4679 2.12
TSIT5 Double 1E-6 1E-4 1E-6 7.49× 10−1 42.9108 2.53
TSIT5 Double 1E-6 1E-5 1E-7 7.83× 10−1 44.8809 3.65
TSIT5 Double 1E-6 1E-6 1E-8 7.83× 10−1 44.8575 7.19
TSIT5 Double 1E-6 1E-7 1E-9 6.84× 10−1 39.2186 16.34
TSIT5 Double 1E-6 1E-8 1E-10 3.01× 10−1 17.2362 41.08
TSIT5 Double 1E-6 1E-9 1E-11 5.89× 10−2 3.3722 88.59
TSIT5 Double 1E-7 1E-3 1E-5 7.31× 10−1 41.8745 2.23
TSIT5 Double 1E-7 1E-4 1E-6 7.53× 10−1 43.1265 2.39
TSIT5 Double 1E-7 1E-5 1E-7 7.86× 10−1 45.0282 3.70
TSIT5 Double 1E-7 1E-6 1E-8 7.89× 10−1 45.2023 7.05
TSIT5 Double 1E-7 1E-7 1E-9 7.84× 10−1 44.9482 16.35
TSIT5 Double 1E-7 1E-8 1E-10 7.47× 10−1 42.8095 40.91
TSIT5 Double 1E-7 1E-9 1E-11 4.53× 10−1 25.9318 88.57
TSIT5 Double 1E-8 1E-3 1E-5 7.36× 10−1 42.1552 2.07
TSIT5 Double 1E-8 1E-4 1E-6 7.60× 10−1 43.5446 2.33
TSIT5 Double 1E-8 1E-5 1E-7 7.90× 10−1 45.2488 3.70
TSIT5 Double 1E-8 1E-6 1E-8 7.89× 10−1 45.2180 7.07
TSIT5 Double 1E-8 1E-7 1E-9 7.87× 10−1 45.0667 16.35
TSIT5 Double 1E-8 1E-8 1E-10 7.87× 10−1 45.0908 41.51
TSIT5 Double 1E-8 1E-9 1E-11 7.69× 10−1 44.0464 88.69
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Table C.4: Performance of DOPRI8 (single) using Numerical Differentiation

Method Precision h Rel Tol Abs Tol Avg Err (rad) Avg Err (deg) Runtime (s)
DOPRI8 Single 1E-2 1E-3 1E-5 4.02× 10−2 2.304 2.72
DOPRI8 Single 1E-2 1E-4 1E-6 3.46× 10−2 1.981 5.73
DOPRI8 Single 1E-2 1E-5 1E-7 3.42× 10−2 1.959 11.99
DOPRI8 Single 1E-2 1E-6 1E-8 3.42× 10−2 1.958 22.90
DOPRI8 Single 1E-2 1E-7 1E-9 3.42× 10−2 1.958 48.68
DOPRI8 Single 1E-2 1E-8 1E-10 3.42× 10−2 1.958 85.73
DOPRI8 Single 1E-2 1E-9 1E-11 3.42× 10−2 1.958 295.77
DOPRI8 Single 1E-3 1E-3 1E-5 1.25× 10−1 7.167 2.53
DOPRI8 Single 1E-3 1E-4 1E-6 2.69× 10−2 1.539 5.39
DOPRI8 Single 1E-3 1E-5 1E-7 5.21× 10−3 0.299 11.23
DOPRI8 Single 1E-3 1E-6 1E-8 1.80× 10−3 0.103 21.26
DOPRI8 Single 1E-3 1E-7 1E-9 1.41× 10−3 0.081 44.44
DOPRI8 Single 1E-3 1E-8 1E-10 1.42× 10−3 0.081 81.01
DOPRI8 Single 1E-3 1E-9 1E-11 1.51× 10−3 0.087 272.74
DOPRI8 Single 1E-4 1E-3 1E-5 5.97× 10−1 34.198 2.52
DOPRI8 Single 1E-4 1E-4 1E-6 2.37× 10−1 13.591 5.62
DOPRI8 Single 1E-4 1E-5 1E-7 4.45× 10−2 2.549 10.87
DOPRI8 Single 1E-4 1E-6 1E-8 7.30× 10−3 0.418 21.76
DOPRI8 Single 1E-4 1E-7 1E-9 1.76× 10−3 0.101 44.78
DOPRI8 Single 1E-4 1E-8 1E-10 1.76× 10−3 0.101 81.31
DOPRI8 Single 1E-4 1E-9 1E-11 3.34× 10−3 0.192 271.37
DOPRI8 Single 1E-5 1E-3 1E-5 7.79× 10−1 44.606 2.63
DOPRI8 Single 1E-5 1E-4 1E-6 7.07× 10−1 40.535 5.47
DOPRI8 Single 1E-5 1E-5 1E-7 3.65× 10−1 20.905 11.00
DOPRI8 Single 1E-5 1E-6 1E-8 7.27× 10−2 4.167 21.29
DOPRI8 Single 1E-5 1E-7 1E-9 1.71× 10−2 0.978 45.00
DOPRI8 Single 1E-5 1E-8 1E-10 1.71× 10−2 0.982 79.25
DOPRI8 Single 1E-5 1E-9 1E-11 3.25× 10−2 1.865 270.09
DOPRI8 Single 1E-6 1E-3 1E-5 7.81× 10−1 44.776 2.56
DOPRI8 Single 1E-6 1E-4 1E-6 7.83× 10−1 44.838 5.35
DOPRI8 Single 1E-6 1E-5 1E-7 7.54× 10−1 43.172 10.87
DOPRI8 Single 1E-6 1E-6 1E-8 5.08× 10−1 29.116 21.83
DOPRI8 Single 1E-6 1E-7 1E-9 1.66× 10−1 9.509 44.19
DOPRI8 Single 1E-6 1E-8 1E-10 1.63× 10−1 9.325 78.97
DOPRI8 Single 1E-6 1E-9 1E-11 2.69× 10−1 15.408 269.94
DOPRI8 Single 1E-7 1E-3 1E-5 7.81× 10−1 44.747 2.50
DOPRI8 Single 1E-7 1E-4 1E-6 7.82× 10−1 44.779 5.36
DOPRI8 Single 1E-7 1E-5 1E-7 7.85× 10−1 44.955 11.17
DOPRI8 Single 1E-7 1E-6 1E-8 7.73× 10−1 44.289 21.07
DOPRI8 Single 1E-7 1E-7 1E-9 6.74× 10−1 38.622 44.18
DOPRI8 Single 1E-7 1E-8 1E-10 6.58× 10−1 37.697 80.36
DOPRI8 Single 1E-7 1E-9 1E-11 7.27× 10−1 41.665 271.47
DOPRI8 Single 1E-8 1E-3 1E-5 7.86× 10−1 45.022 2.51
DOPRI8 Single 1E-8 1E-4 1E-6 7.86× 10−1 45.019 5.32
DOPRI8 Single 1E-8 1E-5 1E-7 7.86× 10−1 45.007 11.32
DOPRI8 Single 1E-8 1E-6 1E-8 7.85× 10−1 45.003 21.70
DOPRI8 Single 1E-8 1E-7 1E-9 7.86× 10−1 45.010 44.04
DOPRI8 Single 1E-8 1E-8 1E-10 7.85× 10−1 44.981 78.54
DOPRI8 Single 1E-8 1E-9 1E-11 7.85× 10−1 44.989 267.62
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Table C.5: Performance of DOPRI8 (double) using Numerical Differentiation

Method Precision h Rel Tol Abs Tol Avg Err (rad) Avg Err (deg) Runtime (s)
DOPRI8 Double 1E-2 1E-3 1E-5 4.03× 10−2 2.312 3.78
DOPRI8 Double 1E-2 1E-4 1E-6 3.46× 10−2 1.981 7.62
DOPRI8 Double 1E-2 1E-5 1E-7 3.42× 10−2 1.959 16.04
DOPRI8 Double 1E-2 1E-6 1E-8 3.42× 10−2 1.958 33.26
DOPRI8 Double 1E-2 1E-7 1E-9 3.42× 10−2 1.958 87.46
DOPRI8 Double 1E-2 1E-8 1E-10 3.42× 10−2 1.958 180.77
DOPRI8 Double 1E-2 1E-9 1E-11 3.42× 10−2 1.958 317.98
DOPRI8 Double 1E-3 1E-3 1E-5 1.25× 10−1 7.145 3.96
DOPRI8 Double 1E-3 1E-4 1E-6 2.68× 10−2 1.537 7.47
DOPRI8 Double 1E-3 1E-5 1E-7 5.27× 10−3 0.302 16.20
DOPRI8 Double 1E-3 1E-6 1E-8 1.81× 10−3 0.104 34.61
DOPRI8 Double 1E-3 1E-7 1E-9 1.40× 10−3 0.080 86.05
DOPRI8 Double 1E-3 1E-8 1E-10 1.37× 10−3 0.079 179.78
DOPRI8 Double 1E-3 1E-9 1E-11 1.37× 10−3 0.078 308.97
DOPRI8 Double 1E-4 1E-3 1E-5 6.02× 10−1 34.493 3.78
DOPRI8 Double 1E-4 1E-4 1E-6 2.45× 10−1 14.023 7.51
DOPRI8 Double 1E-4 1E-5 1E-7 4.52× 10−2 2.589 15.58
DOPRI8 Double 1E-4 1E-6 1E-8 7.51× 10−3 0.430 33.59
DOPRI8 Double 1E-4 1E-7 1E-9 1.42× 10−3 0.081 84.52
DOPRI8 Double 1E-4 1E-8 1E-10 3.73× 10−4 0.021 177.68
DOPRI8 Double 1E-4 1E-9 1E-11 1.47× 10−4 0.008 312.17
DOPRI8 Double 1E-5 1E-3 1E-5 7.84× 10−1 44.893 3.77
DOPRI8 Double 1E-5 1E-4 1E-6 7.11× 10−1 40.714 7.50
DOPRI8 Double 1E-5 1E-5 1E-7 3.70× 10−1 21.176 15.57
DOPRI8 Double 1E-5 1E-6 1E-8 7.35× 10−2 4.213 34.44
DOPRI8 Double 1E-5 1E-7 1E-9 1.37× 10−2 0.785 82.89
DOPRI8 Double 1E-5 1E-8 1E-10 3.06× 10−3 0.176 178.53
DOPRI8 Double 1E-5 1E-9 1E-11 6.34× 10−4 0.036 313.74
DOPRI8 Double 1E-6 1E-3 1E-5 7.94× 10−1 45.500 4.05
DOPRI8 Double 1E-6 1E-4 1E-6 7.90× 10−1 45.291 7.38
DOPRI8 Double 1E-6 1E-5 1E-7 7.58× 10−1 43.438 16.16
DOPRI8 Double 1E-6 1E-6 1E-8 5.08× 10−1 29.132 33.57
DOPRI8 Double 1E-6 1E-7 1E-9 1.33× 10−1 7.608 87.56
DOPRI8 Double 1E-6 1E-8 1E-10 3.02× 10−2 1.729 181.07
DOPRI8 Double 1E-6 1E-9 1E-11 6.31× 10−3 0.362 310.72
DOPRI8 Double 1E-7 1E-3 1E-5 7.59× 10−1 43.480 3.87
DOPRI8 Double 1E-7 1E-4 1E-6 7.94× 10−1 45.521 7.37
DOPRI8 Double 1E-7 1E-5 1E-7 7.96× 10−1 45.604 15.80
DOPRI8 Double 1E-7 1E-6 1E-8 7.76× 10−1 44.484 33.27
DOPRI8 Double 1E-7 1E-7 1E-9 6.51× 10−1 37.310 84.86
DOPRI8 Double 1E-7 1E-8 1E-10 2.79× 10−1 15.971 180.58
DOPRI8 Double 1E-7 1E-9 1E-11 6.26× 10−2 3.588 307.43
DOPRI8 Double 1E-8 1E-3 1E-5 7.50× 10−1 42.947 3.74
DOPRI8 Double 1E-8 1E-4 1E-6 7.61× 10−1 43.608 7.53
DOPRI8 Double 1E-8 1E-5 1E-7 7.88× 10−1 45.175 15.56
DOPRI8 Double 1E-8 1E-6 1E-8 7.87× 10−1 45.113 34.39
DOPRI8 Double 1E-8 1E-7 1E-9 7.84× 10−1 44.910 84.91
DOPRI8 Double 1E-8 1E-8 1E-10 7.41× 10−1 42.431 177.86
DOPRI8 Double 1E-8 1E-9 1E-11 4.64× 10−1 26.596 312.36
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