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In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and
resonance transitions in the planar circular restricted three-body problem. These related phenomena
have been of concern for some time in topics such as the capture of comets and asteroids and with
the design of trajectories for space missions such aS&#resis Discovery Missioithe main new
technical result in this paper is the numerical demonstration of the existence of a heteroclinic
connection between pairs of periodic orbits: one around the libration pgiahd the other around

L,, with the two periodic orbits having the same energy. This result is applied to the resonance
transition problem and to the explicit numerical construction of interesting orbits with prescribed
itineraries. The point of view developed in this paper is that the invariant manifold structures
associated th; andL, as well as the aforementioned heteroclinic connection are fundamental tools
that can aid in understanding dynamical channels throughout the solar system as well as transport
between the “interior” and “exterior” Hill's regions and other resonant phenomena.20®0
American Institute of Physic§S1054-150(00)00402-X]

I. INTRODUCTION Sun in two Jupiter periodswhile the exterior heliocentric
orbit is near the 2:3 resonan¢evo revolutions around the
Sun in three Jupiter periogds

The three-body problem is a classic problem of astrody-  An important feature of the dynamics of these comets is
namics. Attempts at its solution laid the foundation for dy-that during the transition, the orbit passes close to the libra-
namical systems theory and alerted Poindarthe existence tjon pointsL, andL,. As we recall below, the points; and
of chaos within Newtonian mechanics. In this paper we offer_, are two of the five equilibrium points for the restricted
a dynamical system explanation for the phenomenon of temthree-body problem for the Sun—Jupiter system. Equilibrium
porary capture and resonant transition of Jupiter cometgoints are points at which a particle at rest relative to the
within a three-body context. We also explore the possibilitySun—Jupiter rotating frame remains at rest. Amongst the
of using the transport mechanism discovered in this study fogquilibrium points, the points; andL, are the ones closest

the design of future space missions. For a genergl introduGo Jupiter, lying on either side of Jupiter along the Sun—
tion to the three-body problem, see Holrhesid Simd Jupiter line.

A. Background and a brief overview

1. Resonant transition in comet orbits ) ) )
) 2. The relevance of invariant manifolds
A number of Jupiter comets such @sermaandGehrels

3 make a rapid transition from heliocentric orbits outside the ~_Belbruno and Marsdérattempted to develop a theoret-
orbit of Jupiter to heliocentric orbits inside the orbit of Jupi- Ical understanding of the comet transitions using the “fuzzy
ter and vice versa. During this transition, the comet is frePoundary” concept, which they viewed as “a higher-
quently captured temporarily by Jupiter for one to severafimensional analog of, andL,.” On the other hand, Lo
orbits around Jupiter. The interior heliocentric orbit is typi- 2nd Ros$ began the use of dynamical systems theory to

cally close to the 3:2 resonan@ree revolutions around the explain this same phenomenon. They used the planar circular
restricted three-body problefPCR3BP) as the underlying

) - model with which to begin the investigation. They noticed
eomic Mt Kj’;?ffg%ﬁg:fg:;gé‘v that the orbits ofOtermaand Gehrels 3(in the Sun—Jupiter
9Electronic mail: marsden@cds.caltech.edu rotating frame follow closely the plots of the invariant mani-
9Electronic mail: shane@cds.caltech.edu folds of L, andL,, as in Fig. 1(Plate 1.
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Having noticed this, Lo and RoSsuggested that one rapid transition between the inside and outside of Jupiter’s
might use invariant manifold theory to study these transi-orbit via a Jupiter encounter. The collection of these orbits is
tional orbits. In the present paper we build on the insights otalled adynamical channel We also use this term when
these works and offer a dynamical system explanation focollections of such chains for separate three-body systems,
this phenomenon of temporary capture and resonance transbughly speaking, overlap and are put end to an end. We can
tion of Jupiter comets. A key ingredient in our work is the individually label the orbits in a chain with an itinerary giv-
existence of a new heteroclinic connection between periodiing their past and future whereabouts, making their classifi-
orbits aroundL; and L, with the same Jacobi consta(@ cation and manipulation possible.
multiple of the Hamiltonian for the PCR3BRand the dy-

namical consequences of such an orbit. 3. Numerical construction of orbits
We not only prove the existence of orbits with pre-
3. The planar circular restricted three-body problem scribed itineraries, but develop a systematic procedure for

The comets of interessuch asOtermaand Gehrels 3 their numerical construction. This is an important part of the

are mostly heliocentric, but the perturbations of their motionProgram; it turmns a general existence theory into a practical
away from Keplerian ellipses are dominated by Jupiterstechnique for constructing orbits.
gravitation. Moreover, their motion is very nearly in Jupi-

: . ) 4. Applications to space mission design
ter's orbital plane, and Jupiter's small eccentricif/0483

plays little role during the fast resonance transitfaich is Thg systematic proce_dures.developed here could b.e used
to design spacecraft orbits which explore a large region of

less than or equal to one Jupiter period in durgtiorhe ; o , .
PCR3BP is therefore an adequate starting model for illum;>Pace In the vicinity of the Eartfand near the Earth's orbit

nating the essence of the resonance transition process. HoW='""9 low-fuel controls. Behavior relategl to the dynamlcal
(;?hannels has already been observed in the trajectory for

ever, for a more refined study, especially for the cases wher ) o e ) o
the comets have high inclination and are not dominate ASA’s Genesis Discovery Missipmwhich exhibits near-

solely by Jupiter, other models are needed. For additionajeteroclinic motion be““’ie'll and L, in the Sun—Earth
details. see Sec. V. system(Lo, Williams, et al.’). Having a better understanding

of the underlying homoclinic—heteroclinic structures should
allow us to construct and control spacecraft trajectories with

] ) o _ desired characteristidg.g., transfer betweehn; andL, or-
The point of view developed in this paper is based on theyis - explore the region interior to Earth’s orbit and then
premise that the invariant manifold structures associated wWithatrn to the Earth’s vicinity See also Refs. 34 and 35.

L, and L, periodic orbits and the heteroclinic connections 1 give a specific illustration, these techniques can be

are fundamental tools that will further the understanding of ;seq to construct a “Petit Grand Tour” of the moons of

the natural t_ranspprt of material throughout the solar SyStemJupiter. We can design an orbit which follows a prescribed
In tackling this problem, we have drawn upon SOMejiinerary in its visit to the many moonge.g., one orbit

work of the Barcelona group on the PCR3BP, in particulargroynd Ganymede, four around Europa, JetGee Fig. 3
Llibre, Martinez, and Simg hereafter denoted LMS. We (pjate 3, where we show a preliminary example.

have also drawn heavily on works of Moser, Conley, and
McGehee on the same subject. Specific citations are give@. A few key features of the three-body problem
later. 1. The planar circular restricted three-body problem

The equations of motion for the PCR3BP will be re-
called below, but here we recall a few key features. Two of
1. Heteroclinic connection the bodies, which we call generically tigun and Jupiter,

One of the main new technical results of this paper is thdave a total mass that is normalized to one. Their masses are

numerical demonstration of heteroclinic connectiorbe-  denoted, as usual, byns=1—u and m;= u, respectively
tween a pair of periodic orbits: one around the libration point(Se€ Fig. 4 These bodies rotate in the plane counterclock-
L, and the other arountl,. This heteroclinic connection Wise about their common center of mass and with the angu-
augments the homoclinic orbits associated with theand lar velocity normalized to one. The third body, which we call
L, periodic orbits, which were previously known to exist. By the cometor the spacecraft has mass zero and is free to
linking these heteroclinic connections and homoclinic orbits move in the plane.

4. Framework of the paper

B. Heteroclinic connections and their consequences

we have found thelynamical chainswhich form the back- Choose a rotating coordinate system so that the origin is
bone for temporary capture and rapid resonance transition @it the center of mass and the Su§) @nd Jupiter ) are
Jupiter comets. See Fig.(Plate 1. fixed at (—u«,0) and (- u,0), respectively. Then the equa-

An interesting map that models the chaotic dynamics irtions of motion of the comet are an autonomous Hamiltonian
the region between periodic orbits arouhg and L, was  System of differential equations with two degrees of free-

given by Henorf? dom. The system has a first integral called #aeobi inte-
gral (also called the Jacobi constanivhich is a multiple of
2. Existence of transition orbits the Hamiltonian. Following the conventions of the literature,

We have proved the existence of a large class of inter'© shall take

esting orbits near a chain which a comet can follow in its  Jacobi constart —2 X Hamiltonian.
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; ; i ' 3. The flow near the Lagrange points L | and L,

; - comel_ Having fixed on an appropriate energy level surface, we
I : i Bl Aol Sl first study the behavior of orbits near the equilibrium points
: el e 4 : [see Fig. 5(Plate 3] which, in the example above, corre-
: £ . : spond to the saddle points in the troughs connecting the
T S i R L R ] B AR e Cr R T CR T bowls. In Sec. Il, we collect the major results on the flow
: v near the equilibrium points; and L, from Conley® and
: McGehee’, both to set notation and for the convenience of
f the reader. This local study is performed using the linearized
By . gomp=| system of the PCR3BP. With the aid of a theorem of Moser,
N ; \ Pk o all the qualitative results of this linearized system carry over
(P SR TN T T - O to the full nonlinear equations.
: Y3 O S Pieces of stable and unstable manifolds of periodic orbits
A o 3 aboutL; andL,, made up of asymptotic orbits, separate two
) O ST P.Lii , 3, types of motion: transit orbits and nontransit orbits. These
iy manifolds play a gate-keeping role for resonance transition.
: o Orbits inside the tubes of these manifolds transit from one
-+ o . = : region to another. Those outside the tubes bounce back. This
x (nondimensional units, rotating frame) observation will be used later in the numerical construction

of orbits in Sec. IV.
FIG. 4. (Color online Equilibrium points of the planar circular restricted
three-body problem as viewed, not in any inertial frame, but in the rotating
frame, where the Sun and Jupiter are at fixed positions along-thes.

v (nondimensional units, rotating frame)
L=
I
I

D. Outline of the paper and summary of the results

1. Transit orbits

The main result of Sec. Il is that besides the existence of
an unstableperiodic solution called aLyapunovorbit near

The system has three unstable collinear equilibriunach equilibrium point, there are alsansit, asymptoticand
points on the Sun-Jupiter line, calldd,, L,, and L, nontransit solutions. The Iatte_r orbits are def_med according
whose eigenvalues include one real and one imaginary paif® Whether they make a transit from one region to the other,
The level surfaces of the Jacobi constéwhich are also wind to or from the periodic solution, or come out of one
energy surfacesare invariant three-dimensional manifolds. "€9ion and pass near the critical point only to fall back into
Our main concern here is the behavior of the orbits whos&n€ same region. See Figth (Plate 2.
Jacobi constant is just below that &f,. Recall that the
Hill's region is the projection of this region defined by the
Jacobi integral onto position space. For this case, the Hill
region contains a “neck” about; andL,, as shown in Fig. In Sec. lll and Sec. IV, we make use of the local classi-
5(a) (Plate 2. Thus, orbits with a Jacobi constant just below fication of orbits from Sec. Il to define global classes of
that of L, are energetically permitted to make a transitorbits in terms of their ultimate behavior with respect to the
through the neck region from theterior region (inside Ju-  equilibrium points. As dynamical systems theory suggests, to
piter's orbit to the exterior region (outside Jupiter’s orbjit  understand the global dynamics of the flow, one should ex-
passing through théupiter region Part of the methodology amine structures such as homoclinic orbits and heteroclinic
we develop is usefully described in terms of an analogy usedonnectiongsee, for example, Mos&).
in Conley’ While this analogy cannot replace the detailed In this vein, we recall in Sec. Ill some results in
study of the orbit structure of the PCR3BP, it does provide aVicGehee’, which proved the existence tibmoclinic orbits
helpful mental picture. Consider three bowls connected byn both the interior and exterior regions, which are doubly
two troughs so that, when inverted, they look like threeasymptotic toL, andL, Lyapunov orbits, respectively.
mountains with two passes between them. The three bowls Then we use semi-analytical methods to show the exis-
correspond to the interior, Jupiter, and exterior regions. Théence ofheteroclinic connections the Jupiter region which
troughs correspond to tHe;, andL, equilibrium regions. asymptotically connect thé.; and L, Lyapunov orbits.

The equations of motion of the PCR3BP can be viewedVioreover, we also show that with appropriate Jacobi con-
as those describing the motion of a point mass sliding withstants, there exigthains of transversal homoclinic and het-
out friction on this “triple bowl.” Since the kinetic energy is eroclinic orbits[see Fig. 2(Plate 1]. These chains will be
positive, fixing the value of the Hamiltonian function corre- used in Sec. IV to organize the distinctively different types
sponds to limiting the height to which the mass can go. Oupf global motions. We use a semi-analytical method by com-
problem corresponds to the case where the mass can go higining symbolic and numerical techniques, which is guided
enough to get from one bowl to the other two with just aby careful analytical, geometrical, and dynamical aspects of
little room to spare in the trough. the problem.

2. Equilibrium points and Hill’s regions

, 5 Homoclinic orbits and heteroclinic connections
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3. Global orbit structure of the PCR3BP lems, merging with optimal control, and the transport and
distribution of asteroids, comets, and Kuiper-belt objects in

In Sec. IV, we use the chains of homoclinic and hetero
the solar system.

clinic orbits to construct a suitable Poincameap in the
neighborhood of the chain which allows us to classify as
well as organize distinctively different types of global mo- Il. THE FLOW NEAR THE LIBRATION POINTS L; AND
tions of the PCR3BP in terms of ultimate behavior with re-L2
spect to the equilibrium points. We prove a theorem which | this section we study the behavior of orbits near the
gives the global orbit structure in the neighborhood of ayyg libration pointsL, andL, and particularly those orbits
chain. In simplified form, the theorem essentially says thgyhose Jacobi constar® is just below that of the critical
following. pointL,, that is,C<C,. (These points were discovered by
For ~ any  admissible  bi-infinite  sequence gyler before Lagrange discovered the Lagrange polns,
(... U_1;Ug, Uy, Uz, ...) Of symbolgS,J, X} where § J,and  and L, but it is common to call, andL, the Lagrange
X stand for the interior (Sun), Jupiter, and exterior regions, noints despite being historically inaccurat&he Hill's re-
respectively, there corresponds an orbit near the chaingjon corresponding to such values of the Jacobi constant
whose past and future whereabouts with respect to thesggntains a “neck” about each libration point; thus, in the
three regions match those of the given sequence case of the Lagrange poirit, between the two primary
For example, given the bi-infinite sequence, or itinerary,massess and J, orbits on the integral surface can make a
(...,5;3,X,J,...), there exists an orbit starting in the Jupiter transit(through the neckfrom the vicinity of one mass point
region which came from the interior region and is going totg the other. Our aim here is to describe how orbits in the
the exterior region and returning to the Jupiter region. “neck” look. A similar study can be done for the other
We can then classify the orbits which correspond tojipration pointL,. Correspondingly, in this section, we shall
qualitatively different varieties of global motions. For ex- yse | to denote eitheiL; or L,. We will also adopt the
ample, “oscillating” orbits are(roughly) those which cross  ¢convention of using script letters to refer to regions on the
from one region to the others infinitely many times; “cap- energy surface and italicized letters for that same region’s
ture” orbits are those which cross for some amount of timepygjection onto position space. For instance, the equilibrium

but eventually stay in one region; and asymptotic orbits argegionR on the energy surfadghe “neck” for eitherL, or
those which eventually wind onto the periodic solution. Or-| .,y has the position space projectign

bits which exhibit none of these behaviors stay in one region 1o obtain a good idea of the orbit structure in the

for all time and are called nontransit. o “neck” region R, it is sufficient to discuss the equations of
‘We not only prove the existence of orbits with pre- motion linearized near the critical point. Indeed, by virtue of

their numerical construction. By following successive inter-qyalitative results of such a discussion carry over to the full
sections of stable and unstable invariant manifolds 04nd  nonlinear equations

L, Lyapunov orbit with a Poincarsection, we can generate ) )
regions of orbits with itineraries of arbitrary length. A. The planar circular restricted three-body problem

We begin by recalling the equations for the planar cir-
cular restricted three-body problefRCR3BB. See, for ex-
ample, Abraham and Marsdénor Meyer and Hal® for

In Sec. V, we focus on a limited case of the fast dynami-more information. As mentioned previously, the two main
cal channel transport mechanism developed in previous segndies are called generically the Sun and Jupiter, and have
tions; the case of transition between resonances. In particynasses denoteshs=1— and m;= . They rotate in the
lar, we study how the invariant manifolds and their pjane in circles counterclockwise about their common center
heteroclinic intersections connect the mean motion resoof mass and with angular velocity normalized as one. The
nances of the interior and exterior regiofesg., the 3:2 and  third body, which we call the comet or the spacecraft is free
2:3 Jupiter resonancesia the Jupiter region. to move in the plane and its motion does not affect that of the

By numerical exploration of the heteroclinic connection main bodies. Choose a rotating coordinate system so that the
between the interior and exterior resonances, we obtain @rigin is at the center of mass and the Sun and Jupiter are
better picture of the resonance transition of actual Jupitefixed on thex-axis at (-~ «,0) and (1- u,0), respectively
comets. As our example, we explain the sense in which Jusee Fig. 4. Let (x,y) be the position of the comet in the
piter cometOtermatransitions between the 3:2 and 2:3 reso-plane (so these are the position coordinates relative to the

nances. We discover much about the mixed phase spag®sitions of the Sun and Jupiter, not relative to an inertial
structure, especially the mean motion resonance structure, @hme.

the PCR3BP.

4. Resonance transition

1. Methods of derivation

There are several ways to derive and model the Hamil-
tonian structure for this system, as discussed at length in the

In the conclusion, we make several additional remarks aabove references. For example, as in Whittaker's book,
well as point out some possible directions for future work,Abraham and Marsdéhuse time dependent canonical trans-
such as extensions to three dimensions, many body prolfermation theory to transform the problem from an inertial

5. Conclusion and future work
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frame to a rotating frame. In this reference the Delaunay an@®. Equilibrium points
the Poincarenodels are also discussed. A simpler technique
is to use covariance of the Lagrangian formulation and usg

) : . ) ine
the Lagrangian directly in a moving franteee Marsden and
Ratiu®). This method directly gives the equations in La-
grangian form and the associated Hamiltonian form is give
by the Legendre transformation.

The system2.4) has five equilibrium points, three col-
ar ones on the-axis, calledL,, L,, L3 and two equi-
lateral points called.,, L5 (see Fig. 4 These equilibrium
oints are critical points of théeffective potential function
. The value of the Jacobi integral at the pointwill be
denoted byC; .

2. The planar circular restricted three-body problem B. Linearization near the colinear equilibria

model (PCR3BP) )

Studying the linearization of the dynamics near the equi-
a is of course an essential ingredient for understanding
the more complete nonlinear dynamics.

After going through the aforementioned procedure, onq.b :
finds that the new Hamiltonian function is given by 1bri

He (PxFY)*+(py=x)? X*+y? 1-p u To find the linearized equations around the colinear
- 2 2 ry r Lagrange point. with coordinates K,0), we need the qua-
dratic terms of the Hamiltoniahl in Eq. (2.1) as expanded
_ p(l—p) 2.1) about k,0). After making a coordinate change witk,Q) as
2 ’ ' the origin, these quadratic terms form the Hamiltonian func-
where tion for the linearized equations, which we shall dd|l,
r= /(X+M)2+y2 and r,= (X_1+,U«)2+y2- H|:%{(px+y)2+(py_x)z_aX2+by2}l (26)

r\gherea andb are defined bya=2p+1, andb=p—1 and

The relationship between the momenta and the velocities awhere

a result of either the Legendre transformatiifrone is tak-

ing a Lagrangian vieyvor of Hamilton’s equations: p=mlk—14pu| 3+ (1—pw)|k+ u| 3.
N v v aH 09 A short computation gives the linearized equations in the
X_a_px_px Yi y_a_py_py X. (2. ) form
The remaining dynamical equations are . dH, . dH,
% q X= ap =pxtY, px:_W:py_X—FaX'
_ oH o oH x )
PO TR RT3
(2.3 y apy Py—=X, Py ay Px—Yy—Dy,
where To make the computations easier and to give the vari-
X2+y? 1-u o p(l—w) ables simpler geometric meaning, let us introduce the trans-
Q= 2 + r + E Y formation: v,=p,+y, vy=py,—X%, where v,, v, corre-

spond to velocity in the rotating coordinate system. The
and where(),, (, are the partial derivatives of} with  transformed equations are then given by

respect to the variablesy.

On the Lagrangian side we write the equations in terms
of the velocities; that is, we make the transformaticap, y=vy, by=—2vs—by, (2.8
+y, y=py—X, wherex, y correspond to the velocity in

the rotating coordinate system. Then the equations can Bhich is the linearization of the equatiofi.4) around the

rewritten in second order form as equilibrium point.
The integralH, of (2.6) now appears as
K-2y=0,, y+2x=0,. (2.4

_ , , o E=3(vitvi-axi+by?), (2.9
This form of the equations of motion has been studied in )
detail in Szebehel} and may be more familiar to the as- Which corresponds to the energy integjal of (2.5)] of the
tronomy and astrodynamics communities. Equati¢2s) restricted problem. Notice that the zero-surface of the inte-
are called the equations of the planar circular restricted thred"al E, corresponds to the Jacobi integral surface which
body problem(PCR3BB. They have a first integral called Passes through the libration point. We shall therefore study

X=vy, vx=2vytax,

the Jacobi integral which is given by solutions of Eqs(2.8) on the surfacd,=£>0 which corre-
o P o sponds to the case where the Hill's region contains a neck
CXy,X,y) == (X"+y9) +20(x,y) = = 2E(X,Y,X,Y). about the libration point.
(2.5 We remark that this derivation is good for any of the

We shall useE when we regard the Hamiltoniafvhich is  three colinear libration points, though the valuepofill not

not the kinetic plus potential energys a function of the be the same for each point. With a mass ratio like that of
positions and velocities and when we regard it as a func- Jupiter to the Sun, whege=0.0009537, the values afand
tion of the positions and momenta. b are approximately
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a=9.892, b=3.446 for L, and
a=8.246, b=2.623 for Lo,

respectively.

C. The geometry of solutions near the libration point

Now we analyze the linearized equatiof®.8). It is

Koon et al.

2. The flowin R

To analyze the flow ifR one simply considers the pro-

jections on the(n,£)-plane and{-plane, respectively. In the

first case we see the standard picture of an unstable critical
point, and in the second, of a center. FiguréPte 3 sche-
matically illustrates the flow in théz,&)-plane. The coordi-
nate axes have been tilted by 45° in order to correspond to

straightforward to find that the eigenvalues of this linear systhe direction of the flow in later figures. With regard to the

tem have the form=\ and*iv, where\ andv are positive
constants. The corresponding eigenvectors are

u;=(1,—o,N,—\o),
u,=(1,0,—\,—\o),
w=(1,—i7iv,v7),
Wo=(Llj7,—iv,v7),

whereo and 7 are constants. To better understand the orbi
structure on the phase space, we make a linear change
coordinates with the eigenvectors,, u,, w;, W,, as the
axes of the new system. Using the corresponding new coo
dinatesé, 7, {1, {», the differential equations assume the
simple form

E=NE Li=v,
] . (2.10
7]:_)\771 §2:_V§11
and the energy functiof2.9) becomes
Voo, 2
Ei=Nén+ 5(51"'52)- (2.1

Solutions of the equation®.10 can be conveniently written
as

t)=&%M, pty=y"%e,
(D)=LD) +il() =%,
where the constantg?, 7° and {°=¢9+i¢3 are the initial

(2.12

conditions. These linearized equations admit integrals in ad?)

dition to the energy functiof2.11); namely, the functiongé
and|¢|?= 2+ {5 are both constant along solutions.
1. The phase space

For positive€ andc, the regionR, which is determined
by

Ei=¢ and |n—§|=<c, (2.13

is homeomorphic to the product of a two-sphere and an in-

terval; namely, for each fixed value gf- ¢ between—c and
¢, we see that the equati®)= £ determines the two-sphere,

A A
Z O S (B+ D=+ (=7,

The bounding sphere dR for which »—&=—c will be
calledn;, and that wherey— é=c, n, [see Fig. Plate 3].

We shall call the set of points on each bounding sphere

where n+ £=0 theequator, and the sets wherg+ ¢>0 or
n+ £<0 will be called thenorth and south hemispheres
respectively.

t

first projection we see th&® itself projects to a set bounded
on two sides by the hyperbolaé=&/\ [corresponding to
|£|?=0; see(2.11)] and on two other sides by the line seg-
ments »—&==*c, which correspond to the bounding
spheres.

Since »¢ is an integral of the equations iR, the pro-

jections of orbits in the 7,£)-plane move on the branches of

the corresponding hyperbolagé=constant, except in the
casené=0 (where p=0 or £=0). If »£>0, the branches
nnect the bounding line segmenjs-é==*c and if »¢

0, they have both end points on the same segment. A check
Igf Eq. (2.12 shows that the orbits move as indicated by the
arrows in Fig. 6(Plate 3.

To interpret Fig. 6(Plate 3 as a flow inR, notice that
each point in the projection corresponds to a circleRin
given by the “radius” variablep=|{|?=constant. Recall
from (2.11) that|¢|?= (2/v) (E— \ »€). Of course, for points
on the bounding hyperbolic segmentgé=£&/N), the con-
stant is zero so that the circle collapses to a point. Thus, the
segments of the linegyy— &= *c in the projection corre-
spond to the two-spheres boundiRg This is because each
corresponds to a circle crossed with an interval where the
two end circles are pinched to a point.

We distinguish nine classes of orbits grouped into the
following four categories.

C
[©)

(1) The pointé= »=0 corresponds to periodic orbit in R

(the Lyapunov orbit See the black dot at the center of
Fig. 6 (Plate 3.

The four half open segments on the axeg=0 (or
equivalently|¢|?=p* where p* =2&/v), correspond to
four cylinders of orbits asymptotic to this periodic solu-
tion either as time increase§=€0) or as time decreases
(n7=0). These are calledsymptoticorbits. See the four
green orbits of Fig. &Plate 3.

The hyperbolic segments determined k¢= constant
>0 (or equivalently|Z|2< p*) correspond to two cylin-
ders which crossR from one bounding sphere to the
other, meeting both in the same hemisphere; the north
one if they go fromyp—¢é=+c to n— &= —c, the south
one in the other case. Since these orbits transit from one
region to another, we call theitnansit orbits. See the
two red orbits of Fig. GPlate 3.

Finally the hyperbolic segments determined hy¢
=constantc0 (|¢|?>>p*) correspond to two cylinders
of orbits in’R each of which runs from one hemisphere
to the other hemisphere on the same bounding sphere.
Thus if ¢£>0, the sphere is; (n—&=—c) and orbits

run from the south g+ £<0) to the north ¢+ &>0)
hemisphere while the converse holds# 0, where the

)

(4)
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sphere isn,. Since these orbits return to the same re-  y, :df —d,, ¢,:ds; —d;, (2.14
gion, we call themnontransit orbits. See the two blue L L
orbits of Fig. 6(Plate 3. Ygih{ =Ty, gty —ry. (2.19

The four mappings are diffeomorphisms. Furthermore, all
3. McGehee representation these mappings preserve the “radius” variapte|¢|? since

o this is an integral ifR.
McGehee building on the work of Conlef proposed a

representation which makes it easier to visualize the region
R. Recall thatR is homeomorphic t&?x 1. In McGehedit 1. The infinite twisting of the mappings
is represented by a spherical annulus, as shown in Fig. 7 After computing from the solutiof2.12 that
(Plate 3.

Figure 1a) (Plate 3 is a cross-section dR. Notice that
this cross-section is qualitatively the same as the illustration

in Fig. 6 (Plate 3. The full picture[Fig. 7(b) (Plate 3] is \ye see that the change in the argument fifr each of these

ob.tained by rotati.ng this c.r.oss.—section, apout the i”dicate%appings/;i is approximately proportional to the negative of
axis w. The following classifications of orbits correspond 10 {he time required to go from domain to range. Also, this time

the previous four categories. approaches infinity as the flow approaches the circle
(1) There is an unstablgeriodic orbit | in the regionR @' (|¢[>—p*), since on the circla™ (where|¢|*=p*) the

d
&arg§=—v, (2.19

corresponding to the poirg. orbits are asymptotic to the unstable periodic solution

(2) Again letn;, n, be the bounding spheres of regi@h These facts imply that arbitrary circles with radius vari-
and letn denote eithen, or n,. We can dividen into ~ ablep=|¢|? in the domain of the mappings are rotated by an
two hemispheresa*, where the flow enter®, andn™, amount that decreases to minus infinity @s>p*. Hence,

where the flow leavesR. We leta™ and a— (Where the behavior of the flow irR should be obtained by addlng
|£|2=p*) be the intersections with of the cylinders of ~Some spiraling to the arrows given in Figby (Plate 3.

orbits asymptoticto the unstable periodic orbit Then In Sec. IV, we shall need a simple geometric conse-
a’ appears as a circle im*, anda™ appears as a circle guence of the above observation on spiraling stated in terms
inn-. of “abutting arcs™ in the domain, or range, @f;. Namely,

(3) If we letd™ be the spherical cafwhere|¢|2<p* inn*  anarc lying in the closure of one of these seiS @ndr~)
bounded bya™, then thetransit orbits enteringR ond™* is called an abutting arc if it is in the set itself except for one
exit ond~ of the other bounding sphere. Similarly, let- €nd point in the circla™. See Fig. 8Plate 4. For example,
tingd~ (|{|2<p*) be the spherical cap in~ bounded et y; be an abutting arc in the domaéj’ of ,; with one
by a~, the transit orbits leaving od~ have come from end pointP; in a; . Let 5; be another abutting arc in the
d* on the other bounding sphere. ranged, of ¢, such that one of its end poin@; is in a, .

(4) Note that the intersectiob of n* andn~ is a circle of ~ Then;(y,) is an arc spiraling towarda, and cuttingd;
tangency points. Orbits tangent at this circle “bouncean infinite number of times in any neighborhood of the point
off,” i.e., do not enterR locally. Moreover, if we ler *  of abutmentQ;.
be a spherical zone which is boundeday andb, then This follows directly from the infinite twisting of the
nontransitorbits enteringR onr ™ (where|Z|?>p*) exit ~ Mappings;; namely the image ofy; spirals infinitely
on the same bounding sphere through (where [¢|> ~ many times around and down & in the range.
> p*) which is bounded by~ andb. Similarly, let v; be an abutting arc in the domain ¢f

with one end poinP; ina; , a;, a, fori=2, 3,4, respec-
The key observation here is that the asymptotic orbitgively. Let &, be another abutting arc in the rangeafsuch
are pieces of the stable and unstable manifold “tubes” of thethat one of its end point®; is in a; , a; , a, , respec-

Lyapunov orbit and they separate two distinct types of mo+tively. Then ¢;(y;) is an arc spiraling towards

tion: transit orbits and nontransit orbits. The transit orbits,a; , a;, a, , respectively, and cutting; an infinite num-

passing from one region to another, are those inside the cyer of times in any neighborhood of the point of abutment
lindrical manifold tube. The nontransit orbits, which bounceQ; .
back to their region of origin, are those outside the tube. This
observation will be important for the numerical constructionE Orbits in th ilibri . ¢ i
of interesting orbits in Sec. V. . Orbits in the equilibrium region of position space
After studying the orbit structure in the equilibrium re-
gion R and its projection on thézn,&)-plane, we now exam-
ine briefly the appearance of orbits in position space, that is,
in the (x,y)-plane.

We now observe that on the two bounding spheres, each Recall from Sec. Il C that théand » coordinate axes are
of the hemispherea™ is transverse to the flow. It follows the eigenvectorsu;=(1,—o,\,—\o) and u,=(1,0,—X\,

that the flow inR defines four mappings — two between —\ o), respectively. Their projection on thex,f)-plane,

pairs of spherical capg™ and two between pairs of spherical u;=(1,— o) andu,=(1,0), plays an important role in the

zonesr *: study of the appearance of orbits on the position space.

D. The flow mappings in the equilibrium region of the
energy surface
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The image of a tilted projection 6® on the {,y)-plane  one to determine at each point,{) the “wedge” of veloci-
provides the right mental picture. To build physical intuition ties (if any) in which «;a,<0. See the shaded wedges in
regarding the flow in the equilibrium region, it is important Fig. 9 (Plate 4. Since a detailed study will draw us too far
to study the projection of the different classes of orbits on theafield, we simply state some of the main observations.
(x,y)-plane. Here, we summarize the main results of In Fig. 9 (Plate 4, S; and S, are the two strips men-
Conley® tioned above. Outside of each stBp, i=1,2, the sign of;

Recall from Sec. Il C that the eigenvalues of the linearis independent of the direction of the velocity. These signs
system(2.8) are =\ and =i v with corresponding eigenvec- can be determined in each of the components of the equilib-
torsuy, Uy, wq, W,. Thus, the generdtea) solution has rium regionR complementary to both strips. For example, in

the form the left-most central components, bottis are negative,
) , while in the right-most central components batl are posi-
v (1) =x(1),y(t),x(1),y(1)) tive. Thereforea,a,>0 in both components and only non-
= @ €My + e Mu,+ 2 Re BeMwy), (2.17 transit orbits project onto these two components.

Inside the strips the situation is more complicated since
wherea,, a, are real ang3=,+i8, is complex. Notice inS;, i=1,2, the signs ofy; depend on the direction of the
that (2.17), while slightly more complicated, is essentially velocity. For simplicity we have indicated this dependence
the same a$2.12. only on the two vertical bounding line segments in Fig. 9

Upon inspecting this general solution, we see that th&Plate 4. For example, consider the intersection of st8ip
solutions on the energy surface fall into different classes dewith the left-most vertical line. On the subsegment so ob-
pending upon the limiting behavior eft) [thex coordinate  tained there is at each point a wedge of velocity in whigh
of v(t)] ast tends to plus or minus infinity. Notice that is positive. The sign ok, is always negative on this subseg-
Y t . ment, so that orbits with velocity interior to the wedge are

X(1)=aeM+aze” "+ 2(By cosvt—Bysinvt). (218 oo cit orbits f,a,<0). Of course, orbits with velocity on
Thus, if t—+o, thenx(t) is dominated by itsa; term.  the boundary of the wedge are asymptotig ¢,=0), while
Hence x(t) tends to minus infinitystaying on the left-hand orbits with veIOC|t_y outside of th_e We_dge are nontransit.
side, is boundedstaying around the equilibrium pointor H_ere,_only a transit ano_l asymptotic orbit are |IIL_Jstr§1te_d. The
tends to plus infinity(staying on the right-hand sidlaccord- situation on the remaining three subsegments is similar.
ingtoa;<0, @;=0, a;>0. See Fig. GPlate 4. The same 1. The flow in the equilibrium region
statement holds it— —o and a, replacesa;. Different
combinations of the signs ef; anda, will give us again the
same nine classes of orbits which can be grouped into th
same four categories.

In summary, the phase space in the equilibrium region
can be partitioned into four categories of distinctly different
Rinds of motion[see Figs. 5Plate 2 and 9(Plate 4]: the
periodic Lyapunov orbits, asymptotic orbits, transit orbits,
(1) If a;=a,=0, we obtain goeriodic solution which is a and, finally, nontransit orbits.

Lyapunov orbit. It has been proven in Corfletat this

periodic orbit projects onto thex(y)-plane as an ellipse 1. EXISTENCE OF HOMOCLINIC ORBITS AND

with major axis of length 2\/&/ « in the direction of the HETEROCLINIC CONNECTIONS

y-axis, and minor axis of length\&/« in the direction

of the x-axis. The orientation of the orbit is clockwise.

Herex (= —a+b7?+ v+ 1v?7?) is a constant. See Fig.

9 (Plate 4. Note that the size of the ellipse goes to zero

with &.

(2) Orbits with a;a,=0 are asymptoticorbits. They are
asymptotic to the periodic Lyapunov orbit. It has been
proven in Conle} that the asymptotic orbits witha
=0 project into the stripS; in the xy-plane centering
aroundu, and bounded by the lines

As mentioned earlier, near the equilibrium poin{i.e.,

L, or L,), there exists a family of unstable periodic orbits

called Lyapunov orbits. For appropriate values of the Jacobi

constant, the energy surface contains exactly one of these
periodic solutions around each Lagrange point. As dynami-
cal systems theory suggestee, for example, Wiggif9, to
understand fully the global dynamics of the flow, one should
examine structures like homoclinic orbits and heteroclinic
connections to theske; andL, Lyapunov orbits.

5 The local structure of orbits near the libration points
y=oxt2J&(a?+ 7%/ k. (219 gives periodic orbits(the Lyapunov orbits pieces of the
Similarly, asymptotic orbits withe,=0 project into the  stable and unstable manifolds of these periodic orbits and
strip S, centering around; and bounded by the lines  transit and nontransit orbits. In this section, we explore how
y=—0X£2\J&( o+ )/ k. (2.20  these local structures are connected globally. Our goal is to
Notice that the width of the strips goes to zero with show how homoclinic orbits in the interior region are con-

(3) Orbits with @;a,<0 are transit orbits because they nected to the homoclinic orbits in the exterior region by a
cross the equilibrium regio® from — (the left-hand  heteroclinic cycle in the Jupiter region. The union of these
side to + (the right-hand sideor vice versa. three structures is calledchain.

(4) Orbits with @;a,>0 arenontransitorbits. The story is completed only in Sec. IV when this dy-
namical chain structure is used to show the existence of com-

To study the projection of these last two categories ofplex and interesting trajectories, some of which have been
orbits, Conle§ proved a couple of propositions which allow observed in actual comet trajectories.
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In more detail, in this section we discuss the following may provide this mechanism and generate extremely

topics. complicated dynamics. This is indeed the case for the
1) In Sec. lll A and Sec. IlIB hall first di f PCR3BP.
(1) In Sec. and Sec. , We Shall lirSt dISCuss some o (4) In Sec. IIIF, we shall numerically show that, within an

)

3

the results in Conle%rand McGeheé@which have proven

. o L i X appropriate range of Jacobi constant, there exist chains
the existence dfiomoclinicorbits in both the interior and

: . s ; of two homoclinic orbits and a symmetric heteroclinic
exterior regions. These are the orbits which are both for- cycle, as in Fig. ZPlate 1. The existence of these chains

ward and backward asymptotic to the unstable Lyapunov il be used in Sec. IV to construct a suitable Poiricare
orbit. The heart of the proof is the construction of a map which will allow us to classify as well as organize
function which counts the number of times an orbit seg-  gistinctively different types of global motions of the

ment with endpoints near the Lyapunov orbit winds ~ pPCR3BP in terms of ultimate behavior with respect to
around a solid torus. the equilibrium points.

We shall discuss in Sec. Ill C the main results in LMS

on the transversality of the invariant manifolds for the  A. The flow mappings in the interior and exterior
Lyapunov orbit. In dynamical systems theory, the prop-regions of the energy surface

erty of being doubly asymptotic to a periodic orbit is ; Energy surface and Hill's region
described(and more quantitatively handlgdy saying

that the orbit is in both thetableandunstablemanifold . o

of the periodic orbit, or that the homoclinic orbit is in the setting the Jacobi |ntegr_a2.5) equal to a constant. Lei
intersection of the stable and unstable manifolds of thebe that energy surface, i.e.,

periodic orbit. One of the most important issues which ~ M(x,C)={(X,y,X,¥)|C(X,y,X,y) = constant. (3.0
arises in this context is the transversality of the intersec-

tion. The presence of transversality will allow us to draw The projection of this surface onto position space is called a
many profound conclusions about the orbit structure ofHill's region,

the system under study. Since neither Cohlepor M(x,C)={(x,y)|Q(x,y)=C/2}. (3.2

McGeheé (see also 38, 39, and #vas able to settle ) )
this issue, LMS spent their major effort in proving ana- | ne boundary oM(,C) is the zero velocity curve. The

lytically that the intersection is indeed transversal underl(éOmet can mo‘iﬁ only W't?.m tht:S regon ;n thgt,.{/)-pl?ne.th
appropriate conditions, at least in the interior region. We or a givenu there are five basic configurations for the

. . Hill's region, the first four of which are shown in Fig. 10.
shall summarize their results. Case 5 is where the comet is free to move in the entire
However, it should be clear from the start that both

: . lane. In thi r r main interest is in ; for
Theorems 3.3 and 3.4 have been cited only for gmdancg ane. this paper, ou a te e;t S In case 3; bl.Jt °
L .._comparison we shall occasionally bring up case 2 which is

on how to construct the transversal homoclinic orbits

i the main focus of LMS. The shaded region is where the
numer_lcally. In Sec. D we shall use the S€MI" motion is forbidden. The small oval region on the right is the
analytical methods developed by the Barcelona group ity iter region The large near circular region on the left is
Gomez, Jorba, Masdemont, and Sithm show numeri- e interior region surrounding the Sun. The region which
cally the existence of transversal homoclinic orbits injjas gutside the shaded forbidden region is éxerior re-

We consider Eqs(2.4) on the energy surface given by

both the interior and exterior regions. gion surrounding the Sutand Jupitex.
In Sec. INNE we shall use similar semi-analytical meth-  The values ofC which separate these five cases will be
ods to show numerically the existence of transvensal denotedC;, i=1, 2,3,4 which are the values corresponding

eroclinicconnections in the Jupiter region which connectto the equilibrium points. These values can be easily calcu-
asymptotically the; andL, Lyapunov orbits. A hetero-  |ated for smally and their graphs are shown in Fig. 11. For
clinic orbit is an orbit lying in the intersection of the case 3, the Jacobi constant lies betw€grandC; which are
stable manifold of one periodic orbit and the unstablethe Jacobi constants of the libration poirts andL5, re-
manifold of another periodic orbit. Since the PCR3BP isspectively. In this case, the Hill's region contains a neck
a Hamiltonian system with two degrees of freedom, itsaround bothL; andL, and the comet can transit from the
energy manifold is three dimensional. From the work ofinterior region to the exterior region and vice versa.

Conley, it was known that both the stable and unstable

manifolds of the Lyapunov orbits arouid andL, are 2. Orbit segments winding around a solid torus

two dimensional. Hence, a dimension count suggests, |n McGehe€ the energy surface is broken up further
but does not prove, the existence of such a heteroclinignto regions bounded by invariant tori. These invariant tori
connection. Careful numerical investigations allow us toproject onto the darkly shaded annuli shown for case 3 in
show this connection is indeed present, as well as tgig. 12.
isolate and study it. These annuli separate the Hill's region into sections cor-
Also, in dynamical systems theory, a heteroclinic orbitresponding to the invariant regions in the energy surface. It is
generally does not provide a mechanism for a part of thénteresting to note that for all of these cases the Sun and
phase space to eventually return near to where it startedupiter are separated from each other by an invariant torus
But two (and mor¢ heteroclinic orbits forming a cycle (although we show only case,3hus making it impossible
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Case 1: C>C, Case2: C;>C>C,

ol
-1 r
-1 0 1 -1 0 1
FIG. 10. Four basic configurations of
the Hill's region.
'Case 4: C3'>C>C4=C5‘
17 1
(V3 0
-1 -1
-1 0 1 -1 0 1

for the comet to pass from the Sun to Jupiter. Similarly, thebefore returning to that vicinity. The direction of procession
two masses are separated from infinity by an invariant toruss the same for all orbits, counterclockwise in the interior
We consider the regions of the energy surface projecting toegion and clockwise in the exterior region. In Sec. Il, we
the area between the two darkly shaded anuliand A, have studied the regions near the unstable periodic orbits to
i.e., the region containing Jupiter. The theorems of McGeheebtain a qualitative picture of the asymptotic orbits. We shall
below show that all orbits leaving the vicinity of one of the combine this picture of asymptotic orbits with the fact that
unstable periodic orbits proceed around the anntilusr T,  orbits in the tori wind around in one directido construct
homoclinic orbitsin both the interior and exterior regions.
See Fig. 1).

Theorems of McGeheeTo precisely state the theorems,
we must first divide up the Hill's region and the energy
surface. We know that for small the two equilibrium points
occur at a distanc@ on either side of Jupiter with

37

sk

©
o

B 2M1/3
M= 3

We isolate these points by drawing vertical lines on each
side of them, i.e., lines at Au*tcyu,0) and (I-pu
+b,,0), whereb;<1<c;. This divides the Hill's region

Jacobi constant
w

C

c=Cs into five sets as shown in Fig. 13.
T Case 4 ] Let S and J be the regions that contain the Sun and
C=C,=Cs=3 Jupiter; let regiorR; and regionR, be those parts that con-
) , , , , , ,  Case5 tain the two equilibrium points ; andL,, respectively; and
o oo 002 0l 004 006 006 0% 0% 0 04 let X be the region that lies exterior to the orbit of Jupiter.

U = mass parameter o . L
We also divide the energy surfacef into sets projecting

FIG. 11. The partition of the,C)-plane into five types of Hill's regions. onto the regions shown in Fig. 13. As before, we keep the
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interior
region

exterior
region

FIG. 12. (Color online (a) The pro-
jection of invariant tori (darkly
shadegl on position space for case 3.
(b) Homoclinic orbits in the interior
and exterior regions.

Tupiter
region

{a)

same name: e.g., regidR; for the set in the energy surface
whose projection is the regioR; in the position space.
Theorem 3.1 leads to the assertion thae can choose the

division described above so that we simultaneously have suf-

ficient control of the flow in both regionS and R, to con-

struct a homoclinic orbit. Theorem 3.2 makes the same as3)

sertion for regionst and R, .
The analysis of region®, and R, is of a local nature.

In fact, we limit ourselves to those values of the Jacobi con-
stant for which the linearized equations about the equilib-

rium point give us the qualitative picture of the flow. The

(b}

(1) The energy surfaca1(u,C) contains an invariant torus
separating the Sun from Jupiter

(2) For C<Cy(u), the flow inR41(u,C) is qualitatively the

same as the flow for the linearized equations. [See Fig. 7

(Plate 3)].

If we let7; be that submanifold oM co-bounded by the

invariant torus and nr (see Fig. 14)then there exists a

function

02'T1—>R,

such that(a) 0 is a meridional angular coordinate for

71; (b) 6is strictly increasing along orbits

flow for the linearized equations was already analyzed in

some detail in Sec. Il.

We know that forb; andc; close to 1, i.e., for the region
'R close to the periodic orbit, the flow iR (which stands for
both R, andR,) is that shown in Fig. 1Plate 3. But we
also know that we cannot malkeg arbitrarily large without
disturbing this qualitative picture foR. On the other hand,
we would like to makec, large enough to obtain accurate
estimates on the behavior of the flow éhand X. The fol-
lowing theorems show that there exists;awhich allows us
to balance these two factors.

Theorem 3.1 There exist constants,band ¢, and an
open set Q in the («,C)-plane (see Fig. 14) containing the
graph of C=C;(u) for small x>0 such that, for(u,C)

e O4, we have the following

FIG. 13. (Color online Division of Hill's region into five sets.

Theorem 3.2 There exist constants;band ¢, and an
open set Q in the (u,C)-plane containing the graph of C
=Cy,(u) for small u>0 such that, for( «,C) € O,, we have
the following

(1) The energy surfaca1(u,C) contains an invariant torus
separating the Sun and Jupiter from infinity

(2) For C<Cy(u), the flow inR,(u,C) is qualitatively the

same as the flow for the linearized equatiof&ee Fig-

ure 7 (Plate 3)].

If we let7, be that submanifold oM co-bounded by the

invariant torus and B, then there exists a function

0.7,— R,

such that(a) 6 is a meridional angular coordinate for

T,; (b) @ is strictly increasing along orbits

)

B. The existence of orbits homoclinic to the
Lyapunov orbit

Part (3) of the above theorems gives us the following
properties for the flow i where7 stands for eithefl; or
7,. The increase i along an orbit segment ifi with end-
points in the bounding sphereis close to a nonzero integer
multiple of 27r. The increase ir¥ along any other orbit seg-
ment which can be deformed to the first, keeping both end-
points in the bounding spherg is close to the same integer
multiple of 2#. Furthermore, the increase of along any
orbit segment remaining for an arbitrarily long time Tnis
arbitrary large. As will be shown, these are precisely the
properties we need to carry out the proof of the existence of
a homoclinic orbit.
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FIG. 14. (Color onling (a8 Open setO; in the
(w,C)-plane.(b) The invariant torus.

(a} {bi

1. A dichotomy tod; . Letr be the first point ofy not in y’, then the orbit

We assert thagither a transverse homoclinic orbit ex- Ségment with one endpointamust become arbitrarily long.
ists, or “total degeneracy” occursTotal degeneracy is the But the only way this orbit segment can become arbitrarily
case when every orbit asymptotic to the unstable periodié®"d IS to approach the asymptotic set, since the number of
orbit at one end is also asymptotic at the other end and hendénes it can wind around, is finite and therefore must con-
is a homoclinic orbit. In other words, the total degeneracyf@in an arbitrarily long subsegment i, . Because of our
situation occurs when the stable and unstable manifolds dfnowledge of the flow irR,, we know that long orbit seg-
the Lyapunov orbit coincide with each other. In either eventMeNts inRy must lie close to the cylinders of asymptotic
we conclude the existence of a homoclinic orbit. We shallorbits and therefore must be carried ta; . Hence, in either
sketch the proof below for completeness. For more detail<$8S€ We conclude that there is an orbit segment connecting

see Conle¥and McGehe&. the setd; in one hemisphere to the set of asymptotic orbits
Assume that total degeneracy does not occur. The firdf! the other. _
step of the proof is to find an orbit segmentZnconnecting Now, without loss of generality, we can suppose that we

eitherd; toa] oraj tod; as follows. See Fig. 15. Singg ~ have found an orbit segment with one endpoint, caiieth

is compact and our flow, which is Hamiltonian, preserves g1 and the other il ™ We now choose foly the whole set
nondegenerate area element, we can conclude that some orit - USing arguments similar to the above, we can conclude
which crosse®R, (and the bounding spherg) and so enters tha_lt either <_’:1II ofa; is carried by the flgw insidd; or there

7, must also leavd; and recros®, (andn,) the other way.  €Xists a poinB e a; such that Fhe orbit segment withas an _
See Fig. 15. Therefore, for some popn¢ d; of n,, there is endp_0|_r!t becomes asymptotic at the other end.. If the first
an orbit segment connectingto a pointqe di of n;. Re- possibility hold§, we would have a map of to the interior

call that inR,, the spherical caps; andd; are where the of d*, contradicting area pre.servauon of Ham|lton|aq f!ow.
flow crossesn; . T.hus we have proven that either transversal'homochnlc. or-

Starting with this orbit segment connectipgto q, we bits exist or total degeneracy occurs for_the mf[erlor region.
can find an orbit segment connecting eitdgr to a; or a; The same proof also works for the exterior region.
to d; as follows. Lety be an arc ind; linking p to a;
(whereyNna; is not on a homoclinic orbit If all of vy is
carried by the flow to the spherical calj , then we shall
have an orbit segment with one endpointin and the other
in di . Otherwise, starting fronp, there is some maximal Conley’ and McGehetdid not settle the issue of when
initial half-open subarey’ of y which is carried by the flow one has transversality of the homoclinic orbit families for the
PCR3BP. Subsequently, LMS$levoted their major effort to
show that under appropriate conditions, the invariant mani-
folds of theL ; Lyapunov orbits do meet transversally. In this
section, we shall summarize their analytical results. More-
over, in Sec. llID we shall also use the tools of rGer,
Jorba, Masdemont, and Siffato explore numerically the
existence of transversal homoclinic orbits in both the interior
and exterior regions.

To state the major analytical results of LMSye first
need to set up some notation. As mentioned earlier, bear
and for values ofC;>C>C, (case 2 there is a family of
unstable Lyapunov orbits. Whed approache€; from be-
low, the periodic orbit tends toL,. There are one-
FIG. 15. (Color online The existence of orbits homoclinic to the Lyapunov dimensional invariant StabNN,S_l , and UHStable\NEl’ mani-
orbit. folds associated th ;. In a similar way theL,; Lyapunov

C. The existence of transversal homoclinic orbits in
the interior region
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FIG. 16. (Color online (a) Projection of the interior branch of the manifdl/kl‘ﬂ1 on the position spacéb) First intersectionPoincare"‘cut” ) F‘l"s of the

interior branch ONVEl,p.o. with the planey=0 in the regionx<0.

orbit has two-dimensional invariant manifoldﬁ/ﬁ1 p.0.

Wfl,p.o., locally diffeomorphic to cylinders. We recall that a

homoclinic orbit related to an equilibrium poift or 0 a  the first intersection of this projection with theaxis is or-

periodic orbitL is an orbit which tends td- (or L) as  thogonal to that axis, giving a symmetric (1,1)-homoclinic

t— *oo. Therefore, it is on the stable and unstable invariantorbit for L,. The prefix (1,1) refers to the first intersection

manifolds of the related object (or L). A homoclinic orbit  (with the Poincaresection defined by the plane=9,x<0) of

is called transversal if at some point of the orbit the tangenboth the stable and unstable manifolds af. L

spaces to the stable and unstable manifolds at that point span Theorem 3.4 For . andAC=C,— C sufficiently small,

the full tangent space t81(u,C) at the same point. the branch V\‘[’f,p_ol of Wﬂl,p.o. contained initially in the inte-
Notice that Eqs(2.4) have the following symmetry: rior region S of the energy surface intersects the plane y
SOV, K Y D — (X, — Y, — X, ¥, —t). (3.3 =0 for x<0 in a curve diffeomorphic to a circle [see Fig.

1
/—Lk:W(1+O(1))r (3.4

16(b)].

Therefore, if we know the unstable manifold lof or of the
Lyapunov orbit(which is a symmetrical periodic orbithe
corresponding stable manifold is obtained through the use of
the stated symmetry. This observation will be used to find
the transversal homoclinic orbits.

In particular, for points in the(u,C) plane such that

there is au, of Theorem 3.3 for which

AC> L™= pu)? (3.5

holds (where L is a constant), there exist symmetric trans-

versal (1,1)-homoclinic orbits

1. Analytical results for L
region

1 Lyapunov orbit in interior

Using the basic framework developed in McGefiee,

For details of the proofs, see LMSWe would like to

make a few comments about these results which are pertinent
to the main thrust of our paper.

LMS® were able to prove the following two analytical re- (1) The main objective of both theorems is to study the

sults. Together these two theorems imply that for sufficiently
small u and for an appropriate range &afC=C,—C, the
invariant manifoldsWi® , o and W%, in the interior re-

1:p.0.
gion S intersect transversally.
Theorem 3.3 For u sufficiently small, the branch W

of \/\/‘,jl in the interior regionS has a projection on position
space [see Fig. 16(a)] given by

d=pu3(4N—-3Y6+M cost+0(1)),
a=—m+ 3 (Nt+2M sint+o(1)),

where d is the distance to the zero velocity curwés the
angular coordinate, and N and M are constants

In particular, for a sequence of values pfwhich have
the following asymptotic expression:

transversality of the invariant manifolds for thie;
Lyapunov orbit on the energy surface whose Jacobi con-
stantC is slightly less tharC,(u) as one variegw and

C. The main step is to obtain an expression for the first
intersectionl'{"* of the unstable manifolaV"*, , with

the planey=0 in the regionx<<0. While formulas were
provided in LMS for this closed curve as a function of
p andAC in the variablex, X, they are quite compli-
cated and difficult to interpret and hence are not included
here. But the key point is the following. According to
Theorem 3.3, the set of values pffor which we have a
symmetric(1,1)-homoclinic orbit associated o, is dis-
crete and is given by E@3.4). Then for any other value

of u the unstable manifold/\I‘L"ls of L, reaches the

(x,X)-plane in a point X;,%;) outsidex=0. Therefore,
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FIG.
metric (1,1)-homoclinic points found in the first intersectionwﬁfp_o_with
the planey=0, x<0.

)

3
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approximated by the two-body problem in a rotating
frame. Through a number of careful estimations, ’MS
were able to obtain these analytical results.

2. Summary

Conley and McGehethave proved the existence of ho-
moclinic orbits for both the interior and exterior region, and
LMS® have shown analytically the existence of transversal
symmetric(1,1)-homoclinic orbits in the interior region un-
der appropriate conditions. For our problem, we need to find

‘ transversal homoclinic orbits in both interior and exterior
SEONNE SN S N regions as well as transversal heteroclinic cycles forlthe
By e andL, Lyapunov orbits. We shall perform some numerical
7 explorations using the tools developed by the Barcelona

group. For more details on finding invariant manifolds nu-
merically, see Gmez, Jorba, Masdemont, and Sithand
references therein.

17. Partition of the &,AC)-plane according to the number of sym-

D. The existence of transversal homoclinic orbits in
if AC is too small,T';"® does not cut thex-axis and  the exterior region

hence(by symmetry 'y of the stable manifoldV{* | We turn our attention now to numerical explorations of

does not cut thex-axis either. Therefore the first inter- the problem, and in particular, to the existence of transversal

sections of the invariant manifolds do not meet and therdnomoclinic orbits for theL, Lyapunov orbit in the exterior

is no symmetria1,1)-homoclinic orbit. region. Though there are no analytical results proving the
However, for a fixed value ofi, if we increaseAC, existence of transversal homoclinic orbits in tkieegion, we

we hope thafﬁ’s of the unstable manifold will become can construct them numerically by finding an intersection of

large. Therefore we can look for some value\d® such  the manifolds\Nﬁzyp_o_ and Wﬁz,p.o. on an appropriately cho-

thatl“f's becomes tangent to thxeaxis or even intersects sen Poincarsection.

it at more than one point. Then, due to the reversibility Numerical experiments gu|ded by geometrica| insight

of the PCR3BP1*§"S of the stable manifold also inter- suggest that we cut the flow by the plage=0, the line

sects thex-axis at the same points. Point on the  passing through the two masses in the rotating frame. The

x-axis wherel'{"* and'y* intersect correspond {sym-  pranch of the manifoldV{!, ;, which enters thet region

metric) orbits homoclinic to the Lyapunov orlfisee Fig.  io,ys clockwise in the position space. We refer to this exte-

u,S s,S

16(b),]',|f Fl, S transversal td'y” at P then the ho- o hranch of the manifold aWE'XpO. See Fig. 18). This
moclinic orbit is transversal. The results of Theorem 3'4t i ional ifold “tub ’2\’/\1.“'.’( first int ts th
say that the above phenomenon occurs AfC wo-dimensional manitold "tube v, , o fIrst INtersects the

>|—Mf<1/3(M—Mk)2 holds. planey=0 on the part ofT, which is opposite td_, with
Using the results of Theorem 3.4, LMSvas able to respect to the Suri.e., x<0). The intersection, as one
draw the mesh of homoclinic tangencies for thewould expect geometrically, is a curve diffeomorphic to a
(,AC)-plane. The numbers in Fig. 17 show the numbercircle. We call this intersection the first “cut” OWEfp.o.

of symmetric(1,1)-homoclinic points found in the first with y=0. See Fig. 1@). Note that in order to define the
intersection oNVE'l‘S,p_O. with the planey=0, x<0 when first cut we exclude a neighborhood 0§ in the X region.

one variesu andAC. For us, the key point of the theo- Some arcs of this curve produce successive intersections

rems is that for the wide range @f which exist in the Without leaving thet'region. Theg-th of these intersections
’X . _ . ’X . .
solar system, the invariant manifolds of theLyapunov ~ Of WEZ,p.o.Wlth y=0 will be referred to a§'y~. In a similar

orbit intersect transversally for sufficiently largeC. manner we call“;’X the corresponding-th intersection with
The heart of the proofs of these two theorems is to obtairy=0 of the exterior region branch sz,p.o.-
expressions for}"* as a function ofu and forw;, A point in y=0 belonging tol'§*NT3™ (if not empty

as a function ofu and AC. By using the basic frame- will be called a €,p)-homoclinic point The existence of
work of McGehe€, LMS® divided the annulud; in the  (qg,p)-homoclinic points for certairg and p is shown in
interior regionS into two parts: a small neighborhodtl McGehe€’

near R; and the rest of the region outside this small Our goal is to obtain the first such transversal intersec-
neighborhood. In the neighborhoét] the PCR3BP can tion of Fg"{ with I‘?,’X and so obtain a transversal
be considered as a perturbation of the Hill's problem. In(qg,p)-homoclinic point. Other intersectiorifr largerq and
celestial mechanics, it is well known that Hill's problem p) may exist, but we will restrict ourselves for now to the
studies the behavior near the small mass of PCR3BP ifirst. Suppose that the unstable manifold intersecfi{;}ﬁ is

the limit when u approaches zero. In the rest of the a closed curvey in the variablex,x. Lets, be the symmetry

region away from the small mass, the PCR3BP can bevith respect to thex-axis on this plane. Then due to the
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FIG. 18. (Color onling (a) The position space projection of the unstable manifold “tuhU‘L"z’fp'o' until the first intersection with the Poincasection at

y=0, x<0. (b) The first Poincareut I'}"* of the manifoldW\"*_ . on the planey=

L,,p.o.

0, x<0.

revers|b|||ty of the PCRgBP the th |ntersect|orfs X of the E. The existence of heteroclinic connections between
stable manlfold\NL 0o, With y=0 is s,y. For some mini-  Lyapunov orbits

mum ¢, the closed curvey intersects thex=0 line of the

We construct a heteroclinic connection between

(x,X)-plane. Points? along the curvey which intersect the Lyapunov orbits ofL; andL, by finding an intersection of
x=0 line are €,q)-homoclinic points, corresponding to their respective invariant manifolds in th€ region. To do

(symmetrig orbits homoclinic to the Lyapunov orbit. If the so,

we seek points of intersection on a suitably chosen Poin-

curvey is transversal to the cunagy at the pointP then the  care section. For instance, to generate a heteroclinic orbit
homoclinic orbit corresponding tB is transversal. If inter- which goes from ah ; Lyapunov orbit(ast— —) to anL,
sections between the curvesands,y exist off the linex Lyapunov orbit(ast— +), we proceed as follows.

=0 [i.e., if the set yNs,y)\{Xx=0} is nonempty, then non-

We restrict ourselves for now to case G,(>C>Cj,

symmetric homoclinic orbits appear. see Fig. 10 for which the Hill's region opens enough to
Consider Fig. 1@), where we used the valuea permit Lyapunov orbits about both; andL, to exist. Let

=0.0009537 andAC=C,—C=0.01 to compute the un- the

branch of the unstable manifold of Ihge Lyapunov orbit

stable Poincareut. If we also plotted the stable clif¥,  which enters theJ region be denoteWL ‘.o On the same

which is the mirror image of unstable cliff, we would  energy surfacéthe sameC value there is arl, Lyapunov
find several points of intersection. In Fig.(@(Plate 5, we  orbit, whose stable manifold in thg region we shall simi-

focus on the left-most group of points, centered at about
=—2.07. We find twox=0 intersections which are trans-
versal homoclinic points in thet region. The transversal
symmetric (1,1)-homoclinic orbit corresponding to the left
x=0 intersection is shown in Fig. 19 (Plate 5.

We also notice two off-axis intersections in Fig.(ap
(Plate 5, completing the local transversal intersection of two
closed loops in thex;X)-plane. As these two intersections
occur near the lin&k=0, they will be nearly symmetric. A
more pronounced case of nhonsymmetry occurs for the other
group of intersection points centered near —1.15, for
which we have the nonsymmetri(l,1)-homoclinic orbit
given in Fig. 20.

A similar procedure can numerically produce homoclinic
orbits in the interior region as well as in the Jupiter region.
We can even look at cuts beyond the first. See Fida21
(Plate 5.

For example, in Fig. 2b) (Plate 5 we show an interior
region (1,3-homoclinic orbit[note, also(2,2) and (3,1), us-
ing g+ p=q-+p] associated to ah; Lyapunov orbit foru
=0.1, AC=C,;—C=0.0743.

¥ (nondimensional units, rotating frame)

5 -1 a5 0 [ i 15
x (nondimensional units, rotating frame)

FIG. 20. (Color onlineg A nonsymmetric(1,1)-homoclinic point.
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larly denotve']po. The projection of the two-dimensional
5.p.0.

manifold tubes onto the position space is shown in FigapR2
(Plate 6.

To find intersections between these two tubes, we cut the

flow by the planex=1—u. See Fig. 2&b) (Plate 6.

This convenient plane maximizes the number of inter-

sections for values g, C which produce manifolds making

a limited number of revolutions around Jupiter before escap-

ing from the 7 region. Theg-th intersection OWE'lj,p.o. with

the planex=1— u will be IabeledF‘L"ﬁq. Similarly, we will

J : : T with x—
call I't, the p-th intersection ofVp”, , with x=1— u.

Numerical experiments show that the Lyapunov orbit

unstable manifoIaW‘L"lJ’p_o_ does not coincide with thé,

Lyapunov orbit stable manifolwvf'gp_o_. Moreover, for a
wide range ofu andC values(whereC,>C>Cj), humeri-

Koon et al.
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FIG. 23. (Color online The existence of a transversd,2)-heteroclinic

cal explorations show that they do intersect transversallyorbit in theJ region.

While it is true that for certain values @f andC, there are

tangencies between the stable and unstable manifold, we will o .

not deal with this interesting case in this study. Hence, fronfTOWS reversed. These teteroclinic connectiontmgether
now on, we will concentrate our numerical explorations onlyform & symmetricheteroclinic cycle

on the cases where the stable and unstable manifold intersect

transversally.

Now, suppose thaf'{"’, and '}/, are each closed

curves in the variableg,y. A point in the planex=1—pu
belonging to the intersection of the two closed curies.,

F. The existence of chains of homoclinic orbits and
heteroclinic cycles

We have used a combination of analytical and numerical
techniques to show the existence of homoclinic and hetero-

Fﬂ'lj'qﬂ Ff'gp) will be called a €,p)-heteroclinic point be- clinic orbits associated to tHe, andL, Lyapunov orbits for

cause such a point corresponds to a heteroclinic orbit going@se 3. We now take the final step, combining homoclinic
from the L, Lyapunov orbit to theL, Lyapunov orbit. Our  and heteroclinic orbits of the same Jacobi constant value to
objective is to obtain the first intersection poiit group of generate what is called a homoclinic/heteroclinic chain of

points of the curvel'{"’, with the curvel'}7  and so obtain orbits, which connect asymptotically thé, and L,
v 2 Lyapunov orbits to each other. As will be seen, these chains

the m||n|murrrl]values|,_ 9‘1 an_d P (s)uEh that we h_ave a trans- imply a complicated dynamics connecting the interior, exte-
versa @.p)- ﬁlteroc inic pomtl. t ;ar mtersectur)]nsf_may €X- rior, and Jupiter regions.
ist, but we will restrict ourselves for now to the first. For As an example, we again choose the Sun—Jupiter system

some minimumg and p, we have an intersection of the (, — 0 0009537), but now a Jacobi constant value similar to
curves, and some number of,p)-heteroclinic points, de- hat of cometOterma during its Jupiter encountersC(

pending on the geometry of the intersection. Note that the. 3.03). Using the described methodologies, we obtain an
sumg-+p must be an even positive integer. interior region orbit homoclinic to the; Lyapunov orbit, an

As we are interested in heteroclinic points for the Sun—exterior region orbit homoclinic to the, Lyapunov orbit,
Jupiter system £ =0.0009537), we tookC=3.037 and pro-  and a heteroclinic cycle connecting the andL, Lyapunov
ceeded numerically to obtain the intersections of the invariorbits. The union of these orbits is@moclinic-heteroclinic
ant manifoldsW‘L"lj'p_o_ and Wﬁ'gp_o_ with the planex=1  chain See Fig. 2(Plate 2. The existence of homoclinic—
— u. In Fig. 22b) (Plate 6 we show the curvefﬁ‘lqu for  heteroclinic chains has important consequences, which will

q=1,2 andl“f*gp for p=1,2. Notice thatl“ﬁ'l*?z and FE’;,@ be expanded upon further in Sec. IV.

intersect in two point$the black dots in Fig. 2B) (Plate 6
neary=0.042. Thus, the minimunqg and p for a hetero-

clinic point to appear for this particular value pf C is q The idea of reducing the study of the global orbit struc-
=2 andp=2. The(2,2-heteroclinic points can each be for- tyre of a system of differential equations to the study of an
ward and backward integrated to produce heteroclinic trajecassociated discrete map is due to Poin¢aB90, who first
tories going from the; Lyapunov orbit to the, Lyapunov  ytilized the method in his studies of the restricted three-body
orbit. We show one of the heteroclinic orbits in Fig. 23. problem. In this section we shall use the chain of two ho-
Notice that the number of revolutions around Jupiter is givermoclinic orbits and one symmetric heteroclinic cy@beevi-

by (q+p—1)/2. The reverse trajectory, going from the  ously generated in Sec. )lto construct a suitable Poincare
Lyapunov orbit to the_; Lyapunov orbit, is easily given by map. Our choice of Poincamaap will allow us to study the
the symmetrys (3.3). It would be the mirror imag€about complex global orbit structure near the chain. We shall find
the x-axig) of the trajectory in Fig. 23, with the direction an invariant set for this map near some transversal ho-

IV. GLOBAL ORBIT STRUCTURE
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moclinic and heteroclinic points along the chain where
“Smale horseshoe”-like dynamics exist. We shall then use
symbolic dynamics to characterize the chaotic motion of a
comet in a neighborhood of the chain as it transitions inter-
mittently through the interior, Jupiter, and exterior regions.
Not only shall we prove the existence of the invariant set, but
we shall also numerically approximate it, gaining further in-
sight into the complex global dynamics associated with the
chains.
Here is additional detail about how we shall proceed

(1) In Sec. IV A, we shall construct a PoincarepP trans-
versal to the flow whose domald consists of four dif-
ferent squared;, i=1, 2,3,4, located in different re-

gions of phase space in the neighborhood of the chair3)

See Figs. 24Plate § and 25(Plate 7.

SquaresU,; and U, are contained in the surface
=0 and each centers around a transversal homoclinic
point in the interior and the exterior region, respectively.
SquaresU, and U; are contained in the surface=1
—u (y<0 andy>0, respectively and center around
transversal heteroclinic points in the Jupiter region
which are symmetric with respect to each other. Clearly,
for any orbit which passes through a pottn one of
the squares and whose images and pre-images
[P"(q), n=0,21,+2,...] all remain in the domairJ,
the whereabouts dP"(q) (asn increases or decreages
can provide some of the essential information about the
history of the particular orbit. We record this history
with a bi-infinite sequence. This well-known technique
of studying only the set of points that forever remain in
the domainU (theinvariant sej provides us with all the
periodic solutions as well as the recurrent solutions in
the neighborhood of the chain.

(2) The technique of characterizing the orbit structure of a
dynamical system via a set of bi-infinite sequences of
“symbols” is known assymbolic dynamics

In Sec. IVB and Sec. IV C, we shall extend the sym-
bolic dynamics results of LMo our situation and con-
struct a set of bi-infinite sequences with two families of
symbols. The first family is aubshift of finite typevith
four symbols{u,,u,,us,u,}. It is used to keep track of
the whereabouts of an orbit with respect to the four

squaresJ;,U,,U3,U,. The symboly; is recorded ev- 4

ery time theU; square is pierced by the orbit. Subshift
here means that among the set of all bi-infinite sequences
of four symbols|i.e., (..U Uiy Up,...) wherei;
ranges from 1 to ¥ certain sequences where the adjacent
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It is constructed by the following rule:A),,=1 if the
ordered pair of symbols,, u, may appear as adjacent
entries in the symbolic sequence, antl) (=0 if the
ordered pair of symbolg,, u; may not appear as adja-
cent entries. For example, sincg cannot be followed
by u,, we have A),,=0.

The second family is dull shift of infinite typewith
symbols of positive integers greater than a fixed integer
m. This set of bi-infinite sequences of positive integers is
used to keep track of the number of integer revolutions
that the projection of an orbit winds around eithgror
L, when the orbit enters the equilibrium regioRg or
R,, respectively.

In Sec. IVD, we shall state the main theorem of this
section and discuss its implications. The theorem gives
the global orbit structure of the PCR3BP in a neighbor-
hood of a chain of homoclinic orbits and a symmetric
heteroclinic cycle. It says essentially that given any bi-
infinite sequence,
a=Un=C...(ui_,r-1);(Ui;ro), (Ui ,r1),(Ui,r2)...),
there exist initial conditions near the transversal ho-
moclinic and heteroclinic points such that an orbit cor-
responding to such initial conditions starts At and
goes toU; [provided (A);; =1]. This orbit passes
through either the equilibrium regioR, or R, depend-
ing on whether the initial indexi § in the current cagas

1,3 or 2,4. For example, ify=1, then the projection of
the orbit winds around.; for rq revolutions inside the
regionR, before leaving foll; . See Figs. 24Plate 6
and 25(Plate 7. After that, the same process begins with
(uil,rl) in place of (uio,ro) and (uiz,rz) in place of
(uil,rl), etc. For negative time, a similar behavior is
described for (Iiil,l’_l), (uio,ro), etc. While the for-
malism involved in the proof is fairly standard, there are
a few new features which may be worth pointing out.
While most of these comments will be made earlier, we
shall provide a sketch of the proof in Sec. IV D and Sec.
IV F both for completeness and for the convenience of
the reader. For more details, one can consult M&er,
LMS® and Wigginst>t’

In Sec. IV E we numerically construct sets of orbits with
prescribed itineraries. By successive application of the
Poincaremap P to a transversal plane in the neighbor-
hood of a chain, we can generate regions of orbits with
itineraries of any size.

entries in the sequence violate certain relations are no. Construction of a suitable Poincare ~ map

allowed. For example, froJ,, the (forward flow can-
not get toU, without passing through other squares.
Hence, in the bi-infinite sequence, the symbglcannot
be followed byu,. The relations can be defined by a
matrix A called thetransition matrix In our case,

In Sec. lll, we have shown that with an appropriate Ja-

cobi constant, there exists a chain of two homoclinic orbits
and one symmetric heteroclinic cycle. For simplicity of ex-
position, let us suppose that the chdirconsists of(1,1)-

1

Ao
11
0

o O B

0

R, O R

transversal homoclinic orbits in the interior and exterior re-
gions and a symmetri(l,1)-transversal heteroclinic cycle in
the Jupiter region. A similar study can be done for other
cases.

Now we are ready to construct a Poincarap. The first
step is to construct the transversal maps on the bounding
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spheres of the equilibrium regio&; andR,. Let €; ande, A=N;__.P"(U).
be small positive quantities. For the bounding sphergs
and n;, of the equilibrium region R;, we define
A:, By, Cq, Dy, E;, Fq, G4, and H; as the set of
points of dy;,ry4,r7,,d;5,d7,,r1,,r;, andd;,, respec-
tively, such thaf|Z|2— p*|<e. These sets correspond to thin
strips on the bounding sphere centered on the asymptotic s
a;,.81 1,81 ,, andag,, respectively. Similarly, we can de-
fine corresponding strips for the bounding spheargs and
N, of the equilibrium regioriR,. See Fig. 25Plate 7.

If €; ande, are small enough, the flow is transversal to
the surfaces just defined. Recall from Sec. 11D that orbitS; pomain of the Poincare map P
entering R, through C,,D,,E;,F; leave it through

This invariant set contains all the periodic solutions as well
as the recurrent solutions near the chain and provides insight
into the global dynamics in a neighborhood of the chain.

Compared with the standard textbook example which
eﬁtsudies the chaotic dynamics in a neighborhood of a trans-
versal homoclinic point of a two-dimensional mdp the
Poincaremap P constructed in this section has a number of
special properties.

B;,H1,A;,G;, respectively, becaugg|? is a first integral Instead of studying the first return mﬁiinduced byf )
in R;. Therefore the diffeomorphismsyy; send on a(smal) topological squar®, the domairl of the Poin-
D,,E;,C,,F, into H;,A;,B;,G;, respectively, for i caremap P consists of four squared;, i=1,2,3,4 which

=1,2,3,4. Similar results hold for orbits enterii and the  center around; 1,P2.1,P12,P22, respectively. See Fig. 26
corresponding diffeomorphisms,; sendD,,E,,C,,F, into (Plate 7.
H,,A,,B,,G,, respectively, foi=1,2,3,4. Moreover, the magP is not defined on points ik be-
The second step is to construct transversal maps outsidenging to the invariant manifolds of thé; and L,
of the equilibrium regions. Lep; ;e a:tl (resp.,p,.0e ag,z) Lyapunov orbits. TakdJ; as an example. On the curves
be a point of the transversal homoclinic orbit 6fin the FLL‘fl and Ff‘ﬁl which are the first intersections of the un-
interior (resp., exteriorregion. LetA; andB; (resp.,G; and  stable and stable invariant manifolds of the Lyapunov
H,) be the first images oA; andB; (resp.,G, andH,) in orbit with the surfacey=0 in the interior(Sun region, the
ny 1 (resp.,n,,) sent by the forward flow outsid®, (resp., Poincaremap is singular because any point on those curves
R,). The maps sending;,B;,G,,H, onto A;,B;,G5,H;  will be carried by the flow asymptotically backward or for-
are diffeomorphisms. In a neighborhood @f; (resp.,p,.2) ward towards thé ; Lyapunov orbit. Hence, we have a kind
the qualitative picture of\; and B (resp.,G;, andHj) is  of singular Poincaremap as it has been considered by
shown in Fig. 25Plate 7 providede, ande, are sufficiently  Devaney:® We shall return to this point at the end of Sec.
small. IVC.
Similarly, let p; ,e alfz andp, e azl be points of the Therefore, we must consider in fact four smélpern
transversal heteroclinic cycle ¢fin the Jupiter region. Let squares ifJ;, namely,
A, andB, (resp.,G; andH}) be the first images of, and , , , ,
Bz (resp.2,61 and Hll) in nllvz (resp.,ny) sent by the flow (CiNA1), (CiNBy), (D1NAy), and (DiNBy).
outsideR, and R,. The mappings sending,,B,,G;,H; A similar consideration is also needed for the oth&ts
into A;,B5,G1,H; are diffeomorphisms. In a neighborhood which add up to sixteen small squares in total. See Fig. 27
of py, (resp.,p,p the qualitative picture ofA; and B,  (Plate 7.
(resp.,G; andH;) is also shown in Fig. 2%Plate 7.
Now let U, (resp.,U,) be the sets diffeomorphic to
(CLUDy)N(AUBY) [resp., E,UF,)N(G;UHy)] defined 2. Horizontal and vertical strips
by following the flow backwards up to the first crossing with
the surfacey=0. Similarly, letU, (resp.,U3) be the sets
diffeomorphic to C,UD,)N(GUH)) [resp.,
(E;UF1)N(AZUB,)] defined by following the flow back-

For the standard textbook example, the first return Eap
(induced byf) on the square€) qualitatively looks like a
Smale horseshoe map. Conley and Moser found conditions

for the mapf_to satisfy in order for it to have an invariant

wards up to the first crossing with the surfacel— . See _ C . .
Figs. 24(Plate 6 and 25(Plate 3. Since each of the sets; SUbS.e.tAf of Q on Wh'.Ch '.t has chaotic Qynamlcs. The;e
conditions are a combination of geometrical and analytical

are topologically a square, we shall refer to them loosely as ™~ ..
. . . conditions.
squares in the rest of this section.
LetU=U,UU,UUzUU,. We define the Poincamaap (1) The geometrical part consists of generalizing the notion

P:U—U in the following way: To each poinje U we as- of horizontal and vertical rectangles to horizontal and
sign the corresponding first intersection point withof the vertical strips inQ by allowing the boundaries to be
orbit passing througly, if such an intersection exists. For Lipschitz curves, rather than straight lines. With this
simplicity of notation, we shall loosely refer ttJ,; as generalization in hand one then requires “horizontal”
(CLUD)N(A;UB;) even thoughU, actually lies in the strips to map to “vertical” strips with horizontal bound-
surfacey=0. Similar convention will be used for the other aries mapping to horizontal boundaries and vertical
U;'s. boundaries mapping to vertical boundaries.

Now we shall consider the invariant set of poinfs, (2) The analytical part comes from requiring uniform con-
which remain inU under all forward and backward iterations traction in the horizontal directions and expansion in the
by P. ThusA is defined as vertical direction(Fig. 28.
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FIG. 28. Generalization of the notion of horizontal and vertical rectanglesof arbitrarily long length, cuttingJ3 an infinite number of

for the Conley—Moser conditions.
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angles to represent strips in Fig. @@late 8. Similar repre-
sentations will be used throughout the rest of this section.
Similarly, we can look at the first iterate by of the
otherU;’s and obtain families of vertical strips in

B5({Varh) Ha({Va) AL{VA), GV,

AV, G5{VA).
ThereforeUN P(U) is the disjoint union of eight families of
pairwise disjoint vertical strips.

An analogous study can be done fon P~ 1(U). Con-

sider the small squaresDgNA;) and (C,NA;) of Uj,.
ThenP~1((D;NA])U(C,NA))) is a strip contained ifE,

times and spiraling towardEL "1, becoming thinner while

approaching the limit. The mtersection of this strip with
(in fact only with U3) forms an infinite number of compo-

For the Poincarenap P constructed in this section, the nents. All but perhaps one of the components are limited by
situation becomes more complicated in two ways. First, théhe sideseg ande;;. We call each of the components of
number of strips in each family generated after one iteration 1 , )
is not two or even finite, but is instead infinite. Second, we PA((D1NADU(CINA)NUCE,,

need to used subshift to keep track of the image of each horizontal strip of E; (in Uj).

family of strips. Here, we shall discuss first the issue of each

family having an infinite number of strips.
Let us considetJNP(U). For simplicity of exposition,

Now consider all the horizontal strips B, and denote
these byHE; 9, HE; 1,..., beginning with the strip nearest to
ejp. We have onk; a family of horizontal strip§HE; ,}

take U; as an example and consider the small squarebounded by the sides, ande;; (in U3) and with the width

(D;NA;) and D1NB;). See Fig. 29Plate 8.

Recall the observation in Sec. Il D on the spiraling of an
abutting arc with an endpoint in the asymptotic set of a

bounding sphere. The image of the squaBs(A;) and
(D1NBj) underP is a strip contained iH; of arbitrarily
long length, cuttmgu2 an infinite number of times and spi-

raling towardsl“,_ ’1» becoming skinnier when approaching

the limit. The mtersection of this strip with) (in fact only
with U,) forms an infinite number of components. All but
perhaps one of the components are limited by the sides
andeg. We call each of the components of

P((D;NA})U(D;NB}))NUCH],

a vertical stripof Hj (in Uy).

Now consider all the vertical strips iRl; and denote
these byVH{ o, VH] 4,..., beginning with the strips nearest
to es. We have onH; a family of vertical strips{VH}
bounded by the sidesz andeg (in U,) and with the width of
VH ], tending to zero as tends to infinity. We define

VH;,. = lim VH{,.

n—oo

Clearly, VH; . is simply the vertical curvé’}" WhICh is on

of HE; , tending to zero as tends to infinity. We define

HE]_’OC: ||m HEl,n .

n—o

Clearly, HE, .. is simply the horizontal curvES 1 Which is

on the stable invariant manifolds of thg Lyapunov orbit.

Similar constructions can be carried out for the other
small squares@,NB;) and (D,NB;) of U; which yield a
family of horizontal strips inC,. We shall again rename
{HCy,} and{HE,} as{H} and{H3", respectively. No-
tice that forHJ , the indexij indicates that the family is in
the squardJ; and it will go to the squardJ; .

Similarly, we can look at the first |terate By 1 of the
otherU;’s and obtain families of horizontal strips in

D1({HF),F1({H3),C,({H2), Ex({H3)),

DL({H2), Fo({H%).

ThereforeUNP~1(U) is the disjoint union of eight families
of pairwise disjoint horizontal strips.

Now we shall discuss briefly the meaning of the sub-
scriptn in the vertical stripV), . It can be used to keep track
of the number of revolutions the projection of the associated
orbits wind around_; or L2 For example, the orbit which

the Jupiter region branch of the unstable |nvar|ant manifolcpierces the vertical stnp/k+l has wound one more time

of the L, Lyapunov orbit. Similar constructions can be car-
ried out for the other small square§{NA;) and (C;NB;)
of U, which yield a family of vertical strips iB; . In order

aroundL , than the orbit which pierces the vertical stig*.
Moreover, given any, for the width of the stripdD,; and
H;, there is a minimum number of integer revolutiang,

to keep track of these families of vertical strips more effec-aroundL ; an orbit will make in going fronD, (in U;) toH;

tively, we shall renamgVB; } and {VH{} as{V;"} and
{V21} respectively. Notice that fov), , the indexji indi-
cates that the family is in the squddg and it came from the
squareU; . For simplicity of illustration, we have used rect-

(in U,). With this specifice;, the orbit which pierces/
has wound around ; for (n+r ) times. In the rest of Sec.
IV, we shall assume that we have adjusted the widthe
€;'s) of all the other corresponding pairs of strips so that the
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minimum number of revolutions around or L, is the same for some0<v,<1, where WV) is the width of \V Similarly,
for all the U;’s. With this adjustment, any orbit which let H be a horizontal strip contained iw;H™*. Then
piercesV) is now in Uj. It came fromU; and has wound ' p-1 31 v p-1 1
aroundL, (if u;=1,3) orL, (if u;=2,4) for (n+r 4, times. Ha=P 2(H)NHL" and Hy=P(H)NH,

B. The generalized Conley—Moser conditions are two horizontal strips for every.rMoreover

For the standard textbook exampietroduced in Sec. W(Hp)<wvpw(H) and w(Hp)<ww(H),

IVA) concerning the dynamics near a transversal homoclini¢or some0< v, < 1. Similar assertions are true for the other
point, it is well known that if the first return majp(induced  families of vertical and horizontal strips
by f) on the squar€ satisfies the following Conley—Moser Recall that
coqdngns, then there exgts an invariant 9gt of Q on HCia=HI, HD,,=H2,
which f has chaotic dynamics.
Condition 1: There exist a finite(or possibly infinite HE1,H=H;:‘1, HFlln:Hﬁz,
number of horizontal and vertical strigg; andV; with i in
an index set. The mapping takesH; homeomorphically
onto V; ,.with horizont.al boundaries mapped to horizon'gal HEz,n=Hﬁ3, HFz,n=Hﬁ4,
boundaries and vertical boundaries mapped to vertical ) 13 ’ 1
boundaries. VAL n=Vo™ VB1h=Vy,
Conditi0n_2: SupposeV is a vertical strip contained in
UiVi. Thenf(V)NV,=V, is a vertical strip for everyi.
Moreover,w(V))<v,w(V) for some G<v,<1 wherew()) VA=Vt VB, =V,
is the width of stripV. Similarly, supposé+ is a horizontal )\ ,44 r o\ 42
. . . =1 i . VGZn_Vn ’ VHZn_Vn !
strip contained inJ;H;. Thenf™ *(H)NH;="H; is a hori- : _ ’ _ _ _
zontal strip for everyi. Moreover, W(ﬁi)sth(H) for WhereHC,, is the n-th horizontal strip of the horizontal
some 0< v, <1 rectangleC,; and VA , is then-th vertical strip of the verti-
. ’ ' . .. i - .
We shall call Condition 1 thetrip condition Since Con- €@l rectangléA, , etc. Moreover, the indey of {HR} indi-
dition 2 requires a uniform contraction in the horizontal di- Cates that the family is in the squjialr{e and it will go to the
rection and expansion in the vertical direction, it can beSduareU; where the indeji of {V;} indicates that the fam-

HC,,=H23, HD,,=HZ,

VG, =V, VHi, =V,

called thehyperbolicity condition ily is in the squaréJ; and it came from the squatg; . See
For the Poincarenap P constructed in Sec. IVA, the Fig- 29 (Plate 8. _
situation is more complex. Now we have four squaths Even though the proof will be deferred to Sec. IVF, we

throughU,, together with eight families of pairwise disjoint shqll use this result to prove thg main theorem on the global
horizontal strips and eight families of pairwise disjoint ver- OrPit structure of the PCR3BP in Sec. IV C and Sec. IV D.

tical strips. We shall state below the theorem that the Poin- ) .
caremapP of the PCR3BP satisfies the generalized Conley-C- Symbolic dynamics

Moser conditions but shall leave its proof to Sec. 4.5. In Sec. IVA and Sec. IV B, we have constructed a Poin-
Theorem 4.1: The Poincaremap P satisfies the follow- cafemapP on U whose domain consists of four topological

ing generalized ConleyMoser conditions: squaredJ;, i=1,2,3,4, each of which is further subdivided
Generalized Condition 1: P maps horizontal strips to into four smaller squares by two curves that lie on the invari-

vertical strips, i.e, ant manifolds of the Lyapunov orbits. Moreovér,satisfies

the generalized Conley—Moser conditions.

11\ /11 12y _ /21
P(HR)=Va',  P(HO=Vq, While we need to take stock of certain new features, the

P(H®)=V3, P(HX=Vv*?, bz_isic forma_lism developgql b)_/ Smale, Conley, and Moser
still holds with a few modifications.

P(H? =V pHP)=vZ For the horseshoe mapwhich bends a squai@ into a
horseshoe and intersects it with the square, one has an infi-

P(HP)=V34,  P(HM =V nite Cantor set of trapped poingsin the invariant set\,,.
Here,

for all positive integers nwith horizontal boundaries map- " N
ping to horizontal boundaries and vertical boundaries map- A=Np-_h"(D),

ping to vertical boundaries _ _ which is the set of points in the squabethat remain in the
. Geperallzlead Condition 2: Let V be a vertical strip con- square under all forward and backward iterationshby
tained inU;V;~. Then Recall thatp can be defined by
V/=P(V)NV} and VI=P(V)nV2 p={qeD|h'(q) eHs,i=0+1,+2,.},
are two vertical strips for every .nMoreover wheres; denotes one of the elementsS#{0,1} andHq,H

, , are the two original horizontal rectanglesin Moreover, an
w(Vy)=v,Ww(V) and w(Vy=v,w(V), address which is a bi-infinite sequence of two symtold}
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As for assigning the addresses for points remaining in
U, take the “square’Q%? as an example. Sin€@3/1?is the
intersection of the horizontal strid ﬁz and the vertical strip
V,1n3, we can use (..ug,m;uq,n,u,,...) torepresent its lo-
cation. As usual, the central block of this sequence also tells

the history of the points in this “square”@3.1).

(1) they are currently irJ; and will go toU, and on their
way their projection will wind around.; for (N+r )
revolutions where i, is the minimum number of revo-
lutions discussed earlier in Sec. IV A.

(2) they came fromU; and their projection has wound
aroundL4 for (m++r,,) revolutions.

FIG. 30. The invariant seh, of the horseshoe map.

Similar sequences can be assigned to the other
“squares” which are the intersections of all the other hori-
(in 32) can be attached to every poiptin the invariant set  zontal and vertical strips.
Ay, which will not only describe its location, but also tell its Moreover, since the Poincamap P satisfies the gener-
whole history and future under iteration of the map. By thisalized Conley—Moser conditions, this process can be re-
we mean that there is a mafi A,,— 3?2 defined by peated ad infinitum as in the case of the horseshoe map.
D)= (oSS 115005 10ee Ses) After an infinite number of steps, what remainslhis a
moneRe S0 E e mn el Cantor set of points which are in one-to-one correspondence
wheres;=0 if h'(p) e Hy ands;=1 if h'(p) e H;. with the set of bi-infinite sequences,
One easy way to imagine the invariant 8gfis to draw
the regions that remain trapped for one forward and one (Ui n-1)3 (Ui No), (Ui, ), (Ui M), ).
backward iteration in the squaf2. This is the intersection Hence, we have shown that the invariant Aefor the

of the thickest vertical and horizontal strips, so it is four pgincaremapP corresponds to a set of bi-infinite sequences
squares lying in the corners of the original square. The sef;ith two families of symbols. The first family is a subshift of
trapped for two iterations forwards and two backwards isfjpite type with four symbolgu,u,,uz,u,} (with a transi-
obtained by intersecting the thinner strips of these figuresjon matrix A defined at the beginning of Sec. )Mt is used

yielding sixteen smaller squares contained in the foukg keep track the history of the map with respect to the
squares of the first stage. See Fig. 30. Notice the addressgsyr squaresJ,,U,,Us,U,.

that have been assigned to those squares. This process can be The second family is a full shift of infinite type with

repeated ad infinitum. After infinitely many steps, what re-symhols of non-negative integers. This set of integers is used
mains is a Cantor set of points which are in one-to-one cortg keep track of an individual member of each vertical or
respondence with the set of bi-infinite sequences of two symngyizontal family Vit or {H}). As mentioned at the end
bols{0,1} shown above. of Sec. IVA, this set of integers also corresponds to the

For the PoincarenapP, we can use a similar technique nymper of revolutions that the projection of an orbit winds
to visualize the invariant set and its associated set of bi- 4round eithel.; andL.,.

infinite sequences. Instead of one squBrewe have four

squaredJ;,1=1,2,3,4. After one forward and one backward 1. Singular Poincare " map
iteration, instead of the intersections of two vertical rect-
angles and two horizontal rectangles, we have the interse(ﬁ; :
tions of eight families of vertical stripsv)} and eight fami- hOI f bol Selets — be th
lies of horizontal strips {H!}, with the indices ij t espa(.:_eo. _sym ol sequen et _{((u‘j’ni_))} e the
corresponding to the nonzero entries of the transition matrip€t Of bi-infinite sequences of elementsf N with a tran-

A. Recall from Sec. IV A that fof Vil the indexii indicates ~ Sition matrixA defined orS. Here,S={u; ,u;,Us,us} andN
that the family is in the squard;, and it came from the is the set of non-negative integers. As usual, a compactifica-

squareU; ; for {H!1}, the indexij indicates that the family is tionS of 3 is obtained with the inclusion of sequences of the
in the squardJ; and it will go to the squar®);. See Fig. 31 following types:

Now we shall discuss briefly the issue of the singular
ncaremap and how it relates to certain modifications of

(Plate 8. B=C(..;(uj ,ng),...,(Uj ,))
For simplicity of illustration, we draw Fig. 3{Plate 8 o0 'k
schematically. Taking the familjH>? as an example, we y=(2,(U_,n_y),...5(U,No),...),

draw two horizontal rectangles to represent the first and the

n-th horizontal strips. This horizontal family is in the square 6= (%, (Ui_,N—1),...;(Ui ,No), ... (Ui, %)).
U, and it will go to the squar®l,. Similarly, for{V:3}, only —
the first and them-th vertical rectangles are shown. This 1he elements ok C will be calledtype « from now on.
vertical family is in the squareJ, and it came from the Moreover, the shift mapr on % defined b_y‘f((uij’nj))

squareU;. The same method has been used to illustrate alf= (Ui, ,Nj+1) can be extended to a shift mapin a natural
the other families of horizontal and vertical strips. way. The domain ofr is
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D(E)z{(u,n)e§|n0¢OO} eroclinic cycle. For the_Jupi_ter region, the num_ber is
) (g,+po,—1)/2. For the interior and exterior regions,
and the range of is the number is g+p;—1 and g+ pz— 1, respectively.
R(a)=1{(u,n) e§|n1¢w}. Note that q and p are positive integers

(2) For an element of the type

By studying the Fig. 31Plate 8, it should be clear that B=(..:(Ui To)yenn (U 1)),
H22 (or H1Y is simply the horizontal curvEffl which is on ‘o 'k
the interior(Sun region branch of the stable invariant mani-
fold of the L, Lyapunov orbit and any point on this curve
will be carried forward asymptotically towards thie;
Lyapunov orbit. Hence, any element of tygecorresponds
to an orbit which tends to either theg or L, Lyapunov orbit gionR,.
asymptotically afterk iterations. Similarly, any element of (3) For an element of the type
type y corresponds to an orbit which is carried by the flow y=(oo,(ui_|,r,|),...;(uio,ro),...),
asymptotically backward towards one of the Lyapunov orbits
after| backward iterations. As for an element of tyfewe
have either a homoclinic or a heteroclinic orbit.

the orbit tends asymptotically towards one of the
Lyapunov orbits after k iterations. Ifiku= 1,3, the orbit

tends towards the L orbit and stays in regioriR,. If
ui, =24, it tends towards the 4 orbit and stays in re-

the orbit tends asymptotically backward towards one of
the Lyapunov orbits after | backward iterations. Ifﬁy
=1,2, the orbit tends towards the,;Lorbit and stays in
region R,. If ui7|=3,4, it tends towards the 4 orbit
and stays in regiork,.

Now we are ready to put together all the results in Sec(4) For an element of the type
IV B and Sec. IV C and to state the main theorem of Sec. IV 8=, (Ui 1)y (Ui, o), oo o(Uj ),
which provides a symbolic dynamics description of the glo-
bal orbit structure of the PCR3BP near a chain of homoclinic
orbits and a symmetric heteroclinic cycle. For simplicity of
exposition, we have assumed in the past that the chain con-

D. Global orbit structure

the orbit tends asymptotically towards the lor L,
Lyapunov orbit after k iteration, depending on whether
u, =13 or 2,4. 1t also tends asymptotically backward

sists of (1,1)-homoclinic orbits in the interior and exterior towards the L or L orbit after | iterations backwards,
regions and a symmetrid,1)-heteroclinic cycle in the Jupi- depending on whether; &=1,2 or 3,4.

ter region. Now we shall consider the general situation. Let ) _
us suppose from now on that the chairis made up of a We shall provide a sketch of the proof here, which

symmetric §,,p,)-heteroclinic cycle in the Jupiter region Makes use of the major results in Sec. IVB and Sec. IVC.

(g;,p1) orbit in the interior region and the other is@g(ps)  caremapP does satisfy the generalized Conley—Moser con-
orbit in the exterior region. ditions as mentioned at the end of Sec. IV B, we shall defer

Theorem 4.2: Consider an elemerf[u,r)eg with r, their proofs to Sec. IVF so that we can discuss first the

>t for all . Then there are initial conditions, unique in a ImPlications of this theorem. _

neighborhood of the given chain of two homoclinic orbits ~ Proof: First construct a Poincamaap P whose domain

and one symmetric heteroclinic cycle (associated witht consists of four different squares, i=1, 2,3,4. Squares

P11, Pazr Pios P21, FEspectively), such that the following U, andU, are contained in the surfage=0 and they center

statements are true around @,,p;) and (s,ps)-transversal homoclinic points

in the interior and the exterior region, respectively. Squares

(1) For an element of the type U, andU; are contained in the surface=1— x and center
a=(..,(U_,r—1); (Ui ,To) (U iF 1), (Ui, T2),..0), around @,,p,)-transversal heteroclinic points in the Jupiter
the orbit corresponding to such conditions starts gt U region which are symmetric with respect to each other.

and goes to U if (A); ; =1. This orbit passes through Adjgst the widths of gll the corresponding pairs _of the
1 ol thin strips on the bounding spheres so that the minimum

number of revolutions .,;, aroundL, or L, is the same for
all the Uy’s. With this adjustment, any orbit which pierces
VI is now in U;. It came fromU; and has wound arourid

(if ui=1,3) orL, (if u;=2,4) for (m-+r ) times. A similar
analysis holds foH! .

either the equilibrium regioriR, or R, depending on
whether the initial indexy is 1,3 or 2,4.1f i;=1,3, the
projection of the orbit winds around jLfor r revolu-
tions inside the regiorik, before leaving for Y. Oth-

erwise, it winds around jfor rq revolution before leav-

ing for L_Jil' After that, the same proces.s begins with Assume that we have shown that the Poihcaap P
(ui),ra) in place of (uj;ro) and (ui,rp) in place of  gasisfies the generalized Conley—Moser conditions. Then our
(ui,.r1), etc. For negative time a similar behavior is giscussion in Sec. IV C on symbolic dynamics shows that for
described for(uifl,r_l), (uio,ro), etc any bi-infinite sequence of type, a=(u,r), we can find

For this orbit, the number of revolutions that the initial conditions (,n) in U such that the orbit with this
comet winds around Jupiter or the Sun (in the interior or initial condition has exactly the history ofu(r). Here,r;
exterior region) is a constant which depends on the re-=n;+r,,. Similar arguments also hold for bi-infinite se-
gion and the given chain of homoclinic orbits and het- quences of other types.
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¥ (AU, Sun-Jupiter rotating frame)
¥ (ALl Sun-Topiter rotating frame)

5 8 4+ 2 0 2z 4+ & & # 4.4 % oM =4 88
x (AU, Sun-Jupiter rofating frame) x (AU, Sun-Jupiter rotating frame)
(a) (bl

FIG. 32. (Color onling (a) The homoclinic-heteroclinic chain corresponding to the Jupiter cé@detma (b) The actual orbit ofOterma(AD 1910-1980
overlaying the chain.

1. Some additional comments on the implications of chains. By exploring and cataloguing the phase space objects

the theorem related to the chain, we gain insight into the dynamics of the
Type a orbits include “oscillating,” “capture” and temporary capture and resonance transition of actual comets.

“nontransit” orbits. Recall that oscillating orbits are orbits [N this section, we make this observation more concrete

which cross from one region to the other infinitely many by exploring the complex orbit structure in the neighborhood
times, capture orbits are orbits which cross sometime bu@f @ chain. What we have found is an invariant set of orbits,
eventually stay in one region, and nontransit orbits always® €ach of which we can attach an itinerafe.g.,
stay in the same region. Typg and type y orbits are (---:X,J,S,J,...) in theinformal nptatioﬁl describing the fu-
asymptotic orbits which wind on and off one of the ture and past history of the orbit fo_r a!l time. Furf[hermpre_,
Lyapunov orbits. Types orbits are homoclinic and hetero- Theorem 4.1 shows us that all permissible itineraries exist in
clinic orbits. the neighborhood of a chain.

Similar to the standard textbook example, it is easy to  'Nhe invariant set is a theoretical construct, and though
verify that both the shift map and the PoincarmapP have  useful for guiding our understanding and classification of the
the following properties(1) a countable infinity of periodic dynamics, its infinite nature renders it powerless to provide
orbits of all periods2) an uncountable infinity of nonperi- US With usable trajectories. Computational and numerical
odic orbits, and3) a “dense orbit.” methods must be brought to bear which iteratively approxi-

Moreover, botho and P model the phenomenon that is Mate the invariant set.
called deterministic chaosin dynamical systems theory.

Most notably, they exhibit the phenomenon of sensitive de-

pe“de”_ce_ _on initigl_ conditions, i.e., the dis_tance betweerl. Numerical construction of orbits with prescribed

nearby initial conditions grows under some fixed number ofjjnararies

iterates. This phenomenon corresponds to the ‘“random”

jumping of the comets between the interior, the Jupiter, and The description of the construction of the invar[ant setin
the exterior regions. Sec. IV C involved successive iterations of the Poincaag

P. Finite areas of finite central block itineraries evolved un-
der successive application of the mBpinto a “cloud of
points,” the invariant set\ of points with bi-infinite itiner-
aries. If we truncate the construction of the invariant set at

Throughout this paper, we have been developing aome finite number of iterations &f, we will find regions of
framework for understanding transport in the PCR3BP. Funphase space which have a certain finite itinerary. Orbits in
damental to our approach has been the homoclinicssuch regions will be robust. More specifically, the essential
heteroclinic chain, those objects which are the union of twdeature of the orbit, its itinerary, will be robust because all
homoclinic orbits and a symmetric heteroclinic cycle. Earlythe nearby orbits in phase space have the same finite itiner-
in our investigations, we noticed the similarity between ob-ary. Thus, by truncating our construction of the invariant set
servations of actual comet orbits likeDterma and A at some finite number of applications Bf we can gen-
homoclinic—heteroclinic chains of the same energy. See Figerate a set of robust orbits with different finite itineraries.
32. Noting this similarity, we deduced that the same dynamThe sets of orbits with different itineraries are easily visual-
ics governing the motion of the comets was at work in theizable on our chosen Poincasection as areas in which all

E. Numerical construction of orbits with prescribed
itineraries
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cuts of theL, andL, Lyapunov orbit manifolds on th&l,
section in the Jupiter regiaf. Note that the Poincammap is
area preserving owing to the Hamiltonian nature of the flow
and the particular choice of the Poincaection. Notice that
there is an intersection” for p+q=6, wherep=1 is the
cut number for theL; Lyapunov orbit stable manifold and
g=>5 is the cut number for the, Lyapunov orbit unstable
manifold. The interiorA?”; of I':7; (the first cut of thel

Lyapunov orbit stable manifojds connected to the spherical
cap dfz of the bounding sphere, , by the stable manifold
tubeWﬁ’fp_o_. Hence,Af'f1 contains all the orbits that will go

from the Jupiter region to the interidSun region during
their next close approach to the equilibrium region. Simi-
ot S S S—-1 larly, the interior A" of T}"% (the fifth cut of thel,
¥ (nondimensional units, rotating frame) Lyapunov orbit unstable manifold with the=1— u plane,
] ] following the convention of Sec. lllis connected to the
FIG. 33. (Color online The first few transversal cuts of thg (stable and

L, (unstablg¢ Lyapunov orbit manifolds on th&; section in the Jupiter spherlcal Camz,l of the boundmg Sphemzvl by the unstable

region. Notice the intersection region, in which all orbits have the centraimanifold tUbeWE'z‘,jp_o_- Thus, Afzjg, contains all the orbits

block itinerary X;J,S). that entered the Jupiter region from the exterior region and
have completed two revolutions around Jupiter.
Therefore, the intersection

¥ (nondimensional units, rotating frame)

R s
i

the orbits have the same finite itinerary. We will also no
longer be limited to a small neighborhood of a chain, but can A~7=Aﬁ'71rmﬁ'~75
obtain more global results. v &

contains all the orbits that have come from the exterior re-
2. Example itinerary: (X,J,S,J,X) gion X into the Jupiter region7, have gone around Jupiter
2i(=(p+qg—1)/2) times, and will enter the interior region
S. The regionA7 is the intersection of the image of the
spherical capd,; and the pre-image of the spherical cap

In what follows, we shall illustrate the numerical con-
struction of sets of orbits with prescribed itineraries. We

shall of course be limited to an itinerary of finite size, a . L2
y gfz Therefore, from the discussion in Sec. I, we know that

central block. However, using our simple procedure, the siz bit tained in the int tian” th hich
of this central block can be arbitrarily large. We shall use theX P!ts contained In the intersect are those which en-

less formal sequence notation using the symi8lg, X} to t;reddthil_.zheql'J"lllbr!;Jtmhe:_eg|on7%'2bf_rom7t2he_ etxtter:lor rteg'lon
denote the location of the orbit in the interi@un), Jupiter, andwhich will €xi 1 equitibrium /e, Into the interior

or exterior regions, respectively. regionS. The orbits are currently in the Jupiter regighWe

As our example, we shall construct an orbit with the can therefore attach the central block labiJ,5) to the

ianA
central block ¥,J,S,J,X) which roughly corresponds to the mterTsecgotnA . . f oh ith additional
behavior of comeOterma(1910-1980 with respect to the 0 determiné regions of phase spaceé with addriona

Sun-Jupiter system. This central block denotes an orbﬁymbms of our de§|red central block, we tak-e the . S) .
which went from the exterior region into the interie8un region and evolve it forward under the equations of motion

region via the Jupiter region, and will then return to the:lgzt'lw't mtherjvetcrt]:is tf;}@i;s,e::tlorgiwr]]thNe |tr;ter|:)hr rf:?kl]on.\ljr_\SFlg.
exterior region via the Jupiter region. e show this Poincarsection. Notice that theXJ;S)

We seek regions of phase space which have the Séggion lies entirely within the interioAEf1 of the first inte-
quences (...X,J,5,J,X,...) with the central block Tior region cutl'{"’ of theL, Lyapunov orbit unstable mani-
(X,J,5,J,X). We shall therefore systematically seek regionsfold. We also see that a couple of segments of Kgl{S)
on a suitably chosen Poincasection which correspond to region intersect the interiafsﬁfl of the first interior region
this central block. We shall také=3.038 just belowC, in  stable manifold cuf'$"*;. Any orbit within A}S;, and there-
case § as our Jacobi constant. We choose this Jacobi Coffy g yithin the stable manifold tuba , ,, will be brought
stant because, though it differs fro@termas (C=3.03), it 1P

makes the visualization easier and preserves the dynamics &?Ck fto the Jup:;;[erl rEg|onJ.;r3ese 'gtg r.sectlng segmAthsl
Otermds transition. Moreover, in order to link the present erefore carry the labe(J;S,J) and bring us one symbo

numerical construction with the earlier theoretical frame—CIOS\?\; ot) tko (t)rl:r (IJIeswed ;:tehntrfl bl.()(f[k' . ts and
work and terminology, we shall adopt the following conven- € take ne farger of the wo Intersecting segments an

tion. TheU, andU, (Poincafe sections will be the planes evolve it forward in time until it re-enters the Jupiter region
(y=.0 x<0)1in the i;terior region, andy(=0x< —1) in the and intersects th&J, Poincaresection. See Fig. 35. Notice

exterior region, respectively. Thé, andU sections will be th?t the (X'J_’S;‘]) r(_ag!on(the_ 'mage Sf}he Iarge_r segmgnt of

the planes X=1— u,y<0) and &=1— w,y>0) in the Ju- A®) lies entirely within the interion| ", of the first Jupiter

piter region, respectively. region cutl“ffl of theL; Lyapunov orbit unstable manifold.
In Fig. 33, we show the first few transversal PoincareThis thin filament has a segment intersecting the interior
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& (nondimensional units, rotating frame)
T (nondimensional units, otating frame)

na6 nas ned oana o a6 ne nas 066 QERF 086 -D6SE -DE5E -O6EE -0E5F 085 0640 008G 0 Gdd

x (nondimensional units, rotating frame) x (nondimensional units, rotating frame)
ia) i)

FIG. 34. (Color onling (a) Taking the ;J,S) region of theU; Poincaresection(see Fig. 33 we evolve it until it intersects thg,; Poincaresection in the
interior region(lightly shadedl. (b) A close-up of the intersection of th&(J;S) region with the interiorAﬁ'f1 of Ff‘fl, the first stable manifold cut of the;
Lyapunov orbit. Note the regions labeleX,(;S,J), which will return to the Jupiter region.

Aﬁ'fs of the Poincarecut Fﬁ‘fs of the L, Lyapunov orbit F. The Poincare’ map satisfies the generalized

stable manifold. Any orbit in this intersection regidnwill Conley-Moser conditions

escape from Jupiter into the exterior region. Thus, any orbit ~ The proof that the Poincamap P satisfies the general-

in this segmentA can be labeled with the central block ized Conley—Moser conditions follows the same pattern as

(X,J,S;J,X), which is our desired finite itinerary. the proof given in LMS. We shall provide a sketch here
We have forward and backward integrated an initial con-mainly for the convenience of the reader. For more details,

dition within this region to illustrate the characteristics of ansee Moset?

orbit corresponding to theX(J,S;J,X) region. See Fig. 36. . »

Orbits in the region are considered robust because nearby StP condition

orbits have the same finite itinerary. Regions corresponding The fact that the Poincamap P satisfies the strip con-

to other allowable itineraries of any length can also be gendition follows from the lemma below. Since we have a het-

erated with this same systematic procedure. Not only do weroclinic cycle in our case, the proof of this crucial lemma is

know such orbits exist, but we have a relatively simpleslightly different from the proof in LMS.Hence, more detail

method for producing them. will be provided here.

& & o o & o
o £ 5 [ £ a

&
b

¥ (nondimensional units, rotating frame)
¥ {nondimensional units, rotating frame)

.03 025 0oz A5 S (L0 o =0.025 D0z L] 00

¥ (nondimensional units, rotating frame) ¥ {nondimensional units, rotating frame)
{a) k)

FIG. 35. (Color onling (a) Taking the ¥,J;S,J) region of theU; Poincaresection(see Fig. 3% we evolve it until it intersects the), Poincaresection
(x=1-pu,y<0) in the Jupiter regiofilightly shaded. Part(b) shows a close-up of the intersection of the J,S;J) region with the interiotAﬁ'z‘?5 of Ff'g5,
the fifth stable manifold cut of the, Lyapunov orbit. Note the region labeleX,J,S;J,X), which will return to the exterior region. This region contains
orbits with the desired finite itinerary.
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FIG. 36. (Color online (a) An orbit with the itinerary (. .. ,X,J,S,3,X, ...) conputed using an initial condition inside theregion of theU, section(see
Fig. 35. (b) A close-up of this orbit in the Jupiter region.

Lemma 4.3: The Poincan@ap P maps horizontal strips P Y(VA],)=sPg VA, )=sP(HD1,)Cs(Ui_sVH},)
to vertical strips, i.e. ’ ’ ' '

, , =Up_oHEin.
P(Hcl,n):VBl,nv P(HDl,n):VHl,m
Therefore,
P(HCZ,n):VBz,nv P(HDZ,n):VHZ,n’ VAi,nC U;C:OP(HELn). 4.2)
P(HE1 n)=VA1,, P(HF.,)=VGi,, Using the relation$4.1) and (4.2) we find that
P(HEZ,n) = VAé,n ) P(HFZ,n) = VGé,n ) U cr>1C=OP(IHEl,n) =U :10=0VA1,n'
for all positive integer n Since the strips of the typ®E; , or VA], are pairwise

Proof: We illustrate the methods for the caB¢HE;,)  disconnected, each one of the strifi&; , must be mapped
=VA{,. Since this case involves the heteroclinic cycle, it isby P onto one of the Strip¥’A} ,. It remains to show that
typical in our study. The other cases can be proved similarlym=n.

Recall that the equations of the PCR3BP have a symme- Let y be a diagonal line in the squakg N B, . Clearly,
try s which we have used earlier to construct the stable maniy intersectsE, , for all n. Pick a pointy, in each inter-
fold out of the unstable manifold. Since the heteroclinicsectionyN’HE;,. Recall that{HE,,} is ordered with re-
cycle in our chain is a symmetric one, we shall have thespect to its distance from the longer edgeof the rectangle
following relation: E,. Therefore, the sdty,} can be made into an ordered set

p-1—g Lopog (yo,yl,...,y_n,...) with respect to the ordering by distance

' from the pointy, to the edgesg.
wheres is regarded as the symmetsyrestricted to the do- After one iteration byP,
mainU of the Poinca’re’nap. Notes=s 1. In th_e foIIowing, YNUZ_oHE;, is mapped into P(y)NU%_VA,,.
we shall regard all operations on sets as taking pladé.in ' '

Also recall that The key observation is that sinéq y) spirals inward from
. , . the longer edge, of the rectangled;, the set{P(y,)} can
HE1nCP™H((C1NA)U(D1NAY)) also be made into an order S&(vo),P(y1),....P(yn).-..)

with respect to the distance from the poiiy,) to the edge
en. Recall that(1) everyVAim must contain one and only
But P(D;N(A]UBY)) is the family of vertical strips iH; . oneP(y) and(2) {VA; .} is also ordered with respect to its
It is equal toP(D,)NH; . Therefore, we have distance from the longer edgs .

, It follows from this thatm=n.
HEl,nC S(P(Dl) ﬂ Hl):S P(Dl)ﬂ El

=P 's(Dy)NE; =P~ (A)NE;. 2. Hyperbolicity condition
Applying the Poincarenap on both sides, we obtain As pointed out earlier, for the standard textbook example
, w , (introduced in Sec. IV A it is well known that if the first
P(HE1) CAINP(E)=U_oVAL,. 4.2

return mapf_(induced byf) on the squar& satisfies the
Similarly, we have Conley—Moser Conditions 1 and 2, then there exists an in-
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variant setA7 of Q on whichf has chaotic dynamics. How- V. RESONANCE TRANSITIONS

ever, a direct verification of whethédrsatisfies Condition 2  A. Introduction
or not is nontrivial. When one thinks of the stretching and

contraction of maps, it is natural to think of the properties of S . . . -
tween the interior and exterior regions is the heteroclinic

the derivative of the map[{f) at different points. Hence, o cection between tHe, andL, Lyapunov orbit manifold

when the mag is continuously differentiable, Condition 2is {,pes in the Jupiter region. As mentioned previously, the
usually replaced by another equivalent conditi@ondition  qrpits interior to these tubes are the transit orbits of each
3) that is based solely on the properties of the derivative of equilibrium region. Therefore, their intersection is a set of

Compared with Condition 2, Condition 3 is easier to check.orbits which come from one heliocentric regia® ¢r X) and
While we shall state only the Generalized Condition 3 in theexit to the other X or S).

following, the standard Condition 3 is exactly the same with  This was an unexpected result. It was previously be-
a couple of obvious modifications. lieved that a third degree of freedom was necessary for reso-
Define the unstable sector bundf” (in the tangent nance transition or that “Arnold diffusion” was somehow
bUndIeTU) over the families of the horizontal Strips as fol- involved. But as we have seen, On|y the p|anar CR3BP is
lows: necessary. The dynamics and phase space geometry involved
in the heteroclinic connection now give us a language with
which to discuss and further explore resonance transition.
The dynamical channels discussed in previous sections
are a generic transport mechanism connecting the interior
and exterior Hill's regions. We shall now focus on a limited
case of this generic transport mechanism; the case of trans-
port between resonances. In particular, we shall study how
this homoclinic—heteroclinic transport mechanism connects
the mean motion resonances of the interior and exterior re-
33:{(0,\,\,) e TUl|w|<x|vl}, giops(e.g., the 3:2 and 2:3 Jupiter resonanaea the Jupiter
region.

. Using numerical exploration of the heteroclinic connec-
whereq is a point in a vertical strip. Then the Poincan@p  tjon between the interior and exterior resonances, we shall
P is said to satisfy th&seneralized Condition 3f the fol-  gptain a deeper understanding of the mean motion resonance
lowing two conditions are met. transition of actual Jupiter comets. In particular, we shall try
(@ DP(SY) TS and|wy|= k" Hwo| where ¢1,w;) is to explain in more precise terms the sense in wiithrma

the image of {4,W,) underDP; i.e., the vertical com-  fransitions between the 3:2 and 2:3 resonances. In the pro-

ponent of a tangent vector gets amplified at least byF€SS, We shall discover much about the mixed phase space
«~ 1 underDP. structure, especially the mean motion resonance structure, of

(b)  Similarly, DP~4(S3)CS83-1 and [v_1|=x" vl the PCR3BP. N
where ¢ _,,w_,) is the imagqeﬁo Wo) underDpP 1 Recall that in Sec. lllF we constructed a homoclinic-

i.e., the horizontal component of a tangent vector getd'€téroclinic chairC for the Sun—Jupiter system and with a
amplified at least byc~* underDP 2. qacobl _constant value similar to that of_corﬁllérmadurmg
its Jupiter encountersQ= 3.03). See Figs. 2Plate 1 and

Since the Generalized Condition 3 is based solely on th&2. This chain is a union of four orbits: an interior region
local properties of the derivative of a map, the proof thatorbit homoclinic to thel.; Lyapunov orbit, an exterior region
Generalized Conditions 1 and 3 imply Generalized ConditiorPrbit homoclinic to thel, Lyapunov orbit, and a symmetric
2 is essentially the same as the standard proof that the Coheteroclinic cycle(two orbitg connecting thelL, and L,
ditions 1 and 3 imply Condition 2 with some obvious modi- Lyapunov orbits. For simplicity of exposition, we chose this
fications and hence will be skipped. For more details on théarticular chain because both of its homoclinic orbits are of
standard case, see Mo¥kand Wiggins:® the (1,)-type and were constructed using the first Poincare

As for the proof that the Poincammap P satisfies the cuts of their respective stable and unstable manifolds. Lim-
Generalized Condition 3, the key observation is that all theting our chain to(1,1)-type meant, for this particular energy
stretching and contraction by the mé&ptakes place inside regime, that two different resonance connections were pos-
the equilibrium regionsR,; and R,. Recall thatR; is  sible; 3:2to 1:2 and 3:2 to 2:3. We chose the 3:2 to 2:3 chain
bounded by pairs of spheres; andn; , (for i=1,2) which  for our exploration.
contains the domaild of the mapP (or more accurately four Theorem 4.1, or more accurately its simplified version,
squares whose union is diffeomorphic th). See Figs. 8 tells us that in a neighborhood of this particul@r there
(Plate 4 and 25(Plate 7. Inside these equilibrium regions, exists an orbit O whose symbolic sequence
the flow is exactly given by the linear equatiofsee Sec. (...,J,X,J,S,J,...) isperiodic and has a central block itiner-
[ C) in suitable coordinates. This flow satisfies the generalary (J,X,J,S,J). Because this orbit transitions between the
ized Condition 3 with a constant that can be chosen as interior and exterior regionghe neighborhood of the 3:2 and
large as desired provided thdtis sufficiently small. 2:3 resonances, in particulawe call this kind of itinerary a

Our new dynamical mechanism effecting transfer be-

Sq=1{(v,w) e T U[[v|=«|wl},

where 0< k< 1/2 andq is a point in a horizontal strip. Simi-
larly, the stable sector bundi§® over the families of the
vertical strips is defined as
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FIG. 37. (Color onling (a) The orbit®’, with itinerary (J3,X,J,S,J), in the rotating frame(b) The orbit®’ in the heliocentric inertial framec) Plot of a
vst for the orbitO’. Important mean motion resonances 3:2 and 2:3 are also shown for comparison.

resonance transition block. This orbit makes a rapid transiBoth | andg are angular variables defined module. ZThe

tion from the exterior region to the interior region and vice angleg is the argument of the perihelion relative to the ro-

versa, passing through the Jupiter region. It will repeat thigating axis. The angleis the mean anomaly. It is the ratio of

pattern ad infinitum. the area swept out by the ray from the Sun to the comet
We have commented earlier that while an orbit with thisstarting from its perihelion passage to the total area. For

exact itinerary is very fragile, the structure of nearby orbitsmore detail, see SzebehéfyAbraham and Marsdett, and

whose symbolic sequences have a central block like the orbMeyer and Hall*?

O, namely @,X,J,S,J), is quite robust. In fact, we have , )

devised simple procedures to construct sets of orbits witf? Mteror and exterior resonances

such specific characteristi¢as encoded in the central block 1. /nterior resonances

itinerary) in the previous section. Figure 39 shows the first Poincacats of the stable and
We will study how this particular chaié and its nearby unstable manifolds of ath, Lyapunov orbit with theU,

dynamical channels connect the 3:2 resonance of the interigection =0x<0). They have been plotted using Delaunay

region and the 2:3 resonance of the exterior region. variablesL andg.
The striking thing is that the first cuts of the stable and
1. Delaunay variables unstable manifolds intersect exactly at the region of the 3:2

resonance. Recall that the interidf:"; of I't:%, (the first cut

- . f the stable manifoldis connected to the spherical cdiil
body problem. Hence, outside of a small neighborhood ng the bounding sphere, ; by the stable manifold tube.

L., the trajectory of a comet in the interior region follows ¥ ASS ai I th bits that will f th
essentially a two-body orbit around the Sun. In the heliocen- ence, a1 contamns all the orbits that will go irom the

tric inertial frame, the orbit is nearly elliptical. The mean interior (Sun region to the Jupiter region during the next
motion resonance of the comet with respect to Jupiter i§/0se approach to the; equilibrium region. Similarly, the
equal toa~*? wherea is the semi-major axis of this ellipti- interiorAEfl of FEfl (the first cut of the unstable manifold
cal orbit. Recall that the Sun—Jupiter distance is normalized@ontains all the orbits that came from the Jupiter region into
to be 1 in the PCR3BP. The comet is said to bepiq  the interior(Sun region during their previous close approach
resonance with Jupiter &~ %>~p/q, wherep andq are to the L, equilibrium region. Therefore, their intersection
small integers. In the heliocentric inertial frame, the comet

makes roughlyp revolutions around the Sun ig Jupiter Yoo A Niner

periods. See Fig. 37, where we illustrate a numerically con-
structed orbit ©’, which has a central block sequence
(J,X,3,5,J). Similar observations also hold for orbits in the
exterior region outside of a small neighborhoodLgf.

To study the process of resonance transition, we shall
use a set ofrotating canonical coordinates, called Delaunay
variables, which make the study of the two-body regime of
motion particularly simple, and thus simplify the perturba-
tion arguments for the PCR3BP. Tradition holds that the De-
launay variables in the rotating coordinates are denoted
[, g, L, andG. The bar ong distinguishes it from its non-
rotating counterpart. See Fig. 38. The quan@yis the an-
gular momentum, whild is related to the semi-major axis
a, by L=a"? and hence encodes the mean motion F€SOF|G. 38. (Color online Geometry of the Delaunay variables. Elliptical or-
nance(with respect to Jupiter in the Sun—Jupiter system bits in the fixed(inertial) and rotating frames.

Recall that the PCR3BP is a perturbation of the two-

perihelion
comet -

aphelion
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FIG. 39. (Color onling The interior regiorlJ; Poincaresection showing the first cuts of the stabl&fl) and unstabIeE‘L‘fl) manifolds of anL; Lyapunov
orbit. Notice their intersection at the 3:2 resonance. The background points reveal the mixed phase space of stable periodic and quasipistauis’tori *
embedded in a bounded chaotic “sea.”

AS:AiSlm ALLLSl contains all the orbits that have come from The size of the islands of tori corresponds to the dynamical
o u significance of the resonance. The number of tori islands
equals the order of the resonan(eeg., 3:2 is order 1, 5:3 is

Jupiter region. In the heliocentric inertial frame, these orbit2rder 2. In the center of each island, there is a point corre-
are nearly elliptical outside a neighborhoodlof. See Fig. sponding to an exactly periodic, stable, resonant orbit. In

37. They have a semi-major axis which corresponds to 3;petween th_e stable islands of a particm_JIar resone(hee_
resonance by Kepler's ladi.e., a~32=L"3~3/2). There- along a strip of nearly constanf), there is a saddle point

fore, any Jupiter comet which has an energy similadter- cprresponding to an exactly periodic, unstable, resonant or-

mas and which circles around the Sun once in the interior®'t ) ) ) ) i
region must be in 3:2 resonance with Jupiter A subset of the interior resonance intersection redin

Also note that the poir s, which is on the boundary of is connected to exterior resonances through a heteroclinic
AS, is a symmetrio(1 1)—hor$1;)clinic point which we have intersection in the Jupiter region. We have plotted this subset
1 1 . . . S . .
used to construct the symmetri¢,1)-homoclinic orbit in @S the small strip insid&”. This subset is part of the dy-

Fig. 2 (Plate 3. This also explains the reason for marking it namical channel which connects the interior and exterior

as a homoclinic orbit which corresponds to the 3:2 respfésonances. This is the robust resonance transition mech_a-
nance nism which we have sought. More on the resonance transi-

The black background points in Fig. 39 reveal the charion Will be discussed below.

acter of the interior region phase space for this Jacobi con-

stant surface. They were generated by picking one hundreg Exteri

evenly spaced initial points along tlye=0, x=0 line (with - Exterior resonances

the same Jacobi constaDt 3.03). These initial points were Similar to Fig. 39 for the interior region, Fig. 40 shows

each integrated for several hundred iterations of the Poincarte first exterior region Poincamuts of the stable and un-

map on theU; section and then transformed into Delaunaystable manifolds of ah, Lyapunov orbit with theU, sec-

variables. tion on the same Jacobi constant surfae=3.03). They
The background points reveal a mixed phase space dfave been plotted, as before, using the Delaunay variables

stable periodic and quasiperiodic tori “islands” embedded inandg.

a bounded chaotic “sea.” The families of stable tori, where  Notice that the first cuts of the stable and unstable mani-

a “family” denotes those tori islands which lie along a strip folds intersect at two places; one of the intersections is ex-

of nearly constantt, correspond to mean motion resonancesactly at the region of the 2:3 resonance, the other is at the 1:2

the Jupiter region7 into the interior regionS, gone around
the Sun oncdin the rotating framg and will return to the
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FIG. 40. (Color onling The exterior regiotJ , Poincaresection showing the first cuts of the stabI(‘—ffl) and unstablel(ﬂ';‘i) manifolds of arL_, Lyapunov
orbit. Notice their intersections at the 2:3 and 1:2 resonances. The background points reveal a mixed phase space similar to that of Fig. 39.

resonance. We point out thgtis an angle variable modulo point that we have used to construct the symme(tid)-
27 and hence the two intersections néar 1.26 should be homoclinic orbit of the exterior region in Fig. @Plate 1.

identified. This also explains why we have marked it as a homoclinic
Recall that the interioAfgf1 of Tf’fl (the first cut of the  orbit which corresponds to the 2:3 resonance.
stable manifoldlis connected to the spherical cdp, of the The background points in Fig. 40 were generated by a

bounding spheren, , by the stable manifold tube. Hence, te_chnique similar to those in Fig. 39. They reveal a s_imilar
A}, contains all the orbits that will go from the exterior Mixed phase space, but now the resonances are exterior reso-

region to the Jupiter region in the next round. Similarly, thenances(ext_erlor to tk}](e_orbn of Jupitgs S
A portion of A" is connected to interior resonances

interior A% of I'"?, (the first cut of the unstable manifold - e . .
L1 O T ( 0 through a heteroclinic intersection in the Jupiter region. In

contains all the orbits that have come from the Jupiter regio'ﬂ)articular a subset of the 2:3 intersection regiomdfcon-
into the exterior region in the previous round. Therefore, o s (o the 3:2 intersection region &f via a heteroclinic

their intersection, intersection in the Jupiter region. We have plotted this subset
as the small strip insida*. Note that this strip is the pre-
AXY=ASE ALY . S . .
Ly 1AL, 10 image of the strip inA® of Fig. 39. This is the resonance
transition dynamical channel shadowed by the Jupiter comet
contains all the orbits that have come from the Jupiter regio©termaduring its recent resonance transition.
J into the exterior region, have gone around the Sun once
(in the rotating framg and will return to the Jupiter region.
Notice thatA* has two components, one at the 2:3 resonanc% -
region and the other at the 1:2 resonance region. - Resonance transitions
In the heliocentric inertial frame, these orbits are nearly  We have made reference to a heteroclinic intersection
elliptical outside a neighborhood &f,. They have a semi- connecting the interioA® and exteriorA”* resonance inter-
major axis which corresponds to either 2:3 or 1:2 resonancsection regions. In Fig. 41, we show the image\df(the 2:3
by Kepler's law. Therefore, any Jupiter comet which has arresonance portiorand the pre-image ok in the 7 region.
energy similar tdOtermds and which circles around the Sun Their intersectiom\” contains all the orbits whose itineraries
once in the exterior region must be in either 2:3 or 1:2 resohave the central block](X;J,S,J), corresponding to at least
nance with Jupiter. one transition between the exterior 2:3 resonance and interior
Note that the poinP ,, which is on the boundary af*  3:2 resonance. The orli®’ of Fig. 37 is such an orbit pass-
at the 2:3 resonance region, is a symmettid)-homoclinic  ing through the regiory.
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FIG. 41. (Color onling The Jupiter regiorJ; Poincaresection showing the image @ (the 2:3 resonance portipmnd the pre-image oA (the 3:2
resonance Notice their intersections, the largest of which is label@X(J,S,J), corresponding to the itinerary of this group of orbits.

Note the pointP ;, which lies in the intersection of the nance transitions in the planar circular restricted three-body
boundaries of the image af** (the 2:3 resonance portibn problem(PCR3BB. One of the main results in this paper is
and the pre-image oA®. This pointP; corresponds to a the semi-analytical discovery of a heteroclinic connection
heteroclinic connection between the exterior 2:3 and interiopetweenL, and L, periodic (Lyapunoy orbits having the
3:2 resonances. In a neighborhood Rf, the dynamical same energyJacobi constait This augments the known
channel connects the 3:2 interior resonance region with thgomoclinic orbits associated to the andL, Lyapunov or-

2:3 exterior resonance region. The periodic oditeferred ..o \vhich were proven to exist by McGeflemd LMS® By

FO _e_arller, .Wh'.Ch goes _from 32 1o 2:3 and back again ao|inking these heteroclinic connections with homoclinic orbits

infinitum, lies in this neighborhood. . .
. . on the same Jacobi constant surface, we have found dynami-

The orbit of comeDterma(from 1910 to 198Palso lies . .

. . . . L cal channels that provide a fast transport mechanism between
in the neighborhood ofP;, in the region with itinerary . . . - . . .
the interior and exterior Hill's regions. This rapid transport

(X,J,S,J,X), as determined from Sec. IV EDtermadoes : . ,
not perform the “exact” exterior to interior homoclinic— _mechamsm, which occurs with only two degrees of freedom,

heteroclinic resonance transition defined by the sequends & dynamical systems phenomenon not to be confused with
(3,X,3,S,J), but as a nearby trajectorand “nearby” itin-  Arnold diffusion.

erary), it exhibits a similar transient behavior. We note that ~ The channels provide a starting point for understanding
Otermaexhibits only one transition during the time interval the transport mechanisms connecting mean motion reso-
(a few hundred years, centered on the presémt which nances, and in particular, those mechanisms which link inte-
there is reliable orbit data. It begins in the exterior regionrior and exterior resonanceg.g., the 3:2 and 2:3 Jupiter
close to the 2:3 resonancee., a~%?~2/3), is perturbed by resonancesvia the Jupiter capture region. By comparing ob-
Jupiter into an exactly homoclinic 3:2 resonari8erevolu-  servations of the orbits of Jupiter comets liReermawith

tions around the Sun in 2 Jupiter perigdsnd is then nearly the dynamical channels discovered herein, we conclude that
symmetrically perturbed into the exterior region, slightly be-the comets are guided by these dynamical channels. See
yond the 2:3 resonance. See Fig. 32. Figs. 2 and 32.

It is reasonable to conclude that, within the full three- Moreover, these dynamical channels could be exploited
dimensional modeIOterma_is orbit _Iies within an analogous by spacecraft to explore a large region of space near Earth
region of phase space which carries the 1ab&0(S,J,X). It (and the near Earth’s orbitising low-fuel controls. In fact,
is therefore within thel, and L, manifold tubes, whose o channels can be utilized around any planet or moon sys-
complex global dynamics lead to intermittent behavior, N"tem. Behavior related to the dynamical channels has already

cluding resonance transition. . een observed by Lo, Williamst al® in the trajectory for
More study is needed for a thorough understanding o . . . . o
he Genesis Discovery Missipnwhich exhibits near-

the resonance transition phenomenon. The tools developed jn
this paper(dynamical channels, symbolic dynamics, gtc.
should lay a firm theoretical foundation for any such future

eteroclinic motion betweeh; and L, in the Sun—Earth
system. See Fig. 42. With a better understanding of the un-

studies. derlying homoclinic—heteroclinic structures we should be
able to construct and control spacecraft trajectories with de-
VI. CONCLUSIONS AND FUTURE WORK sired exotic characteristidg.qg., transfer between, andL,

In this paper, we have applied dynamical systems techerbits, explore interior region, and then return to Earth’s vi-
niques to the problem of heteroclinic connections and resceinity).
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FIG. 42. (Color onling (a) A homoclinic-heteroclinic chain on th@enesis Discovery Missidrajectory’s energy surfacéb) Close-up of the chain in Earth’'s
vicinity. The actualGenesis Discovery Missidrajectory is shown in black overlaying the chain, and in particular, the heteroclinic connectioh frant., .

Greater space mission flexibility could be achieved postply our methodology to the coupled PCR3BP. The coupled
launch owing to the sensitivity of the phase space in thesPCR3BP considers two nested co-planar three-body systems,
dynamical channels. Miniscule fuel expenditures could leaduch as for two adjacent giant planets competing for control
to dramatically different spacecraft trajectories. One couldf the same comée.g., Sun—Jupiter-comet and Sun—Saturn-
turn a near-Earth mission into an asteroid rendezvous ancbme}. When close to the orbit of one of the planets, the
return missionin situ with an appropriately placed small comet’s motion is dominated by the corresponding planet’s
thrust. Rather than being a hindrance to orbital stability, senthree-body dynamics. Between the two planets, the comet’'s

sitivity facilitates mission versatility. motion is mostly heliocentric, but is precariously poised be-
tween two competing three-body dynamics. In this region,
1. Extension to three dimensions heteroclinic orbits connecting Lyapunov orbits of the two

The natural extension of our work is to applv the Samedifferent three-body systems may exist, leading to compli-
. . pply the cated transfer dynamics between the two adjacent planets.
methodology to the three-dimensional CR3BP. We will seekSee Fig. 3Plate 2

homoclinic and heteroclinic orbits associated with three- This transfer dynamics, which may be realized in actual

dimensional periodic “halo” and quasi-periodic “quasi- : .

halo” and Lissaious orbits about. and L.. Their union comet behavior, could be exploited for free transfers of

would be three-tjjimensional homciclinic—ﬁéteroclinic Chainsspacecraft between adjacent moons in the Jovian and Satur-
nian systemgLo and Ros¥). For instance, one could con-

arouqd which thg sym'bollc dynamics could be used to tracl&uct a “Petit Grand Tour” of the Jovian moon system, an
a variety of exotic orbits.

The three-dimensional chains would provide an initialexarnple of which is shown in Fig. @late 3. By system-

. . . atically seeking heteroclinic connections between libration
template for the construction of actual spacecraft trajectories, _. : . . . :
oint orbits of adjacent moons, one could design trajectories

By presenting a more complete portr_a|t of fche phase Sloac\%hich transfer from the vicinity of one moon to another us-
geometry neal; andL,, the three-dimensional channels

: e : ing fuel-minimizing controlled thrusts.
will be of enormous benefit in the design and control of . .
. . . We have used these same techniques to gain a deeper
constellations of spacecraft in these regions. The

- r Hnderstanding of low-cost trajectories from the Earth to the
homoclinic—heteroclinic structures suggest natural low-fue

paths for deployment of constellation spacecraft to and frommoon’ motivated by the work of Belbruno and Milf.

Earth. They will a@d i_n the design of control scheme_s neces- Merging optimal control and stabilization with
sary for space missions such as NASA's Terrestrial Planetynamical systems theory
Finder(TPF which must maintain precise coordinated point-

ing and relative separation of the formation flying spacecraft The construction of exotic spacecraft orbits using

- - : moclinic—heteroclini namical channels requir i-
The three-dimensional dynamical channels may alsé10 oclinic—heteraclinic dynamical channels requires opt

provide a more complete understanding of phase space tran _a! thruster controls to navigate thgse dynamic.:alllly. gensjtive
port mechanisms. In particular, they may elucidate the reso~ 9 oNs of phase space. Using optimal, fuel minimizing im-

nance transition process for Jupiter comets which have Iargg“:li\'/\;e ?g(:ai%nggsgﬁfaﬂgu;tigse tggi?aﬁt;fggren?é:nd natu-
excursions out of Jupiter’s orbital plane. Y 9 y :

Lawderf® developed Primer Vector Theory, the first suc-
cessful application of optimal control theory to minimize
fuel consumption for trajectories with impulsive thrusts in

To obtain a better grasp of the dynamics governingthe two-body problem. The extension of Primer Vector
transport between adjacent plangis moong, we could ap- Theory to continuous low-thrust control for the restricted

2. Coupling of two three-body systems
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natural dynamics built in, thereby yielding better conver-
gence properties.

In addition to the optimal control problem of getting to a
halo orbit, there are well known techniques for stabilizing
the dynamics once one gets there. Some of these techniques
are related to the general theory of stabilizing dynamics near
- saddle points and homoclinic or heteroclinic orbits, as in
A &  Bloch and Marsdef? In addition, it would be of interest to

f explore the use of other stabilization techniques that make

(AL, Rotating Frame)
z

&
e f use of the mechanical structure for problems of this sort, as
S ae ’ 3 in Bloch, Leonard, and Marsdéfi See also Refs. 22, 31, and
S 3 Loy 40
- : LE i E 05 \-T'
T (AL, Rotating Frame) i ) o
4. Symplectic integrators
FIG. 43. (Color onling A transfer trajectory from low Earth orbit to dm The use of symplectic integrators for the long time inte-

halo orbit. This trajector i i ; i

T o T e e ot . s o QNS f the solar systeis well known through the work

stable manifold. of Tremaine, Wisdom, and others. In many problems in
which the dynamics is delicate or where there are delicate
controls, care is needed with integration algorithms. The area

three-body problem is a current area of active research. Owf integration algorithms for mechanical systems continues

work on this problem indicates that developing optimal con-to develop and be implemented; see, for example, Wendlandt

trol theory within the dynamical systems framework showsand Marsded* Kane, Marsden, and Ort2, and Kane,

promise for producing a numerical solution in the three-bodymarsden, Ortiz, and Wetand also Refs. 36, 40, and refer-

context(see also Refs. 32 and B3 ences therein. These techniques are very effective for both

In our ongoing effort to use the methods of optimal con-conservative mechanical systems as well as systems with

trols to study the orbit transfer problem for certain JPL spacdorcing, such as controlled systems. It would be of interest to

missions, we are exploring the “direct” method for solving explore these numerical methods in the context of space mis-

the optimal control problem. In the direct method, the opti-sion design and other orbital mechanics problems.

mal control problem can be first approximated by a discrete

optimization problem using a collocation or multiple shoot- 5 pattern evocation

ing discretization scheme. Then the resulting optimization

problem is solved numerically with a sophisticated sequen];r mThe ;(ia:tor;angir?ttr#ctu:es ;Tat onre seesrlningrslerrtotzx;]ngi
tial quadratic programmingSQP technique. While the nu- ames ot Interes € present paper appear simiiar to wha

merical algorithm of the direct method is quite robust for ON€ seesin the phenomenonpafitern evocatiorisee Mars-

certain types of two-body problems, we do not expect thafjen and S_cheurl%7, Marsde_n, Scheurle and_ Wendlafitit
when rotationally symmetric systems are viewed from the

the application to the three-body regime will be completelypoim of view of an appropriate rotating frame. Of course, for

straightforward. It would also be interesting to explore thethe restricted three-body problem there is a simple and natu-
ways in which optimal control in the presence of mechanics | choi ! ¢ tati >;p H : f Ith pf Il th u
(as in, for example, Koon and Marsdénis useful in this ral choice ot a rotating frame. However, for tne fu ree-

problem, body problem or other situations, the general theory still sug-

As usual, for any numerical algorithm, a good initial ges_;ts thgt appropriate rotating frames can be found relative to
guess is vital, especially if the problem is very sensitive nu—WhICh S|mpl_e resonant phenomeng would be evoked. It
merically. Dynamical systems theory can provide geometri-WOUId be of interest to explore this link further.
cal insight into the structure of the problem and even good
approximate solutions. For example, in finding low-thrust® Four- or more body problems
optimal transfers td, halo orbits in the Sun—Earth system, While the planar CR3BP model provides an adequate
it is important to know that the invariant manifolds of the explanation for a class of Jupiter comets whose Jacobi con-
halo orbits extend to the vicinity of the Earth and any trajec-stant is close tdéand less thanC, and whose motion is close
tory on these manifolds can be used as a super-highway fdao the plane of Jupiter’s orbit, it fails to explain resonance
free rides to and from the halo orbits. See Fig. 43. transition phenomena for high inclination Jupiter comets and
Clearly, this theoretical insight and its derivative numeri- comets not dominated solely by Jupiter. For this second class
cal tools can aid in the construction of superior initial of comets, other effects such as out-of-plane motion and per-
guesses that lead to a convergent solution. turbation by other giant planets, most notably Saturn, are
A deeper understanding of the dynamical structure of thejuite strong and need to be considered. Though the Jupiter
restricted three-body problem, including the ideas we haveomets exhibit their transitions on relatively short time-
contributed in this paper, may suggest alternative formulascales(tens to hundreds of yeargare terrestrial planet en-
tions of the optimizing scheme which are based more on theounters(with Earth and Marsalso need to be considered.
geometry of the phase space. Instead of “numerically gropin short, the study of this second class of comets require the
ing in the dark,” algorithms could be developed with the complete storehouse of tools needed in the study of the near-
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FIG. 44.(Color onling (a) Dynamical channels in the solar system. We plot(theal) semi-major axis versus the orbital eccentricity. We showlLthégray)

andL, (black manifolds for each of the giant outer planets. Notice the intersections between manifolds of adjacent planets, which leads to chaotic transport.
Also shown are the asteroiddots, comets(circles, and Kuiper Belt objectdlighter circles. (b) The zodiacal dust ring around the Earth’s orbit, as modeled

by Earth’sL; andL, stable and unstable manifolds. We show the Sun—Earth rotating frame. Notice the “clumps” in the Earth’s orbit.

Earth asteroids, regarded by many as the most challengingewed in the Sun—Earth rotating frame, there are several
topic in celestial mechanics. high density clumps 10% greater than the backgroynd
While the restricted circular problems, in the plane andwhich are mostly evenly distributed throughout the Earth’s
space are already difficult, the extension of dynamical syserbit. The simulations of Dermotet al?° considered the
tems ideas to the unrestricted problem and the four bodgravitational effects of the actual solar system and nongravi-
problem remains a challenge. See, for example, Ref. 37. tational forces: radiation pressure, Poynting—Robertson light
However, since the mean motion resonan¢e®stly  drag, and solar wind drag. The dust particles are believed to
with Jupite) and their associated transport mechanisms stilspiral in towards the Sun from the asteroid belt, becoming
play the dominant role in solar system material transport, thisrapped temporarily in exterior mean motion resonances with
paper can be seen as laying a firm foundation for any futuréhe Earth. They are then scattered by close encounters with
studies in this direction. We may need to consider other moréhe Earth leading to further spiraling towards, and eventual
complicated models like the full three-dimensional CR3BPcollision with, the Sun.
and the coupled PCR3BP as mentioned above. As Lo and We suspect that the gross morphology of the ring is
Ros$ suggested, further exploration of the phase space strugiven by a simpler CR3BP model involving the homoclinic
ture as revealed by the homoclinic—heteroclinic structuresind heteroclinic structurgghe dynamical channelsassoci-
and their association with mean motion resonances may prated withL, andL, (Lo and Ros$. See Fig. 4®).
vide deeper conceptual insight into the evolution and struc- The drag forces do not destroy the dynamical channel
ture of the asteroid beliinterior to Jupiter and the Kuiper structure, but instead seem to lead to convergence onto the
belt (exterior to Neptung plus the transport between these structure for particles spiraling in from the inner asteroid
two belts and the terrestrial planet region. See Figay4 belt. Once trapped in a channel, the dynamics naturally lead
Potential Earth-impacting asteroids may utilize the dy-to transportvia an Earth encountgmto the interior region,
namical channels as a pathway to Earth from nearby, seemvhere drag forces dominate once more.
ingly harmless heliocentric orbits which are in resonance As with the Earth, the structure of any extrasolar terres-
with the Earth. The same dynamics which allows us to conirial planet’s zodiacal dust ring is probably dominated by the
struct libration point space missions such as@emesis Dis- three-body dynamics. As the particular features of the ring
covery Missionwhich is on a natural Earth collision orbit, is structure(i.e., width of ring, number of high density clumps
also the dynamics that could bring unexpected Earth impacare characteristic of the particular mass ratio of the planet to
tors. This phenomena has been observed recently in the inthe star, one could use the structure observed in an extrasolar
pact of cometShoemaker-Levy @With Jupiter, which was in  zodiacal dust ring to determine the mass of the planet, as-
2:3 resonance with Jupitéone of the resonances dynami- suming the mass of the star could be determined using spec-

cally connected to the Jupiter regjoust before impact. troscopic methods. The Terrestrial Planet Finder mission
could use such a scheme to detect terrestrial planets embed-
7. Zodiacal dust cloud ded in the zodiacal dust rings of nearby stars.

Numerical simulations of the orbital evolution of aster-
oidal dust particles show that the Earth is embedded in
circumsolar ring of asteroidal dust known as the zodiacal A century has passed since Poincirteoduced dynami-
dust cloud(Dermottet al?®. Both simulations and observa- cal systems theory to study the restricted three-body prob-
tions reveal that the zodiacal dust cloud has structure. Whelem. Yet this system still enchants us with its rich structure

8. A new paradigm for a new millennium
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FIG. 1. (Color) (a) Stable(dashed curvesand unstablésolid curve$ manifolds ofL; andL, projected to position space in the Sun—Jupiter rotating frame.
TheL,; manifolds are green, while the, manifolds are blacklb) The orbit of comeOterma(AD 1915-1980 in the Sun—Jupiter barycentered rotating frame
(red) follows closely the invariant manifolds df; andL,. Distances are in Astronomical UnitaU).
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FIG. 2. (Color) A dynamical channe(homoclinic—heteroclinic chajncorresponding to the Jupiter com@terma The periodic orbits about; andL, are
black. Their homoclinic orbits are blue and green. The heteroclinic connection between them is magenta. The actuaDienitadAD 1910-1980 is
shown in red overlaying the chain. Distances are in Astronomical WALS.
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¥ (Tupiter-Ganymede rotating frame)
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FIG. 3. (Color) The “Petit Grand Tour” space mission concept for the Jovian moons. In our example, we show an orbit coming into the Jupiter system and
(a) performing one loop around Ganyme¢ghown in the Jupiter—Ganymede rotating fram®) transferring from Ganymede to Europa using a single
impulsive maneuveshown in the Jupiter-centered inertial framand (c) getting captured by Europ@hown in the Jupiter-Europa rotating frame
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(&)

FIG. 5. (Colon (a) Hill's region (schematic, the region in whitewhich contains a “neck” about; andL,. (b) The flow in the region nedr,, showing
a periodic orbit(black ellipse, a typical asymptotic orbifgreen, two transit orbitdred), and two nontransit orbitthlue). A similar figure holds for the region
aroundL; .
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FIG. 6. (Color) The projection onto théz,¢)-plane of orbits near the equilibrium poitriote, axes tilted 45°). Shown are the periodic otbiack dot at the
centey, the asymptotic orbitgégreen, two transit orbits(red), and two non-transit orbitéblue).

(a) (b}

FIG. 7. (Color) (a) The cross-section of the flow in tHe region of the energy surfacéh) The McGehee representation of the flow in the region
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FIG. 8. (Color) Spiraling of the images of arcg, .
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FIG. 9. (Color) The flow in the equilibrium regioiR of position space. Shown are the periodic ofbitack ellipse, a typical asymptotic orbitgreern), two
transit orbits(red), and two nontransit orbitéblue).
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FIG. 19. (Color (a) A group of four transvers€l,1)-homoclinic points.(b) The symmetric(1,1)-homoclinic orbit corresponding to the left=0 (1,1)-
homoclinic point[the large black dot irfa)].
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FIG. 21. (Colon (a) The first three Poincareuts of the unstabIeV(I‘L‘ﬁplo) and stable Wﬁ'f,p‘o) manifolds with the plang/=0. (b) A nonsymmetric
(1,3-homoclinic orbit in the interior regiofcorresponding to the large dot {g)].
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FIG. 22. (Color) (a) The projection of invariant manifoldw‘ﬁ'gp_o_ andvvf'g p.o. In the regionJ of the position spaceb) The first two Poincareuts of the
invariant manifolds with the plane=1— ..

FIG. 24. (Colon The construction of a suitable Poincarap.
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FIG. 25. (Color) The strips near the asymptotic sets on the sphergs n;,, Ny, Ny,.
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FIG. 26. (Color) The families of horizontal stripgblue) and their imagesgorange underP.

FIG. 27. (Color) The domainU=U,UU,UU;UU, of the Poincarenap P.
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FIG. 29. (Color) The topological squares and the images of some rectangles. We show schematically only two strips although there is an infinite number.

FIG. 31. (Colon The invariant set\ of the PoincaremapP.
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