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A B S T R A C T   

Decreased movement symmetry is associated with injury risk and accelerated disease progression. Methods to 
analyze continuous data either cannot be used in pathologic populations with abnormal movement patterns or 
are not defined in terms easily incorporated into clinical care. The purpose of this study was to develop a method 
of describing symmetry and movement quality in continuous time-series data that results in scores that can be 
readily incorporated into clinical care. Two scores were developed: (1) the symmetry score (SS) which evaluates 
similarities in time-series data between limbs and (2) the closeness-to-healthy score (CTHS) which evaluates the 
similarity of time-series data to a control population. Kinetic and kinematic data from 56 end-stage unilateral 
ankle arthritis (A-OA) patients and 56 healthy older adults, along with 16 anterior cruciate ligament recon-
struction (ACLR) patients and 16 healthy young adults were used to test the ability for SS and CTHS to differ-
entiate between healthy and patient groups. Unpaired t-tests, Cohen’s D effect sizes, and receiver-operating- 
curve analyses assessed group differences [SPSS, V27, α = 0.05]. Patients had worse SS than controls and A- 
OA patients had worse CTHS compared to controls. SS had strong predictive capability, while the predictive 
capability of CTHS varied. Combined with clinically accessible data collection methods, the SS and CTHS could 
be used to evaluate patients’ baseline movement quality, assess changes due to disease progression, and during 
recovery. Results could be utilized in clinical decision making to assess surgical intervention urgency and efficacy 
of surgical interventions or rehabilitation protocols to improve side-to-side limb symmetry.   

1. Introduction 

Poor movement symmetry has been associated with injury risk 
(Bredeweg et al., 2013; Ciacci et al., 2013; Zifchock et al., 2008a, 2006) 
and accelerated disease progression (Mills et al., 2013; Shakoor et al., 
2003), making it important for clinical assessment. Movement symmetry 
during activities such as walking, running, and landing can be described 
as inter-limb kinetic and kinematic differences. Objective evaluation of 
movement symmetry often relies on the collection of continuous kinetic 
and kinematic time-series data. Despite collected data being continuous, 
symmetry is commonly analyzed using discrete points obtained from the 
continuous curves such as peaks and values at specific time points. 

There are several commonly used discrete methods to identify gait 
symmetry. Some investigations assess between limb asymmetries as 
inter-limb differences (Brown et al., 2009; Edwards et al., 2012; Lee 
et al., 2009; Sinsurin et al., 2017). Other studies utilize symmetry met-
rics expressing the degree of symmetry in a single measure such as the 
limb symmetry index, symmetry ratio, symmetry angle, or normalized 

symmetry index (Herzog et al., 1989; Patterson et al., 2012; Queen et al., 
2020; Robinson et al., 1987; Rohman et al., 2015; Zifchock et al., 
2008b). Although there are advantages to commonly used discrete 
analysis methods including direct statistical comparison between limbs 
and easy interpretation, these methods rely on data discretization. 
Instead of investigating the entire movement cycle and all points within, 
analysis and interpretation is limited to only a few points within the 
movement cycle. All potentially meaningful characteristics of the 
movement patterns outside of the selected discrete points are lost with 
this approach. 

Analyzing continuous data expands the scope of analysis to the entire 
time-series and prevents the loss of potentially important data. Previ-
ously utilized methods of continuous data analysis include the Coeffi-
cient of Multiple Determination (CMD) (Kadaba et al., 1989; Milner 
et al., 2011; Shi et al., 2019; Vickers et al., 2008) and Statistical Para-
metric Mapping (SPM) (Hughes-Oliver et al., 2019; King et al., 2018b, 
2018a; Mueske et al., 2019), among others. This is not an exhaustive list 
of existing methodologies, but instead includes measures that have 
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limitations when analyzing continuous biomechanical data. The CMD, 
which is numerically equivalent to an adjusted R-squared value for 
evaluating waveforms and is also commonly known as the Coefficient of 
Multiple Correlation (CMC), has been used as a measure of repeatability 
and similarity between time-series curves across multiple independent 
variables (Kadaba et al., 1989; Røislien et al., 2012) ; in the case of 
assessing symmetry, limb is the independent variable of interest. The 
computation determines the proportion of variation in the dependent 
variable that can be predicted from the independent variables. While the 
CMD is a valuable tool for many applications due to its ease of inter-
pretation, its computation requires the assumption that the curves being 
compared move in the same direction throughout the time-series. This 
assumption is violated at time points in which the curves move in 
opposite directions, which results in increasingly inaccurate similarity 
estimations with greater proportions of opposing slope directions 
throughout the time-series. The potential to violate this assumption 
makes the use of the CMD unreliable in clinical populations where this 
opposing directionality is more likely, especially in the frontal and 
transverse planes, thereby limiting the use of the CMD in assessing 
symmetry across a wide variety of healthy and pathologic populations. 

Statistical parametric mapping (SPM) is another tool that has been 
used to assess inter-limb differences in continuous kinetic and kinematic 
biomechanical data (Hughes-Oliver et al., 2019; King et al., 2018a; 
Pataky, 2010; Pataky et al., 2013). SPM is based on random field theory 
and enables the identification of regions of difference between curves 
along the time-series (Friston et al., 1994; Pataky et al., 2013; Robinson 
et al., 2014). SPM avoids the previously described limitation of the CMD 
by performing well across healthy and pathologic populations as long as 
the data is time normalized and there is a balanced study design. While 
SPM is a valuable tool for extracting detailed information regarding 
inter-limb differences throughout the time-series, its output does not 
facilitate quick interpretation, which would be ideal in a clinical envi-
ronment. SPM output includes test statistic curves comparing variation 
in the dependent curves to random data. Regions of significant differ-
ence based on the independent variable(s) are indicated on these output 
graphs. Additional details of statistical comparison of the time-series 
curves are also available in output variables. Despite the value of this 
detailed analysis, interpretation of SPM results necessitates visualization 
and conceptualization of the time-series curves and the identified re-
gions of difference, along with the direction of differences between 
curves. Such interpretation is more challenging for integration within a 
clinical environment due to time constraints, so SPM is mostly restricted 
to use in research settings. SPM also directly compares the curves at each 
time point, which may generate inaccurate or misleading results in 
populations for which there is a time shift between curves. 

Although previously used methods of analyzing continuous biome-
chanical data avoid pitfalls associated with the analysis of discrete data, 
they either cannot be used reliably across a wide variety of populations 
or are not defined in concise enough terms to be quickly interpreted and 
incorporated into clinical decision making and outcome assessment. 
Additionally, most analyses of movement symmetry or inter-limb dif-
ferences focus only on differences between limbs without providing 
context into the degree of movement normality or quality. This is 
particularly problematic in cases where both limbs may be affected by 
pathology; these cases would reflect high symmetry scores, but the 
bilateral abnormality of the movement pattern would be missed without 
context into movement quality. The purpose of this study was to develop 
an alternative method of describing movement symmetry, while 
providing context for movement quality, in continuous kinetic and ki-
nematic time-series data that can be quickly utilized in clinical care. 
End-stage, unilateral ankle arthritis (A-OA) patients and anterior cru-
ciate ligament reconstruction (ACLR) patients were used as the clinical 
test cases. We hypothesized that the developed scores would be able to 
differentiate between healthy individuals and patient populations (A-OA 
and ACLR patients) with good to excellent predictive capability. 

2. Methods 

2.1. Participants 

Kinetic and kinematic data was collected A-OA and ACLR patients 
along with control populations for each patient group. All participants 
signed informed consent approved by the University’s Institutional Re-
view Board prior to study participation. 

Three-dimensional motion capture and force plate data during 
walking from 56 end-stage, unilateral A-OA patients scheduled for total 
ankle replacement was obtained from a previously collected data set 
(Queen et al., 2012) (61 ± 11 years) (Table 1). Exclusion criteria for this 
prior data set include inability to walk without an assistive device and 
having pain at more than one lower extremity joint or limb. Motion 
capture and force plate data was also collected from 56 healthy adults 
(walking controls) matched by age and sex to the A-OA sample as closely 
as possible (59 ± 12 years) (Table 1). Walking control participants were 
included if they had no lower extremity injuries in the past 12 months, 
had no history of major lower extremity injury or surgery, were able to 
walk unassisted for 10 min, were able to speak and read English, and 
were not blind or pregnant. 

Sixteen unilateral ACLR patients (14–30 years old) were recruited 
between 6 and 12 months after surgery (17 ± 1 years)(Table 1). Addi-
tional inclusion criteria included planning to return to a sport that in-
volves jumping and/or cutting and having no preexisting condition 
which limits physical activity. Sixteen healthy control participants 
(18–30 years old) (landing controls) were recruited for comparison with 
the ACLR patients (24 ± 3 years)(Table 1). Inclusion criteria for landing 
control participants included being recreationally active, defined as 
participating in physical activity at least three times per week for at least 
thirty minutes, having prior experience playing a sport involving 
jumping, no injury in the previous three months and not having any 
current pain limiting mobility, having no prior major lower extremity 
injury or surgery, and having no preexisting condition limiting physical 
activity. 

2.2. Data collection 

Walking control participants and A-OA patients completed seven 
barefoot walking trials at self-selected speeds along a 10-meter walkway 
with four embedded force plates (AMTI, Watertown, MA) (Queen et al., 
2012). Thirty-five bilateral lower extremity markers were placed, and 
3D motion capture (120 Hz) (Oqus, Qualisys, Gothenburg, Sweden) and 
force plate data (AMTI, Watertown, MA) were recorded. Walking con-
trol and A-OA patient force plate data was collected at 1920 Hz and 
1200 Hz, respectively. All data was processed in Visual 3D (C-Motion, 
Germantown, MD). The following outcome measures were assessed in A- 
OA patients and walking controls: vertical ground reaction force (vGRF), 
sagittal plane ankle angle (AA), and center of pressure traces in the 
anterior-posterior (COPAP) and medial–lateral (COPML) directions. All 
outcome measures were time-normalized to stance phase between heel 
strike and toe off, which were defined systematically using a threshold of 
25 N and confirmed by visual inspection. Vertical ground reaction forces 
were normalized to body mass, and center of pressure measures were 
normalized to foot length and width. 

Data collection was completed for ACLR patients in a local rehabil-
itation facility, while data collection for landing controls was completed 
in a university athletic center (Peebles et al., 2021). All participants 
wore standardized neutral cushioning running shoes (Air Pegasus, Nike 
Inc., Beaverton, Oregon). Participants completed seven bilateral drop 
vertical jumps, with a forward distance of half the participant’s body 
height, and seven unilateral drop landings on each limb, during which 
participants dropped off of a 31 cm high box, landed on a single limb and 
held the unilateral landing for two seconds (Peebles et al., 2021). 

Plantar impact forces were measured bilaterally using loadsol® 
sensors (Novel Electronics, St. Paul, Minnesota), which were calibrated 
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Table 1 
Demographic data from control and patient participants in each comparison group. Mean (SD).   

Walking Landing  

Controls 
(13 M,43F) 

A-OA Patients 
(13 M,43F) 

p-value Controls (7 M, 9F) ACLR Patients (7 M, 9F) p-value 

Age 59 (12) 61 (11)  0.304 24 (3) 17 (1)  <0.001* 
Height (m) 1.67 (0.08) 1.68 (0.09)  0.496 1.77 (0.08) 1.72 (0.11)  0.136 
Weight (kg) 69.45 (12.06) 72.79 (12.02)  0.144 71.90 (16.47) 73.81 (14.96)  0.734 

* difference between control and patient group 

Fig. 1. Process used to compute Symmetry Score (SS) using vertical ground reaction force example data from walking controls and A-OA patients. U = Unaffected 
limb (dominant limb in controls, non-surgical limb in patients). A = affected limb (non-dominant limb in controls, surgical limb in patients). ‘_norm’ indicates 
normalization by healthy dissimilarity (N). 
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based on manufacturer guidelines (Peebles et al., 2018), at 100 Hz and 
200 Hz for the landing controls and ACLR patients, respectively. The 
difference in sampling frequency between groups was due to an 
advancement in the loadsol® technology; ACLR data was down-sampled 
to 100 Hz to enable accurate comparison. Plantar loading data used for 
kinetic analysis was analyzed using the Load Analysis Program (LAP) 
open-source MATLAB user interface, which can be downloaded here: 
https://github.com/GranataLab/LAP. Bilateral data was time- 
normalized between ground contact and toe off, which were identified 
when plantar force rose above and fell below 50 N. Unilateral data was 
time-normalized to the first 500 ms after ground contact. The following 
outcome measures were assessed in ACLR patients and landing controls: 
vGRF during bilateral landing (vGRFB) and vGRF during unilateral 
landing (vGRFU). 

In both control groups, the dominant limb was defined as the limb 
used to kick a soccer ball. In all groups and for each measure, normalized 
curves were averaged across trials for each limb and each participant 
prior to analysis. 

2.3. Score computation 

For computational purposes, each continuous time-series curve was 
conceptualized as 101 points, equally spaced in time. Two scores were 
developed and computed using a custom MATLAB script (MathWorks, 
Natick, MA) to assess symmetry and movement quality: the symmetry 
score (SS) and closeness-to-healthy score (CTHS), respectively. These 
scores were computed separately for the walking and landing compar-
isons. Surgical (S) and non-surgical (NS) limbs in patients were 
compared to non-dominant (ND) and dominant (D) limbs, respectively, 
in control participants. ’A’ denotes the affected limb, which is the sur-
gical limb in patients and the non-dominant limb in controls, and ‘U’ 
denotes the unaffected limb, which is the non-surgical limb in patients 
and the dominant limb in controls. This score computation can be used 
with any continuous dataset, denoted as ‘DV’. 

The symmetry score (SS) evaluated similarity of the time-series 
curves between limbs. First, dissimilarity between limbs was 
computed for each control participant as the Euclidean norm of the 
difference between limbs across the time-series. This value was then 
averaged across control participants to define a healthy amount of 
dissimilarity (N) (Equation (1a)). The curved data from the control 
participants and patients were normalized to the amount of dissimilarity 
observed in the control population (N) in order to maximize interpret-
ability of results (Equation (1b)-c). The symmetry score (SS) was 
computed as the Euclidean norm of the difference between limbs across 
the time-series (Equation (1d)). A small SS indicates greater side-to-side 
symmetry, while a large SS indicates less side-to-side symmetry. The 
process used to compute the SS is shown in Fig. 1. 

InControls : N = norm
(

DVU
̅̅ →

− DVA
̅̅ →

)
(1a)  

InControlsandPatients : A→norm =
DVA
̅̅ →

N
(1b)  

InControlsandPatients : U→norm =
DVU
̅̅ →

N
(1C)  

InControlsandPatients : SS = norm
(

A→norm − U→norm

)

(1d)  

where A = affected limb (surgical or non-dominant), U = unaffected 
limb (non-surgical or dominant), DV = dependent variable 

The closeness-to-healthy score (CTHS) evaluated the similarity of a 
single curve to the average curve of the control participants. First, the 
average curve in the control participants across both limbs was 
computed; the control average curve was then normalized by its 
Euclidean norm (Equation (2a)). Curves of all control participants and 

patients were also normalized by their respective Euclidean norms 
(Equation (2b)-c). The CTHS was computed on each limb separately as 
the dot product (that is, the inner product in function space) of the 
normalized average control curve and the normalized curve of interest 
subtracted from 1 (Equation (2d)-e). A small CTHS indicates a curve 
similar to the average curve of the control participants, while a large 
CTHS indicates a curve dissimilar to what would be expected in a 
healthy individual. The process used to compute the CTHS is shown in 
Fig. 2. 

InControls : N→=
healthy
̅̅̅̅→

average

norm(healthy
̅̅̅̅→

average)
(2a)  

InControlsandPatients : DVA
̅̅ →

=
DVA
̅̅ →

norm(DVA
̅̅ →

)
(2b)  

InControlsandPatients : DVU
̅̅ →

=
DVU
̅̅ →

norm(DVU
̅̅ →

)
(2C)  

InControlsandPatients : CTHSA = 1 − DVA
̅̅ →Â⋅N→ (2d)  

InControlsandPatients : CTHSU = 1 − DVU
̅̅ →Â⋅N→ (2e)  

where A = affected limb (surgical or non-dominant), U = unaffected 
limb (non-surgical or dominant). DV = dependent variable 

The SS and CTHS were compared between control participants and 
patients for each comparison using unpaired t-tests and Cohen’s D effect 
sizes. Cohen’s D effect sizes were described as small (0.2–0.39), medium 
(0.4–0.59), or large (>0.6) (Cohen, 1988) with positive effect sizes 
indicating larger values in patients. To further analyze the ability for the 
scores to differentiate between healthy individuals and patients, 
receiver operator curves (ROC) were generated using sensitivity and 
specificity of group categorization for each score. Sensitivity refers to 
the ability of the score to correctly identify patients (true positive rate), 
while specificity refers to the ability of the score to correctly identify 
healthy individuals (true negative rate). Resulting ROC curves plotted 
sensitivity against 1-specificity, and the optimal operating point of the 
ROC curve was defined using the ‘perfcurve’ MATLAB function. Cutoff 
values were defined as the value of the score at the identified optimal 
operating point. The area under the ROC curve (AUC), which exists 
between 0 and 1, was computed for each ROC curve. Higher AUC values 
indicate better predictive capability and more accurate classification 
between control and patient groups. AUC values were described as 
excellent (>0.9), good (0.8–0.89), fair (0.7–0.79), or poor (0.6–0.69) 
(Hodt-Billington et al., 2012). All statistics were performed in SPSS 
Statistics (SPSS, V27 [IBM, Chicago, IL], α = 0.05). 

3. Results 

Score trends matched expectations from visual inspection of time- 
series curves. Curves resulting in low (good) SS and CTHS are visibly 
more symmetric and similar to the shape and magnitude of the move-
ment pattern in a healthy individual (Figs. 3 and 4). 

A-OA patients had higher (worse) SS and CTHS on both limbs 
compared to walking controls in almost all measures (Table 2), indi-
cating worse symmetry and movement quality in the A-OA patients. The 
only measures that did not follow this trend were the COPML SS and the 
AA CTHS on the unaffected limb, which were not different between 
groups (Table 2). All significant differences between A-OA patients and 
walking controls reflected medium to large Cohen’s D effect sizes, 
further emphasizing potential clinical importance of these observed 
differences and indicating clearer differentiation between groups. Dif-
ferences in AA CTHS on the affected limb and COPAP CTHS on the un-
affected limb reflected medium effect sizes (CTHSA AA: d = 0.48, CTHSU 
COPAP: d = 0.41), while all other significant differences reflected large 
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effect sizes (d = 0.66 – 1.73) (Table 2). ACLR patients had higher 
(worse) vGRFB and vGRFU SS compared to landing controls with both 
differences reflecting large effect sizes (unilateral: p = 0.018|d = 0.88, 
bilateral: p = 0.003|d = 1.12). CTHS did not differ between ACLR pa-
tients and landing controls on either limb. 

All SS indicated good to excellent accuracy of group classification 
between walking controls and A-OA patients (AUC:0.85–0.94) (Table 3). 

Similarly, the COPML and COPAP CTHS on the affected limb and the 
COPML CTHS on the unaffected limb indicated good predictive capa-
bility (AUC:0.82–0.89). The COPAP CTHS on the unaffected limb indi-
cated fair predictive capability (AUC = 0.76), while the vGRFB and 
vGRFU CTHS indicated poor accuracy (AUC:0.65–0.67) and the CTHS of 
AA on the affected limb had no predictive capability (AUC = 0.56). In 
differentiating between landing controls and ACLR patients, the vGRFB 

Fig. 2. Process used to compute Closeness-to-healthy score (CTHS) using vertical ground reaction force example data from walking controls and A-OA patients. 
Control = average control. U = Unaffected limb (dominant limb in controls, non-surgical limb in patients). A = affected limb (non-dominant limb in controls, surgical 
limb in patients). ‘_norm’ indicates normalization by Euclidean norm. ‘Dot_’ indicates product between curve and average control. Note: Final CTHS is cumulative 
sum of the points displayed in the Step 2 graphs of the point by point dot product computation. 
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and vGRFU SS had good (AUC = 0.87) and fair (AUC = 0.75) predictive 
capability, respectively (Table 3). Further details regarding specificity, 
sensitivity, and score cutoff points are reported in Table 3. 

4. Discussion 

Most scores were able to differentiate between healthy adults and 
both A-OA and ACLR patients with medium to large effect sizes, 
although predictive capability varied. Differences in gait symmetry be-
tween healthy adults and A-OA patients observed in the current study 
align well with findings in prior literature (Creaby et al., 2012; Mills 
et al., 2013; Schmitt et al., 2015; Valderrabano et al., 2007). Similarly, 
landing asymmetries reflected in prior literature between healthy ath-
letes and ACLR patients align well with those observed in the current 
study (Paterno et al., 2007; Peebles et al., 2021; Schmitt et al., 2015). 

Both the SS and CTHS could have important clinical implications 
when evaluating disease progression and surgical recovery. Large and 
medium effect sizes between groups and good to excellent predictive 
capability of several scores defined by the AUC suggests that the scores 
were able to differentiate between controls and patient groups at both a 
statistically and clinically significant level. Despite the inclusion of two 
very different patient groups being assessed during different movement 
tasks, the SS showed strong differentiation and predictive capability, 
particularly when used with kinetic measures, with both A-OA and 
ACLR patients. Although the CTHS did not show as much consistency in 
differentiation between groups or strength of predictive capability, these 
scores can act as a supplement to the SS to provide additional inter-
pretive context for movement normality. It should also be noted that the 
ACLR data was collected 6–12 months post-surgery when the patient 
had already been cleared for return to sport. In comparison with the A- 
OA data that was collected prior to ankle replacement surgery, these 

ACLR patients had likely regained more normal movement patterns by 
the collection period, which may be why CTHS did not differ between 
ACLR patients and landing controls. Additionally, landing timing is 
more variable than the timing of a gait cycle. Although all ACLR patients 
and landing controls were given the same instructions, participant 
interpretation and movement strategies could impart variation in the 
time-series curves, which would influence the average control curve 
included in the computation of the CTHS. This is an area for further 
score development with one future possibility being the introduction of 
time shifts to the data as necessary to maximize alignment across trials 
and participants. 

While the walking control and A-OA data were collected in a motion 
capture research laboratory, the landing control data was collected in a 
university athletic facility and the ACLR data was collected in a local 
clinic. This further reinforces the ability for these scores to be evaluated 
using data collected in a laboratory or real-world settings, including 
clinical environments (Peebles et al., 2021). Combined with clinically 
accessible movement assessments such as the in-shoe load sensors used 
to collect the ACLR data in the current study, both scores could be used 
to evaluate symmetry and movement quality in a clinical setting. Such 
evaluations could be performed prior to disease diagnosis, to evaluate 
disease progression, and during rehabilitation to monitor recovery. 
Resulting scores could be utilized in clinical decision making to assess 
urgency for surgical intervention and whether a rehabilitation protocol 
can effectively target specific asymmetric movement patterns. The SS 
identified differences in symmetry during unilateral landing that were 
not previously identified by evaluating only peak vGRF symmetry in the 
same dataset, further emphasizing the utility of a continuous analytical 
approach as a supplement to discrete analysis. These scores are not 
meant to replace more detailed analytical methods or to be a final tool 
for evaluation and decision making. However, they could serve as 

Fig. 3. Examples of vertical ground reaction force time series curves resulting in low (good) [A-B] and high (poor) [C-D] symmetry scores (SS) in walking controls 
and A-OA patients, respectively. [A-B] (healthy controls): curves represent non-dominant (affected) and dominant (unaffected) limbs. [C-D] (A-OA patients): curves 
represent surgical (affected) and non-surgical (unaffected) limbs. 
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Fig. 4. Examples of vertical ground reaction force time series curves resulting in low (good) [A-B] and high (poor) [C-D] closeness-to-healthy scores (CTHS) in 
walking controls and A-OA patients, respectively. [A-B] (healthy controls): curves represent non-dominant (affected) and dominant (unaffected) limbs. [C-D] (A-OA 
patients): curves represent surgical (affected) and non-surgical (unaffected) limbs. 

Table 2 
Mean(SD), 95% confidence intervals (lower limit, upper limit), p-values, and Cohen’s D effect sizes (d) for each score. *: significant difference between controls and 
patients (p < 0.05). †: small effect size ‡: medium effect size. ††: large effect size. A: affected limb (non-dominant limb in controls and surgical limb in patients). U: 
unaffected limb (dominant limb in controls and non-surgical limb in patients). vGRF: vertical ground reaction force during walking. AA: sagittal plane ankle angle. 
COPML and COPAP: center of pressure in medial–lateral and anterior-posterior directions. vGRFU: vertical ground reaction force during unilateral landing. vGRFB: 
vertical ground reaction force during bilateral landing.  

Walking 

Score Measure Mean (SD) 95% Confidence Interval p d 

Control A-OA Patients Control A-OA Patients 

Landing 

Score Measure Mean (SD) 95% Confidence Interval p d 

Control ACLR Patients Control ACLR Patients 

SS vGRF 1.000 (0.337) 3.091 (1.673) 0.912,1.088 2.653,3.529  <0.001*  1.73††
AA 1.000 (0.839) 2.215 (1.320) 0.780,1.220 1.869,2.561  <0.001*  1.10††
COPML 1.000 (0.469) 0.884 (0.529) 0.877,1.123 0.746,1.023  0.223  – 
COPAP 1.000 (0.535) 2.763 (2.116) 0.860,1.140 2.209,3.318  <0.001*  1.14††

CTHS (A) vGRF 0.005 (0.004) 0.011 (0.012) 0.004,0.006 0.007,0.014  0.001*  0.66††
AA 0.121 (0.082) 0.226 (0.302) 0.099,0.142 0.147,0.305  0.013*  0.48‡
COPML 0.176 (0.165) 0.509 (0.353) 0.133,0.219 0.416,0.601  <0.001*  1.21††
COPAP 0.002 (0.005) 0.011 (0.012) 0.001,0.004 0.008,0.014  <0.001*  0.97††

CTHS (U) vGRF 0.004 (0.003) 0.008 (0.007) 0.003,0.005 0.006,0.010  0.001*  0.65††
AA 0.153 (0.163) 0.181 (0.276) 0.110,0.195 0.109,0.254  0.502  – 
COPML 0.143 (0.222) 0.574 (0.384) 0.085,0.201 0.473,0.675  <0.001*  1.37††
COPAP 0.003 (0.005) 0.007 (0.015) 0.001,0.004 0.003,0.011  0.032*  0.41‡

SS vGRFU 1.000 (0.305) 1.512 (0.763) 0.851,1.149 1.138,1.886  0.018*  0.88††
vGRFB 1.000 (0.297) 2.088 (1.337) 0.855,1.145 1.433,2.743  0.003*  1.12††

CTHS (A) vGRFU 0.024 (0.014) 0.022 (0.023) 0.017,0.031 0.010,0.033  0.706  – 
vGRFB 0.021 (0.013) 0.025 (0.019) 0.015,0.027 0.016,0.034  0.515  – 

CTHS (U) vGRFU 0.027 (0.016) 0.019 (0.012) 0.019,0.035 0.013,0.025  0.127  – 
vGRFB 0.022 (0.014) 0.025 (0.017) 0.015,0.028 0.016,0.033  0.547  –  
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valuable metrics to quickly assess movement symmetry and normality, 
determine whether more in-depth motion analysis is warranted, and 
assess general trends across time such as during rehabilitation or disease 
progression. 

Positive analytic results of these newly developed symmetry and 
movement quality measures warrant more in-depth validation and 
application to investigate the robustness and potential limitations of the 
SS and CTHS. While the current study included several kinetic and ki-
nematic measures in two patient-control comparisons, there are 
numerous additional measures and populations for which the utility of 
these scores could be assessed. As shown by the current study results, 
these scores are not restricted to gait and may be utilized to evaluate 
symmetry and movement quality during other tasks such as running, 
jumping, and landing. As previously discussed, however, time shifts 
between curves being compared should be noted and potentially 
accounted for prior to computation to limit effects on results. Further 
validation of these scores could include evaluating gait data of a patient 
population both pre-operatively and post-operatively at various points 
within the rehabilitation and recovery process. Their utility could 
potentially be taken a step further with the establishment of bounds 
indicative of injury and disease risk, which would increase the ability for 
clinicians and researchers to quickly interpret results in a comparative 
manner. Currently, the scores are not bound since the present dataset is 
not of sufficient size or breadth to define a meaningful and realistic 
worst case; this definition would be needed to inform an upper bound 
that would maintain validity across other populations instead of being 
study-specific. As unbound scores can be more difficult to interpret, this 
is an important area for future development. Aggregate healthy data to 
inform what is deemed normal along with a breadth of clinical data is 
necessary to define meaningful score bounds and risk thresholds, both of 
which will increase the strength and broad utility of these scores in 
future iterations. 

The current study provides new scores reflective of symmetry and 
movement quality across the stance phase of two movements, which 
could be useful for both researchers and clinicians. However, there are 
limitations to the interpretation and application of study findings. First, 
the walking control participants included in the study were likely 
healthier and more physically active than average middle-aged adults, 

which may limit functional comparisons with the A-OA patients. How-
ever, the walking control group enabled comparison of the A-OA group 
to a healthy group with no health complications or gait limitations. 
Another limitation is that neither score is bound, which could present a 
challenge for easy interpretation, as previously discussed. Lastly, the 
influence of self-selected walking speed on these outcome scores was not 
investigated and should be included in a future analysis. The relation-
ship between walking speed and the SS and CTHS may indicate that 
patients who walk extremely slowly likely have compromised gait 
symmetry and normality. This relationship should be investigated 
further and taken into consideration during interpretation of study 
findings and use of these symmetry and normality scores. 

5. Conclusions 

Scores related to movement symmetry and movement quality have 
been developed. These scores were able to differentiate between healthy 
controls and A-OA and ACLR patients with varying predictive capability 
and medium to large effect sizes. These scores could provide clinicians 
with another quick and simple tool to objectively assess movement 
symmetry and quality from continuous kinetic and kinematic data in 
various patient populations. These scores could also be used to track 
symmetry and movement quality throughout disease progression and 
during recovery following injury or surgery as supplements to more in- 
depth analytic methods. 
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