Causality analyses

Convergent cross mapping

The convergent cross mapping (CCM) method (Sugihara et al. 2012; BozorgMagham et al. 2015)
was used to investigate the causal relationships within this biological system and was based on
transferring information from the driver time-series to the response time-series under the assumption
of directional causality (from driver to response). In this causal scenario, the response time-series
necessarily contains signatures (information) about the driver time-series whereas the reverse may not
be true. The CCM method uses time-lagged components of the response time-series to estimate the
dynamics of the candidate driver time-series. A better estimate of the driver behavior shows a stronger
causal influence on the response variable. In addition, if the two variables are dynamically connected, a
better estimate of the driver signal would be expected from a larger number of observations, referred to
as the library of the time-series. To obtain a quantitative measure of causality, the Pearson correlation
coefficient between the estimated and the original driver signals was used. In addition, to avoid spurious
localized (short-term) correlated dynamics between a candidate driver and response, the recovery of
the driver signal was investigated as a function of library length L . The library length describes the
number of historical observations that are used to generate estimations, and can be a subset of the total
number of observations NV .

The first step in implementing the CCM method for two time-series x(¢) and y(¢) (the driver

and response signal, respectively) was to generate the reconstructed phase spaces (shadowing
manifolds) from the libraries of the two time-series with length L data points:

(X', = {x(@),x({ +1),...,x(G + L =1)} (1)

{YZL}={y(l)9y(l+1)95y(Z+L_1)} (2)



fori=1toi=N+1-L where N isthe number of data points in the time-series and the superscript

o _>n
1

denotes the i-th library. The libraries must sweep the entire length of the original time series (see
Fig. S6). A reconstructed phase space was generated by using a proper time lag (7)) and an embedding
dimension ( £'). The average mutual information measure was used to select the time lag (Abarbanel
1996). The embedding dimension is a measure of the number of observations used for estimation. The
false neighborhood method was used to determine an optimal value for £ (Cao 1997). The time-

delayed vectors of the reconstructed phase spaces were:

X, =(x(k),x(k-7),....,x(k - (E -1)7)) (3)

Y, = k), y(k = 7),..., y(k - (E -1)7)) (4)

for k =1+ (E -1)T to k = L where the subscript k& shows the k -th point of the i-th library of length
L data points. Based on the spore release and meteorological signals, a common time lag of 7= 2
hours and embedding dimensions E = 6 was found.

After the reconstruction of the phase spaces from the selected libraries, for each F -
dimensional point in the response reconstructed phase space (a generic E -dimensional point was
denoted as Y -central in Fig. S7), a sufficient number of nearest neighbor points were selected and their
distances, dl., to the Y -central point were determined. Next, the contemporaneous of each neighbor
point in the driver reconstructed phase space was determined. The spatial average of the designated
points in the driver shadowing manifold (shown by a star in Fig. S7) was determined by using dl.’s as the
weighting factors (Sugihara et al. 2012). This procedure was repeated for all the E -dimensional points
in the response reconstructed phase space, and the correlation between the resultant points and the
X -central points, the contemporaneous of the Y -central points in the Xk, was measured.

The CCM coefficient, o, as a function of library length L of hourly observations was defined as

the average of the Pearson correlation coefficients corresponding to the libraries with the specified



length. Causality is indicated by a CCM coefficient o that increases significantly with increasing library

length and is significantly greater than zero for large library length. Higher values of the CCM coefficients

indicate stronger causal influence. In this study, the convergence and relative magnitude of p was

investigated using spore concentration as the response signal and meteorological variables as the

candidate driver signals.
Multivariate state space forecasting

The multivariate state space forecasting method (Deyle et al. 2013) was inspired by a conceptual
combination of the Granger causality method (Granger 1969) and the simplex method for predicting the
short term evolution of deterministic chaotic time-series (Farmer and Sidorowich 1987). The
multivariate forecasting method augments the information of a driver with the information of the
response signal and exploits the cumulative information for a better prediction. This study applied the
multivariate forecasting method and expected to observe significant improvement in the prediction of
the spore concentration when the information of an influential meteorological variable, which was
detected by the CCM method, was augmented with the information of the spore concentration.

In this analysis, the reconstructed phase space of the spore concentration was the sameas Y, ,

introduced in equation (4). The vectors of Yk were augmented with the data of an environmental signal

represented by x(). The augmented time-delayed vector was:

Y emenea = (V(K), y(k = T),..., y(k = (E - 2)7, x(k — A))) (5)

where A shows the delay between the actuation of the driver and the response of the system.

WeusedY, and Y for short term (maximum 12 hours lead time) single variable and

augmented
multivariate forecasting of the spore concentration, respectively (Deyle et al. 2013; Farmer and
Sidorowich 1987). The statistical significance of the improvement of the root mean square (RMS) of the

forecasting error between the multivariate and single variable forecasting schemes was investigated to



verify the effectiveness of augmentation of the environmental data. The forecasting error in each case,
multivariate and single variable, was defined as the difference between the observed spore

concentration (correct values) and the forecast results.

The hourly observed spore concentrations were denoted by Yobs, the hourly forecasts by Y, and

the number of available hourly forecasts by 7. The RMS of the forecasting error, S, was defined as:

1
S=\/;§<Yobs -Y,y (6)

The number of possible hourly forecasts depends on the starting point, the lead time and the length of

the time series. The starting point selected was 0700 on 11 May 2012. This provided n= 65 in the RMS

calculations and sufficient record for forecasting purposes.
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Fig. S1 The CCM coefficient, p , between driver signals (meteorological variables) and response signals
(spore concentration) for the 2012 monitoring period. These figures identify solar radiation, relative
humidity, air temperature, and wind speed as the most important controlling signals with the
bifurcation identifying the meteorological conditions that have the greatest influence on spore

concentrations.
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Fig. S2 Forecast root mean square (RMS) errors in cases of multivariate forecasting, solar radiation as
the augmented information (dashed red line), and single variable forecasting (solid black line). A lead
time of 4 hours is considered between the solar radiation signal and the response signal. Augmentation
of the solar radiation improves the RMS of errors for all forecast lead times except for a 10-hour forecast

lead time.
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Fig. S3 Hourly spore concentration (black bar graph) and relative humidity (dashed red line) for a field

source of F. graminearum between 1800 hours 26 April 2012 to 1100 hours 14 May 2012. A single strain

of F. graminearum (FGVA4) was introduced within a 1-acre wheat field monitored for airborne spore

concentration using a Quest volumetric spore sampler.
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Fig. S4 Spore concentration and the relationship to relative humidity (greyscale markers) for a field-scale
source in 2012. The shading distinguishes nighttime (black and white) from daytime (grey variants)
events. The black line fits the highest values of spore concentration at each 1% range in relative

humidity to illustrate where an apparent threshold occurs.
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Fig. S5 Spore concentration versus air temperature for a field-scale source of F. graminearum during the
monitoring period in 2012. The shading distinguishes nighttime (black and white) from daytime (grey

variants) events. The black line fits the highest values of spore concentration for each 1° C range in

temperature to illustrate where an apparent threshold occurs.
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Fig. S6 Schematic of two time series indicating concept of library length. An illustration indicating two
time-series of observations and three sets of libraries. For a given library length, one sweeps along the
full time-series considering all possible sub-time-series, as shown schematically. Thus, for longer library

lengths, there will be fewer possible sub-time-series.
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Fig. S7 Schematic of the reconstructed phase spaces of two variables and the process for calculation of

p . For each E -dimensional Y -central point (black filled circle, right) in the response reconstructed
phase space, sufficient numbers of nearest neighbor points are selected (circles, right) and their

distance, di, to the Y -central point is determined. For each neighbor point, its contemporaneous point

in the driver reconstructed phase space is determined (circles, left). These points are weighted by di’s

and averaged. The CCM coefficient is defined as the correlation between the X-central (black filled circle,

left) and the recovered (star, left) points.



Table S1 Results of t-test between RMS of errors corresponding to the cases with and without
augmented environmental signals.

Parameter Analysis between RMS of errors*+Y
Delay (hours) 0 1 2 3 4 5 6 7 8
Solar radiation +1 +1 +1 0 +1 +1 +1 +1 0

Relative humidity | +1 +1 +1 +1 +1 +1 +1 0 0
Air temperature 0 0 0 0 0 0 0 0 0
Wind speed 0 0 0 0 0 0 0 0 0
Soil temperature 0 0 0 0 0 0 0 0 0

Absolute humidity | -1 -1 0 -1 1 -1 -1 0 -1

The analysis includes cases of augmentation of solar radiation, relative humidity, air temperature, wind
speed, soil temperature and absolute humidity with the spore concentration signal.

* 0 indicates cases that fail to reject the hypothesis

t +1 indicates cases that reject the null hypothesis and improve the forecast

¥ -1 indicates cases that reject the null hypothesis and do not improve the forecast



Table S2 Results of bivariate analysis of spore concentration and meteorological variables.

Year Indep. term Regression equation to predict spore concentrationsY®® R’ (P-value)
2011 Wind speed® logio(Concentration) = 3.28 — 0.32*WS 0.12 (< 0.0001)
logio(Concentration) = 4.95 — 0.71*WS 0.55 (< 0.0001)
Air temperature® log,o(Concentration) = 4.49 - 0.086*AT 0.21 (<0.0001)
logio(Concentration) = 6.38 - 0.12*AT 0.59 (<0.0001)
Relative humidity® log,o(Concentration) = 1.00 + 0.024*RH 0.20 (< 0.0001)
log,o(Concentration) = -0.015 + 0.049*RH 0.66 (< 0.0001)
2012 Wind speed® logio(Concentration) = 3.14 — 0.13*WS 0.047 (< 0.0001)
log,o(Concentration) = 4.43 — 0.34*WS 0.46 (< 0.0001)
Air temperature® log,o(Concentration) = 3.37 - 0.025*AT 0.030 (0.0020)
log,o(Concentration) = 4.06 - 0.0058*AT 0.0057 (0.70)
Relative humidity® log,o(Concentration) = 2.58 + 0.0050*RH 0.014 (0.034)

logio(Concentration) =2.43 + 0.018*RH

0.29 (< 0.0001)

Relationships between independent model parameters versus spore concentrations for 2011 and 2012
monitoring periods. Each equation represents the linear fit predicting the concentrations of spores per
cubic meter based upon the independent variables of wind speed, (m s™), air temperature (°C), and

relative humidity (%).

Y WS is wind speed in m s™
@ AT is air temperature in °C

8 RH is relative humidity in percent
% First row is linear fit of entire data set and second row is linear fit of threshold line



