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Abstract. The finite-time Lyapunov exponent (FTLE) is a

powerful Lagrangian concept widely used for describing

large-scale flow patterns and transport phenomena. However,

field experiments usually have modest scales. Therefore, it is

necessary to bridge the gap between the concept of FTLE

and field experiments. In this paper, two independent obser-

vations are discussed: (i) approximation of the local FTLE

time series at a fixed location as a function of known dis-

tances between the destination (or source) points of released

(or collected) particles and local velocity, and (ii) estimation

of the distances between the destination (or source) points of

the released (or collected) particles when consecutive release

(or sampling) events are performed at a fixed location. These

two observations lay the groundwork for an ansatz methodol-

ogy that can practically assist in field experiments where con-

secutive samples are collected at a fixed location, and it is de-

sirable to attribute source locations to the collected particles,

and also in planning of optimal local sampling of passive

particles for maximal diversity monitoring of atmospheric

assemblages of microorganisms. In addition to determinis-

tic flows, the more realistic case of unresolved turbulence

and low-resolution flow data that yield probabilistic source

(or destination) regions are studied. It is shown that, similar

to deterministic flows, Lagrangian coherent structures (LCS)

and local FTLE can describe the separation of probabilis-

tic source (or destination) regions corresponding to consecu-

tively collected (or released) particles.

1 Introduction

The classical interpretation of finite-time Lyapunov exponent

(FTLE) fields and the associated hyperbolic Lagrangian co-

herent structures (LCSs) provides useful information about

large-scale flow patterns and transport and mixing phenom-

ena in flow domains (Haller and Poje, 1998; Haller and Yuan,

2000; Mancho et al., 2004; Shadden et al., 2005; Haller,

2011). There are an increasing number of studies that apply

various concepts of LCSs, based on the classic right Cauchy–

Green tensor, to describe and predict the time evolution of

Lagrangian features in geophysical systems (Haller, 2015).

In some of these studies, geophysical information (e.g., wind

or oceanic velocity fields) have been used as the input data,

and Lagrangian results (e.g., the distribution of an oil spill in

the ocean or volcanic ash in the atmosphere) over a large area

are compared with the behavior of the geophysical system

via satellite data or simulations (Dellnitz et al., 2009; Peng

and Peterson, 2012; Olascoaga and Haller, 2012; Mendoza

and Mancho, 2012; Olascoaga et al., 2012). A large-scale

distribution of particles is a common characteristic among

these studies. In contrast, this study is motivated by a se-

ries of field experiments regarding the long-distance trans-

port of airborne microorganisms where only a limited num-

ber of localized and temporally consecutive measurements

of the atmospheric structure of microbial assemblages are

available (Schmale III et al., 2008; Tallapragada et al., 2011;

Schmale et al., 2012; Lin et al., 2013; Schmale and Ross,

2015). Therefore, there is a need to bridge the powerful con-

cept of FTLE and local field experiments.
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Figure 1. (a) Separation of nearby particles during time interval T due to the flow map φ. The two particles are released in the flow field

at the same time t0; isochronic particles. (b) ξ2 is the direction of maximum growth at the initial point x, which evolves into the direction

r2=Dφ
t0+T
t0

(x)ξ2 at the evolved point φ
t0+T
t0

(x). The closer the initial displacement vector δx is to the ξ2 direction, the more it will be

stretched to that maximum perturbation.

In this paper, we present two independent observations re-

lated to the estimation of the local FTLE and the distance be-

tween destination (or source) points of released (or collected)

particles. These observations provide an ansatz for bridging

field experiment results with the concept of local Lyapunov

exponents and the direction of maximum expansion in ordi-

nary differential equation systems; however, a rigorous math-

ematical formalism for non-autonomous dynamical systems

is still needed (Abarbanel et al., 1992; Branicki and Wiggins,

2009; Kloeden and Rasmussen, 2011). These observations

may help investigate long-distance transport phenomena as a

possible cause of variation in successively collected airborne

samples such as the presence or absence of a unique strain or

species of microorganism. In addition, this analysis is useful

for planning geophysical sampling at a fixed location with re-

spect to forecast FTLE fields (BozorgMagham et al., 2013).

Because this study is motivated by aerial measurements in

realistic conditions, i.e., hundreds of collections of microor-

ganisms from the atmosphere with drones, it is necessary to

consider the spatiotemporal limitations of the available ve-

locity field data. These limitations are manifested in unre-

solved turbulence and impose uncertainties on the locations

of the source and destination points. For this reason, we use a

Lagrangian particle dispersion model to determine the proba-

bilistic source (or destination) regions and show how the con-

cept of a local FTLE and deterministic Lagrangian coherent

structures (LCS) can explain the separation between proba-

bilistic source (or destination) regions, and may contribute to

understanding the geographic and genetic diversity observed

in aerial samples (Fay et al., 1995; Draxler and Hess, 1998;

BozorgMagham and Ross, 2015).

Results from this study can be applied to environmen-

tal applications such as early warning systems for airborne

pathogens, integrated pest management in crops, and the col-

lection of samplers from geophysical flows (Tallapragada

et al., 2011; BozorgMagham et al., 2013; BozorgMagham

and Ross, 2015).

This paper is outlined as follows. In Sect. 2 we present

two observations associated with the estimation of the local

FTLE and the dispersion of destination (or source) points in

flow fields. In Sect. 3 we show some numerical examples

and applications of presented observations in periodic and

aperiodic systems. In Sect. 4 we consider the unresolved tur-

bulence and investigate the uncertainty of the backward and

forward trajectories and the resulting probabilistic source and

destination regions.

2 Local finite-time Lyapunov exponent

In this section we present two independent observations re-

lated to the estimation of the local FTLE and the distance be-

tween destination (or source) points of successively released

(or collected) particles in a time-varying n-dimensional vec-

tor field,

dx

dt
= v(x, t), (1)

where n= 2 for two-dimensional flows and n= 3 for three-

dimensional flows.

By local FTLE we mean the time-varying value of the

FTLE field at an arbitrary location x. Classically, the time-

varying FTLE measures the maximum separation rate be-

tween nearby particles when they are released in the flow

field at the same time (isochronic particles). Figure 1a refers

to this classical description. This figure shows two isochrone

particles that are close to each other at an initial time t0. Un-

der the effect of the flow field, the small displacement vec-

tor between the two particles, δx, changes. After an elapsed

time T , the new vector between the two particles is

δx (t0+ T )= φ
t0+T
t0

(x+ δx)−φ
t0+T
t0

(x)

=Dφ
t0+T
t0

(x)+O
(
|δx (t0)|

2
)
, (2)

where φ
t0+T
t0

is the flow map for the vector field (Eq. 1) from

time t0 to t0+ T ,Dφ
t0+T
t0
= dφ

t0+T
t0

(x)/dx is the Jacobian of

the flow map, and | · | is the Euclidean norm.

Consider the right Cauchy–Green strain tensor, C(x, t0,

T )=Dφ
t0+T
t0

(x)ᵀDφ
t0+T
t0

(x). For the sake of the follow-
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Location of particle 1, at t2

Location of particle 1 at t1, and particle 2 at t2

Figure 2. Two sequentially released (left panel)/collected (right panel) particles at a fixed location shown by a bold cross. Particles 1 and 2

are released/collected at t1 and t2= t1+ δt , respectively (the time interval between the two sequential samplings is δt). The integration time

between the destination/sources and the release/sampling location is approximately T for both particles (|T |� δt). The displacement of the

first particle during δt is shown by δ∗.

ing discussion, consider the situation of incompressible two-

dimensional flows, n= 2. The eigenvalues λi and normalized

eigenvectors ξ i of C satisfy (Haller, 2015)

Cξ i =λiξ i,
∣∣ξ i∣∣= 1, i = 1,2, 0< λ1 < 1< λ2,

ξ1 ⊥ ξ2, (3)

where the (x, t0, T ) dependence of C, λi , and ξ i is under-

stood. As illustrated in Fig. 1b, the two eigenvectors, ξ1 and

ξ2, are carried along by the flow φ
t0+T
t0

to the two vectors r1

and r2, respectively, where

r i =Dφ
t0+T
t0

(x)ξ i, (4)

whose lengths are scaled by a factor
√
λi compared with the

normalized eigenvectors. The maximum possible separation

between the released particles after a time interval T , assum-

ing a sufficiently small initial distance |δx(t0)|, is

max |δx (t0+ T )| =
√
λmax (C (x, t0,T )) |δx (t0)| (5)

where λmax= λn.

The finite-time Lyapunov exponent (FTLE), with t0 and T

fixed, is considered a scalar field of the Lyapunov exponent

as a function of initial position, x,

σ Tt0 (x)=
1

|T |
ln
√
λmax(C). (6)

Similar to the calculation of maximum separation between

two initially neighboring points in a system of ordinary dif-

ferential equations (ODEs) and the corresponding maximum

Lyapunov exponents, σ Tt0 can be used, via Eqs. (5) and (6), to

describe max|δx(t0+ T )| as

max |δx (t0+ T )| = exp
(
σ Tt0 (x, t0) |T |

)
|δx (t0)| . (7)

In this study we are interested in particles that are released

(or collected) sequentially in time at a fixed location. Thus,

the standard concept of the FTLE, i.e., the separation rate of

nearby isochronic points, might not be applicable. Therefore,

we present two independent observations and show that we

can (i) approximate the local FTLE by using the informa-

tion of local velocity and successive destination (or source)

points, and (ii) estimate the distance between the destination

(or source) points by having the local FTLE and velocity.

These two observations require the assumption of a time-

dependent vector field, so that the initial displacement vector

is not along a common trajectory for sequential particles.

Referring to Fig. 2, left panel, assume that two particles

are sequentially released at t1 and t2= t1+ δt at the release

location shown by the ×. The right panel corresponds to the

analogous situation of sequentially collected particles.

Observation I: the local FTLE value over the time interval

[t1, t2], given an appropriate 0<δt�|T |, can be approxi-

mated by

σ T
[t1,t2]

(x)=
1

|T |
ln
δ (x,T , t1,δt)

|v (x, t1, t2)δt |
, (8)

where δ(x,T , t1, δt) is the distance between successive

destination (or source) points corresponding to the elapsed

time T , and v(x, t1, t2) is the (non-zero) average velocity at

the release (or sampling) location during [t1, t2].

Observation II: the distance between the destination (or

source) points of consecutively released (or collected) par-

ticles can be estimated, given an appropriate δt , by the local

velocity and the true local FTLE at the release (or sampling)

location as

δ (x,T , t1,δt)= exp
(
|T |σ T(t1,t2)(x)

)
|v (x, t1, t2)δt | . (9)

We suggest that observation I provides a recovered FTLE

field, based on mild assumptions that tend to hold in geo-

physical flows. Observation II is important for sampling pur-

poses, because it enables us to estimate the distance between

the source positions of consecutively collected particles, if

we have the local velocity and local FTLE data by sepa-

rate means. We note that observations I and II are indepen-

dent, and the information on the right-hand sides of Eqs. (8)

and (9) is also assumed known. For example, the local veloc-

ity could be obtained from an anemometer or high-frequency

radar in the ocean (Shadden et al., 2009), or the local FTLE

could be obtained from a nowcast or forecast velocity field.
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Figure 3. Forward FTLE field of a periodic double-gyre velocity field. (a) The benchmark FTLE field at t0= 1 calculated by Eq. (6). (b) The

approximated FTLE field calculated by Eq. (8), and δt = 0.2 time units. A fourth-order Runge–Kutta integration scheme with constant

integration time step 0.01 and total integration time T = 15 time units is implemented for both panels.

Two remarks are in order regarding these observations.

(i) A proper choice of δt , which depends on the spatiotem-

poral variability of the velocity field, is critical for a good

approximation of the local FTLE or the distance between the

destination (or source) points. If δt is chosen to be too small,

then variation of the velocity field would not be observed,

the two particles would essentially be following one another

along a nearly identical trajectory, and consequently the sep-

aration between the two particles would lead to a null LE

value, not maximal growth. However, if δt is too large, then

the initial particle separation at time t2 is too large to justify

the linearization assumption underlying FTLE calculations;

see, e.g., Eq. (2). Thus, a good selection of δt depends on the

spatiotemporal variability of the velocity field. (ii) A larger

true local FTLE of the real flow field yields a smaller error

of estimations for the recovered local FTLE and the distance

between the destination (or source) points. This comes from

numerical evidence in the following sections.

The fundamental idea behind these observations is related

to more general methods of analysis of chaotic dynamical

systems, often used in experimental settings, namely, that the

direction of maximum expansion dominates the dynamics of

typical displacement vector growth (see Fig. 1b) (Oseledec,

1968; Abarbanel et al., 1992; Rosenstein et al., 1993; Tanaka

and Ross, 2009). This notion is generally accepted in settings

assumed to be modeled by underlying autonomous ODEs

(whether known or unknown), but to our knowledge, there

is no similar theorem for non-autonomous ODEs. Our obser-

vations show that in a time-dependent velocity field, with a

proper choice of δt and sufficiently large |T |, δ(x, T , t1, δt)

is often close to the maximum possible distance between the

two particles. These observations, at the present stage, are

more of an ansatz, and may help stimulate rigorous mathe-

matical investigation related to separation of non-isochronic

nearby particles in a non-autonomous ODE setting.

In the following section we demonstrate some numerical

verification and applications of these observations.

3 Numerical examples and applications

3.1 Numerical examples of observations I and II, for

periodic and aperiodic velocity fields

First, we study the well-known example of a periodic double-

gyre. We consider the same model and parameters introduced

in Sect. 6, Example 1, of Shadden et al. (2005). For obser-

vation I, we need to know δ(x, T , t1, δt) and the local ve-

locity. Therefore, we use the double-gyre model to gener-

ate the velocity field and then exploit that data to calculate

the trajectories and the corresponding distance between suc-

cessively released particles after integration time T . We re-

peat this procedure for all the grid points of the gyre domain

[0, 2]× [0, 1].

Figure 3a shows the benchmark (true) forward FTLE field

corresponding to t0= 1, calculated by Eq. (6), and Fig. 3b

shows the approximated forward FTLE field calculated by

Eq. (8). A fourth-order Runge–Kutta integration scheme with

constant integration time step 0.01 and total integration time

T = 15 time units is implemented for both panels. For the

recovered (approximated) FTLE field, Fig. 3b, we consider

δt = 0.2 time units in Eq. (8). One can adjust parameters, e.g.,

T or δt , to investigate their impact on the FTLE field.

To investigate observation I for an aperiodic system,

we use a two-dimensional model of the time-dependent

Rayleigh–Bénard convection model developed by Solomon

and Gollub (1988) and implemented by Lekien and Haller

(2008) to study unsteady flow separation on slip boundaries.

The streamfunction of this model is a function of position

and a stochastic time-dependent forcing term.

ψ(x,y, t)=
A

k
sin{k[x− g(t)]}sin(2y) (10)

Following Lekien and Haller (2008), we generate the

stochastic forcing, g(t), based on a random Fourier spectrum

with zero mean and unit impulse covariance (see Fig. 5 in

Lekien and Haller, 2008). Figure 4a shows the benchmark

forward FTLE field calculated by Eq. (6), and Fig. 4b shows

the recovered forward FTLE field calculated by Eq. (8) in

the domain [0, 2]× [0, π/2]. Two panels of this figure corre-

spond to t0= 1. Similar to the previous example, a fourth-

Nonlin. Processes Geophys., 22, 663–677, 2015 www.nonlin-processes-geophys.net/22/663/2015/
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Figure 4. Forward FTLE field of an aperiodic Rayleigh–Bénard convection model. (a) The benchmark FTLE field at t0= 1 calculated by

Eq. (6). (b) The approximated FTLE field calculated by Eq. (8), and δt = 0.1 time units. A fourth-order Runge–Kutta integration scheme

with constant integration time step 0.01 and total integration time T = 75 units is implemented for both panels.

Figure 5. Observations I and II at (x, y)= (0.3, 0.4) for a periodic double-gyre velocity field. (a) Local benchmark and recovered forward

FTLE. (b) Benchmark and approximated final distance between successively released particles corresponding to T = 15.

order Runge–Kutta integration scheme with constant inte-

gration time step 0.01 is used. The total integration time is

T = 75 time units for both panels. For the recovered FTLE

field, Fig. 4b, we consider δt = 0.1 time units in Eq. (8).

By comparing the two panels of Figs. 3 and 4, respec-

tively, one sees that the main features of the FTLE field are

recovered by Eq. (8), and the benchmark and approximated

fields are highly correlated. However, in some areas (e.g.,

near (1.2, 0.5) in Fig. 3 and (1.5, 0.8) in Fig. 4), we see dis-

continuities in the recovered FTLE field. The reason might

be that the selected δt is not a proper choice in those regions.

It is also important to note that we use a common color scale

for the two panels of Figs. 3 and 4, respectively. Therefore,

minute differences between the true and approximated fields

are visually exaggerated because the FTLE values are gen-

erally small in magnitude. Numerical comparison of the re-

sults (see the next two numerical experiments) shows close

approximation of the recovered local FTLE to the true val-

ues.

Next, we investigate both observations I and II at an arbi-

trary point over the time span [0, 10], which is one period of

the double-gyre flow shown in Fig. 3. First, we consider the

point (x, y)= (0.3, 0.4) in the periodic double-gyre, keeping

all the parameters of FTLE computation the same as before

(e.g., δt = 0.2). Figure 5a shows the benchmark and approx-

imated FTLE time series at that point. The benchmark FTLE

is calculated by Eq. (6) using the velocity field information

and the maximum eigenvalue of the Cauchy–Green strain

tensor. The approximated FTLE in this panel is calculated

by Eq. (8). Information about δ and the local velocity (i.e.,

v) are assumed to be known (in this numerical experiment

we obtain them from the velocity field). Figure 5b shows the

benchmark and approximated distance between successively

released particles after an elapsed time T = 15. To calculate

the benchmark time series, we use the velocity field infor-

mation to generate the trajectories and find the distance be-

tween the successive particles. The approximated time series

is generated by Eq. (9), with the provided information about

the local velocity and the local FTLE value.

Next, we consider the point (x, y)= (1.3, 1.3) in the ape-

riodic time-dependent Rayleigh–Bénard convection model,

keeping all the parameters of FTLE computation the same

as before (e.g., δt = 0.1). Figure 6a shows the benchmark

and approximated FTLE time series at the selected point and

www.nonlin-processes-geophys.net/22/663/2015/ Nonlin. Processes Geophys., 22, 663–677, 2015
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Figure 6. Observations I and II at (x, y)= (1.3, 1.3) for an aperiodic velocity field corresponding to a time-dependent Rayleigh–Bénard

convection model. (a) Local benchmark and recovered forward FTLE. (b) Benchmark and approximated final distance between successively

released particles corresponding to T = 75.

Fig. 6b shows the benchmark and the approximated distance

between successively released particles after an elapsed time

T = 75.

Figures 5 and 6 show typical time series of the recovered

local FTLE and the distance between successively released

(or collected) particles. As one can observe, the two time se-

ries in panels a and b are highly correlated, and the error of

approximation is generally small.

The error of approximation in observations I and II de-

pends on many parameters, for example, δt , T , and variation

of the vector field over the timescale δt . We leave the analysis

of errors of observations I and II for a future study.

3.2 Applications of the local FTLE observations I

and II

Next, we consider the real-world wind data and focus on the

backward FTLE fields and the location of source points. This

situation is important for field studies for identifying poten-

tial source regions of plant pathogens and their relative risk of

transport to previously unexposed regions (Lin et al., 2014;

Prussin et al., 2014a, b, 2015). For this purpose, we use ob-

servations I and II to compare the benchmark and the recov-

ered local backward FTLE time series and also the true and

the estimated distance of the source locations corresponding

to the particles that were collected at Virginia Tech’s Kent-

land Farm, located at 37◦11′ N and 80◦35′W. A large variety

of microbial samples have been collected at this location over

the past 7 years (2006 to 2013) (Schmale et al., 2012). We re-

fer to this point as (0, 0) in our plots.

The flow maps are calculated by using numerical data cor-

responding to the North America Mesoscale, NAM-218, pro-

vided by the National Oceanic and Atmospheric Administra-

tion (NOAA) and National Centers for Environmental Pre-

diction’s (NCEP) Operational Model Archive and Distribu-

tion System (NOMADS) project1. The spatial resolution of

this data set is about 12.1 km and the temporal resolution

1http://nomads.ncdc.noaa.gov/data.php

is 3 h. All the trajectories are calculated by a fourth-order

Runge–Kutta integrator with a constant integration time step

equal to 5 min. We use third-order splines for all necessary

spatiotemporal interpolations. We consider the time interval

12:00 UTC 29 September to 12:00 UTC 30 September 2010

for our numerical experiments and refer to it as the interro-

gation window.

Figure 7 shows the trajectories and the initial positions of

the indexed particles corresponding to the collected particles

at the sampling location during the interrogation window.

The frequency of sampling was 1 h and the backward time in-

tegration is 24 h for all the particles. In addition, for simplic-

ity and without losing generality of the results, we perform

the integration on a quasi-two-dimensional 850 mb pressure

surface (BozorgMagham and Ross, 2015). Indices of this fig-

ure indicate the sampling times of the collected particles; for

example, index “12” that is located in the northwest of the

figure refers to the initial position of a particle that started

at 12:00 UTC 28 September and was collected 24 h later,

i.e., 12:00 UTC 29 September, at the sampling location. In

terms of streaklines (Batchelor, 2000), this line (see Fig. 7b)

is composed of contemporaneous points, e.g., 24 h, from the

assembly of streaklines that pass through the sampling loca-

tion during the interrogation window. We define this line as

the isochrone source line since the integration time from all

points on it to the sampling location is equal, e.g., 24 h in this

example.

Following the assumptions of the local FTLE observa-

tions, i.e., a proper δt with respect to the spatiotemporal vari-

ability of the velocity field, we choose sampling periods from

0.1 to 1 h, and all the integration is done in the same inter-

rogation window. Figure 8a shows the benchmark distance

between successive source points, i.e., δ(x, T , t1, t2), during

the interrogation window calculated from the available ve-

locity field data. We use the average velocity at the sampling

location to calculate δ∗ as |v(x, t1, t2)δt |. Figure 8b shows

the recovered local FTLE time series, assuming that the true

successive distances are available.

Nonlin. Processes Geophys., 22, 663–677, 2015 www.nonlin-processes-geophys.net/22/663/2015/
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Figure 7. (a) Trajectories of the collected particles during 24 h of integration. (b) Sequential source points and the isochrone source line.

Sampling frequency is 1 h between 12:00 UTC 29 September and 12:00 UTC 30 September 2010, and the sampling location is at (0, 0)

(Virginia Tech Kentland Farm, 37◦11′ N and 80◦35′W).
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The interrogation window is 12:00 UTC 29 September to 12:00 UTC 30 September 2010.

Figures 7b and 8 demonstrate that we interpret a local

(backward) FTLE time series as differential stretching of line

elements along an isochrone source line. To verify this result

and to study the effect of different δt’s on the recovery of lo-

cal FTLE time series, we calculate the benchmark backward

FTLE fields for the interrogation window with integration

time equal to 24 h. Figure 9a shows an image of the true time-

varying FTLE field corresponding to 12:00 UTC 29 Septem-

ber 2010. To give a sense of the changes of the FTLE field

during the interrogation window, we may describe the mo-

tion of the strong ridges of the field in Fig. 9a toward a north-

westerly direction, as shown by the arrow. Figure 9b shows

the benchmark local FTLE value (black line) at the Kentland

Farm during the interrogation window. To generate this plot,

we use Eq. (6) and calculate the backward FTLE field ev-

ery 15 min; then, the time-varying value of FTLE at (0, 0) is

extracted. Also, to compare the results, the recovered FTLE

time series corresponding to δt = 0.1 h is displayed in the

same panel by the red line. Figures 8b and 9b indicate that

(i) an optimal δt for this example is between 0.1 and 0.5 h,

and that (ii) the estimation error is smaller for larger values

of the true local FTLE. Therefore, we may observe larger

errors of estimation when (true) σ is close to zero, e.g., be-

tween 00:00 and 04:00 UTC in Fig. 9b. For δt = 0.1 h, we

observe that the true and approximated local FTLE time se-

ries are highly correlated, and their maxima (corresponding

to the local maxima of the FTLE field) are also at the same

times (within δt =±0.1 h). Therefore, with a proper choice

of δts, the recovered local FTLE time series can accurately

capture the passage times of moving ridges of a FTLE field.

Detecting these ridges is important since they are candidates

for hyperbolic LCSs in many geophysical applications (Tal-

lapragada et al., 2011; Haller, 2011; Karrasch, 2012; Bo-

zorgMagham et al., 2013).

In addition, we investigate whether we can estimate the

distances by using observation II, provided there is neces-

sary information about local velocity and FTLE. Figure 10 is

a numerical example that shows that the benchmark distance

between the successive source points (black line) is well ap-

proximated (red line) by observation II, i.e., Eq. (9). Note
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Figure 9. (a) The frozen image corresponding to 12:00 UCT 29 September 2010 of the backward FTLE field during the interrogation window.

Integration time is 24 h for FTLE calculations. The bold arrow shows the general wind direction and the motion of the attracting LCS. (b) The

true (black) and recovered (red) local FTLE time series at the reference point (0, 0). For the recovered time series (red), δt is equal to 0.1 h.

12 16 20 00 4 8 12
0

50

100

150

200

250

UTC time

δ
(k

m
)

Estimated diff. dist.

Benchmark diff. dist.

Figure 10. Differential distance between the successive source

points on the isochrone source line corresponding to δt = 0.25 h.

The black line shows the benchmark and the red line shows the ap-

proximated time series that is calculated by the local FTLE formula

as exp(|T |σT
[t1,t2]

(x))|v(x, t1, t2) δt |. The backward integration time

for calculations of the flow maps is T = 24 h and the interroga-

tion window is 12:00 UTC 29 September to 12:00 UTC 30 Septem-

ber 2010.

that in this case we have the data of the true local FTLE and

the local velocity. In this figure we see that at δt = 0.25 h,

the estimated differential distance time series is very close to

the true answer, and it captures the correct times of the local

maxima.

This is an empirically important result, because one can

schedule the sampling of geophysical flows (e.g., with

drones) based on the available forecast FTLE fields and local

velocity such that the successive collected particles originate

from the most possible diverse locations. In Fig. 10 it is ev-

ident that there are two optimal time intervals, i.e., before

and after 16:00 UTC, for maximal diversity monitoring. To

interpret this, consider Fig. 7b and notice that the geographic

extent of the line segment from point 15 to point 16 is much

larger than the segment from point 13 to point 14.

A direct result of the local FTLE observations is the pos-

sibility of planning for maximal geographic (and therefore

also genetic) diversity monitoring such that the collected par-

ticles come from the most separated source locations. This

means incorporating greater potential source areas, which

could drive a greater diversity of sample collection. Suppose

that it is desired to maximize the genetic diversity of microor-

ganisms collected in a sample, assuming that all the collected

particles have approximately the same flight time. Results of

observation II indicate that to collect samples such that they

originate from the most distant locations, one should collect

at times corresponding to the maxima of the local FTLE time

series (note the high correlation between the distance and the

local FTLE time series in Figs. 10 and 9b). To ensure that the

particles are coming from significantly separated locations,

we may use the topology of the FTLE field and collect the

samples on either side of a strong attracting LCS feature that

corresponds to a local maximum of σ T
[t1,t2]

, provided there is

a short enough time between sampling periods. In this con-

dition, a high value of σ T
[t1,t2]

as the exponent in Eq. (7) is the

reason for having a large δ. Figure 11 schematically shows

this strategy when an attracting LCS feature passes over a

fixed sampling location, causing a dramatic change in the re-

gion of possible source points of collected particles.

As an example in realistic geophysical flow, Fig. 12 shows

trajectories of three hypothetical particles that are collected at

(0, −100) km with respect to the reference point. Backward

integration time for specifying the corresponding source

points, i.e., A, B and C, and the trajectories is 40 h for those

three particles. The sampling times during the interrogation

window are 13:40 UTC for the red particle, 14:00 UTC for

the blue particle and 14:10 UTC for the green particle. The

green and blue particles are collected on one side of an at-

tracting LCS, but the red particle is collected on the other

side of the same LCS. As we observe, the source points

corresponding to blue and green particles, points B and C,

are close. Meanwhile the source point of the red particle,
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Figure 11. An attracting LCS feature (red) passes over the geo-

graphically fixed sampling location (indicated by a bold ×). Black

lines show trajectories of hypothetical particles that are absorbed to

a moving attracting LCS. The bold arrow shows the general wind

direction and the motion of the attracting LCS at the specified inter-

val. Collected samples on either side of this attracting LCS feature

come from two different regions.

point A, is significantly far from the other two particles. An

interesting feature of this figure is that the separation of the

trajectories does not start from the sampling point, but as is

shown, the three trajectories remain close to each other for

about 200 km and then begin to diverge. This observation is

directly related to the concept of the FTLE, because σ Tt0 is a

function of the “final” separation between nearby particles,

and it does not specify the moment of divergence.

Referring to this example, observation II can help us to ex-

plain the seeming association of sample diversity with high

FTLE. There have been some reports of significant charac-

teristic variation of the collected particles, e.g., genetic types

or aerial density of the microbial samples, during short inter-

vals when sampling coincides with a high-value local FTLE,

or similarly, passage of a strong LCS over the sampling lo-

cation (Schmale et al., 2012; Lin et al., 2013). In addition,

a direct result of the local FTLE observations is that when

the local FTLE value is small during the sampling process, it

is expected that the collected particles originate from nearby

source points, assuming approximately the same flight times

for them. This might be the reason that the characteristics

of the microbial samples remain quasi-constant in consecu-

tive collections, but differ as the time between sample col-

lections increases (Lin et al., 2013). This situation is simi-

lar to sampling from a coherent set where the FTLE values

are generally small (Froyland et al., 2010; Tallapragada and

Ross, 2013) and the particles have similar Lagrangian char-

acteristics. Moreover, in cases where we observe significant

changes in collected samples while the local FTLE value

is small, we speculate that those changes are caused by lo-

cal sources rather than long-range transport phenomena (Lin

et al., 2013). Thus, the local FTLE concept helps us to in-

clude or exclude rare/unique microbes from specific source

regions. This sets the stage for additional work to be per-
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Figure 12. Three calculated trajectories of (hypothetical) collected

samples. The red and blue trajectories correspond to the samples on

either side of a LCS. The blue and green trajectories correspond to

the samples on one side of the same LCS. Sampling times are 13:40,

14:00 and 14:10 UTC during the interrogation window (12:00 UTC

29 September to 12:00 UTC 30 September 2010) for the red, blue

and the green particles, respectively. Source points of the collected

particles are shown by A, B and C. The integration time for all three

particles is T = 40 h.

formed to test hypotheses concerning the presence/absence

of the unique microbes at the potential source locations.

4 Unresolved turbulence and probabilistic regions

In this section we study the uncertainty in calculation of the

source (or destination) points due to unresolved turbulence

and also the role of high-value local FTLE and deterministic

LCS in separation of the probabilistic source (or destination)

regions.

Precise calculation of the source (or destination) point of

any collected (or released) particle and the corresponding

flow map require high-resolution data of the velocity field.

But geophysical data are always discrete and spatially sparse.

For example, spatial and temporal resolutions of operational

atmospheric data sets vary from the order of 10 to hun-

dreds of kilometers and 3 h to longer intervals, respectively.

Meanwhile, spatiotemporal scales of atmospheric flows can

be smaller than the resolution of the available data, and we

may lose important Lagrangian phenomena such as turbu-

lent diffusion and small-size eddies if we just consider avail-

able data (Csanady, 1973; Rodean, 1996). Therefore, for re-

alistic calculation of the source (or destination) points, it is

necessary to consider the uncertainty of the trajectories. For

this purpose, we consider a Lagrangian particle dispersion

model (LPDM) that provides the stochastic component of
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the velocity with respect to the available deterministic (back-

ground) data (Legg and Raupach, 1982; Fay et al., 1995;

Draxler and Hess, 1998; Stohl et al., 2005). In LPDM, the

velocity vector at each point, v(x, t), is assumed to be the

sum of a deterministic term, v(x, t), and a random variable,

V (x, v, t) that depends explicitly on the instantaneous po-

sition of the particle x, its deterministic velocity v at that

location and the time t ; see Eq. (11). Later, we see how this

dependency dictates two different solutions for the calcula-

tions of the probabilistic source and destination regions (Bo-

zorgMagham and Ross, 2015).

v(x, t)= v(x, t)+V (x,v, t) (11)

The stochastic term of Eq. (11) is a Markov-chain process

as a function of the velocity deformation tensor and the La-

grangian timescale of the flow field,

V(t+1t) = R1tVt +
(

1−R2
1t

)0.5

N (0,1)
√
κ/TL, (12)

where V shows each component of the stochastic velocity

term V , and the correlation coefficient R1t is a measure of

the association between stochastic velocities in successive

time steps. Also, N is a normal distribution with mean zero

and unit standard deviation. The correlation coefficient

R1t = exp(−1t/TL) (13)

is a function of the integration time step, 1t , and the La-

grangian timescale of the flow field, TL, which is on the order

of 104 s. The term κ depends on the gradient of the instanta-

neous deterministic velocity, v= (u, v), the grid size of the

meteorological data, χ , and an empirical constant, c:

κ = 2−0.5(cχ)2

[(
∂v

∂x
+
∂u

∂y

)2

+

(
∂u

∂x
−
∂v

∂y

)2
]0.5

. (14)

Because κ depends on the gradient of the background ve-

locity, one can easily use the set of Eqs. (11)–(14) for forward

integration. Using this set for simple backward integration re-

quires presumption about the position of a particle at specific

times, which leads to misleading results. Therefore, we have

to consider two distinct cases, (i) calculation of the proba-

bilistic destination region of a released particle, and (ii) cal-

culation of the probabilistic source region of a collected par-

ticle. In this study we discuss both cases, but like before,

emphasize the probabilistic source regions (corresponding to

the backward trajectories). We also revisit the problem of a

local FTLE and successive sampling in the presence of un-

resolved turbulence. Our numerical results show that if suc-

cessive sampling is performed on either side of a strong at-

tracting LCS (represented by the temporal peaks in the local

backward FTLE time series), the probabilistic source regions

are significantly separated, similar to the deterministic case.

To focus on the main concerns of this study and to avoid

complexity, we proceed with a two-dimensional velocity

field similar to the previous sections. However, this approach

can be extended to three-dimensional fields by adding an ap-

propriate stochastic term in the extended direction (Rodean,

1996).

4.1 Probabilistic source and destination regions

(i) The probabilistic destination region is the probability dis-

tribution of the final positions of virtually released particles

after integration time T when the initial position is known

precisely, e.g., a Dirac delta function. The case of forward

integration and related calculations of a probabilistic distri-

bution is equivalent to solving the Fokker–Planck or Kol-

mogorov forward equations (Rodean, 1996; Risken, 1989),

which describe the future of a probability distribution func-

tion of a known initial condition that evolves under the dy-

namics of a system, e.g., a diffusion process.

Because the time-varying vector fields are usually com-

plicated, analytical solutions for probabilistic destination re-

gions are not available, and it is necessary to use numerical

solutions. For this aim, we discretize the domain of our in-

terest into sufficiently small boxes and use the Monte Carlo

method by releasing a sufficient number of independent par-

ticles from a box that includes the release point. Figure 13a

shows this procedure. By choosing an appropriate integra-

tion time step, we calculate the trajectories. By completion

of the integration process, we have a distribution of particles

in different boxes. If the total number of released particles is

sufficiently large and the boxes’ dimensions are sufficiently

small, then the ratio of the virtual particles in each box to the

total number of released particles shows the probability dis-

tribution of the destination region. By increasing the number

of virtual particles and decreasing the size of the boxes, the

calculated distribution becomes invariant.

(ii) The solution for a probabilistic source region is con-

ceptually the same as solving the Kolmogorov backward

problem (Risken, 1989). In mathematical terms, at time

t0− T (T > 0 is the integration time), we investigate for a

specific source distribution such that in a future time, i.e., t0,

the system will be in a given target set. A probabilistic source

region cannot be determined by simply performing backward

time integration, because κ in Eq. (14) and consequently the

stochastic velocity term are determined by the instantaneous

background velocity that depends on the location and time.

Naively applying the backward time integration produces a

series of “false” displacement vectors. The cumulative ef-

fect of these false displacements yields a false probabilistic

source region. To solve this problem, we first discretize the

domain of the flow field into small boxes. Then, we shift the

starting time to t0− T and consider the velocity field at this

new time frame. By this means, we convert this problem into

a forward integration problem from t0− T to t0. At t0− T

we release a sufficient number of independent particles from

all boxes of the domain (this step is the major difference be-

tween the current and previous case). By forward integration
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Figure 13. (a) A solution for the probability distribution of a forward case. Virtual particles are released from a box that includes the release

location. Distribution of the final positions after integration time T would specify the probabilistic destination region. Calculation of the

probabilistic destination region is equivalent to the solution of a Fokker–Planck equation for finding the future probability distribution of an

initially known distribution. Trajectories of the released particles from the initial box are shown in green. (b) A solution for the probability

distribution of a source region. For a proper forward-time integration, the starting time is shifted to t0− T . Virtual particles are released from

all the boxes in the domain. Important particles are those that land in the target box, which includes the sampling location. Trajectories of

particles that land in the target box are shown by green; other trajectories are shown by red. A solution for the probabilistic source region is

conceptually the same as the solution of the backward Kolmogorov equation, where an initial probability distribution is the desired solution

such that in a future time the system will have a specified probability distribution.

from t0− T to time t0, we find the landing location of all

released particles. The influential particles in this procedure

are those that land inside the sampling box, e.g., the particles

associated with the green trajectories in Fig. 13b. In this fig-

ure, those boxes that have contributed to the particles ending

up in the target box “j” are hatched. As we observe, there

may be particles from contributing boxes that do not land in

the target box (shown by red trajectories).

In Fig. 13b the boxes are labeled by i= 1, 2, · · ·, nb, where

nb is the number of boxes and the sampling box is shown by

index j . We denote the number of particles that start from

box i at time t0− T and are in box j at time t0 by ni→j . We

calculate the relative contribution of each source box as

γi =
ni→j∑
i

ni→j
, (15)

where
∑
i ni→j shows the total number of particles that land

in the sampling (target) box j and γi is the chance of a col-

lected particle coming from a specific box i. Therefore, the

distribution of γ over the domain approximates the probabil-

ity distribution of the source region. This procedure gener-

ates the correct probabilistic source region, but its numerical

efficiency is not high because many, e.g., 106, independent

particles are released from all boxes of the domain, but only

those particles that land in the sampling box are counted.

Thus, there are a huge number of calculated trajectories that

are left out. It is not the purpose of this study, but one can

increase the efficiency of this procedure by applying some

optimization methods, for example, sequential release of par-

ticles from large boxes that are inside a circle centered at the

sampling box and by identifying the regions with maximum

contributions. The radius of that circle can be determined by

statistical information about the mean velocity and the inte-

gration time. After that, one may focus on those important

regions by partitioning them into smaller boxes and increas-

ing the number of released particles to determine fine struc-

tures of the probabilistic source region. For more information

regarding this problem, one can refer to the STILT project2

(Lin et al., 2003; Nehrkorn et al., 2010; Hegarty et al., 2013).

4.2 Probabilistic source region and local FTLE

observations

To investigate a realistic example of probabilistic source re-

gions and the applicability of the presented observations, we

revisit the case study of Sect. 3.2. Figure 14 shows one ex-

ample of a probabilistic source region where the color inten-

sity determines the relative contribution of each source box.

In this case the sampling location is at (0, −100) km with re-

spect to our reference point. The sampling time is 14:10 UTC

29 September 2010 and the total elapsed time for trajectory

calculations is T = 40 h. This figure is the stochastic equiv-

alent of the source point of the particle whose trajectory is

shown by the green line in Fig. 12. For this calculation, 105

particles are released from each 10× 10 km box. After trial

and error experimentation, the search area for this specific

problem is considered to be the 900 km× 600 km rectangu-

lar grid shown in Fig. 14b. Considering the size of the boxes,

the total number of released particles and calculated trajecto-

ries is 5.4× 108 in each integration time step.

An important point about probabilistic source and destina-

tion regions is that although at each time step the stochastic

velocity term has a Gaussian distribution (recalling Eq. 12),

the final distribution of particles is not necessarily Gaussian.

The reason for this fact is the cumulative effects of the vari-

2http://www.stilt-model.org
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Figure 14. (a) The probabilistic equivalent of the source point of the (virtually) green particle in Fig. 12. The sampling point S is located

at (0, −100) km with respect to our reference point and the sampling time is 14:10 UTC 29 September 2010. (b) Details of the probabilistic

source region that is composed of 5400 boxes, each 10 km× 10 km. Color intensity shows the relative contribution of each source box. (c) γ ,

the relative contribution of source boxes along the specified line PQ.

ability of the variance of normal distribution,
√
κ/TL, that is,

a function of the gradient of instantaneous velocity. In gen-

eral, for small integration time, the probability distribution

of the source (or destination) region is close to a Gaussian

distribution, but as the integration time increases, the corre-

sponding distribution diverges from a normal one. For ex-

ample, visual inspection of Fig. 14b indicates that the final

distribution of the probable source points is not Gaussian. In

Fig. 14c the relative contribution of the source boxes along

the specified line PQ is shown. Standard statistical tests such

as the Kolmogorov–Smirnov test (Lilliefors, 1967) confirm

that the distribution is not Gaussian.

In Fig. 12 we show that the source locations of two col-

lected particles on either side of an attracting LCS are much

further apart than the source points of two successive col-

lected particles on one side of the same LCS. We want to

investigate whether this result is still valid in the presence

of unresolved turbulence. If that result holds, then in practi-

cal applications such as sampling of the microbial structure

of the atmosphere, we can have reasonable confidence about

the separation of the probabilistic source regions based solely

on a deterministic analysis, that is, without performing both-

ersome probabilistic calculations. Therefore, we study a case

where we know its deterministic dynamics. Figure 15 shows

the evolution of the probabilistic source regions “A” and “B”

(shown in Fig. 15a) corresponding to the (virtually) red and

blue particles of Fig. 12, respectively. The total integration

time for this example is 40 h. In each panel of this figure

we also show the attracting hyperbolic LCSs according to

Haller (2011) and Karrasch (2012). For calculation of each

probabilistic region of this figure, 105 particles are released

from each small 10 km× 10 km box. By comparing Figs. 12

and 15a, we observe that the probabilistic source regions con-

tain the deterministic source points, and they are significantly

separated from each other. Also, we see how the two prob-

abilistic regions contract and become closer to the attracting

LCS as they get closer to the sampling point. One noticeable

feature in this figure is the difference between the shapes of

the two source regions, while the two samplings are sepa-

rated by only 20 min.

Results of this example show that, similar to the conse-

quences of observation II, the probabilistic source regions

corresponding to the collected particles on either side of a de-

terministic attracting LCS are significantly separated in back-

ward time.

5 Conclusions

FTLE fields provide useful information about large-scale

transport phenomena and also Lagrangian structures of flow

fields, particularly geophysical flows. However, in field ex-

periments the data are on a much more modest scale. There-

fore, it is necessary to bridge the gap between the concept of

large-scale FTLE fields and local experiments. To fill that

gap, we propose a methodology that is an ansatz that is

closely related to the concept of local Lyapunov exponents

and the direction of maximum expansion in autonomous or-

dinary differential equation systems (a rigorous mathemati-
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Figure 15. Sequence of the hyperbolic LCSs (blue) and two probabilistic source regions corresponding to two successive samples. Proba-

bilistic regions “A” and “B” (a) correspond to the virtually red and blue particles in Fig. 12. These six panels correspond to 40, 30, 20, 10,

5 and 0 h before collecting the corresponding samples at 13:40 and 14:00 UTC during the interrogation window (see the Supplement video).

cal formalism for non-autonomous dynamical systems is still

needed). Our observations correspond to (i) estimation of the

local FTLE, given the local velocity and the distance between

sequentially released (or collected) particles, and (ii) esti-

mation of the distances between the destination (or source)

points of sequentially released (or collected) particles assum-

ing the availability of the local velocity and local FTLE.

These observations were motivated in part by our previous

work examining the dynamics of assemblages of microor-

ganisms in the lower atmosphere. We numerically demon-

strate the results of our observations for a periodic veloc-

ity field (i.e., a double-gyre), an aperiodic system (i.e., a

Rayleigh–Bénard convection model) and real-world wind

data. The suggested notion is useful in practical cases where

we have samples of particles (e.g., microbes) collected at a

fixed location, and we are interested in formulating hypothe-

ses about their origin, structure, and potential transport phe-

nomena driving their atmospheric movement. In addition, we

show that the concept of local FTLE and observation II can

be applied to scheduling of atmospheric sampling missions

to collect high-diversity samples.

We also investigate the unresolved turbulence and the

probabilistic description of the source (or destination) points.

We use the box discretization method and discuss the impor-

tant differences between calculation methods of the proba-

bilistic source and destination regions. Furthermore, we show

that because the stochastic velocity is a function of instanta-

neous background velocity, the probabilistic source (or des-

tination) regions are not necessarily Gaussian. Finally, we

study the probabilistic source regions corresponding to suc-

cessively collected particles on either side of a strong hyper-

bolic attracting LCS – or equivalently, a local maximum of

the local FTLE time series – and demonstrate that one may

trust the estimated results of deterministic calculations of

source (or destination) points in realistic geophysical flows.

Results of this study can aid in optimizing the sampling

schedules of passive particles and understanding of the out-

comes of local observations in geophysical flows, based on

large-scale transport features.

The Supplement related to this article is available online

at doi:10.5194/npg-22-663-2015-supplement.
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