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Atmospheric Lagrangian transport structures and their applications to

aerobiology

Amir Ebrahim Bozorg Magham

ABSTRACT

Exploring the concepts of long range aerial transport of microorganisms is the main moti-

vation of this study. For this purpose we use theories and concepts of dynamical systems in

the context of geophysical fluid systems. We apply powerful notions such as finite-time Lya-

punov exponent (FTLE) and the associated Lagrangian coherent structures (LCS) and we

attempt to provide mathematical explanations and frameworks for some applied questions

which are based on realistic concerns of atmospheric transport phenomena. Accordingly, we

quantify the accuracy of prediction of FTLE-LCS features and we determine the sensitivity

of such predictions to forecasting parameters. In addition, we consider the spatiotemporal

resolution of the operational data sets and we propose the concept of probabilistic source

and destination regions which leads to the definition of stochastic FTLE fields. Moreover,

we put forward the idea of using ensemble forecasting to quantify the uncertainty of the

forecast results. Finally, we investigate the statistical properties of localized measurements

of atmospheric microbial structure and their connections to the concept of local FTLE time-

series.

Results of this study would pave the way for more efficient models and management strategies

for the spread of infectious diseases affecting plants, domestic animals, and humans.
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Chapter 1

Introduction

This study is inspired by aerial transport phenomena of microbial populations of a significant

group of fungi known as Fusarium. This group of fungi contains a number of important

plant and animal pathogens and they cause huge annual losses in agricultural and domestic

animal industries. Thus, for having a sustainable and healthy food cycle it is essential

to have a deep understanding about them. For this aim, there are many biological and

aerobiological researches associated to fusaria to describe their genetic diversities, life cycles,

related infections and diseases and other connected subjects. An important part of the life

cycle of fusaria is their aerial transport from their source points to their target habitats.

Research results show that this transport could be in different ranges, from small scales

(meters, farm size) to long range mesoscale distances. Focus of this study is on long range

transport phenomena of passive tracers such as fusaria.

There are some traditional methods for this purpose, e.g., backward and forward trajectory

calculations which shows spaghetti of the particles’ pathlines (spores). This approach does

not provide any big picture about the underlying dynamics and for each case it is necessary

to repeat all the calculations. To avoid this drawback we use some fundamental concepts

1
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of dynamical systems which give us a big picture of the system and the motion of particles

along important pathways which govern mixing and transport of passive particles. For

this purpose we mainly use the concept of finite time Lyapunov exponent (FTLE) and the

associated hyperbolic Lagrangian coherent structures (LCSs). Tersely, FTLE shows the

separation rate between nearby particles in a moving fluid flow and LCS are the material

surfaces with maximum attraction or repulsion rates in non-autonomous dynamical systems.

These features are analog to invariant stable and unstable manifolds in ODE systems.

Thus, the main objective of this work is to explore some applied questions regarding the

aerial transport of passive microorganisms in geophysical (atmospheric) fluid domain. This

work is outlined as follows.

In Chapter 2 we investigate the forecast results of FTLE fields and LCS features with respect

to various forecast parameters. We specifically explore questions such as: how accurate and

precise are forecast FTLE-LCSs? And what are the quantitative methods for comparing the

forecast-based with the archive-based features? Also, what are the effective parameters on

the quality of FTLE-LCSs forecasting? Answering these questions would be important when

we want to apply this approach to real situations, for example, to predict the incursion of a

high threat plant pathogen into susceptible regions from a distant source.

In Chapter 3 we use a Lagrangian particle dispersion model to determine the probabilistic

source (destination) regions and we introduce the concept of stochastic FTLE fields. In

addition, we show that the spatiotemporal dependence of the stochastic velocity component

to the time–varying deterministic background velocity field plays an important role in the

determination of the probabilistic distribution of the end–position of particles and conse-

quently on the stochastic FTLE fields. Also, we propose a practical approach to measure

uncertainty of forecast FTLE–LCSs by using ensemble forecasting concepts.
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In Chapter 4 we investigate the results of localized samplings of fusaria to determine how

statistically their collections vary between consecutive samplings in short period of time.

This work is essential for understanding whether changes in the recovery of fusaria in the

lower atmosphere may be attributed to large-scale transport phenomena.

In Chapter 5 we study the concept of local FTLE and successive (aerial) particle samplings at

a fixed location. The proposed theorem in this chapter helps us to have a better understand-

ing about the distribution of the source points of sampled particles and also to investigate

the long range transport phenomena as a possible cause of abrupt characteristic changes

among the successive collected samples. We also consider the spatiotemporal limitations of

the velocity field data and the uncertainties of the location of the source and destination

points. Finally, we show how the notion of local FTLE could be used in cases that unresolved

turbulence has considerable importance.

Our contributions to the literature are:

• We quantify the sensitivity of FTLE-LCS predictions with respect to the involved

forecasting parameters of operational data sets,

• We show the effects of unresolved turbulence on probabilistic source/destination re-

gions, also we distinguish two numerical procedures for calculations of those proba-

bilistic regions,

• We propose a definition of stochastic FTLE field,

• We introduce the ensemble FTLE fields as a practical method for uncertainty analysis

of forecast FTLE-LCSs,

• We investigate the statistics of the consecutive samples of Fusarium and compute the

autocorrelation coefficient of the colony counts,
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• We present a new interpretation about the local FTLE and we show its applications

for describing the differential distances between the source/destination points and also

for maximal-diversity monitoring purposes.

The following chapters are presented in journal format with the second chapter accepted

into archival publication in Physica D, nonlinear phenomena and the forth chapter accepted

into archival publication in Aerobiologia. The remaining chapters have been or are in the

process of being submitted for publication.

We place all the references corresponding to different chapters at the end of this document.



Chapter 2

Real-time prediction of atmospheric

Lagrangian coherent structures based

on forecast data: An application and

error analysis

Note: The following chapter was formatted to facilitate publication in Physica D Nonlinear

Phenomena. This work was originally published by Bozorg Magham, Ross, and Schmale in

Volume 258, September 2013, pp.47-60. (DOI doi:10.1016/j.physd.2013.05.003 ) of Physica

D Nonlinear Phenomena.

Abstract

The language of Lagrangian coherent structures (LCSs) provides a new means for studying

5
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transport and mixing of passive particles advected by an atmospheric flow field. Recent

observations suggest that LCSs govern the large-scale atmospheric motion of airborne mi-

croorganisms, paving the way for more efficient models and management strategies for the

spread of infectious diseases affecting plants, domestic animals, and humans. In addition,

having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aer-

obiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early

warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in

the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal

the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lya-

punov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose

certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify

the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such

predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs

exhibit less divergence from the archive-based LCSs than repelling features. This result is

important since attracting LCSs are the backbone of long-lived features in moving fluids. We

also show under what circumstances one can trust the forecast results if one merely wants to

know if an LCS passed over a region and does not need to precisely know the passage time.

2.1 Introduction

The emergence of Lagrangian coherent structures (LCSs) along with related concepts from

dynamical systems theory during the past decade has aided in providing a better under-

standing of the geometric mechanisms of transport and mixing of particles in moving fluids

(Lekien et al., 2005; Haller and Poje, 1998; Haller and Yuan, 2000; Lekien et al., 2007;

Shadden et al., 2005; Olascoaga and Haller, 2012; Vogel et al., 2011). Hyperbolic LCSs are
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material surfaces with maximum attraction or repulsion rates in non-autonomous dynam-

ical systems as viewed in the context of extended phase space (Haller, 2011) and can be

considered analog to invariant stable and unstable codimension one manifolds.

One of the novel applications of this new concept is in the study of long range transport of

airborne microorganisms passively advected by atmospheric flow (Tallapragada et al., 2011;

Schmale et al., 2012; Lin et al., 2013). The diseases borne by microorganisms can have severe

economical and ecological effects. For example, Hurricane Ivan brought soybean rust from

South America to the Gulf coast of the U.S. (Pan et al., 2006; Schneider et al., 2005), and

long distance transport is believed to play a role in the dispersal of tobacco blue mold in the

U.S. (Aylor et al., 1982). Experimental verification of long distance transport of airborne

microorganisms from known sources is underway (Prussin et al., 2013). Given the biological

and economical importance of invasive plant diseases, there is an increasing interest in pre-

dicting the distribution patterns of pathogens. This will be beneficial for better informing

national and local managements. For example, the USDA Pest Information Platform for

Extension and Education is an extensive program which provides the latest information on

soybean rust and soybean aphid including observations, management recommendations, and

scouting information (http://sbr.ipmpipe.org).

It has been hypothesized that LCSs may play an important role in the long distance and

non-uniform spread of microbes (Tallapragada et al., 2011). This assumption is built on

the essential properties of the repelling and attracting LCSs which act as the backbone of

mixing, providing moving partitions of the fluid domain into regions which move coherently

(Haller and Sapsis, 2011; Haller and Yuan, 2000). This hypothesis has been tested using

autonomous unmanned aerial vehicles (UAVs) equipped with microbe-sampling devices to

collect viable spores of a specific group of fungi known as Fusarium (Schmale et al., 2012).

This group of fungi contains a number of important plant and animal pathogens (Leslie and
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Summerell, 2006). Collections were performed during daylight hours at random times over

a fixed geographic location. Counts of Fusarium were compared to hyperbolic LCS features

obtained from archived wind velocity data from the NAM-218 model. Statistical results from

several sampling flights show that when a punctuated change in spore concentration occurs,

there is a high probability that an LCS passes over the sampling location between the two

sampling times (Tallapragada et al., 2011).

Sampling flights are costly experiments in terms of equipment and personnel and have been

performed without any forecast of LCSs. While this approach avoids certain biases in the

data collection for initial hypothesis testing, a more efficient strategy would be to choose

the sampling times with respect to the expected passage times of LCSs over the sampling

location. Thus, instead of selecting arbitrary sampling times for UAVs, one can use wind

velocity forecast data to predict LCS features. This would enable investigators (such as

ourselves) to optimize a sampling strategy to collect samples on either side of a predicted

LCS.

Another motivation for using forecast results is for risk assessment. If the association of

LCSs and long-range transport of agricultural pathogens holds up under further scrutiny,

then predictions of LCSs can be incorporated in management strategies, i.e., by short-term

prediction based on wind data. If the differences between the predicted and true wind velocity

field are small in the sense of Haller (2002), then hyperbolic LCSs will be topologically stable,

and the strategy of using wind forecast data is sound.

In this context, we seek to study the accuracy of forecast LCS features. In this paper,

our results reveal the cumulative effects of errors of wind field forecasts on the finite-time

Lyapunov exponent (FTLE) fields and related LCS patterns (Olcay et al., 2010).

We specifically investigate questions such as: How accurate and precise are forecast FTLE-
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LCSs? And what are the quantitative methods for comparing the forecast-based with the

archive-based features? Also, what are the effective parameters on the quality of FTLE-LCSs

forecasting? Answering these questions would be vital when we want to apply this approach

to real situations, for example, to predict the incursion of a high threat plant pathogen into

susceptible regions from a distant source (Madden and Wheelis, 2003).

The paper is outlined as follows. In § 2.2, we discuss the conceptual and mathematical

definitions of the FTLE field, ridges and hyperbolic repelling and attracting LCSs. In § 2.3,

we discuss the time scheduling of real-time extraction of hyperbolic LCSs from NAM-218

data set. In § 2.4, we study the errors of wind field forecasts as the main cause of imprecise

FTLE-LCS predictions. In § 2.5, we propose five methods for quantitative comparison

of forecast-based with archive-based LCSs with respect to effective parameters (pointwise

comparison of the FTLE field, 2D cross correlation, proper orthogonal decomposition (POD)

method (Antoulas, 2005; Sirovich, 1987; Rowley, 2005), composite correlation filter (Kumar

et al., 2005) and modified Hausdorff distance method (Dubuisson and Jain, 1994)). In § 2.6,

we make conclusion of the comparison methods and the results from each of them.

2.2 LCS computation and conceptual motivation

In the description below, we follow the notation and terminology of Shadden et al. (2005).

Consider a velocity field of the form

ẋ = v(x, t), x ∈ U ⊂ Rn (2.1)

At each instant of time t, a trajectory of the system (2.1) is defined by x(t, t0,x0), starting

from the initial position x0 at time t0. The flow map ϕt
t0
(x0) maps the initial position x0 at
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time t0 into the position at time t advected under the flow,

ϕt
t0
: x0 → x(t, t0,x0). (2.2)

We use the deformation gradient (Jacobian)

Dϕt
t0
(x0) =

dϕt
t0
(x)

dx
|x=x0 , (2.3)

to define the finite-time right Cauchy-Green strain tensor Ct
t0
(x0) as

Ct
t0
(x0) = Dϕt

t0
(x)∗ Dϕt

t0
(x)|x=x0 (2.4)

where the superscript ∗ refers to matrix transpose. From the strain tensor Ct
t0
(x0), the largest

finite-time Lyapunov exponent (FTLE) corresponding to the trajectory x(t, t0,x0) over the

time interval [t0, t] is defined as

σt
t0
(x0) =

1

|t− t0|
log
∥∥Dϕt

t0
(x0)

∥∥ =
1

|t− t0|
log
√
λmax

[
Ct

t0(x0)
]

(2.5)

where ∥.∥ is the norm operator and λ1 < λ2 < ... < λn−1 < λn = λmax are the eigenvalues of

Ct
t0
(x0). Since the strain tensor is positive definite by definition, all the eigenvalues are real

and positive. When t > t0, we refer to σt
t0
(x0) as the forward FTLE and for t < t0, we refer

to it as the backward FTLE.

Shadden et al. (2005) and Lekien et al. (2007) defined Lagrangian coherent structures as the

ridges of the FTLE field. Later, Haller (2011) showed that the ridges of the FTLE field are

hyperbolic Lagrangian coherent structures only if they satisfy additional criteria. Based on

Haller (2011) and Karrasch (2012), for a fixed time interval [t0, t] a compact hypersurface
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R(t0) ⊂ U is defined as an FTLE ridge if for all x0 ∈ R(t0) we have

⟨Dλmax(x0, t0, t), ξmax(x0, t0, t)⟩ = 0⟨
ξmax(x0, t0, t), D

2λmax(x0, t0, t)ξmax(x0, t0, t)
⟩
< 0

(2.6)

where ξmax is the eigenvector corresponding to the largest eigenvalue of Ct
t0
(x0), ⟨·, ·⟩ is the

inner product on Rn and D2 represents the Hessian of a scalar field.

Provided that R(t0) is an FTLE ridge (2.6) at the initial time, Haller (2011) showed the

sufficient and necessary conditions for R(t) = ϕt
t0
(R(t0)) to be a hyperbolic repelling LCS

during the interval [t0, t] are

λn−1(x0, t0, t) ̸= λmax(x0, t0, t) > 1

ξmax(x0, t0, t) ⊥ Tx0R(t0)

µ∗L(x0, t0, t)µ > 0.

(2.7)

where Tx0R(t0) is the tangent space of R(t0), L is a matrix defined in Haller (2011), and µ

is any non-zero column vector of real numbers (the positive definite condition for L).

Later, Karrasch (2012) showed that if eigenvectors of Ct
t0
(x0) are differentiable (which is

naturally observed in smooth enough velocity fields) then (2.7) simplifies to

λn−1(x0, t0, t) ̸= λmax(x0, t0, t) > 1

ξmax(x0, t0, t) ⊥ Tx0R(t0).
(2.8)

We use the sets of equations (2.6) and (2.8) to extract the actual hyperbolic LCS features

from the list of candidates.

Hyperbolic repelling and attracting LCSs have the very important characteristic of being

locally the strongest repelling or attracting material surface over time interval [t0, t] (Haller,
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2011). Since they are material surfaces, they divide the domain of motion of particles into

different regions of qualitatively different motion (or origin or fate), so we consider the

LCSs as atmospheric transport barriers (Lekien and Ross, 2010; Senatore and Ross, 2011;

Tallapragada et al., 2011; Schmale et al., 2012). Fig. 2.1 shows the conceptual features of

the repelling and attracting LCSs. In the case of the attracting LCS feature, the particles

inside an initially straddling fluid blob move in such a way that they are attracted to the

LCS in forward time. A repelling LCS feature is the same as an attracting one for an inverse

time direction.

Figure 2.1: Schematic drawing of hyperbolic attracting and repelling LCSs.

2.3 Real-time LCSs extraction

In this section we discuss the data and the relevant data structure we use for numerical

calculations of the FTLE-LCSs in the atmospheric flow of interest. In the first part, we

introduce NAM-218 integrated system as the main data source for our calculations and
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the forecast and archive data sets. In the second part, we define the time schedule and the

constraints for real-time FTLE-LCS forecasting. Finally, the last part describes the structure

of velocity data.

2.3.1 NAM-218 data set

Computing the FTLE field requires the flow map, (2.2), ϕt
t0

: x0 → x(t, t0,x0). For gen-

erating this map we use numerical data provided by National Oceanic and Atmospheric

Administration (NOAA) and National Centers for Environmental Prediction’s (NCEP) Op-

erational Model Archive and Distribution System (NOMADS) project. NOMADS product

utilizes observational data from radar stations, weather balloons and data from satellites

as inputs for its meteorological models. We use one of the outputs of this nonhydrostatic

mesoscale model, which is the North America Mesoscale, NAM-218, with data given on a

grid of 614 × 428 points spaced at about 12.1 km covering North America. This model

contains 70 variables such as temperature, humidity and components of velocity on 70 lev-

els. Among the 70 levels, 44 correspond to pressure levels (up to 10 mb), while other levels

mostly refer to various heights above the ground level. NAM-218 data are given on a plane

given by Lambert conformal projection, which projects the points given by their latitude

and longitude (ϕ, λ) on the sphere to a Cartesian coordinate (Snyder, 1987). We consider a

6230 × 4670 km rectangular area as our wind velocity field and we compute the LCSs over

an interrogation zone of 1000 × 1000 km size with 256 × 256 grid points. We consider the

sampling area (Virginia Tech’s Kentland Farm near Blacksburg, VA) as the center of that

square (37◦11′ N latitude and 80◦35′ W longitude), which is approximately 16 km southwest

of the Virginia Tech campus in Blacksburg, Virginia.

Essentially two types of data are used in our FTLE-LCSs calculations: archive data and
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forecast data. The recorded state of the atmospheric system is called archive data. To

generate this data set, numerous measurements from, e.g., weather stations, weather bal-

loons, satellites and any available atmospheric observations, are assimilated and used to drive

large-scale oceanic-atmospheric geophysical fluid models. Outputs of this process over the

domain of interest, e.g., North America, might be different from measured values at specific

measurement points but they satisfy objective functions of the data assimilationsimulation

process. By forecast data, we mean the output of geophysical models which use the most

current outputs of the data assimilation process (archive data) as an input to estimate the

state of the system for (near-)future times (Kalnay, 2003). In NAM-218 data set, the tem-

poral resolution of archived data is 6 hours corresponding to 00:00, 06:00, 12:00 and 18:00

UTC of each day. Accordingly, the forecast chain can start based on each of these archive

slices. Temporal resolution for forecast data is 3 hours and at each moment, the maximum

available forecast data is for 84 hours lead time.

2.3.2 Time scheduling for real-time FTLE-LCSs calculations

As mentioned in the Introduction, we want to use forecast data to predict the LCS features.

Based on the availability of wind velocity forecast data and processing time, we have a

time schedule for each day. Fig. 2.2 illustrates the details of such a schedule for a typical

day. For our sampling purposes, LCSs are desired in the time interval 08:00 to 17:00 local

time (Eastern Daylight Time (EDT)), equivalent to 12:00 to 21:00 UTC, the daylight hours

during which UAV flights are permitted. We call this time interval the interrogation window

I = [t1, t2] ⊂ R. All the results presented in this paper are related to this time interval and

the selected day is 29 Sep 2010, i.e., t1 = 12:00 UTC 29 Sep 2010 and t2 = 21:00 UTC 29 Sep

2010. We imagine we want to plan sampling flights during the interrogation window, but we

are making the forecast before t1 by some number of hours. To perform real-time extraction
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of LCSs over the interrogation window, we must use a combination of forecast and archived

wind data. Based on NAM-218 timetable, archived data are available up to 18:00 UTC of

the day before t1. For times after 18:00 UTC of the day before t1, we must use forecast data

(Fig. 2.2).

We call the time interval between the last frame of available archive data and the start of

the interrogation window the gap time, T ∗, e.g., the time interval between 18:00 UTC 28

Sep 2010 and 12:00 UTC 29 Sep 2010 (note that T ∗ > 0 for all real-time calculations, but

in some cases we artificially use negative values; perfect continuous-time LCSs forecasting;

to show its effects on the quality of LCSs forecasting, e.g., Fig. 2.9).

As mentioned previously, this procedure is general and the time schedule would be similar

for other days.

Based on the time schedule Fig. 2.2, the parameters that control the forecasting procedure

are gap time, T ∗, and integration time, T = t− t0, following the notation of §2.2 for t0 and

t, where t0 ∈ I. We are interested in studying the effects of the parameters (T ∗, T ) on LCS

forecasting.

We set the maximum integration time T to be 48 h, since our results in §2.4 suggest that

for larger integration time, patterns of forecast FTLE-LCS are significantly different from

the true answers obtained from archived data. Intuitively and from the chaotic dynamics of

atmospheric systems (Lorenz, 1963; Palmer, 2000) we know that by increasing the portion of

trajectory integration which depends on the forecast wind velocity field, the forecast particle

trajectories, and hence Lagrangian structures, will diverge from true ones. The important

result of this paper is the observation of divergence of Lagrangian features based on short

forecast lead time (i.e., T ∗ small) when errors of the Eulerian forecast field are expected to

be small.
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Figure 2.2: Schematic time schedule for calculation of real-time and archive-based FTLE-
LCSs with respect to NAM-218 timetable. Archive-based features are calculated from pure
archive data. Real-time FTLE-LCSs are calculated based on a combination of forecast and
archive data. Interrogation window (12:00 to 21:00 UTC) is the time interval that UAV flights
are permitted. For optimal sampling we have to know the LCS features during this interval.
Gap time (T ∗) is the time between the last frame of available archive data and the start
of the interrogation window. FTLE-LCSs are calculated every 15 minutes in interrogation
window in forward and backward directions.

The main contribution of this paper is to quantify (a) the accuracy of prediction of LCSs

and (b) the sensitivity of such predictions with respect to the parameters (T, T ∗).

2.3.3 Velocity (wind) field data structure

Based on the previous work (Haagenson et al., 1990; Kahl et al., 1989; Stohl, 1998; Kahl

and Samson, 1986; Tallapragada and Ross, 2013; Tallapragada et al., 2011), we chose flow

data on a 900 mb pressure surface which also lies within the range of our prescribed UAV

sampling height of 100-400 m above the ground level at the elevation of Kentland Farm near

Blacksburg, VA (farm ground level is approximately 540 m above the sea level (Buergler

et al., 2005)). We make an isobaric approximation, considering only the components of
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velocity parallel to the pressure surface, since the vertical velocity is about three orders of

magnitude less than the horizontal components for the range of elevation of interest, and

averaged over the mesoscale. Considering pressure as the vertical coordinate, the mesoscale

averaged rate of change of pressure levels is about 0.03 Pa/s. Thus, during Tmax = 48 h,

pressure may change by as much as ∆p ∼ ±52mb. Under this stratification assumption, we

would expect FTLE fields separated by ∆p to be similar over integration times T = ±Tmax

(Tallapragada, 2010). To illustrate the similarity of neighboring pressure levels, in Fig. 2.3

the backward FTLE field for 900 mb and 850 mb levels are given at the time t = 12:00 UTC

29 Sep 2010 and (T, T ∗) = (−Tmax, 18 h).

In addition, we can consider this study as a diagnostic approach for approximately 2D flows

to show the effects of cumulative errors of the Eulerian velocity field on the resultant FTLE-

LCS features.

(a) (b)

Figure 2.3: Eastern U.S. with the state of Virginia and Kentland farm (sampling location)
in the center. Backward FTLE field for (a) 850 mb and (b) 900 mb pressure levels at time
12:00 UTC 29 Sep 2010 with (T, T ∗) = (−48 h, 18 h), vertical color bar indicates FTLE
magnitude (h−1). Note the similarity.
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2.4 Forecast and archive based FTLE-LCSs

The main interest in prediction of FTLE-LCSs is based on the results, e.g., (Tallapragada

et al., 2011) suggesting that there exists a relationship between passing atmospheric LCSs

on the mesoscale and locally detected changes in airborne microbial concentrations. If the

population structure of airborne microorganisms is determined by large-scale atmospheric

features which the LCSs represent, then the ability to accurately predict atmospheric LCSs

is of interest for prediction in microorganism dispersal.

To represent the time-dependent FTLE-LCSs (both forecast and archive based) over the 9

h interrogation window I, we use snapshots of these features every 15 minutes, so during 9

h, the total number of FTLE-LCS snapshots is 37.

The upper panels of Fig. 2.4 show two snapshots of the attracting LCS features from forecast

(left) and archived (right) data over the specified zone at the beginning of the interrogation

window (12:00 UTC). In this case (T, T ∗) = (−24 h, 18 h) and conditions (2.6) and (2.8) are

considered for extracting the hyperbolic LCSs. In this figure we see very similar patterns;

however, the features are not exactly the same as we expected due to the errors in the wind

forecast data.

The lower panels of Fig. 2.4 show snapshots of the forecast- (left) and archive-based (right)

LCSs at 21:00 UTC with the same calculation parameters as the upper panels.

One observes that the quality of forecasting decreases for further lead time, i.e., the LCS

patterns from archive and forecast data become further apart by some metric from the

beginning of the interrogation window, t1, to the end, t2, since 9 additional hours of forecast

contributed to t2 compared to t1. Due to cumulative effects of wind forecast errors on the

trajectories of particles, the resultant LCS features are less accurate, as we will attempt to

quantify in § 2.5 by applying different hybrid Eulerian-Lagrangian approaches.
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Figure 2.4: Eastern U.S. with the state of Virginia and Kentland farm (sampling location) in
the center (red point). (a, c) forecast- and (b, d) archive-based hyperbolic attracting LCSs.
Upper panels: 12:00 UTC; lower panels: 21:00 UTC 29 Sep 2010. (T, T ∗) = (−24 h, 18 h).
In this case, LCSs displacements are SE to NW with different velocities. Some branches
diminish during interrogation window such as the upper branch of the forecast results (panel
(a)) and some remains strong, e.g., the lower branch (panels (a) and (c)).

2.4.1 Sources of errors

In this section we discuss some reasons for the disagreement between forecast- and archive-

based LCS features at the level of Eulerian velocity fields.

Spatiotemporal finite resolution of input data is an important reason. As mentioned previ-

ously, the temporal resolution provided by the NAMmodel is 6 hours (considering short-term
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forecast, temporal resolution would be 3 hours) and the best spatial resolution is about 12.1

km over North America (we say best as these spacings are non-uniform). For numerical in-

tegration of particle trajectories, spatiotemporal interpolation of the velocity field is needed.

Interpolation leads to some differences between the true and the calculated particle paths

(Griffa et al., 2004; Ozgokmen et al., 2000) which lead to different FTLE fields. Since we

use the same method of interpolation and numerical integration for both the forecast and

archived data (third order splines / fourth order Runge-Kutta), we do not consider the dif-

ferences between forecast- and archive-based particle paths to be caused by the interpolation

and integration methods.

We are led to conclude that the errors of the forecast fields are due to the inherent chaotic

behavior of the atmospheric system. Recalling Fig. 2.4, when we desire FTLE-LCS features

for further lead time, we get less accurate results. This fact is the outcome of limits of

predictability of chaotic motion of particles in atmospheric flow (Lorenz, 1963; Palmer, 2000).

In this paper, the goal is not to study the limits of forecasting in presence of deterministic

or stochastic chaos, but merely to quantify the effects of existing forecast errors on the

calculated FTLE-LCSs.

2.4.2 Quantitative comparison of forecast and archived velocity

(wind) fields

To understand the error distribution of the forecast velocity field, the essential source of errors

in forecasting LCSs, we compare the wind forecast data with the corresponding archived data

sets.

We consider the common scenario of real-time extraction of LCSs for our purposes, for

which T ∗ = 18 h and the chain of forecast data starts from 18:00 UTC of the day before
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the interrogation window (referring to Fig. 2.2). At each time slice and for each spatial

grid point, we find the error as the difference between the archive and the forecast velocity

components in the XY plane (u and v are the components of velocity in X and Y directions,

respectively). Fig. 2.5 shows the results for three frames related to the interrogation window,

highlighting the persistence and large size of the regions with large and growing amplitude

error.
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Figure 2.5: Error of forecasting (km/hr) over North America, (a, d) 12:00 UTC 29 Sep
2010, (b, e) 21:00 UTC 29 Sep 2010, and (c, f) 12:00 UTC 30 Sep 2010. Upper panels: u
component, lower panels: v component. Regions with persistence large error are responsible
for deviations of forecast LCSs from true archive-based results.

Calculated LCS features from forecast data should resemble the true features by maximum

distance of ∆ (eq. (19) of (Haller, 2002)) if forecast errors are localized in time. The existence

of large and prolonged high error regions, as shown in Fig. 2.5, reveal that the errors are

not localized in time and thus could lead to significant differences between forecast- and

archive-based FTLE-LCS results.
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To investigate the statistics of the error we find the mean absolute error (MAE) and mean

squared error (MSE) over the domain of interest (Fig. 2.6, panels (a) and (b), respectively)

(Jolliffe and Stephenson, 2003). Along with these two standard measures, we apply a method

of nonlinear weighted averaging which yields a normalized scalar number as a measure of

quality of forecasting in a Eulerian sense. This metric decreases with time. Also, the standard

deviation of errors grows as a function of the forecast lead time, showing the increasing spread

and divergence of forecasting results from the true state of the system.

For the nonlinear weighted averaging, we normalize the relative error of velocity forecast

with respect to a Gaussian filter,

1

σ
√
2π

exp

(
− (χ− µ)2

2σ2

)

where σ = (2π)−1/2, µ = 0 and χ represents the corresponding component of relative error at

each point. The output of this process is a normalized value for each grid point belonging to

(0, 1]. This value is one for a perfect forecast and approaching zero for an infinite error. We

set the quality of forecasting (η) over the entire domain as the mean value of this normalized

relative error field,

η =
1

N

∑
i,j

exp(−πχ2
i,j) (2.9)

where N is the total number of grid points.

Fig. 2.6(c) shows the quality of forecasting (η) decreasing with time (corresponding to the

normalized field). In addition, Fig. 2.6(d) shows the standard deviation values related to

the spatial distribution of error (original values) for all forecast time slices (note that in this

example the value of MAE, MSE and standard deviation is zero before 18:00 UTC 28 Sep

2010 since we use the archived data for the time interval before it).
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Figure 2.6: Some statistical measures of forecast error over the domain of velocity field
(a) mean absolute error (MAE), (b) mean squared error (MSE), (c) decay of quality of
forecasting and (d) growth of standard deviation with respect to time: u component (solid
line), v component (dashed line).

The important point of this figure is the general trend of decreasing forecast quality and

increasing MAE, MSE and standard deviation of error with time. In the next section, we

discuss the effect of these errors on FTLE-LCS features.

2.5 Results

Referring to the differences between forecast- and archive-based LCS features e.g., Fig 2.4,

a natural question that arises is: How can one quantify the differences between the forecast-
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and archive-based LCSs? Other related questions that emerge are about the value of the

forecast results for scheduling flights to collect samples before and after the passage time of

the forecast LCSs. In other words, how well do the forecast LCSs describe the real case of

LCSs passages, particularly the passage times? Also, regarding limitations on availability of

necessary data for predicting the LCSs, what is the best choice for effective parameters such

as the integration and gap times?

We use five methods to compare the forecast and archive LCSs. We focus on the resultant

FTLE-LCSs as the Lagrangian objects which record the history of the system (since they

are calculated from flow maps, i.e., trajectory of particles) We compare the 37 frames of

the FTLE-LCSs corresponding to every 15 minutes of the interrogation window (12:00-21:00

UTC). These comparisons could be regarded as hybrid Lagrangian-Eulerian methods since

they compare snapshots of Lagrangian features. We notice that for a comprehensive verdict,

we need to consider the result of all these methods. None of them alone quantify the

similarities and/or differences.

2.5.1 Pointwise comparison of FTLE fields

The first and the simplest approach is pointwise comparison of the values of FTLE fields at a

fixed geographical location, e.g., our sampling site Kentland farm, which is shown in Fig. 2.7

for the case of attracting LCSs (backward time integration). If the forecasts were perfect (i.e.,

they match the archive-based FTLE-LCSs exactly), we expect a complete match between

two time-series curves. Although this approach seems to be over-simple, we can employ a

useful rule of thumb for detecting the validity of our forecasts before doing any additional

calculations on archived data to extract the archive-based LCSs.

Results from several simulations for different days suggest a rule of thumb which may be
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Figure 2.7: Forecast- (dashed) and archive-based (solid) FTLE value at the sampling loca-
tion. T = −24 h and T ∗ = 18 h. Corresponding hyperbolic LCSs are shown by asterisk and
diamonds.

beneficial for early warning systems, e.g., for vast crop fields where the exact passage times

of LCSs are not important, but it is important for one to know if hyperbolic LCSs pass

over a region, since these have been associated with fluctuations in microbial populations

(Tallapragada et al., 2011). The rule of thumb is: if the maximum forecast FTLE value

during the interrogation window is above a certain threshold then we expect to observe at

least one archive-based LCS in the same time interval. The threshold we have determined

by observation is 0.07 h−1, i.e., if the peak forecast FTLE is > 0.07 h−1, then the peak will

likely be preserved (and likely an LCS) in the archive-based calculation. Further statistical

tests would be needed to bear out this rule of thumb.

Note that Fig. 2.7 shows that the forecast FTLE-LCS captured one of the archive peaks

(close to 17:00 UTC) but not the other one which is close to 15:00 UTC. We understand the

context of this mismatch by considering the temporal evolution of the entire FTLE field. In

the forecast, one observes two major ridges at 12:00 UTC (Fig. 2.4, panel (a)), the upper

ridge has a motion from SE to NW, but the other ridge does not pass the sampling location
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and has a slower motion (Fig. 2.4, panel (c)), so one peak of the FTLE field is observed

(Note that after the upper ridge passes over the sampling location, it becomes less strong

and at 21:00 UTC (panel (c)) it is vanished). In contrast, for the archive case all ridges move

in the same direction and two major features pass over the sampling location (Fig. 2.4, panel

(b)), so we record two peaks.

2.5.2 Cross correlation between forecast and archive based LCSs

Cross correlation is a standard method of estimating the degree to which two scalar fields

are correlated (Gonzalez and Woods, 2007). Considering 2D shifts and discrete data points,

we use

r(d1, d2) =

∑
m

∑
n

[
(σm−d1,n−d2 − σ̄)

(
ψm,n − ψ̄

)]√∑
m

∑
n

[
(σm−d1,n−d2 − σ̄)2

(
ψm,n − ψ̄

)2] (2.10)

to get a 2D surface of cross-correlation coefficients, where σ and ψ represent the value of the

FTLE field at each point of forecast and archive fields and σ̄ and ψ̄ are the spatial average

of σ and ψ, and d1 and d2 represent the shift in the X and Y directions, respectively.

Fig. 2.8(a) shows the cross correlation coefficient between forecast and archived attracting

LCS features at 12:00 UTC 29 Sep 2010, for (T, T ∗)=(-36h,18h). In this figure, we consider

shifts up to ±200km in both directions. Using this approach and by looking for spatial shifts,

we focus on the quality of forecast over the interrogation window. As an example, Fig. 2.8

(b) shows how the quality of forecast tends to decrease with time (T ∗ =18 h and T = −24

h, −36 h and −48 h). This result is typical (recall Fig. 2.4).

Generally, we can apply this method to compare the forecast- and archive-based LCSs with

respect to different parameters such as gap time T ∗ and integration time T .

Fig. 2.9(a) shows the typical effect of T ∗ on the quality of forecasting for attracting and
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Figure 2.8: (a) Maximum cross correlation coefficient between archive and forecast attracting
LCSs at 12:00 UTC 29 Sep 2010, considering 2D shift (±200km in bothX and Y ), (T, T ∗)=(-
36h,18h). (b) Ensemble maximum cross correlation coefficient during 12:00 to 21:00 UTC
29 Sep 2010, T ∗ = 18h, integration time T = −24 h, −36 h and −48 h.

repelling LCSs. To generate this figure we fix the integration time to |T | = 24 h and then

find the maximum value of cross correlation coefficient between the archive-based FTLE field

and forecast-based FTLE field, for various values of T ∗ (‘1st frame’ refers to 12:00 UTC 29

Sep 2010 and ‘last frame’ refers to 21:00 UTC 29 Sep 2010). This figure also illustrates a

general trend; when we decrease the gap time, we see better agreement between forecast-

and archive-based LCSs. Note that negative values of T ∗ show perfect continuous time LCSs

forecasting.

Considering repelling LCSs (T > 0), one might think that T ∗ has no effects on the quality of

forecasts, since the direction of integration is positive and we do not need the past (archive)

data for calculating the FTLE field. However, this is not the case as Fig. 2.9(a) demonstrates.

Note that for smaller T ∗, the forecast is for a smaller duration, so the quality of wind

forecast and the corresponding LCS features show better agreement with purely archive-

based features.
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Fig. 2.9(b) shows the effect of integration time T on the agreement of the archive- and

forecast-based FTLE fields. Generally by increasing the integration time (T ), one sees

sharper (and more) ridges, but based on the quality of the wind forecast, the quality of

the forecast LCSs could get better or worse, i.e., if we have a reliable wind forecast, we

expect cross-correlation coefficients to increase when we increase T but if the wind forecast

is not reliable, we anticipate less accurate features. From panel (b) we observe that by in-

creasing the integration time the quality of attracting LCSs improves slightly. In contrast,

for repelling LCSs the best choice is to minimize the integration time.
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Figure 2.9: Comparing the forecast- and archive-based FTLE-LCSs, studying the effect of
(a) T ∗ when T =24h and (b) integration time (T ) on the maximum value of cross correlation
coefficient when T ∗ =18h.

From Figs. 2.8 and 2.9 we notice small correlation coefficients even for the cases where LCS

patterns seem to be similar by eye. This technique is not adequate for practical pattern

recognition since the coefficient degrades rapidly when the patterns (forecast results) devi-

ate from the references (archive-based results). In cases where we want to investigate the

quantitative correlation of slightly offset patterns this approach is beneficial. If the overall

qualitative similarity is important, then we have to consider other approaches such as robust
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correlation filters (discussed in a later section) (Kumar et al., 2005).

Moreover, the nature of cross-correlation method forces us to compare single snapshots

of extracted LCSs (i.e., spatial correlation considered pointwise in time) and it cannot be

applied to the whole series of 37 LCS snapshots (i.e., full spatiotemporal variability). More

generally, we expect the forecast-based FTLE field to be both shifted and deformed compared

to the archive-based FTLE field. For example, for the backward (T < 0) FTLE field, we

expect

σ̄t0+T
t0 (x0) = ζT ∗(σt0+T

t0 (x0)) (2.11)

where σ̄t0+T
t0 (x0) ∈ F(U,R) is the forecast-based FTLE field with gap time T ∗, σt0+T

t0 (x0) ∈

F(U,R) is the archive-based FTLE field, and ζT ∗ : F(U,R) → F(U,R) is a one-parameter

family of diffeomorphisms on the function space F(U,R), with parameter T ∗, where ζ0 is the

identity.

Spatial shifts are only one limited possibility for ζT ∗ . In the next section, we use the POD

method to enable us to consider more general ζT ∗ by comparing the archive- and forecast-

based FTLE fields as a series of successive time-slices rather than, at each fixed time, con-

sidering spatial shifts of two-dimensional scalar fields.

2.5.3 POD analysis

Proper orthogonal decomposition (POD) is a technique to analyze, e.g., a time-varying scalar

field, and can reduce the order of complex systems (Antoulas, 2005; Sirovich, 1987; Rowley,

2005). We apply this technique to the time-varying forecast- and archive-based FTLE fields

to get the principal mode shapes as the building blocks of the original high-dimensional

system. We then compare these mode shapes to study the effects of different parameters on

the quality of forecasting. This approach yields a wider and deeper view, since the mode
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shapes encapsulate the overall data of all the time slices.

Considering the scalar function z(x, t) over some finite domain, we want to approximate this

function as a superposition of spatial modes with time-varying coefficients, as

z(x, t) ≈
K∑
i=1

ai(t)Φi(x), (2.12)

where Φi(x) represents the spatial mode shapes and we expect as K → ∞, the summation

yields the exact value of z(x, t). Conventionally, the Φ’s are chosen to be orthonormal, so

∫
x

ΦiΦjdx =


1, if i = j

0, if i ̸= j

(2.13)

Using eq. (2.13), we find the time-varying amplitudes of the mode shapes as

ai(t) =

∫
x

z(x, t)Φi(x)dx (2.14)

Generally, finding the Φ’s depends on our choice of basis functions (e.g, Fourier series with

orthogonal trigonometric functions). In the case of the POD method, the Φ’s are chosen

such that the approximation of (2.12) for each individual and arbitrary K is the best ap-

proximation in a least squares sense.

When we have z(x, t) as a set of discrete numerical data, we can use the singular value

decomposition (SVD) technique to find the mode shapes as well as the corresponding coef-

ficients.

Considering M to be a m×n real matrix (note that FTLE fields are always real, so we only
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consider real matrices), we can decompose M as

M = UΣV ∗, M ∈ Rm×n (2.15)

where U is m×m, Σ is m× n diagonal and nonnegative and V ∗ is the transpose of V , and

an n × n matrix. Since M is real, all U , Σ and V would be real, also U and V are unitary

matrices. The diagonal elements of Σ are called the singular values of the matrixM and the

number of them is equal to the min(m,n), also they are conventionally placed in descending

order. For obtaining the mode shapes, we can rewrite eq. (2.15) as

M = QV ∗ =
n∑

i=1

qiv
∗
i (2.16)

where Q = UΣ and qi is the ith column of Q. We arrange the numerical data from z(x, t)

into a matrix like M ; then the ai’s are equal to the qi’s and the mode shapes are equal to

the v∗i ’s.

Determination of mode shapes

For the 37 snapshots representing our interrogation window, we get 37 mode shapes from the

POD method. Note that we can regenerate all the snapshots by those 37 mode shapes via

(2.12) where the required coefficients can be generated by the inner product of input data

M and the related mode shape as described by (2.14). Recalling that the importance of

the mode shapes depends on the magnitude of their corresponding singular value, Fig. 2.10

shows the first and the second mode shapes for both the forecast- and archive-based FTLE

field, where (T, T ∗)=(−24 h,18 h). One advantage of POD is that one can do the comparison

for the most important mode shapes only, rather than for all of them, since the contribution

of a mode to the original time-varying field depends on the value of the related singular
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(a) (b)

(c) (d)

Figure 2.10: First and second mode shapes for the (a, c) forecast- and (b, d) archive-based
backward FTLE fields, (T, T ∗)=(−24 h,18 h).

value.

Fig. 2.11 shows the cumulative contribution of mode shapes for typical forecast-based back-

ward and forward FTLE fields and the associated attracting and repelling LCS features,

corresponding to the interrogation window with (|T |, T ∗)=(24 h,18 h). From this figure it

is clear that if we want to have up to 90% of the energy of the system, we have to consider

only five mode shapes.
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Figure 2.11: Cumulative contribution of the mode shapes, backward FTLE (dashed line),
forward FTLE (solid line), (T, T ∗) = (48, 18).

Effect of parameters on the quality of forecasting using POD modes

In this section, we investigate the contribution of parameters T and T ∗ on the quality of

forecast LCSs. We compare the principal mode shapes of forecast- and archive-based FTLE

fields, using the cross correlation coefficient, to find the degree of similarity between them.

Fig. 2.12 shows the effect of integration time T on the measure of similarity of mode shapes

of backward and forward FTLE fields when we fix the T ∗ at zero (perfect real-time forecast

case) and let the integration time |T | be 24 or 48 hours.

We observe that for backward FTLE, increasing T from 24 h to 48 h does not change the

quality of mode shapes much. We see some differences for higher mode shapes, but these

contribute little to the FTLE field.

We also observe that the cross-correlation coefficients for the forward FTLE are always

less than the coefficients of the backward FTLE. Also, for a given forward FTLE mode

shape, the similarity coefficient decreases with increasing T , which is understandable as the

reliance on forecast wind data increases. Note that for the T ∗ = 0 case, the cross-correlation
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Figure 2.12: Maximum cross correlation coefficient between different mode shapes, perfect
real-time forecasting case; T ∗=0, integration time (a) |T | =24 h and (b) |T | =48 h.

coefficient for the first backward FTLE mode shape is close but not exactly one. Recall that

mode shapes encapsulate information from all time snap shots, so as later snap shots of the

forecast wind field diverge from the archive ones, we expect an increasingly imperfect match

between FTLE mode shapes.

For the next comparison, we choose T ∗ to be 18 hours which is the worst case of real-time

forecasting we have considered. Fig. 2.13 shows the value of cross correlation coefficients for

different mode shapes.

Considering the forward FTLE (repelling LCS features), Fig. 2.13 and 2.12 show that when

we decrease the integration time, we generally get better results regarding the correlation

coefficients, i.e., for shorter integration times T , cumulative errors of predicted trajectories

will be smaller. While the results presented are for the time interval 12:00-21:00 UTC 29 Sep

2010, comparison with other days and times (not reported here) suggests that these results

are typical.

Results of this section are based on correlating the mode shapes, thus, similar to § 2.5.2, we
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Figure 2.13: Maximum cross correlation coefficient between different mode shapes, real-time
forecasting; T ∗ = 18h, integration time (a) |T | =24 h and (b) |T | =48 h.

encounter the sensitivity of the correlation method to deformation of LCSs, leading to small

correlation coefficients for what may seem similar FTLE field patterns. In § 2.5.4 we use a

type of composite correlation filter to overcome this weakness.

2.5.4 Composite correlation filter

We see some weakness of cross correlation techniques in previous sections, e.g., when two

sets of patterns are similar to our eye but the correlation coefficient is small. In this regard,

robust pattern recognition methods can overcome some of these limitations and provide

measures of similarity in better agreement with our visual perception.

In this section we apply synthetic discriminant function (SDF) filter for correlating whole

patterns (Kumar et al., 2005; Hester and Casasent, 1980). To design this kind of filter, we

need to have multiple views (training images) of a single object. If we consider each frame

of FTLE-LCS as one object, then we do not have enough training images to construct the

filter, but if we consider the whole 37 frames as different views of one time-varying object
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then we would have enough data to design the composite correlation filter. By convoluting

this filter with all the forecast FTLE-LCS frames, one can find the overall similarity of each

frame to the whole set of reference frames. In this approach, the filter is designed such that

it generates a pre-specified value in response to each training image, e.g., 1 for the reference

frames.

The governing equation of this filter is

h = X (X∗X)−1 u (2.17)

where X represents the all training images collected together,

X = [x1,x2, ...,xn] , (2.18)

note that each xi represents a training image (1 ≤ i ≤ n) as a d × 1 vector, where d is the

number of data points in each frame and u = [u1, u2, ..., un] is an n× 1 vector containing the

chosen peak values for the training frames.

The similarity measure of each forecast FTLE-LCS frame, λi, to the whole time-varying

reference is obtained by

λi = Y∗
ih, (2.19)

Fig. 2.14 shows an example of applying this method for attracting LCSs associated with

different T ∗ and T s. This figure displays the measure of similarity of each frame (horizontal

axis) to the whole series of archive-based LCSs. One observes that how the overall similarity

decreases as T ∗ increases. Also it is concluded that similarity measure in this sense is not

sensitive to integration time between −24 to −48 h. Similar results are expected for different

interrogation windows.



37

In the case of repelling LCSs (not reported), the range of similarity measure is smaller

(∼ 0.6 − 0.8) for integration time 24 ≤ T ≤ 48 h and similar to attracting features that

measure is not sensitive to integration time.
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Figure 2.14: Measure of similarity of each forecast frame (attracting LCS) to the whole
archive-based FTLE-LCS snapshots. Integration time (a) T = −24 h (b) T = −48h and
T ∗ = 0 h, 6 h, 12 h and 18 h.

One should note that this method is appropriate when LCS features do not change much

during the interrogation window, in other words, the rate of change of the patterns should

be small in that time interval. Applying this method in cases where the LCS change is

large yields unpredictable correlation measures which are not useful for measuring correla-

tion between forecast- and archive-based patterns. In addition, this approach is suitable

when overall similarity is important, but if one requires a measure of distance between LCS

features, other methods should be considered. In next section, we quantify the distance

between LCS patterns by applying the modified Hausdorff method.
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2.5.5 Modified Hausdorff distance

Hausdorff distance is an extension to the Euclidean metric (Rockafellar andWets, 2005). This

measure describes how far two subsets of a metric space are from each other. The original

definition of Hausdorff distance requires the objects to be closed and bounded (satisfying

the axioms of metric space); however, LCSs are not closed features, so we cannot apply the

Hausdorff method for them.

The modified Hausdorff method is designed to overcome this weakness (Dubuisson and Jain,

1994). By using this method one can calculate the distance between LCS features.

We denote the Euclidean distance between two points α and β as d (α, β) = ∥α− β∥. The

distance between a single point (α) and a set of points B = {β1, β2, ..., βn} is defined as

d (α,B) = minβ∈B ∥α− β∥.

In the modified Hausdorff method, distance between two sets A = {α1, α2, ..., αm} and

B = {β1, β2, ..., βn} is defiend as

D = max (d (A,B) , d (B,A)) , (2.20)

where d (A,B) is

d (A,B) =
1

m

∑
α∈A

d (α,B) . (2.21)

This choice for defining the distance is based on two requirements: sufficient discriminatory

power and increasing distance measure when two sets are more distant.

We have the hyperbolic LCSs as a set of discrete points from criteria (2.6) and (2.8), so

we can find the distance between features of two frames and consider it as a measure of

similarity; smaller distance means better match between patterns.
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Figure 2.15 shows the distance between archive- and forecast-based LCSs for integration

times T = 24, 48h and different T ∗s. This figure shows how the patterns of forecast results

diverge from the true answers. Panels (a) and (b) of this figure show that by increasing the

integration time for attracting LCSs (backward FTLE), the forecast results would be closer

to the true features.
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Figure 2.15: Modified Hausdorff distance between each frame of forecast- and archive-based
LCSs. (a) integration time T = −24 h, (b) integration time T = −48 h and T ∗ = 0 h, 6 h,
12 h and 18 h.

An interesting point of this figure is the abrupt change in the curve corresponding to T ∗=

6 h. A probable reason could be an emerging error in the forecast velocity fields due to

the input data associated with that T ∗. This noticeable change is a result of nonlinear and

chaotic dynamics of atmospheric models in which small changes of the input data could yield

large differences at future times. By increasing the integration time to −48 h, the portion of

archive data increases, so errors in the flow map are suppressed, so as one observes that the

LCS patterns associated with (T ∗, T ) = (6 h, −48 h) have less distance to the archive-based

results. Results (not reported) show that the repelling features are more vulnerable to the

forecast input data. In contrast to the attracting features, by increasing the integration time,

they become more distant from the archive-based LCSs.
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2.6 Discussion

This study was motivated by recent observations suggesting that LCSs govern the large-scale

atmospheric motion of airborne microorganisms (Tallapragada et al., 2011; Schmale et al.,

2012). Such observations have the potential to aid in development of early warning systems

for high risk plant pathogens in the future. As a part of this comprehensive system, UAVs are

implemented to investigate the association of atmospheric LCS and microbial populations.

To optimize the sampling of microbes at a fixed geographic location it is necessary to predict

the attracting and repelling LCSs, which requires the use of wind forecast data. We use

mesoscale forecast data over North America provided by NOAA-NCEP via NAM-218 to

predict the passage of hyperbolic LCSs over the sampling location and plan for collecting

samples with UAVs. This is directly linked to the NAM-218 timetable for online posting the

forecast and archive data.

A part of this study sought to compare the forecast-based FTLE-LCSs with archive-based

features to investigate the effectiveness of this approach in choosing correct flight times.

In addition, quantifying the sensitivity of FTLE-LCSs predictions regarding the involved

parameters such as (T, T ∗) is the other goal.

Based on hyperbolicity of LCSs features, if the errors between the forecast and archive wind

fields satisfy stringent criteria, the forecast LCS features mimic the archive-based ones with

some minor differences (Haller, 2002). However, we showed that these criteria are not met

in practice. As a result, forecast- and archive-based LCS features could show significant

differences in time and space.

In this paper, we considered five methods for comparing the forecast- and archive-based

FTLE fields: (1) fixed spatial point with temporal comparison, (2) fixed time with spatial

cross-correlation, (3) spatiotemporal POD mode cross-correlations, (4) composite correlation
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filter and (5) modified Hausdorff distance.

Results from the first method allowed us estimate the validity of the forecast in the absence

of the archive results. This may be valuable for early warning systems, e.g., for vast crop

fields, where the exact passing times of LCSs are not important, but it is important to

know the overall shape and features of the LCSs and the probability of passing colonies of

microorganisms formed by LCSs.

The second and third methods showed that attracting LCS features are typically more robust

to wind field forecast errors compared to repelling structures. This point is significant since

we know that the attracting LCSs are the backbone of mixing in moving fluids, governing

important future events (Haller and Sapsis, 2011). In the presence of unavoidable velocity

field errors, we expect the attracting LCSs to be more reliable than repelling ones.

Although the cross correlation technique is a well-established method, our results show that

this approach of measuring FTLE field similarity is very sensitive to nonlinear deformations of

the patterns, resulting in small coefficients for patterns that are similar by visual perception.

The fourth applied method addresses this issue. Composite correlation filters capture the

overall similarity of compared patterns better than simple correlation techniques but they

are not perfect since they need to be trained with enough number of slow-varying input

images, i.e., if the rate of change of the FTLE-LCS features is small enough this approach

works well. Finally, the modified Hausdorff distance is considered as an additional method

for comparing LCS features. A combination of these five methods could help us to reach a

comprehensive verdict about the effects of forecasting parameters on the quality of forecast

FTLE-LCSs.

The most challenging result of this study, which motivates future research, is as follows: if we

want to forecast LCSs, we must take into account the uncertainty of the wind field forecasts



42

and the resulting uncertainty of the flow maps. By considering the concept of uncertainty,

we would expect probabilistic predictions of the FTLE-LCS features which would be more

consistent for real applications (e.g., crop pest monitoring).

Having reliable predictions of LCSs along with a network of sampling centers which provide

data about infected crop areas (potential sources of inoculum) would contribute to an early

warning system. This study has shed some light on the effect of key parameters on the

quality of FTLE-LCS forecasts and hopefully it will lead to robust applications of LCS-

based management strategies.
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Chapter 3

Atmospheric Lagrangian coherent

structures considering unresolved

turbulence and forecast uncertainty

Abstract

To obtain more realistic approximations of atmospheric Lagrangian coherent structures, the

material surfaces which form a template for the Lagrangian transport, two concepts are

considered. First, the effect of unresolved turbulent motion due to finite spatiotemporal

resolution of velocity field data is studied and the resulting qualitative changes on the FTLE

field and LCSs are observed. Stochastic simulations show that these changes depend on the

probabilistic distribution of position of released virtual particles after backward or forward

time integration. We find that even with diffusion included, the LCSs play a role in struc-

turing and bifurcating the probability distribution. Second, the uncertainty of the forecast

FTLE fields is analyzed using ensemble forecasting. Unavoidable errors of the forecast veloc-

ity data due to the chaotic dynamics of the atmosphere is the salient reason for errors of the

43
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flow maps from which the FTLE fields are determined. The common practice for uncertainty

analysis is to apply ensemble forecasting and here this approach is extended to FTLE field

calculations. Previous work has shown an association between LCS passage and fluctuations

in microbial populations and we find that ensemble FTLE forecasts are sufficient to predict

such passages one day ahead of time with an accuracy of about 2 hours.

3.1 Introduction

The notion of hyperbolic Lagrangian coherent structures (LCSs) provide a framework for

understanding transport and mixing phenomena especially in the case of passive particles in

fluid systems (Haller and Poje, 1998; Haller and Yuan, 2000; Shadden et al., 2005). These

structures are codimension 1 manifolds (or material surfaces) which effectively separate two

regions of fluid with different qualitatively different past histories or fates. Several such

critical material surfaces are present in any given geophysical flow and govern transport

patterns. In the atmosphere, they persist from a few hours to a few days.

The present study is motivated by the role of atmospheric LCSs in aerial transport of mi-

croorganisms and the statistical correlation between sudden changes in aerobiota density

and passage of LCS features over a fixed location (Tallapragada and Ross, 2013; Tallapra-

gada et al., 2011; Tallapragada, 2010; Schmale et al., 2012; Schneider et al., 2005; Lin et al.,

2013). Considering that role, if one can predict the LCSs to a good degree of accuracy and

reliability, then important knowledge about the front propagation of microorganisms would

be available.

Considering this fact, in a previous study, forecast LCSs were compared with reanalysis

(pastcast) results to ascertain the accuracy and reliability of the forecasts (BozorgMagham

et al., 2013). Based on that study we infer the need for including more realistic considerations
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of atmospheric flows such as (i) finite spatiotemporal resolution of the available fluid velocity

data, (ii) the accuracy of the fluid velocity data and (iii) the uncertainty of the forecast

velocity fields. There have been studies about each of these concerns. For example, Griffa

et al. (2004) and Ozgokmen et al. (2000) studied the predictability of Lagrangian trajectories

and Kahl and Samson (1986) considered the uncertainty in trajectory calculations due to low

resolution data. In addition Wilson and Sawford (1996) and Stohl (1998) studied different

models for generating Lagrangian stochastic trajectories and Palmer (2000) and Ehrendorfer

(1997) reviewed the concepts of predictability and uncertainty of atmospheric forecasts. Also

Kalnay (2003) represented various approaches for data assimilation, ensemble forecasting and

uncertainty analysis. Regarding LCSs, Haller (2002) discussed the errors of approximate

velocity field and their effect on hyperbolic LCS features, Lermusiaux et al. (2006) described

the uncertainty of oceanic LCSs and their numerical studies indicated that the more intense

FTLE ridges are usually more certain. Moreover, Olcay et al. (2010) studied the role of

flow field resolution and random errors on LCS identification. Finally, Turbulent dispersion

velocity at length scales smaller than wind data grid was considered by Peng and Peterson

(2012) and it was shown that attracting LCS structures coincide with the regions of high

particle concentration. In that study, finite time Lyapunov exponent (FTLE) fields and

the associated LCSs were calculated by using deterministic atmospheric flow map and the

volcanic ash particles’ dispersion was calculated by adding random walk and deposition

velocities to the background velocity field.

In this study we connect notions such as unresolved turbulence and uncertainty of flow

field to the atmospheric LCSs. For this aim we consider two concepts. First we show the

effects of unresolved turbulence on the FTLE scalar field and the resultant LCSs (we will

often refer to FTLE–derived LCSs as FTLE–LCSs) by adding the stochastic component of

displacement to the deterministic flow map. As a result, the trajectories will be stochastic
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and non–differentiable instead of deterministic and smooth. We observe significant changes

in the (probabilistic) position of particles and the associated FTLE fields. We show that

the spatiotemporal dependence of the stochastic velocity component to the time–varying

deterministic background velocity field (Draxler and Hess, 1998; Fay et al., 1995; Legg and

Raupach, 1982) plays an important role in the determination of the probabilistic distribution

of the end–position of released virtual particles and consequently on the stochastic FTLE

fields. We should note that Peng and Peterson (2012) just considered the dispersion velocity

for the ash particles and the FTLE–LCSs were calculated by deterministic velocity field.

Second, we study the quantification of uncertainty and reliability of the FTLE–LCS when

forecast velocity data are used to generate flow maps. The effects of forecast velocity data on

the accuracy of forecast FTLE–LCSs have previously been observed (BozorgMagham et al.,

2013). In that paper we compared FTLE–LCSs from forecast velocity data with archive based

FTLE–LCSs. Results of that study show the sensitivity of FTLE–LCS forecasting to different

parameters such forecast lead time, but because we used a deterministic forecast velocity

field (NAM–218 data set) we were not able to measure the uncertainty of the forecast FTLE–

LCS results. In the present study we propose a practical approach to measure uncertainty of

forecast FTLE–LCSs by using ensemble forecasting concepts and considering the distribution

of local FTLE values. In addition, we study the distribution of error of LCS forecast passage

time over a fixed geographical location to have a measure of reliability of the forecast results.
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3.2 Effects of unresolved turbulence on the FTLE field;

stochastic FTLE field

In this section we show how including the stochastic component of unresolved turbulent

velocity changes the FTLE field.

In atmospheric applications, the spatial resolution of operational data could vary from the

order of 10 km to more than 250 km and the temporal resolution is usually of the order of

3 to 12 hours. For example, in the operational model NAM–218, which we use, the spatial

resolution is about 12 km and the temporal resolution is 6 hours (a short term forecast at

each intermediate 3 hours is also available). As a result of this coarse resolution, important

unresolved motions with significant effects on the particle flow map and the resultant FTLE

field could exist. To investigate this, we use a particle dispersion model to calculate the

stochastic turbulent velocity component of the flow field. These components are functions of

turbulent diffusivity (Draxler and Hess, 1998; Fay et al., 1995). Considering the Lagrangian

frame, a fluid particle trajectory x (t) is governed by the stochastic differential equation,

dx

dt
= v[x(t)] (3.1)

where the velocity of the particle is composed of the deterministic grid scale velocity, v̄(x, t),

and the stochastic turbulent fluctuation component, vt(x, v̄, t), respectively,

v(x, t) = v̄(x, t) + vt(x, v̄, t). (3.2)

Using the Langevin equation and assuming a Markovian process (Øksendal, 2003; Lemons
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and Langevin, 2002), one can parameterize the turbulent component of velocity as,

dvti = ai(x,vt, t) dt + Σ3
j=1bi,j(x,vt, t) dWj (3.3)

where drift (ai) and diffusion (bi,j) are functions of time, position and turbulent velocity and

vti represents the i
th component of vt (x, v̄, t) (Thomson, 1987; Wilson and Sawford, 1996;

Stohl, 1998; Stohl et al., 2005).

There are different methods for estimating the drift and diffusion terms with respect to the

available data and turbulent regime of the flow field. In this study we follow the work of

Thomson (1987); Fay et al. (1995); Legg and Raupach (1982); Stohl et al. (2005); Draxler

and Hess (1998).

3.2.1 Grid scales velocity data

For generating the deterministic flow map we use numerical data provided by the National

Oceanic and Atmospheric Administration (NOAA) and National Centers for Environmen-

tal Prediction’s (NCEP) Operational Model Archive and Distribution System (NOMADS)

project. We use one of the outputs of this nonhydrostatic mesoscale model, which is the

North America Mesoscale, NAM–218, with data given on a grid of 614× 428 points spaced

at about 12.1 km covering North America. We consider a 6230× 4670 km rectangular area

as our wind velocity field and we use the smooth extension of the velocity field outside the

boundaries whenever a particle leaves this domain (Haller, 2002).

Two types of data are used in our FTLE–LCSs calculations, archive data and forecast data.

Archive data is the state of the atmospheric system determined by a combination of numerous

measurements from, e.g., weather stations, weather balloons, satellites and any available

atmospheric observations through data assimilation methods which use large–scale oceanic–
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atmospheric geophysical fluid models. By forecast data, we mean the output of geophysical

models which use the most current outputs of the data assimilation process (archive data) as

input to estimate the state of the system for (near–)future times (Kalnay, 2003; Houtekamer

and Mitchell, 1998; Evensen, 1994). In the NAM–218 data set, the temporal resolution

of archived data is 6 hours corresponding to 00:00, 06:00, 12:00 and 18:00 UTC of each

day. Accordingly, the forecast chain can start based on each of these archive time snapshots.

Temporal resolution for forecast data is 3 hours and at each moment, the maximum available

forecast data is for 84 hours lead time, i.e., ahead of the most recent archive data.

In this paper we will show the results for 2D flows over constant pressure surfaces which could

be a simplified representation of the full 3D cases. Isobaric calculation is common in La-

grangian studies such as in the state–of–the–art implementation HYSPLIT1 and it generates

a first approximation to trajectories while avoiding the complexity of three–dimensional flow

field integrations (Stohl, 1998; Stohl et al., 1995; Danielsen, 1961). In addition, these results

can be regarded as examples of what is expected if more realistic conditions are considered

for FTLE field computations. Finally, from (Branicki et al., 2011; Sulman et al., 2013) we

know that 3D LCS features are nearly vertical within a layer whose thickness is sufficiently

smaller than the ratio of the average horizontal velocities to their average vertical gradients.

In that layer we may approximate the 3D structures with 2D features with a satisfactory

accuracy. In our case of study that ratio can be estimated by the horizontal approximation

of the wind velocity profile (Kaltschmitt et al., 2007) showing the upper and lower limits

of that ratio (ū/(∂u
∂z
)) is between 250 to 1500m. So, we may conclude that within a layer

centered at 850mb pressure surface, whose thickness is in the range of 25 to 150m (10% of

that ratio), the 2D LCS features are acceptable approximation of the true 3D structures.

Meanwhile more careful investigation about this approximation is left for future work.

1http://ready.arl.noaa.gov/HYSPLIT.php
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3.2.2 Unresolved turbulent velocity component

By considering essential hypotheses such as the Kolmogorov similarity hypothesis (Rodean,

1987) and the criteria described by Thomson (1987), various solutions have been suggested

for the unresolved turbulent velocity term. We use one which is implementable with respect

to the available data (Fay et al., 1995; Draxler and Hess, 1998). In this method, components

of vt(x, v̄, t), which are shown as vti , are estimated by a Markov–chain formulation as,

v(t+δt)i = Rδtvti +
(
1−R2

δt

)0.5
ξ, (3.4)

where Rδt is the turbulent velocity autocorrelation coefficient. This coefficient is approxi-

mated from the Lagrangian time scale of the flow system as,

Rδt = exp (−δt/TL) , (3.5)

where δt is the integration time step and the Lagrangian time scale (TL) is considered to be

constant over the pressure surface, assuming δt to be sufficiently smaller than TL. In our

calculations δt is between 5 to 15 minutes and TL is 180 minutes (Draxler and Hess, 1998).

For calculation of the second term of (3.4), only lateral diffusion within constant pressure

surfaces is considered and density variations over those surfaces are neglected (Smagorinsky,

1963). The ξ term is estimated with respect to the standard deviation of the turbulent

velocity σ, as,

ξ = N (0, 1)σ, (3.6)

where N (0, 1) is the standard normal distribution and σ at each point is estimated as,

σ =
√
κ/TL. (3.7)
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where the sub–grid scale horizontal mixing coefficient, κ, is computed from the velocity

deformation tensor as,

κ = 2−0.5 (cχ)2
[(

∂v

∂x
+
∂u

∂y

)2

+

(
∂u

∂x
− ∂v

∂y

)2
]0.5

, (3.8)

where χ is the meteorological data grid size and c is an empirical constant equal to 0.14

(Draxler and Hess, 1998).

The set of equations (3.1)–(3.8) provides all one needs to calculate the stochastic velocity

and stochastic trajectory of particles with respect to the background 2D velocity field. This

process can be repeated for 3D flows by considering the vertical component of the velocity

(Stohl et al., 2005) as well.

3.2.3 Stochastic FTLE field (SFTLE)

Similar to the deterministic case, the essential step for defining the stochastic FTLE (SFTLE)

field is to define the stochastic flow map as,

Φt
t0
: x0 → X(t, t0,x0) (3.9)

where conventionally deterministic (sure) values are written in lower case and random

(stochastic) variables are represented by capital letters. Regarding the stochastic trajec-

tory definition, the stochastic FTLE field is defined for the random variable Φt
t0
(x0) as,

Σt
t0
(x0) =

1

|t− t0|
log
∥∥DΦt

t0
(x0)

∥∥ =
1

|t− t0|
log
√
Λmax

[
Ct
t0(x0)

]
(3.10)
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where the right Cauchy–Green strain tensor, Ct
t0
(x0), and the deformation gradient (Jacco-

bian), DΦt
t0
, are defined with respect to the stochastic map Φt

t0
and consequently they are

random variables.

Assuming that the initial position of a particle, x0, is known with infinite precision, the

main difference between deterministic and stochastic FTLE fields is that when the deter-

ministic velocity field is considered, the source or destination (referring to backward and

forward integration respectively) of a released particle would be a point, but when unre-

solved stochastic turbulence is considered that single point becomes a probabilistic source

or destination distribution.

For calculation of the probabilistic distribution of the end–position of trajectories, we divide

the domain into small square boxes {B1, B2, · · · } of side length d. Then by using the Monte

Carlo method in forward or backward integration, the number of final landings in each box

is counted. We re–index all the boxes by number of landings per box
{
B(1), B(2), · · ·

}
such

that nB(1) > nB(2) > · · · , where nB(i) is the number of landings in box i. For α ∈ (0, 1), we

define the probabilistic α–source (or destination) area as,

Aα (x0, t, t0) =
k∪

i=1

B(i), where k = inf

{
j ∈ N |

∑j
i=1 nB(j)

N
≥ α

}
(3.11)

and N is the total number of released virtual particles from each reference point x0 (number

of realizations of the Monte Carlo method). The interpretation is that Aα contains a fraction

α of the ensemble of particles, starting with the most dense boxes. Our simulations show that

area(Aα) converges to a fix number for each case by choosing sufficient number of realizations

and considering small size for boxes (i.e., we have convergence as d→ 0).

For convenience, let us define the integration time T = t − t0. For T < 0 (backward

integration) we call Aα the “probabilistic α–source area” and for T > 0 (forward integration),
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Aα is called “probabilistic α–destination area”. Note that for both cases, N particles are

released from each grid point of the domain (x0) and then by time integration the end

positions are calculated.

Fig. 3.1 shows the backward solutions starting from the reference point (shown by the black

circle) for two cases. The dark collection of points shows the probable source points for

integration time −12 h and the cyan region shows the probabilistic region for integration

time −24 h. As observed, the distance between the deterministic solutions (red circles)

and the centroid of the stochastic realizations (red diamonds) increase with time, also it

is noticeable that since the probable source areas are stretched, the deterministic solution

or the centroid of the stochastic solutions are not good representatives for those regions.

In §3.2.4, the qualitative effects of probable source regions on stochastic FTLE fields are

discussed for different cases.

In general, the final probabilistic distribution of arbitrary individual particles after integra-

tion time T is not Gaussian since drift and diffusion terms are functions of position, velocity

and time. As a result, the deterministic final position of a particle after the integration time

is not at the same position of the centroid of the stochastic realizations. In general, to find

the exact probability distribution one needs to solve the Fokker–Planck equation, however

as a practical approach one can use the Monte Carlo method to make an estimate of that

distribution (Barkai et al., 2000; Kinzelbach, 1988).

3.2.4 Results; stochastic FTLE fields

As a first case, we consider the backward FTLE field for 12:00 UTC 29 Sep 2010 over the

eastern part of the United States. We consider quasi–2D flow on pressure surfaces and all

the presented results correspond to the 850 mb surface.
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Figure 3.1: Collections of the probabilistic source points (A90%), backward integration times
T = −12 h (black) and −24 h (cyan), black circle: reference point at (37◦11′ N latitude
and 80◦35′ W longitude), red circles: deterministic solutions, red diamonds: centroid of the
stochastic solutions. For this case 106 virtual particles are released from the reference point
on the 850 mb pressure surface at time t0 = 14:37 UTC 29 Sep 2010.

In Fig. 3.2(a) the deterministic FTLE is shown and we see sharp ridges which are candidates

for hyperbolic attracting LCS features. This FTLE field was generated with archived data

and integration time equals to −24 h. We can extract the true hyperbolic LCS features from

this figure but our focus in this paper is on the FTLE fields so we just compare the FTLE

fields (for more information about the hyperbolic LCSs of this figure refer to (Karrasch,

2012; BozorgMagham et al., 2013)).

Fig. 3.2(b) shows one particular realization of the stochastic FTLE field when the stochas-

tic component of the unresolved turbulent velocity field is taken into account. We notice

different features comparing the two panels of Fig. 3.2. For example, the sharp ridges of

the deterministic case (panel (a)) over VA, NC and some part of SC become a broad high
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Figure 3.2: A typical comparison between deterministic and stochastic FTLE field, (a)
Deterministic backward FTLE field (b) One realization of the stochastic backward FTLE
field; Integration time T = −24 h, t0 = 12:00 UTC 29 Sep 2010, and the velocity field
corresponds to the 850 mb pressure surface. Notice different regions comparing the two
panels and also the higher level of FTLE coefficient in panel (b). The states are labeled by
their postal code for brevity.

value region in panel (b). Meanwhile, one can observe that sharp and strong deterministic

ridges over PA and MD are washed out in panel (b) which suggests it is not necessary to

have a broad and high value cloud of stochastic FTLE wherever deterministic high value

ridges exist. This observation is important since it shows different behaviors when two sim-

ilar cases—parallel and strong ridges of FTLE field—are considered. We can also see that

the curly ridge over south west NC does not exist in panel (b). Note that the graininess of

Fig. 3.2(b) is due to the inherent and discontinuous stochastic behavior.

To investigate the common patterns of the stochastic FTLE fields we use the expected value

of those fields. Fig. 3.3(a) is the expected value of the stochastic FTLE fields for 1000

particular realizations obtained by the Monte Carlo method. As is common, the expected

value smooths out the graininess of individual realizations. Fig. 3.3(a) shows an important

point which is difficult to observe in Fig. 3.2(b). In this panel we observe a narrow cloud of

high value SFTLE over GA at the same place where we have a strong deterministic ridge.
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This observation shows that it is possible to have sharp deterministic FTLE ridges which

remain as narrow high value regions of SFTLE; but not always.
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Figure 3.3: 1000 stochastic realizations are used for calculation of (a) expected value of the
stochastic backward FTLE fields (b) standard deviation of the stochastic backward FTLE
fields; Integration time T = −24 h, t0 = 12:00 UTC 29 Sep 2010.

Fig. 3.3(b) is the standard deviation of the stochastic FTLE fields. We observe that the

value of standard deviation is much smaller than the expected values with a maximum order

of 6%. This observation means that the stochastic realizations are not too “separated” from

each other. This is an important remark since the numeric behavior of typical stochastic

differential equations (SDEs) depends on their coefficients and by changing the coefficient

one can theoretically get significantly different distributions, e.g., in Ornstein–Uhlenbeck

processes (Risken and Eberly, 1985). Based on results corresponding to different days, we

observe that the standard deviations in atmospheric SFTLEs are typically small comparing

to their expected value.

To have a better understanding about different regional changes, we investigate the sen-

sitivity of the probability distribution of forward and backward trajectories with respect

to the reference point, i.e., the sensitivity of Aα (x0, t, t0) with respect to x0. We observe
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that source (or destination) areas corresponding to different target (or starting) locations

are qualitatively different. In those cases that the source (or destination) areas are small

and close to the deterministic solutions, the local FTLE field’s changes are small, but in

cases that the source (or destination) areas are large and/or the centroid of the source (or

destination) areas are far from the deterministic solutions, local changes of FTLE fields are

noticeable.

Fig. 3.4 shows three cases of the probabilistic 50%–source area (each sub–figure represents

106 stochastic trajectories obtained from the Monte Carlo method) corresponding to different

qualitative changes observed in Fig. 3.2(a) and Fig. 3.3(a). These cases correspond to differ-

ent initial locations with the same initialization time. In the first case, Fig. 3.4(a), the source

area is shown where x0 is located at Virginia Tech Kentland Farm (37◦11′N,−80◦35′W )

which is considered as the reference point (0,0). Fig. 3.4(b) shows the probabilistic source

area when x0 is placed at (37◦10′30′′N,−78◦55′48′′W ) equal to 150 km eastward relative

to the reference point, and the last case, Fig. 3.4 (c), refers to the source area when x0 is

at (33◦40′48′′N,−82◦W ) which corresponds to 131 km west and 396 km south respectively.

For all three cases the backward integration time is −24 h. These three points and their

corresponding probabilistic source areas illustrate the qualitative changes compared to the

deterministic FTLE field when unresolved turbulent velocity is added. In the first case the

source area is small and compact. We observe the same qualitative behavior for the other

nearby local points (points inside a circle of radius O(d)). So, we expect very small change

in the local FTLE field around the point (0, 0). The second case, Fig. 3.4(b), which is the

corresponding probable source area for a point between two sharp ridges, where a band of

high value SFTLE is formed, is large and stretched. And finally, the third source area refers

to a region where the width of the sharp FTLE ridge is increased but not as much as the

second case (referring to the ridges over GA in Fig. 3.2(a) and Fig. 3.3(a)). In Fig. 3.4(c)
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the source area is not as large as the second one but larger then the first one (red dia-

monds show x0 for each scenario and the collections of black points show the probabilistic

source areas). Before considering other features of SFTLE fields, we consider Fig. 3.4(b) as
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Figure 3.4: Investigating the qualitative changes in a stochastic FTLE field due to
the distribution of the probabilistic source areas, (a) probable source area for the ref-
erence point (37◦11′N,−80◦35′W ) corresponding to (0,0) (b) probable source area for
(37◦10′30′′N,−78◦55′48′′W ) or 150 km east to of the reference point (c) probable source
area for (33◦40′48′′N,−82◦W ) equal to 131 km west and 396 km south respectively; for all
the cases x0 is shown by a red diamond, A50%, T = −24 h, t0 = 12:00 UTC 29 Sep 2010 and
box size d =4 km.

an example with separated source areas to see the effect of LCSs on shaping those areas.

Fig. 3.5(a) shows the expected stochastic forward FTLE field for 12:00 UTC 28 Sep 2010,

obtained from 500 sample members. When we back track the probable source points for

x0 (red diamond) on Fig. 3.4(b), we expect that they settle down on parts of a stochastic

repelling LCS feature since the integration direction is backward (repelling in forward time

is equal to attracting in backward time). This attraction is noticeable when Fig. 3.4(b) is

compared with Fig. 3.5(a). We notice that almost all the probable source areas lie down

on the repelling feature. The separation of islands are governed by the stochastic attracting

LCS features acting as repeller when applying inverse integration time direction. Fig. 3.5(b)
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Figure 3.5: Role of stochastic FTLE fields in shaping the probable source area of the virtual
particles, (a) expected forward SFTLE field. High SFTLE regions act as the source location
of particles (b) expected backward SFTLE field. High SFTLE regions acts as cutting edges,
thus density of the virtual particles is low near them. Both cases are obtained by averaging
500 members of SFTLEs, integration time is 24 h, time shown is 12:00 UTC 28 Sep 2010.

shows that isolated and bifurcated islands are indeed the results of backward “cutting” by

attracting LCS features which are pointed by two arrows.

Panels of Fig. 3.6 illustrates how the probabilistic bifurcated source areas are influenced by

the corresponding contemporaneous attracting LCSs during 24 hours of integration (three

panels correspond to 24, 12 and 6 h of backward integration). In this figure we show the

position of all 106 virtual particles. To keep the figure clear we only show the deterministic

LCSs, as we know that these features usually act as the backbone of the stochastic LCS

features. The cutting effects of LCS features manifests when smaller percentage of particles

is shown, for example if we show 50% of particles, then the result would be Fig. 3.4(b)

on which the bifurcated and isolated islands of probable source areas due to the LCSs are

distinct. In the language of Bayesian statical inference, we can say the LCSs play a role in

structuring the prior probability distribution of the source location.
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Figure 3.6: Probabilistic source area (A99%) at (a) T=−24 h, (b) T=−12 h, (c) T=−6 h and
the role of attracting LCS features in forming the bifurcated probabilistic areas; initialization
time t0 = 12:00 UTC 29 Sep 2010, reference point x0 = (37◦10′30′′N,−78◦55′48′′W ).

To study other probable features in stochastic FTLE fields we consider Fig. 3.7(a) which is

the backward FTLE field for 12:00 UTC 8 Apr 2012. We can see a very strong, sharp and

lengthy ridge over KS, MO and IL. The analog of this feature exists in Fig. 3.7(b), which is

the expected value of SFTLE fields for 1000 realizations.

We can see that the tail of the long ridge over KS remains fairly sharp and the head becomes

a broad region over MO. The most interesting feature of these two panels is over the eastern

coast of the United States. In Fig. 3.7(a) there is no high value ridge over the eastern

part but in Fig. 3.7(b) we notice a vast high value area covering all the eastern part of the

figure; starting from NC continuing to the northern part of NY. We conclude that if we

consider realistic conditions by adding unresolved turbulent motion, it is possible to have

regions with high SFTLE values where the deterministic FTLE values are low. In fact these

regions are regions of strong attraction or repulsion which can be important for describing

the distribution of passive tracers. If we neglect the unresolved turbulence, then we may

underestimate the importance of these regions.
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Figure 3.7: (a) Deterministic backward FTLE field, (b) expected value, backward SFTLE
field. Integration time T = −24 h, t0 = 12:00 UTC 8 Apr 2012. Note the existence of the
high value could of SFTLE field over the east coast of US where the deterministic FTLE
field does not capture it. This region could be attracting area for passive tracers. Also note
the varying width of the high vale SFTLE cloud over KS, MO and IL.

We summarize the observations into four categories:

1. Sharp ridges of the deterministic FTLE field deform into bands of high value expected

SFTLE,
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2. Sharp ridges of the deterministic FTLE field remain fairly sharp in stochastic cases,

3. Ridges of the FTLE field are washed out and disappear when unresolved stochastic

motion is considered,

4. Low FTLE value regions in deterministic field become high expected SFTLE value

regions.

An application of stochastic FTLE in geophysical flows is the prediction of spread of volcanic

ash and dust. If we consider the deterministic solutions, we only obtain co–dimension one

LCS features that are strongest in attraction or repulsion of nearby particles. But if we con-

sider the stochasticity of the flow field, we may find regions of high attraction or repulsion

strength that may not be observed by deterministic solutions. By using the archive data we

can detect the backward SFTLE and their associated attracting LCSs where the particles

settle down. Also by considering the stochasticity of the flow field we declare the boundaries

between coherent sets as fuzzy objects instead of bright lines. Since unresolved turbulence

is similar to diffusion process, in cases that we observe considerable diffusion such as atmo-

spheric transports of aerosols, we could expect to see qualitative changes to the FTLE field

analogues to our results for SFTLE fields.

3.3 Uncertainty analysis

We have considered the effect of unresolved turbulence but another important issue when

atmospheric forecast velocity data is used to generate the forecast FTLE fields is the level

of errors of the results with respect to the archive–based (observation-based) FTLE fields.

In a previous paper (BozorgMagham et al., 2013) we observed that even if one uses the best

resolution operational forecast data for nearly real–time forecasting, one would face inevitable
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errors in resultant FTLE fields and their associated LCSs. This fact is due to the cumulative

errors in the integration process for calculating the tracer particle flow map. One might

compare Eulerian forecast and archive velocity fields and find that the level of error is small

and the forecasts are skillful (Murphy, 1988), however, in the process of time integration,

small errors accumulate and the forecast flow map diverges dramatically from the flow map

obtained from archive/reanalysis data which is taken as the best representation of the true

state of the system. So the quality of the velocity forecast field is essential. However it is

well known that improving the quality of forecasts is limited by the atmosphere’s inherent

chaotic behavior (Lorenz, 1963). Regarding forecast FTLE fields and the associated LCSs,

one has the option to either depend on the best resolution deterministic velocity fields or

attempt to quantify the uncertainty of the forecast results.

The current practice for the study of uncertainty of forecast results is to use an ensemble

forecasting approach. In this approach the outputs of the data assimilation process are per-

turbed and fed to the geophysical models which are assumed to represent the dynamics of

the system. Different perturbation techniques are used in this regard, e.g., NCEP uses the

breeding method while ECMWF implements the singular vector approach (Kalnay, 2003;

Toth and Kalnay, 1997). The output members of the ensemble forecasting approach are suit-

able for different purposes, e.g., improving the quality of forecasting by ensemble averaging,

providing indications of the reliability of the forecast or providing a quantitative basis for

probabilistic forecasting (Kalnay, 2003; Toth and Kalnay, 1997).

We apply a similar approach for calculations of FTLE fields and the associated LCSs. In this

approach, the ensemble members of the forecast velocity field are used to generate ensemble

members of the FTLE field. By comparing these fields we have a measure of the uncertainty

of the forecast fields over different geographical regions.
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3.3.1 Velocity ensemble data set

To perform this case study we use the GFS ensemble forecast data in which the ensemble

forecasts and the breeding cycles are initialized at 00:00 UTC each day and the control run

is initialized from NCEP/NCAR reanalysis data.2

When the breeding approach is used in ensemble forecasting, a random initial perturbation

(the random seed) with a small fixed initial norm is added and subtracted to the control input

data, generating a forecast pair; see Fig. 3.8(a). The random seed is added at the beginning

of the procedure, then the model is integrated for the both control and the perturbed data

sets during a pre–determined length of time ∆t. Results from the control set integration are

subtracted from the perturbed one. For the next step the difference is scaled down to the

initial perturbation norm and this new perturbation vector is added to the new state of the

system calculated from the control set to produce the new perturbed initial condition. These

steps are repeated for all the ensemble members until the pre–specified maximum integra-

tion time (Kalnay, 2003). This approach is conceptually similar to the process of finding

the leading order Lyapunov vector/exponent in systems of ordinary differential equations.

Moreover the perturbations depend on the dynamical responses of the underlying system

and it is known that for atmospheric ensemble forecasting the bred vectors do not converge

to a single leading bred vector (Kalnay et al., 2002).

At NCEP a self–breeding approach is used; see Fig. 3.8(b). In this approach the difference

between positive and negative perturbed forecasts is divided by 2 and then scaled down to

the initial perturbation norm. The scaled difference is added and subtracted from the control

set, generating initial condition for the new pair of forecasts. For GFS ensemble data, 7 pairs

are calculated, so we have 14 ensemble members plus one control case (Toth and Kalnay,

1997; Caplan et al., 1997; Uppala et al., 2005).

2http://www.esrl.noaa.gov/psd/forecasts/reforecast/data.html
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(a)

(b)

Figure 3.8: Schematic of the breeding cycle, (a) control run is integrated without any pertur-
bation. Bred modes are initialized by adding random perturbation to the control case. Each
ensemble member is integrated (solving a set of PDE equation with this initial condition)
for a specified length of time, and then each field is compared with the control field. The
difference between control case and each ensemble member is rescaled. This rescaled field is
added/subtracted to the control case to generate the new ensemble members, and the inte-
gration cycle is repeated until the end of forecast time, (b) self–breeding pair of ensemble
forecasts used at NCEP. In this approach corresponding pairs are used to generate the new
initial condition for the new pair of forecasts. For both cases the initiation signals are shown
by dash lines.
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3.3.2 Ensemble FTLE field results

To demonstrate the applications of ensemble FTLE fields, we use the 850 mb pressure surface

data for the velocity field. The time resolution of GFS data is 12 hours and the spatial

resolution is 2.5◦. The target time for the FTLE field calculation is 12:00 UTC 29 Sep 2010

the same as the first case shown in Fig. 3.2(a) and the backward integration time is −24 h.

According to this target time, the forecast chain was initialized at 00:00 UTC 28 Sep 2010

and extended to 00:00 UTC 30 Sep 2010. Fig. 3.9 shows all 15 members of the ensemble

FTLE fields calculated from ensemble members of the GFS velocity field. Fig. 3.9(a) is the

FTLE field from the control velocity field and the other 14 members are the results from

7 pairs of bred modes. From this collection of FTLE fields we recognize the main patterns

of the forecast result and the associated candidate LCSs. Also we notice the differences in

ensemble members, e.g., the FTLE–LCS results from Fig. 3.9(j) and (k) are very different,

but they correspond to a single pair of bred modes.

Fig. 3.10(a) and (b) represents the average and standard deviation (as a measure of spread

of FTLE value over each point) of the represented ensemble FTLE field members in Fig.3.9.

This figure shows that over some regions of the Florida panhandle one can strongly expect

a high value FTLE ridge but over some other regions such as north–west South Carolina

and especially south–east Canada the resultant FTLE–LCS are uncertain ([the last one is

not due to the edge effect since the data domain is larger than what is considered for the

FTLE field and also we apply the linear extension technique]). Panel (c) of Fig. 3.10 is

the backward FTLE field result (integration time −24 h) from GFS reanalysis velocity data

with spatiotemporal resolution 2.5◦ and 6 h. By using panels (a) and (c) of this figure,

we can compare the results from forecast ensemble mean with the pure reanalysis based

FTLE field. For example we observe a bifurcation in the LCS structures over the east coast

which the mean of the forecast ensemble does not show. In addition there is a weaker but
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Figure 3.9: 15 ensemble members of forecast FTLE field for 12:00 UTC 29 Sep 2010, (a)
FTLE from the control velocity field (b ... o) 14 other ensemble members of forecast FTLE
filed obtained from perturbed velocity fields, integration time is −24 h for all the cases.
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Figure 3.10: (a) Mean of the forecast ensemble members (b) standard deviation of the
forecast ensemble members (c) FTLE from GFS reanalysis data; corresponding time and
integration time are 12:00 UTC 29 Sep 2010 and −24 h respectively.

long and wide feature over Minnesota, South Dakota and Nebraska in the reanalysis–based

FTLE field which is absent in the mean ensemble forecast. One should note that the overall

similarity between Fig. 3.2(a) and Fig. 3.10(a) in common windows is due to the fact that

both FTLE fields correspond to the same time, meanwhile the differences are mainly due to

the spatiotemporal resolution of the velocity fields and the fact that the former is calculated

from archive data and latter is generated from pure forecast data initialized by reanalysis

data set at 00:00 UTC 28 Sep 2010.

To study the uncertainty of the FTLE fields we use the pointwise FTLE value vs. time

at a fixed location. The local maxima of this time series could be regarded as represen-

tative of candidate hyperbolic LCS features that might pass over the specified location
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(BozorgMagham et al., 2013). The uncertainty of the pointwise results represents the un-

certainty of presence and timing of strong LCS features passing over a location of interest.

As an example, Fig. 3.11(a) shows the pointwise FTLE value at (48◦22′N,−68◦10′48′′W )

equal to (1000, 1400) km with respect to the reference point (Virginia Tech Kentland Farm)

for the previous forecast interrogation window of 12:00 to 21:00 UTC 29 Sep 2010 where

the first frames of the FTLE field for the 15 members are shown in Fig. 3.9. We observe

that the results from ensemble members are significantly different during the interrogation

time window. This figure shows high uncertainty of the forecast FTLE value over that lo-

cation when different forecast velocity fields are used to calculate the FTLE–LCS features.

Fig. 3.11(b) shows another case of pointwise FTLE vs. time at (30◦27′N,−85◦3′W ) equal to

(-430, -750) km with respect to the same reference point and during the same time interval.

In this figure we observe that, except for three members that are shown by dashed line, the

other ones follow a similar pattern and their differences are small, meaning that forecasts at

that location are fairly consistent during the interrogation time interval.

In addition to uncertainty quantification, this observation could lead to the concept of prob-

abilistic forecasting of the LCS features. To obtain reliable forecast of LCS features, we will

assume that one needs to have enough ensemble members that show maxima in a common

time interval. Referring to Fig. 3.12 as a schematic of forecast ensembles, we define the

probability of the passage of an LCS feature over a region during a defined time interval as,

P(t−∆t
2
,t+∆t

2 )
= np/Nens (3.12)

where np is the number of maxima beyond a pre-determined threshold (for more infor-

mation about that threshold refer to BozorgMagham et al. (2013)) in the time interval(
t− ∆t

2
, t+ ∆t

2

)
and Nend is the total number of ensemble members providing a unique peak

for each ensemble member in that time interval.
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Figure 3.11: Ensemble of pointwise FTLEs vs. time. Black line represents the control case,
dashed red line shows the average of ensembles and the other 14 members are from each FTLE
calculation, (a) highly uncertain forecast, FTLE measurement at (48◦22′N,−68◦10′48′′W )
(b) fairly consistent forecast, FTLE measurement at (30◦27′N,−85◦3′W ). These two points
correspond to (1000, 1400) and (-450,-750) km with respect to the reference point.

Figure 3.13(a) shows the ensemble forecast members for 29 Sep 2010 at (30◦27′N,−85◦3′W ).

Since the spatiotemporal resolution of ensemble GFS data is coarse (2.5◦, 12 h) the ensemble

members of the pointwise FTLEs do not show sharp peaks, however this figure shows the

main concept of probabilistic FTLE–LCS forecasting. Figure 3.13(b) shows the correspond-

ing probability distribution of having a candidate LCS during that time interval when ∆t =

2 h. This figure shows that the probability of an LCS passage is maximum between 10:00

and 12:00 UTC. We should note that to generate Fig. 3.13(a) we use the most updated

reanalysis data as the initial condition for each forecast data frame. Thus, we use reanalysis

data corresponding to 00:00 UTC 28 and 29 Sep 2010 as the initial conditions for the forecast

velocity fields. Note that Fig. 3.11(b) and Fig. 3.13(a) are slightly different in their common

window (after 12:00 UTC) because in the former one we just use the 00:00 UTC 28 as the

initial condition while in the latter one we use the most updated initial conditions.

To test this approach for more days and to know more about statistical distribution of
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Figure 3.12: Schematic of ensembles pointwise forecasts FTLE value at a specified location.
Black: control case, red: mean of the ensembles, blue: other ensemble members. Number of
maxima in time interval ∆t is proportional to the probability of passage of a LCS over the
specified location.
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Figure 3.13: (a) Ensembles of pointwise forecasts FTLE field value at a (30◦27′N,−85◦3′W ),
integration time: −24 hrs, red line: mean curve, and black line: control case (b) probability
of a LCS passage during 2 h windows.
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errors we use GFS ensemble forecast data to calculate the forecast FTLE–LCS features (the

same procedure as described for Fig. 3.13), and then we compare these results with reanalysis

based FTLE–LCSs which are obtained from the NCEP North American Regional Reanalysis

(NARR). Note that spatiotemporal resolution of NARR data is 0.3 degrees and 3 hours. For

both cases of forecasts and reanalysis results we consider a time interval of 24 h and an

integration time for FTLE calculations of −24 h (backward FTLE). Results in Table 3.1

correspond to four weeks, one in each season of 2012. The selected weeks are randomly

chosen. We report all days of each week that major LCS features have been observed over

the Virginia Tech Kentland Farm.

We use a time resolution of 15 minutes for the FTLE–LCS calculations, so for each day we

have 97 time slices. For each day all 15 members of the GFS based forecast FTLE–LCS are

calculated (the total number of frames per day is 1455 = 97 slices times the 15 members)

and then the probability distribution of having a LCS over the reference point is obtained.

The result of this process is similar to Figure 3.13(b) for each time slice. Table 3.1 contains

data for 15 days, so it is the abstract of comparing 21825 ensemble forecast frames (1455

frames per day times 15 days) with 1455 reanalysis based frames of FTLE–LCSs. We divide

each day into 2 hours intervals. The probability of LCS passage over the reference point is

calculated as introduced in (3.12). Table 3.1 shows the corresponding probabilities as factors

of ( 1
15
) since the number of ensemble members is 15, so the numerator shows the number

of ensemble peaks in each time interval. Note that in some cases, such as Sep 20 and Nov

8, the summation of peaks is less than 15 which means that some member of the ensemble

does not have any maximum during the 24 hour interrogation window or the peak is very

flat. The passage time of the reanalysis (NARR) based LCSs over the reference point for

each day is shown by “∗” in each column.

Results of this comparison show that in 9 out of 15 cases, the probabilistic forecast passage
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April June September November
UTC 22 23 25 27 4 6 7 16 17 20 22 5 7 8 9

00:00-02:00 0 10
15

∗
0 1

15
0 1

15
0 0 0 0 0 0 1

15
0 0

02:00-04:00 0 2
15

0 7
15

∗
0 1

15
0 2

15
0 0 0 0 6

15

∗
0 0

04:00-06:00 0 3
15

7
15

4
15

0 9
15

∗
0 11

15

∗
0 0 0 0 8

15
0 0

06:00-08:00 1
15

0 6
15

∗ 3
15

∗
0 2

15
0 0∗ 1

15
0 0 1

15
0 0 0

08:00-10:00 2
15

0 2
15

0 0 2
15

0 2
15

14
15

∗
0 0 1

15
0 0 0

10:00-12:00 8
15

0 0 0 0 0 0 0 0 0 0 1
15

0 0 0

12:00-14:00 3
15

∗
0 0 0 0 0 0 0 0 0 0 10

15

∗
0 0 0

14:00-16:00 0∗ 0 0 0 1
15

0 2
15

0 0 0 0 2
15

0 0 2
15

16:00-18:00 1
15

0 0 0 12
15

∗
0 0∗ 0 0 0 1

15
0 0 1

15

∗ 6
15

18:00-20:00 0 0 0 0 2
15

0 6
15

0 0 1
15

2
15

0 0 0 3
15

∗

20:00-22:00 0 0 0 0 0 0 7
15

0 0 6
15

∗ 11
15

∗
0 0 11

15

∗ 2
15

22:00-24:00 0 0 0 0 0 0 0 0 0 7
15

1
15

0 0 1
15

2
15

Table 3.1: Four randomly selected weeks, one in each season of 2012. Days that major
LCS features observed are reported. Each entity represents the probability of passing LCS
features over the reference point (Virginia Tech Kentland farm) during the specified time
interval. These values are calculated based on 15 ensemble members of GFS forecast data set.
“∗” represent the passage time of LCS features over the reference point which is calculated
by using the reanalysis NARR data set. In some days we observe more than one LCS over
the reference point. Note that in some cases the summation of numerators in each column is
less than 15 which means that some of the ensemble members do not have any peak during
24 hours of the interrogation window.

times are in the same time 2–hour interval as the reanalysis based results, in 5 cases they

just differ one time interval (maximum error 4 hours) and in 1 case the difference is equal

or more than 2 time intervals. Also in 4 days we have more than one LCS passage based on

reanalysis velocity field where for 3 days, the ensemble forecasting captures at least one of

them. A summary of this comparison is represented in Fig. 3.14. For days with more than

one LCS occurrences, we consider the closest one to the forecast interval result with highest

probability. Table 3.1 and Fig. 3.14 help us to have quantitative measure of the distribution

and reliability of the forecast results which is not available with single deterministic forecast

outputs. As an example we observe that for about 60% of the cases the error of ensemble

forecasting with respect to the reanalysis result is within 2 hours.
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Figure 3.14: Summary of Table 3.1. A histogram of the absolute value of the difference
between forecast (tfor) and archive (tarc) LCS passage times. For days with more than
one LCS occurrence, we consider the one closest to the forecast interval result with highest
probability.

3.4 Discussion

The aim of this study was to consider two issues related to prediction of atmospheric FTLE

fields. The first concern was the effect of unresolved turbulence on the resultant FTLE

fields. By using the Monte Carlo method and adding a stochastic turbulent velocity term, we

introduced the notion of stochastic FTLE (SFTLE) field. A significant difference between

the deterministic solution and the centroid of the (in general, non–Gaussian) probability

distributions was observed. The role of FTLE-LCSs in shaping the probability distributions

was discussed.

The second concern originated from previous observations about comparisons between archive–

and forecast–based FTLE fields (BozorgMagham et al., 2013). These comparisons show that

the major source of errors in forecast FTLE fields is errors in the forecast velocity field which

is unavoidable due to the chaotic dynamics of atmosphere. Thus, a major concern is the level

of confidence regarding the forecast results. We introduced an ensemble method for FTLE–
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LCSs for quantitative study of uncertainty and probabilistic forecasting, using relatively low

spatiotemporal resolution GFS data. We also introduced a method for probabilistic forecast-

ing of LCS features, particularly the passage time of an LCS over a particular geographic

point, which was previously found to be associated with aeroecological events (Tallapragada

et al., 2011). We found that one can predict the passage time with an accuracy of 2 hours

60% of the time which lends confidence to the practical application of LCS passage prediction

for forecasting movement of biological and chemical fronts.

Subgrid scale stochastic effects and uncertainty will be important in real applications of

transport phenomena such as the monitoring of volcanic ash and large scale dust storms or

aeroecology of microorganisms related to human health and agriculture (topics which can be

interrelated; Kellogg and Griffin (2006)). For the latter, given the association of FTLE fields

and associated LCS features to moving fronts of microorganisms (Tallapragada et al., 2011),

there is a possibility of predicting significant changes in the population structure of airborne

pathogens, or finding constraints on their dispersal range, with implications for improved

management decision making by stakeholders.
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Chapter 4

Small fluctuations in the recovery of

fusaria across consecutive sampling

intervals with unmanned aircraft 100

m above ground level

Note: The following chapter was formatted to facilitate publication in Aerobiologia. This

work was originally published by Lin, Bozorg Magham, Ross, and Schmale in Volume 29,

Issue 1 (March 2013) pp.45-54. (DOI 10.1007/s10453-012-9261-3) of Aerobiologia.

Abstract

Many Fusarium spp. are well-suited for atmospheric dispersal, yet the aerobiology of these

fungi are poorly understood. Recent work has highlighted the role of Lagrangian coherent
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structures (LCSs) in the movement of fusaria in the lower atmosphere. Here, we extend this

work by examining the relationship between the length of atmospheric sampling intervals

with autonomous unmanned aerial vehicles (UAVs) and the recovery of fusaria (Lin, 2013).

UAVs were equipped with an array of eight microbe-sampling devices with four inner sam-

pling arms and four outer sampling arms. Each set of arms was used to collect consecutive

aerobiological samples for periods of 10 minutes at 100 m above ground level at Kentland

Farm in Blacksburg, Virginia. Fifty-one flights (102 consecutive sampling intervals) were

conducted in 2010 and 2011. A correlation analysis showed that counts of fusaria did not

vary between the inner and outer sampling arms from consecutive sampling periods of 10

min (r = 0.93, P < 0.001), and the frequency of colony counts had similar distributions

for samples from the inner and outer sampling arms. An analysis of the temporal varia-

tion in collections of Fusarium showed that the similarity between collections decreased over

time. This work supports the idea that atmospheric populations of fusaria are well-mixed,

and large changes in the recovery of fusaria in the lower atmosphere may be attributed to

large-scale phenomena (e.g., LCSs) operating across varying temporal and spatial scales.

This work may contribute to effective control measures for diseases causes by fusaria in the

future.

4.1 Introduction

Fusarium is one of the most important genera of fungi on Earth (Leslie and Summerell,

2006). Members of this genus cause a number of devastating plant diseases, and can threaten

the health of both domestic animals and humans through the production of mycotoxins

(Berek et al., 2001; McMullen et al., 1997). Many fusaria are transported through the

atmosphere from one habitat to another (Schmale et al., 2012; Tallapragada et al., 2011).



78

Previous work has shown that large scale atmospheric features known as Lagrangian coherent

structures (LCSs) or atmospheric transport barriers (ATBs) are associated with the long

distance transport of Fusarium in the lower atmosphere (Schmale et al., 2012; Tallapragada

et al., 2011). ATBs are moving boundaries that effectively separate air masses of qualitatively

different dynamics and may play a significant role in the movement of microbes among

habitats (Senatore and Ross, 2011). Tallapragada et al. (2011) showed that LCSs (ATBs)

were associated with changes in atmospheric counts of Fusarium. Though the work by

Tallapragada et al. (2011) was the first to demonstrate that large fluctuations in atmospheric

counts of Fusarium could be attributed to the passage of ATBs, it was unable to account

for small-timescale fluctuations that might explain natural fluctuations among collections of

Fusarium.

Recently, members of our research team have developed technologies with autonomous un-

manned aerial vehicles (UAVs) to track the movement and structure of populations of mi-

crobes such as Fusarium in the lower atmosphere (Schmale Iii et al., 2008). The UAVs were

equipped with microbe-sampling devices that contained a total of four Petri plates that were

opened and closed by remote control from the ground once the UAV was aloft (Schmale Iii

et al., 2008). In the present study, we used a new array of sampling devices that contained

a total of eight Petri plates, with four inner sampling arms and four outer sampling arms

that were used to collect consecutive aerobiological samples for periods of 10 minutes at 100

m above ground level. This method was used to test the null hypothesis that the recovery of

fusaria would not vary across consecutive (a 10 min sample on the inner arms, immediately

followed by a separate 10 min sample on the outer arms) aerobiological sampling intervals

with UAVs 100 m above ground level. Thus, large fluctuations in the recovery of fusaria

could be attributed to a suite of factors including the passage of LCSs (ATBs) and/or the

contribution of local sources, and not random fluctuations in counts of Fusarium that would
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be representative of a natural condition. The specific objective of this study was to deter-

mine if collections of fusaria vary between the inner and outer sampling arms of a UAV

from consecutive sampling periods of 10 min. This work is prerequisite for understanding

if changes in the recovery of fusaria in the lower atmosphere may be attributed to large-

scale phenomena (e.g., LCSs) operating across varying temporal and spatial scales and may

contribute to effective control measures for diseases causes by fusaria in the future.

4.2 Materials and methods

4.2.1 Autonomous unmanned aerial vehicles (UAVs) for sampling

Autonomous (self-controlling) UAVs were used to collect Fusarium from the atmosphere

above Virginia Tech’s Kentland Farm in Blacksburg, VA, USA. The UAVs consisted of a Sig

Rascal c⃝ airframe equipped with an autopilot computer and a suite of onboard telemetry

devices (Schmale Iii et al., 2008) and were programmed to fly a circular sampling pattern at

a target altitude of 100 m above ground level and a nearly constant speed of 90 km/h. Each

UAV carried eight collection plates containing a Fusarium selective medium on the wings.

The eight sampling plates were separated into inner and outer sampling arms (4.1).

For consecutive sampling flights, a 10 min sample was collected using the inner arms (4 plates

were exposed during this sampling interval), immediately followed by a separate 10 min

sample using the outer arms (4 plates exposed were exposed during this sampling interval)

(4.1). Sampling flights were also conducted with the inner and outer sampling devices open

at the same time (8 plates exposed during the sampling interval).
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4.2.2 Culturing and identification of Fusarium

A Fusarium selective medium (FSM) (Schmale III et al., 2006) was used to bias our atmo-

spheric collections for fungi in the genus Fusarium. Immediately following a sampling flight,

the exposed plates were removed from the UAV and placed in small plastic containers for

transport to the laboratory. The plates were incubated for 5 to 7 days at room temperature

to allow white, fuzzy colonies of Fusarium to develop. Colonies of Fusarium were counted

and subcultured to plates of 1/4 strength potato dextrose agar (PDA) medium for further

identification.

4.2.3 Statistical analyses

We hypothesized that the recovery of fusaria would typically not vary significantly across

consecutive aerobiological sampling intervals of short duration (a 10 min sample on the

inner arms, immediately followed by a separate 10 min sample on the outer arms). If we

fail to reject this hypothesis, then large fluctuations in the recovery of fusaria over short to

intermediate timescales could be attributed to a suite of factors, such as the passage of LCSs

(ATBs) and/or the contribution of a strong local source. By short timescale, we mean short

compared with the Lagrangian timescale, discussed below. It is also important to note that

since the atmosphere is moving, short timescales are also related to short spatial scales. To

test our hypothesis, colony counts of Fusarium obtained from different flights were assembled

to perform statistical analyses (Tables 4.1 and 4.2). For flights with simultaneous inner and

outer arm sampling (Tables 4.1), we estimated the variability in sampled colony counts of

Fusarium, yielding an estimate of error for colony counts. For flights with consecutive inner

and outer arm sampling (plates exposed during consecutive sampling periods of 10 minutes)

(Table 4.2), a simple linear regression was used to determine the relationship between colony
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counts of Fusarium collected for the inner and outer sampling arms. A scatter plot and a

frequency plot were also used to show this relationship. Statistical analyses were performed

using JMP 4.0. The correlation between colony counts from the inner and outer sampling

arms was also explored as a function of time-lag between sampling intervals (i.e., comparisons

of colony counts between consecutive flights separated by 10 minutes, and between other

flights separated by longer periods throughout a sampling day).

Flights Date Time open (in
& out)

Time closed (in
& out)

Counts in Counts out Time sampling
(min)

F137 10-Mar-10 0929 0944 3 1 15
F138 10-Mar-10 1035 1042 1 8 7
F139 10-Mar-10 1130 1145 7 4 15
F140 10-Mar-10 1300 1315 5 2 15
F141 10-Mar-10 1400 1415 4 9 15
F142 11-Mar-10 1005 1020 3 3 15
F143 15-Jul-10 0950 1005 23 16 15
F144 15-Jul-10 1155 1210 35 37 15
F145 16-Jul-10 0925 0940 20 26 15
F146 16-Jul-10 1045 1100 27 23 15
F147 28-Sep-10 0959 1014 2 3 15
F148 28-Sep-10 1118 1133 6 2 15
F149 28-Sep-10 1412 1427 17 8 15
F150 28-Sep-10 1532 1540 9 6 8
F151 29-Sep-10 0915 0926 3 7 11
F152 29-Sep-10 1029 1044 4 1 15
F153 29-Sep-10 1323 1338 7 6 15
F154 01-Oct-10 0908 0923 8 3 15
F155 01-Oct-10 1203 1218 9 8 15
F156 01-Oct-10 1428 1443 31 21 15
F157 01-Oct-10 1700 1708 10 6 8

Table 4.1: Colony counts of Fusarium from simultaneous sampling (inner arms and outer
arms were opened at the same time) with UAVs 100 m above ground level at Virginia Tech’s
Kentland Farm

4.3 Results

4.3.1 Simultaneous sampling with eight plates

In order to compare samples collected from inner and outer arms during different time

periods, it is essential to show that samples do not vary significantly between inner and



82

outer arms during the same time period. In other words, we must examine the potential

role (if any) that plate position on the UAV has on the recovery of fusaria. To do this,

we conducted 21 simultaneous sampling flights in which all eight sampling devices (inner

and outer sampling arms opened at the same time) were exposed during the same sampling

interval (Tables 4.1). For these 21 flights, 433 colonies were recovered across all 21 sampling

intervals; 234 colonies were collected across the inner arms, and 199 colonies were collected

across the outer arms. Results of our correlation analysis for this sampling method showed

that counts from the plates on the inner arms were positively correlated with counts from

plates on the outer arms (r = 0.89, P < 0.001, n = 21). Thus, the location of the plates

(inner versus outer sampling arms) did not impact the collection of fusaria.

We also used samples from this method to estimate the variation in colony counts for the

inner and outer sampling arms. Considering only the 15 minute samples of Tables 4.1, we

calculated the total colony count, c, and the magnitude of the difference between the inner

and outer plates, which is the variation in colony counts, δc. In Fig. 4.2, we plot the fractional

variation, δc/c, versus c, and notice a trend. The curve corresponds to 1/
√
c, the fractional

standard deviation for a Poisson distribution. Thus, the probability of a viable airborne

Fusarium spore impacting the samplers is well approximated as an inhomogenous Poisson

process with an arrival rate varying on a timescale long compared to the sampling duration.

Thus, when a colony count, c, is obtained, the margin of error can be approximated as ±
√
c.

4.3.2 Consecutive sampling with four inner plates and four outer

plates

To determine if collections of fusaria varied between consecutive sampling periods of 10 min,

we conducted 102 consecutive sampling intervals (51 flights) 100 m above ground level in
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2010 and 2011 (Table 4.2). Five hundred and ninety two colonies were recovered across all

102 sampling intervals; 275 colonies were collected across the inner arms, and 312 colonies

were collected across the outer arms (excluding flights F207 and F208, which were clear

outliers in the dataset). A significant positive correlation was observed for colony counts

of Fusarium between the inner plates and the outer plates (r = 0.93, P < 0.001, n = 98).

Scatter plots and a simple linear regression of consecutive sampling intervals are shown in

Fig. 4.3.

Two flights however, F207 and F208 (Table 4.2), were excluded from the scatter plot, since

these flights were considered outliers and are the subject of additional discussion below.

It should still be noted, however, that when these flights were included in the correlation

analysis, a significant positive correlation was still observed (r = 0.38, P < 0.01, n = 102).

A frequency plot showed that the distribution of colony counts was similar for the inner and

outer sampling arms over the range of colony counts (Fig. 4.4).

The correlation between colony counts from the inner and outer sampling arms was also

explored as a function of time-lag, τ , between sampling intervals. This approach allowed us

to examine the temporal variation of colony counts. From Table 4.2 (excluding F207 and

F208), pairwise comparisons of colony counts were determined for five time intervals: 0.17

h (n = 49 pairs), 0.5 h to 1.5 h (n = 83 pairs), 1.5 h to 3 h (n = 94 pairs), 3 h to 6 h (n =

84 pairs), and 6 h to 9 h (n = 16 pairs). An autocorrelation coefficient was determined as

follows (autocorrelation coefficient for zero time-lag is defined as 1)

R(τ) =
E [(ct − µ) (ct+τ − µ)]

σ2
(4.1)

where ct is the colony count at time t, ct+τ is the colony count at time t+ τ , µ represents the

mean value, σ represents the standard deviation of the colony counts, and E [•] represents
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expectation value. The results of this analysis are shown in Fig 4.5; the similarity between

collections of Fusarium decreases over time. Error bars were calculated using results from

section § 4.3.1 with the assumption that colony counts are Poisson distributed. A Gaussian

distribution weighted method was used to obtain the error bars with sufficient number of

simulations converging to a constant limit.

4.3.3 Anomalous punctuated changes in colony counts for two

consecutive flights

In flights F207 and F208, we observed a significant departure from the usual 10-minute

time-lag correlation. Flight 207 started sampling at 12:00 PM on 25 October, 2011. Eighty

colonies were recovered from the inner arms, but only 31 colonies were recovered from the

outer arms. Flight 208 started sampling at 1:16 PM on the same day. Twelve colonies were

recovered from the inner arms, but 120 colonies were recovered from the outer arms. The

inner and outer samples from these flights were not correlated, and cannot be explained by

the statistics of a slowly varying inhomogeneous Poisson process. We view these two flights

as anomalies that are in need of further explanation. We hypothesized that an ATB could

have contributed to the observed changes in colony counts (e.g., Tallapragada et al. (2011)),

but archived weather-based computations did not reveal the presence of any strong LCSs

(data not shown). Furthermore, HYSPLIT back trajectories for these samples suggested

that all of these samples originated from a similar location in West Virginia (within the scale

of accuracy of the computations, on the order of 10-100km) (Fig. 4.6).
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4.4 Discussion

Recent work has highlighted the role of Lagrangian coherent structures (LCSs) in the move-

ment of fusaria in the lower atmosphere (Schmale et al., 2012; Tallapragada et al., 2011).

Here, we extend this work by examining the relationship between the length of atmospheric

sampling intervals with autonomous unmanned aerial vehicles (UAVs) and the recovery of

fusaria. UAVs were equipped with an array of eight microbe-sampling devices with four

inner sampling arms and four outer sampling arms. Each set of arms was used to collect

consecutive aerobiological samples for periods of 10 minutes at 100 m above ground level at

Kentland Farm in Blacksburg, Virginia. A total of 102 consecutive sampling intervals (51

flights) was conducted in 2010 and 2011. Results showed that counts of fusaria did not vary

across consecutive aerobiological sampling intervals. This work supports the idea that at-

mospheric populations of fusaria are well-mixed, and large changes in the recovery of fusaria

in the lower atmosphere may be attributed to large-scale phenomena (e.g., LCSs) operating

across varying temporal and spatial scales.

Counts of Fusarium were not significantly different between plates located on inner and outer

sampling arms in which all eight sampling devices were exposed during the same sampling

interval. Thus, collections of Fusarium with UAVs were not influenced by the position of

the plates. Random collections of Fusarium across all of the sampling surfaces is consistent

with the idea that atmospheric populations of Fusarium are well-mixed (Schmale III et al.,

2006). The fractional variation in colony counts revealed that the statistical distribution of

colony counts across the inner and outer sampling arms is well approximated by a slowly

varying inhomogeneous Poisson process. Colony counts from consecutive sampling intervals

separated by 10 minutes did not vary significantly, but the correlation drops to nearly zero
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for flights separated by 9 hours. The Lagrangian (autocorrelation) time-scale

TL =

∫ ∞

0

R (τ) dτ (4.2)

is approximately 3 hours, which is on the order (∼ 10000s) estimated for velocity autocor-

relations in atmospheric turbulence (Gifford, 1987), and is also the Lagrangian timescale for

layer (stratus) clouds. The time TL provides the timescale for the variation of the arrival

rate for the slowly varying inhomogeneous Poisson process assumption, and we note that

this is indeed long compared with the sampling duration (10 minutes), further justifying the

Poisson assumption. For purely stochastic motion, the autocorrelation is an exponential,

R(τ) = exp(−τ/TL) (Csanady, 1973; Dosio et al., 2005). With horizontal winds on the scale

of 2-10 m/s, this timescale suggests that there are coherent clouds of Fusarium with hori-

zontal dimensions on the scale of 20-100 km. This idea is consistent with the observations of

Tallapragada et al. (2011) based on mesoscale atmospheric simulations, who found that the

typical size for a coherent air mass was on a similar scale (50-150 km), based on the average

passage of an LCS over the sampling location every 5 to 7 hours.

Tallapragada et al. (2011) showed that LCSs (atmospheric transport barriers or ATBs) were

correlated with changes in atmospheric counts of Fusarium. Schmale et al. (2012) suggested

that LCSs were likely to influence the population structure of F. graminearum. With the

exception of flights 207 and 208, we did not observe any significant variation in colony counts

among consecutive sampling flights. Thus, we are now able to exclude fluctuations over short

periods of time as potential contributors to changes in the atmospheric counts of Fusarium.

Thus, large changes in populations of Fusarium in the lower atmosphere may be attributed

in part to large-scale phenomena (such as LCSs) or strong local sources operating across

varying temporal and spatial scales.
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The inner and outer samples from flights F207 and F208 were not correlated, and rep-

resented a significant departure from the usual 10-minute time-lag correlation. Archived

weather-based computations did not reveal the presence of any strong LCSs, and HYSPLIT

back trajectories for these samples suggested that they both originated from a similar same

location in West Virginia (Fig. 4.6). Less than 90 minutes separated the start of F207 and the

end of F208, but there was significant variation over a timescale of 10 minutes during both

flights. This suggests a patchy (heterogeneous) distribution of Fusarium in the atmosphere

(Okubo and Levin, 2001). With the horizontal wind speeds at that time being approximately

2 m/s at ground level, the patchiness spatial scale was at most 1 km over a cloud on the order

of 10-20 km (bracketed by the more typical flights F206 and F209). It is possible that these

high values were triggered by a local, and possibly temporally non-uniform, source. Future

work aimed at identifying the species recovered in these flight populations may provide clues

about the approximate origin and mixing of these populations.

Future work by our research team aims to examine meteorological events that might provide

signatures for the life history of populations of Fusarium in the lower atmosphere. Such

work may contribute to an increased understanding of the spread of plant diseases in the

future (Aylor, 2003).
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Figure 4.1: An autonomous unmanned aerial vehicle (UAV) equipped with an array of eight
microbe-sampling devices with four inner sampling arms and four outer sampling arms. Each
arm carries two Petri plates containing a Fusarium selective medium. During takeoff and
landing, the sampling devices are closed (a). After reaching the target altitude of 100 m,
the inner sampling arms are opened for 10 min (b). These inner arms are closed, and the
outer arms are opened for 10 min immediately following the first collection (c). Colonies of
Fusarium are recovered in the laboratory and recorded for each of the plates (shown here
from flight F189) (d). By author, 2013, Aerobiologia.
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Flights Date Open
(in)

Closed
(in)

Open
(out)

Closed
(out)

Counts
(in)

Counts
(out)

Time sam-
pling out
(min)

Time sam-
pling in
(min)

F158 06-Apr-11 0913 0923 0923 0933 6 10 10 10
F159 06-Apr-11 1027 1037 1037 1046 14 12 10 9
F160 06-Apr-11 1557 1607 1607 1616 18 26 10 9
F161 07-Apr-11 0952 1002 1002 1012 27 33 10 10
F162 07-Apr-11 1344 1354 1354 1404 16 13 10 10
F163 07-Apr-11 1514 1524 1524 1534 15 11 10 10
F164 07-Apr-11 1611 1621 1621 1631 9 13 10 10
F167 08-Apr-11 1407 1422 1422 1435 5 9 15 13
F168 08-Apr-11 1510 1520 1520 1530 4 5 10 10
F169 11-Apr-11 0952 1002 1002 1012 22 21 10 10
F171 16-May-11 1449 1459 1459 1509 7 7 10 10
F173 18-May-11 1426 1436 1436 1446 2 1 10 10
F174 18-May-11 1600 1610 1610 1620 4 2 10 10
F175 19-May-11 0943 0953 0953 1003 4 5 10 10
F176 19-May-11 1045 1055 1055 1105 2 3 10 10
F177 19-May-11 1152 1202 1202 1212 1 2 10 10
F178 19-May-11 1312 1322 1322 1332 3 2 10 10
F179 19-May-11 1435 1445 1445 1455 6 3 10 10
F180 22-Aug-11 1000 1010 1010 1020 1 3 10 10
F181 22-Aug-11 1224 1234 1234 1244 3 2 10 10
F182 23-Aug-11 0942 0952 0952 1002 2 2 10 10
F183 23-Aug-11 1040 1050 1050 1100 2 2 10 10
F184 23-Aug-11 1149 1159 1159 1209 2 3 10 10
F185 23-Aug-11 1309 1319 1319 1329 4 5 10 10
F186 23-Aug-11 1424 1434 1434 1444 2 2 10 10
F187 23-Aug-11 1601 1611 1611 1621 4 5 10 10
F188 24-Aug-11 0915 0925 0925 0935 2 2 10 10
F189 24-Aug-11 1031 1041 1041 1051 4 5 10 10
F190 24-Aug-11 1159 1209 1209 1219 4 6 10 10
F191 24-Aug-11 1314 1324 1324 1334 4 5 10 10
F192 24-Aug-11 1426 1436 1436 1446 5 7 10 10
F193 25-Aug-11 0914 0924 0924 0934 1 2 10 10
F195 25-Aug-11 1200 1210 1210 1220 2 5 10 10
F197 26-Aug-11 1115 1125 1125 1135 3 2 10 10
F198 26-Aug-11 1313 1323 1323 1333 3 5 10 10
F199 26-Aug-11 1419 1429 1429 1439 7 12 10 10
F200 24-Oct-11 1018 1028 1028 1018 3 3 10 10
F201 24-Oct-11 1133 1143 1143 1153 4 5 10 10
F202 24-Oct-11 1303 1313 1313 1323 6 5 10 10
F203 24-Oct-11 1418 1428 1428 1438 5 4 10 10
F204 24-Oct-11 1530 1540 1540 1550 6 7 10 10
F205 25-Oct-11 0915 0925 0925 0935 1 2 10 10
F206 25-Oct-11 1031 1041 1041 1051 3 6 10 10
F207 25-Oct-11 1200 1210 1210 1220 80 31 10 10
F208 25-Oct-11 1316 1326 1326 1336 12 120 10 10
F210 25-Oct-11 1543 1553 1553 1603 8 6 10 10
F211 26-Oct-11 0956 1006 1006 1016 3 3 10 10
F212 26-Oct-11 1205 1215 1215 1225 1 2 10 10
F213 26-Oct-11 1316 1326 1326 1336 8 9 10 10
F214 26-Oct-11 1432 1442 1442 1452 4 4 10 10
F215 27-Oct-11 0858 0908 0908 0918 3 3 10 10

Table 4.2: Colony counts of Fusarium from consecutive (a 10 min sample on the inner arms,
immediately followed by a separate 10 min sample on the outer arms) aerobiological sampling
intervals with UAVs 100 m above ground level at Virginia Tech’s Kentland Farm in 2010
and 2011.
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Figure 4.2: Fractional variation in sampled colony counts of Fusarium (c is the total colony
counts from inner and outer plates, and δc is the variation in colony counts) based on
simultaneous sampling using inner (4 plates) and outer (4 plates) arms of a UAV during 15
min sampling periods. Flights were conducted 100 m above ground level during 2010. The
probability of a viable airborne Fusarium spore impacting the samplers is approximated as
a slowly varying inhomogenous Poisson process

Figure 4.3: Scatter plot and simple linear regression of consecutive sampling of Fusarium
with inner (4 plates) and outer (4 plates) arms of a UAV. A significant correlation (r =
0.93, P < 0.001, n = 98) was observed between colony counts of Fusarium from the inner
and outer arms. Flights were conducted 100 m above ground level during 2010 and 2011.
Flights F207 and F208 were outliers and were removed from the analysis
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Figure 4.4: Frequency plot of colony counts of Fusarium from consecutive sampling periods
of 10 mins. Flights were conducted 100 m above ground level during 2010 and 2011. The
plot shows that the distribution of colony counts was similar for the inner and outer sampling
arms over the range of colony counts
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Figure 4.5: The colony count autocorrelation coefficient R(τ) versus the time-lag τ between
sampling intervals. A high correlation is observed for a small time-lag. The similarity be-
tween collections decreases over time; typical behavior for Lagrangian trajectories of particles
(spores) in atmospheric turbulence
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Figure 4.6: HYSPLIT backward trajectories for flights 207 and 208 on based on 25 Oct 2011.
Trajectories were calculated hourly for 1600-1900 UTC and suggest that trajectories suggest
that all of the samples originated from a similar location in West Virginia (within the scale
of accuracy of the computations, on the order of 10-100km)



Chapter 5

Local finite time Lyapunov exponent,

sampling strategy and probabilistic

source regions

Abstract

We present a new interpretation about the local finite time Lyapunov exponent (FTLE).

The suggested notion enables us to estimate the true local FTLE or the differential dis-

tances between source (destination) points of the sampled (released) particles when sam-

pling (or release) in fluid field takes place at a fixed location and in a consecutive sequence.

Results of this study help us to plan the localized geophysical samplings for maximal di-

versity monitoring purposes such that the collected particles come from the most possible

separated source locations. Also, we may apply the proposed theorem to explain charac-

teristic variations among the successive collected samples if they are caused by long range

transport phenomena. In case of low resolution data sets, we consider the unresolved tur-

bulence for identifying the probabilistic source (destination) regions. We emphasize on the

94
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differences between numerical procedures for correct calculations of the probabilistic source

and destination regions. Finally we show that separation of the probabilistic source regions

corresponding to the sampled particles on either side of an attracting LCS happens even in

presence of the unresolved turbulence.

5.1 Introduction

The classical interpretation of finite time Lyapunov exponent (FTLE) fields and associated

hyperbolic Lagrangian coherent structures (LCSs) provides valuable information about trans-

port and mixing of passive tracers in a flow domain (Haller and Poje, 1998; Haller and Yuan,

2000; Shadden et al., 2005; Haller, 2011). There are increasing number of studies which apply

various concepts of FTLE–LCSs to describe and predict the time evolution of Lagrangian

systems. For example in some of these studies large scale geophysical information such as

wind or oceanic velocity fields are used as input data then the Lagrangian results such as oil

spill or volcanic ash distribution are compared with true response of the system (Peng and

Peterson, 2012; Olascoaga and Haller, 2012). In some applications there is little information

about the system meanwhile there is a huge interest for knowing about the past or future

of mesoscale Lagrangian configurations. For example, this study is motivated by a series of

aerobiological researches of that nature where long range transport of microbial populations

is studied. In those studies there are usually few localized (sometimes consecutive) measure-

ments about microbial structure of atmosphere while knowing about the earlier or upcoming

distribution of pathogens is anticipated. These outcomes are important for many practical

means such as early warning and integrated risk management systems (Tallapragada et al.,

2011; BozorgMagham et al., 2013; Lin et al., 2013).

In this study we connect the concept of FTLE and successive (aerial) particle samplings at
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a fixed location by presenting a new interpretation about the local FTLE. This description

is useful in cases such as sampling the microbial structure of atmospheric flow by equipped

unmanned aerial vehicles (UAVs). This point of view would help us to have a better under-

standing about the distribution of the source points of sampled particles or the destination

points of the released tracers. In addition, the suggested interpretation of the local FTLE

is useful for planning the schedule of samplings at a fixed location for the aim of maximal

diversity monitoring such that the collected particles come from the most possible separated

source locations. Moreover, this analysis would help us to investigate the long range trans-

port phenomena as a possible cause of abrupt characteristic changes among the successive

collected (airborne microbial) samples.

Since this study is motivated by aerial measurements in realistic condition, we consider

the spatiotemporal limitations of the available velocity field data. These limitations are

manifested in unresolved turbulence and impose uncertainties on the location of the source

and destination points. We use a Lagrangian particle dispersion model to determine the

probabilistic source (destination) regions and we show how the notion of local FTLE could

be used in cases that unresolved turbulence has considerable importance.

The paper is outlined as follows. In § 5.2 we study the relationship between local (point-wise)

FTLE values and the dispersion of source (or destination) points in deterministic flow fields.

Some applications of this notion is considered in the same section. In § 5.3 we consider

the effects of unresolved turbulence and the stochastic velocity as an additive term and we

investigate the uncertainty of the deterministic solutions for backward (source regions) and

forward (destination regions) integration cases (Fay et al., 1995; Draxler and Hess, 1998;

BozorgMagham and Ross, 2014).
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5.2 Local finite time Lyapunov exponent

In this section we consider a new interpretation about the local FTLE for time–varying

vector fields which is conceptually an extended notion of the local Lyapunov exponent in

ODE systems (Oseledec, 1968; Abarbanel et al., 1992). By local FTLE we mean the probed

time–series of the FTLE value at an arbitrary point in the field.

Classically, the time–varying FTLE field shows the maximum separation rate between nearby

particles when they are released in the flow field at the same time. Figure 5.1 refers to this

classical description.

Figure 5.1: Separation of the nearby particles during time interval T due to the flow map ϕ
when the two particles are released in the flow field at the same time t0.

This figure shows two particles which are close to each other at initial time t0 and then

under the effect of the flow field their distance increases. The new vector between these two

particles is described by

δx (t0 + T ) = ϕt0+T
t0 (x+ δx)− ϕt0+T

t0 (x) = Dϕt0+T
t0 (x) + O

(
∥δx (t0)∥2

)
(5.1)

where ϕ is the flow map and Dϕt0+T
t0 = dϕt0+T

t0 (x)/dx is the Jacobian of the flow map
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corresponding to the initial configuration.

The maximum possible separation between the new positions of released particles after time

interval T , assuming small–enough initial distance between them and with respect to an

appropriate norm ∥·∥, is proportional to the square root of the maximum singular value of

the right Cauchy–Green strain tensor which is calculated with respect to the Jacobian of the

flow maps as

max ∥δx (t0 + T )∥ =
√
λmax (∆) ∥δx (t0)∥ (5.2a)

∆ = Dϕt0+T
t0 (x)trDϕt0+T

t0 (x) (5.2b)

The finite time Lyapunov exponent (FTLE), a spatiotemporal extended notion of the Lya-

punov exponent (LE), is defined as

σT
t0
(x, t0) =

1

|T |
ln
√
λmax (∆) (5.3)

Similar to the calculation of maximum separation between two initially neighborhood points

in an ODE system and the corresponding maximum Lyapunov exponents (LE) we use σT
t0

to describe the max ∥δx (t0 + T )∥ as

max ∥δx (t0 + T )∥ = exp
(
σT
t0
(x, t0) |T |

)
∥δx (t0)∥ (5.4)

We put forward a different point of view about the local FTLE. In this notion we are

interested in particles that are sampled (or released) consecutively at a fixed location. Thus,

the standard notion of a FTLE field, separation rate of nearby points, is not applicable since

the considered particles are not corresponding to a same time. We show that we can recover

an approximation of the true local FTLE by using the differential distances of the successive
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source (or destination) points and also, we can estimate the differential distance of the source

(or destination) points by having the true local FTLE and velocity time-series.

In the following sections we focus on the backward FTLE fields and the location of source

points because this situation has more importance for us in the case of sampling and studying

the risks of arriving aerial microorganisms and pathogens by atmospheric flow, however all

the results are applicable for forward FTLE fields and spread of passive tracers.

Theorem: The true local FTLE value could be approximated by

σT
t0
(x, t0) ≈ lim

|T |≫δt
lim
δt→0

1

|T |
ln
δ (t0,x0, T, δt)

∥v (x, t0) δt∥
(5.5)

where |T | is the integration time, δ (t0,x0, T, δt) is the differential distance between successive

source (or destination) points after integration time |T |, v (x, t0) is the average velocity vector

at sampling (or release) intervals and at the sampling (or release) location and δt is the time

interval between successive samplings (or releases).

Fixed sampling point

particle 2

particle 1

source point 2

source point 1

Figure 5.2: Two successive sampled particles at a fixed location shown by ×. Time interval
between two successive sampling is δt and the integration time between the source and
sampling points is T for both particles. The excessive travel length of the first particle
during δt, is shown by δ∗.
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Proof : We convert this statement to the classical theorem by introducing δ∗ (shown by

the dashed line in Fig. 5.2) which is the distance between the position of the first sampled

particle (shown by a solid circle) and the sampling location at the moment the second

particle is observed at that place. If sampling time interval is short enough (δt → 0 or

δt ≪ Lagrangian time scale of the velocity field) then (i) δ∗ would be sufficiently small

and (ii) it converges to ∥v (x, t0) δt∥. Meanwhile, The total integration time for the first

particle T + δt is approximately the same as the integration time of the second particle

(since T ≫ δt), thus if we look backward in time, we can consider these two particles as two

isochronic and initially nearby particles which are released from two nearby points (cross

and solid circle) with approximately same integration time T ≈ T + δt. Finally, we need to

show that δ (t0,x0, T, δt) is the maximum possible distance between the two particles (recall

equation 5.4). From dynamical system concepts we know that a blob of initial conditions

will stretched into the direction of the maximum Lyapunov vector. In addition, we know

that if the integration time is long enough, then particles are attracted to the attracting

LCSs where the local stretching rate is maximum. Thus, by choosing a sufficient integration

time we conclude that the two separated particles lie along (or very close to) the major axis

of an ellipse containing the blob of the initial conditions. So, δ (t0,x0, T, δt) would be close

to the maximum possible stretching distance between two particles. Thus, as δt→ 0 and for

sufficiently large |T |, we can recover the true value of FTLE at the sampling (release) point

by equation (5.5).

This theorem enables us to either recover the true local FTLE if we have the distance

between the source (destination) points and the local time–varying velocity or more impor-

tantly to estimate the differential distance between the source (or destination) position of

sampled (or released) particles if we have the true local FLTE at the sampling location as

exp(|T | σT
t0
(x, t0))∥v (x, t0) δt∥. Finally, we should note that the results of this theorem are
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independent of the flow field dimension.

5.2.1 Sampling at a fix location and local FTLE

We apply this theorem to compare true and recovered local FTLE and also true and estimated

differential distances of the source points corresponding to the particles that are sampled at

Virginia Tech’s Kentland Farm (located at 37◦11′ N and 80◦35′ W) where we have collected

a large variety of microbial samples by using UAVs during 2007 to 2013 (Schmale et al.,

2012). We refer to this point as (0, 0) in our plots.

For calculations of the required flow maps we use numerical data corresponding to the North

America Mesoscale, NAM–218 provided by the National Oceanic and Atmospheric Adminis-

tration (NOAA) and National Centers for Environmental Prediction’s (NCEP) Operational

Model Archive and Distribution System (NOMADS) project1. Spatial resolution of this data

set is about 12.1 km and its temporal resolution is 3 hours. In addition, all the trajecto-

ries are calculated by a fourth order Runge-Kutta integrator with a constant integration

time step equals to 5 min. We use third order splines for all the necessary spatiotemporal

interpolations.

Figure 5.3 (a) shows the initial positions of the corresponding sampled particles which are

collected at the sampling location in the time interval 12:00 UTC 29 Sep to 12:00 UTC 30

Sep 2010. We call this time interval the interrogation window. The frequency of samplings

is 1 hour and backward time integration is 24 hours for all the particles. In addition, for

simplicity we do the integration on quasi–2D 850mb pressure surface (BozorgMagham and

Ross, 2014). Indexing on this figure indicates the sequence of the initial positions with

respect to the sampling time, so for example the index #12 refers to the initial position

1http://nomads.ncdc.noaa.gov/data.php
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of the particle that started at 12:00 UTC 28 Sep and is sampled 24 later at the sampling

location.

In terms of streaklines, we may say that this line is composed of contemporaneous points (24

hours) from the assembly of streaklines which pass through the sampling point. We call this

line the isochron source–line since the integration time from all points on it to the sampling

location is the same. Figure 5.3 (b) shows the back–trajectories of the previously indexed

particles from their initial position toward the sampling point. We note strong changes in

source locations and the pathline shapes during the 24 hours of samplings.

−200 0 200 400 600 800
−800

−600

−400

−200

0

200

12 13 14

15

16

17

18

19 20
21

22
23

00
1

2 3
4

5 6

7

8
9

10
11

12

X (km)

Y
 (

km
)

−200 0 200 400 600 800
−800

−600

−400

−200

0

200

X (km)

Y
 (

km
)

(a) (b)

Figure 5.3: (a) Sequential source points and the isochron source–line, (b) back trajectories
of the sampled particles during 24 hours of integration. Sampling frequency is one hour
between 12:00 UTC 29 Sep to 12:00 UTC 30 Sep 2010 and the sampling point is located at
(0,0) (Virginia Tech Kentland Farm 37◦11′ N and 80◦35′ W).

To follow the assumptions of local recovery theorem (δt ≪ Lagrangian time scale of the

velocity field which is ≈ 10000s for horizontal turbulence cases (Draxler and Hess, 1998)) we

have to choose small sampling periods. For this aim the frequency of samplings is selected

from 0.1 to 1 hour and all the integrations are done in the same interrogation window.

Figure 5.4 (a) shows the differential distance between successive source points, δ (t0,x0, T, δt),

during the interrogation window. Note that in this figure we calculate the true differential
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distances from the available velocity field data. We use the average velocity at the sampling

point to calculate δ∗ as ∥v (x, t0) δt∥. Depending on the ratio of the sampling period to the

time scale of the flow field, the average velocity term, v (x, t0), could be considered as the

average of the velocities at two successive sampling (release) times or the velocity at the mid

time of the two samplings (releases). Figure 5.4 (b) show the time series of the recovered

point–wise FTLE for each sampling period time.
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Figure 5.4: (a) δ as the true differential distance between successive source points. Horizontal
axis represents the averaged time corresponding to each successive pairs, (b) recovered local
FTLE for different δt’s form 6 min to 1 hour. Interrogation window is 12:00 UTC 29 Sep to
12:00 UTC 30 Sep 2010.

Figures 5.3 (a) and 5.4 elucidate that we are interpreting the local FTLE time-series as

differential stretching of line elements along an isochron source-line.

To check the validity of this result and to study the effect of different δt’s on the recovered

local FTLE time-series we calculate the true backward FTLE field for the interrogation

window with integration time equal to 24 hours. Figure 5.5 (a) show the first snap shot

of the time–varying FTLE field corresponding to 12:00 UTC 29 Sep 2010. To have a sense

about the changes of this FTLE field, we may describe the motion of the strong ridges of

the field in figure 5.5 (a) toward North–West direction (upper-left corner of the figure).
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Figure 5.5 (b) shows the true local FTLE value (black line) at the Kentland Farm during the

interrogation window. To generate this plot we calculate the backward FTLE field every 15

minutes, then the time varying value of FTLE at (0, 0) is extracted. Also for comparing the

results, the recovered FTLE time–series corresponding to δt = 0.1 hr is displayed in the same

panel by the red line. Figures 5.4 (b) and 5.5 (b) indicate that as the sampling period time

(δt) becomes smaller the recovered time series become more similar to the true answer. For

δt = 0.1 hr we observe that the two time series are highly correlated and also the maxima of

the two time series (corresponding to the local maxima of the FTLE field) are at the same

times by a good precision. Thus, for small-enough δt’s the recovered local FTLE time–series

can accurately capture the passage times of a moving ridges of a FTLE field. Detecting

those ridges is important since they are the first candidates for the hyperbolic LCSs in many

geophysical applications (Haller, 2011; BozorgMagham et al., 2013).
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Figure 5.5: (a) The first snap shot (12:00 UCT 29 Sep 2010) of the backward FTLE field
during the interrogation window. Integration time is 24 hours for FLTE calculations, (b)
the corresponding true (black) and recovered (red) local FTLE time series at the reference
point (0,0). For the recovered time series (red), δt is equal to 0.1 hr.

Finally, we investigate whether we can estimate the differential distances by the local FTLE

theorem providing some information about the velocity and FTLE data (e.g., from forecasts).

Fig. 5.6 is a numerical example which shows that the true differential distance between the
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successive source points (black line) is well approximated by the local FTLE theorem (red

line) as δ ≈ exp(|T |σT
t0
(x, t0))∥v (x, t0) δt∥. Note that in this case we have the data of the

true local FTLE and the local velocity. In this figure we see that for δt = 15 min, the

estimated differential distance time-series is very close to the true answer and it captures

the correct times of the local maxima.

This is an empirically important result. For example in case of sampling the aerial tracers,

one can plan the schedule of the UAV’s flights based on the available forecast FTLE fields

and local wind velocity such that the collected particles of successive flights originate from

the most possible diverse places (see § 5.2.2).
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Figure 5.6: Differential distance between the successive source points on the isochron source–
line corresponding to δt = 0.25 hr. The black line shows the true answer and the red line
shows the approximated time series which is calculated by using the local FTLE theorem.
The backward integration time for calculations of the flow maps is 24 hr and the interrogation
window is 12:00 UTC 29 Sep to 12:00 UTC 30 Sep 2010.

5.2.2 Applications of the Local FTLE

Planning for maximal diversity monitoring such that the collected particles come from the

most possible separated source locations is a direct result from the local FTLE recovery
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theorem. Assume that we want to minimize the number of successive samplings meanwhile

we have the intention to maximize the source–diversity of collected samples. Results of the

local FTLE theorem tell us that the best time for collecting a limited number of samples

such that they originate from the most diverse locations is when we have a high value of local

FTLE at the sampling location (note the high correlation between the differential distance

and the local FTLE time–series in Fig. 5.6 and Fig. 5.5 (b)). Moreover, to ensure that

the particles are coming from significantly separated locations we may use the topology of

the FTLE field and collect the samples on either side of a strong attracting LCS feature,

providing short enough sampling period time. In this condition, the high value of σT
t0
between

the sampling moments which represents as the exponent in equation (5.4) is the key reason

for having a large value of δ. Figure 5.7 schematically shows this strategy for a fixed location

and a moving LCS feature.

attracting LCS

fixed sampling

location

direction of

motion

attracting LCS

fixed sampling

location

direction of

motion

Figure 5.7: Cross sign shows the fixed location of samplings where an attracting LCS feature
passes over that point. If we collect samples on either side of this feature, we would have
particles from two sufficiently separated locations.

As an example in realistic geophysical flow, figure 5.8 show three backward trajectories of

three particles. Integration time for all particles is 40 hours. All three particles are sampled
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at (0,−100) km with respect to the reference point. The sampling times are 13:40 UTC

for the red particle, 14:00 UTC for the blue particle and finally 14:10 UTC time for the

green particle. The green and the blue particles are sampled on one side of a LCS but the

red particle is sampled on the other side of the same LCS. As we observe the source points

corresponding to blue and green particles are very close meanwhile the source point of the

red particle is significantly far from the other two particles. Another interesting feature of

this figure is that the separation of the trajectories does not start from the sampling point,

but as it is shown, the three trajectories remains close to each other for about 200 km and

then the separation starts. This observation is directly related to the basic concept of the

FTLE field which tells us about the final separation between nearby particles but it does

not mention anything about the moment of separation.
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Figure 5.8: Three trajectories of collected samples, red and blue pathline correspond to
samples on either side of a LCS, blue and green correspond to samples on one side of the
same LCS. Sampling times are 13:40, 14:00 and 14:10 UTC time for the (virtually) red, blue
and the green particles respectively.
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Another important application of the local FTLE is that it may help us to explain the

observation of significant changes of characteristics (genetic types or aerial density) of the

collected microbial samples at the sampling location during short intervals (Lin et al., 2013;

Lin, 2013). Referring to this notion, observing diverse samples may be associated with

diverse source points as a result of sampling in presence of a high value local FTLE and/or

the passage of a strong LCS over the sampling area.

In addition, a direct result of this theorem is that when the local backward FTLE value

remains small during the sampling process, then one can conclude that the (aerial) sam-

pled particles originate from some close areas, assuming that all the sampled particles have

approximately the same flight time. This might be the reason that the characteristics of

the microbial samples remain quasi-constant in many consecutive UAV’s collections. This

situation is similar to sampling from a coherent set where the FTLE values are generally

small (Froyland et al., 2010; Tallapragada and Ross, 2013) and the particles have similar

characteristics. Moreover, in cases that we observe significant changes in collected samples

while the local FTLE value is small, we may conclude that those changes are due to some

local causes and not because of long range transport phenomena.

5.3 Unresolved turbulence

In this section we study the uncertainties of the source (destination) point calculation results

due to low resolution data of the velocity field. Finally we investigate validity of some results

of the previous section in presence of unresolved turbulence.

Precise determination of the source location of any sampled particle and calculations of

the flow maps require a high resolution data of the velocity field. But in reality, available

geophysical data sets are spares due to many technical limitations and we only have data on
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grid points and at discrete times. For example, spatial and temporal resolution of operational

data set varies from the order of 10 to hundreds of kilometers and 3 hours to longer intervals

respectively. Meanwhile, spatiotemporal scales of atmospheric flows are usually small and

we may lose important Lagrangian phenomena such as turbulent diffusion and small size

eddies if we just consider the available grid data (Csanady, 1973; Rodean, 1987). Thus, in

calculation of the source (destination) points it is necessary to consider the uncertainty of the

trajectories and pathlines. For this aim we consider a Lagrangian particle dispersion model

(LPDM) which let us to calculate the stochastic component of the velocity with respect to

the available deterministic grid data set. In this model the stochastic term is added to the

deterministic background flow field to compensate the effects of the un-captured probable

fluctuating velocities. Equation (5.6) shows that the velocity vector is composed of the

deterministic component of the velocity, v̄(x, t), and a random variable, V(x, v̄, t) which

depends on the instantaneous position of the particle and its deterministic velocity at that

location. As we see latter this dependency is very important for calculation of the probability

distribution of the source or destination regions (BozorgMagham and Ross, 2014).

v(x, t) = v̄(x, t) +V(x, v̄, t). (5.6)

In this study we mainly focus on the probabilistic source regions (corresponding to backward

trajectories) since there is a delicate point in stochastic velocity calculations which could

easily be neglected and thus mislead the calculations. In contrast to the case of probabilistic

source region calculations, finding the probabilistic destination region (corresponding to

forward trajectories) is straightforward and much easier and for this reason we just show the

principal of this procedure. In addition and regarding the local FTLE theorem, we revisit the

problem of successive samplings when we consider the effects of unresolved turbulence. Our

numerical results show that even in presence of unresolved turbulent, if successive samplings
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are performed on either side of a LCS, then the probabilistic source regions are significantly

separated by the LCS features as in the case of deterministic flow fields.

5.3.1 Probabilistic source and destination regions

To focus on the main conceptual concerns and to avoid complexity we prefer to proceed

with 2D field, like the previous sections, however this approach could be extended to 3D

fields by adding the vertical component of the field and an appropriate stochastic term in

that direction (Rodean, 1987). In addition, there are various atmospheric dispersion models

which are useful for different condition of the atmospheric flow. The one that we apply,

considering practical simplicity and availability of the required data was introduced and

used by Legg and Raupach (1982); Fay et al. (1995); Draxler and Hess (1998); Stohl et al.

(2005). This Lagrangian particle dispersion model describes the stochastic velocity term as a

random variable which is a function of the tensor of velocity deformation and the Lagrangian

time scale of the flow field. In a compact form we may write down the stochastic term of

the equation (5.6) as a Markov–chain process as

V(t+∆t) = R∆tVt +
(
1−R2

∆t

)0.5 N (0, 1)
√
κ/TL (5.7)

where V shows each component of the stochastic velocity term (V) and R∆t is a measure of

the assossiation between stochastic velocity values of successive steps. Equation (5.8) shows

the correlation between two steps as a function of integration time step length, ∆t, and the

Lagrangian time scale of the flow field, TL

R∆t = exp (−∆t/TL) . (5.8)
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Referring to equation (5.7) we see that κ is a key element in calculation of V . This term

depends on the gradient of the instantaneous deterministic velocity, v̄, meteorological data

grid size, χ, and an empirical constant, c, as

κ = 2−0.5 (cχ)2
[(

∂v̄

∂x
+
∂ū

∂y

)2

+

(
∂ū

∂x
− ∂v̄

∂y

)2
]0.5

. (5.9)

Because the final velocity term is a sum of the deterministic grid scale (background) velocity

and the stochastic term as a random variable the trajectories would be continuous but not

differentiable. Also each realization of the set of equations shows one possible solution for

the particle’s trajectory. Referring to our main problem and based on the dependency of κ to

the gradient of the background velocity we have two distinct cases, (i) finding the destination

regions of the released particles, (ii) finding the source regions of the sampled particles.

(i) Probabilistic destination region is the probability distribution of the final positions of

the (virtually) released particles after integration time T when the initial position is known

precisely as a Dirac delta function. Thus, the case of forward integration and related calcula-

tions of probabilistic distribution is equivalent to solving the Fokker–Planck or Kolmogorov

forward equations (Rodean, 1987; Risken and Eberly, 1985) which describe the future of a

probability distribution function of a known initial condition that evolves under the dynam-

ics of a system e.g., diffusion process. Since the time–varying vector field is complicated

and analytical solutions are not practical we have to perform numerical solution to find the

distribution of end points. For this aim, first we discretize the domain of motion into suffi-

ciently small boxes and then we use the Monte Carlo method by releasing sufficient number

of independent (virtual) particles from the box which includes the release point. Figure 5.9

shows this procedure. By choosing an appropriate integration time step we may produce

segments of the trajectory of each virtual particle. By completion of the integration process
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we would have a distribution of particles ending in some boxes. By considering a mesh

grid over the domain, we may count the number of virtual particles in each box. If the

total number of released particles is large and the boxes’ dimensions are small enough, then

the ratio of the virtual particles in each box to the total number of released particles show

the probability distribution of the destination region. By increasing the number of virtual

particles and decreasing the size of the boxes the resultant distribution become invariant.

i

1 2 3 ...

Figure 5.9: Solution for probability distribution of the forward case, starting time is t0 and
integration time is T . Virtual particles are released from one specific box (containing the
release location) and then the distribution of the landings would specify the probabilistic
destination region. Calculation of the probabilistic destination region is equivalent to the
solution of the Fokker-Planck equation for finding the future probability distribution of an
initially known distribution. Trajectories from the release box are shown in green.

(ii) Probabilistic source region cannot be determined by direct backward integration, similar

to previous procedure, since any assumption about the particle’s position (i.e., sampling

location at the beginning of backward integration process) will determine κ term which

consequently yields a new position of the particle. As this procedure continues a false

trajectory is generated for each realization of the stochastic differential equation. In other

word, since the vector field is time–varying, if we start from the sampling time and location,

and go backward in time all of our calculations are based on false “future” data.
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In this case finding the probabilistic source region is conceptually the same as solving the

Kolmogorov backward problem (Risken and Eberly, 1985). In mathematical term, at time

t0 −T (note that T is the integration time) we investigate for a specific source configuration

such that in future time t0 the system will be in a given target set which we call it the

sampling box.

Similar to the forward case we have no analytical solution for general time–varying vector

field, thus we have to use a numerical algorithm to find the probabilistic source distribution.

For this aim, we discretize the domain of the flow field into small boxes. Then we shift the

starting time to t0 − T . By this means, we convert this problem into a forward integration

problem from t0−T to t0. At t0−T we release large number of independent virtual particles

from all boxes of the domain. By forward integration to time t0 we find the landing location

of each released (virtual) particle. The important particles in this procedure are those which

land inside the sampling (target) box. Figure 5.10 show this process. In this figure those

boxes that have partial contribution to the landed particles in target box are hatched. As

we observe, there may be particles from some contributing boxes that do not land in the

target box. This fact is due to the randomness of stochastic velocity term and is common in

this kind of calculations.

In figure 5.10 the sampling box is shown by the index j and other boxes are shown by

i = 1, 2, · · · . We denote The number of particles which start from box i and land in box j

by ni→j. We calculate the relative contribution of each source box as,

γi =
ni→j∑
i ni→j

, (5.10)

where
∑

i ni→j shows the total number of particles which land in sampling (target) box j.

Thus, γi shows the chance of a sampled particle to come from a specific box i. Consequently,
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i

j

1 2 3 ...

Figure 5.10: Solution for probability distribution of the backward case, starting time is
shifted to t0 − T and the integration time is T . Virtual particles are released from all the
boxes in the domain. Important particles are those who land in target box which include
the sampling location. Solution of the probabilistic source region is conceptually the same
as the solution of backward Kolmogorov equation where an initial probability distribution
is the desired solution such that in future time the system will have a specified probability
distribution. Trajectories of particles which land in the target box are shown by green, other
trajectories are shown by red.

numerical distribution of γ over the domain shows the probability distribution of the source

region.

Although this procedure works and yields the probabilistic distribution of source points, its

numerical efficiency is low since we release many independent particles (e.g., 106) from each

box of the domain but only those particles which land in a specific box (target or sampling

box) are of our interest. Thus, there would be huge number of particles that we calculate

their trajectory but they do not land in our sampling box, thus they are not important

for our purpose of finding the source distribution and we have to leave them out. We may

increase the efficiency of this procedure by sequential release of particles from all the boxes

and identifying the regions with a minimum contribution. After that, we may limit our search

procedure to those boxes and then we can increase the number of releases to distinguish the
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spatial patterns of the probabilistic source points.

Figure 5.11 shows one example of the probabilistic source distribution where the color in-

tensity shows the relative contribution of each source box. In this case the sampling point

is located at (0,−100) km with respect to our reference point. Sampling time is 14:15 UTC

29 Sep 2010 and the integration time for probabilistic source region is 40 hours. This figure

is the stochastic equivalent of the source point of the particle which its pathline was shown

in green (Fig. 5.8). For this calculation 105 particles are released from each box which is a

square of 10× 10 km, so we have 103 particles per square kilometer. The search area for this

specific probabilistic source region is a 900×600 km2 rectangular. Considering the size of the

boxes we would have 5400 boxes, thus the total number of released particles and calculated

trajectories would be 5.4× 108 in each integration time step.
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Figure 5.11: (a) Probabilistic equivalent of the source point of the (virtually) green particle
in Fig. 5.8, the sampling point is located at (0,−100) km with respect to our reference
point and sampling time is 14:15 UTC 29 Sep 2010, (b) details of the probabilistic source
region which is composed of 5400 boxes, each 10×10 km2. Color intensity shows the relative
contribution of each source box. To investigate the distribution, relative contribution of the
boxes along the specified diagonal line is shown in Fig. 5.12.

An important point for both source and destination region cases is that although at each time

step the stochastic velocity term has a normal distribution (equation (5.7)), but the final
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distribution is not necessarily Gaussian. The reason for this fact is the cumulative effects

of the variability of the variance of normal distribution (
√
κ/TL) which is a function of the

gradient of instantaneous velocity. In general, for small integration time the probability

distribution of the source (destination) region is close to a Gaussian distribution but as

the integration time increases, the corresponding distribution diverges from a normal one.

As an example, visual inspection of Fig. 5.11 (b) and also Fig. 5.12 which shows the

relative contribution of the source boxes along the specific diagonal line indicate that the

final distribution of the probable source points is not Gaussian.
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Figure 5.12: γ, relative contribution of source boxes along the diagonal line in Fig. 5.11 (b)
projected on the horizontal direction.

Now, we revisit the problem of successive samplings on either side of a LCS. In figure 5.8

we show that the sources location of the two sampled particles on either side of a LCS is

much further apart than the source points of the other two successive sampled particles

on one side of the same LCS. We want to investigate whether in presence of unresolved

turbulence this result is still valid. If the previous results hold, we conclude that two sampled

particles on either side of a LCS originate from two significantly separated regions regardless

of deterministic or stochastic solutions. This fact is important in practical applications such

as the case of sampling the microbial structure of the atmosphere since it enable us to
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have some judgments about the source of the sampled particles just based on deterministic

analysis and without doing the cumbersome calculations regarding the probabilistic source

regions.

We study the separation of probabilistic source regions corresponding to successive samplings

on either side of a LCS through an example and we leave the general conclusion for future

work. Results of this example shows satisfactory results and assures us that by sampling on

either side of a deterministic LCS the probabilistic source regions are significantly separated

and the sampled particles originate from far apart locations.

Figure 5.13 show the evolution of the probabilistic source regions “A” and “B” (shown in

panel (a)) corresponding to (virtually) red and blue particles of Fig. 5.8 respectively. The

total integration time for this example is 40 hours. In each panel of this figure we show the

contemporaneous attracting hyperbolic LCSs which are calculated by the method of Haller

(2011) and Karrasch (2012). For calculation of each probabilistic region of this figure, 105

particles are released from each small 10×10km box and the procedure that introduced earlier

is followed. As we observe in panel (a) of this figure, the two source regions corresponding

to the sampled particles on either side of a LCS are significantly separated from each other.

Also we see how the two probabilistic clouds contract and become closer to the attracting

LCS as they get closer to the sampling point. One noticeable feature in this figure is the

difference between the shapes of the two source regions, while they correspond to a very

close sampling times (less than 30 min).

5.4 Discussion

In this paper we propose a theorem which describes a new interpretation about the local

FTLE. Mathematical concept of the local FTLE enable us to either recover the true local
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FTLE time-series if we have the local velocity and differential distance data or more impor-

tantly, to estimate the differential distances between the source (or destination) locations of

successive sampled (released) particles at a fixed location if we have the corresponding local

velocity and FTLE time-series data. The suggested notion is useful in cases that we have

a collection of particles which are sampled at a fixed location and we want to find an asso-

ciation between the characteristics of the collected particles, their source locations and the

local FTLE time–series. We show that if samplings are performed in short interval of time

then the differential distance between the source locations is governed by the local FTLE

and velocity. This result may help us to explain the observation of characteristic variations

in collected (microbial) samples. Moreover, we show that the concept of local FTLE could

be useful for scheduling successive samplings to obtain maximal–diversity collections.

In the last part of this paper we investigate the unresolved turbulence and the stochastic

description of the source (destination) regions. We use the idea of box method and discuss

the important differences between calculation methods of the probabilistic source and desti-

nation regions. Finally, we study the probabilistic source regions corresponding to successive

sampled particles on either side of a strong hyperbolic LCS and we show that similar to the

deterministic flow field, the source regions are significantly separated.

Result of this study could help us to have a better understanding about the outcomes of

localized samplings of the geophysical fluids. Also it may provide beneficial information for

optimal monitoring of passive tracers.
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Figure 5.13: Sequence of hyperbolic LCSs (blue) and two clouds of probabilistic source
regions corresponding to two successive samples. Probabilistic regions “A” and “B” (panel
(a)) correspond to the virtually red and blue particles in Fig. 5.8. These six panels correspond
to 40, 30, 20, 10, 5 and 0 hours of probabilistic source regions, respectively.



Chapter 6

Conclusion

This study is motivated by the atmospheric transport of microorganisms. To describe and

analysis this time-varying phenomena, we use the concepts of dynamical system such as

finite-time Lyapunov exponent and Lagrangian coherent structures which are powerful tools

for describing and exploring non-autonomous fields and provide valuable information about

the global structures of particles’ motion in the moving fluid domain. Considering the main

objective of this research and also realistic condition of our data, we focus on five major

subjects: forecasting, uncertainty analysis, ensemble forecasting, statistical analysis of the

local measurements and finally the connection between the local measurements and the local

FTLE time-series.

Since the LCSs govern the mixing and transport phenomena and because we want to use

them to forecast the particles’ motion, we need to have reliable prediction about them. Thus,

we investigate questions such as: how accurate and precise are forecast FTLE-LCSs? This

question is important since we encounter the cumulative effects of the Eulerian errors in our

Lagrangian calculations of FTLE fields and the associated LCSs. So, in the first part we

evaluate the prediction results of FTLE-LCS features. Our results show how the errors of
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wind field forecasts degrade the forecast FTLE-LCSs.

Unavoidable errors of the wind field forecasting which induce considerable errors in calculated

FTLE-LCS features show that deterministic forecast results may not be applicable for reliable

predictions and we need to know about the uncertainties of the results. This fact inspires

us to propose and use ensemble forecasting methods for FTLE-LCS calculations. We show

that by using this approach we would be able to measure the uncertainty of the results

and also to improve the quality of forecasting compering to single deterministic calculations.

In addition, we investigate the uncertainty of particles’ trajectories due to low resolved

operational velocity data. The observed uncertainty of the source (destination) points is the

motivation for defining the stochastic FTLE fields. We show that uncertainty of the source

(destination) points highly depends on the bulk (deterministic) velocity field. We show that

a stochastic version of a FTLE field is not necessarily a uniform fade of the deterministic

field, but it depends on the time-varying velocity field and we may see different changes

over the field. The last two topics of this work are related to what we locally observe,

collected samples from microbial structure of atmosphere and also the local FTLE time

series. Regarding to the local collection of microbial samples, we study some statistical

characteristics of the collected samples such as the autocorrelation coefficients, type of the

stochastic process and also the variations of aerial density during short time intervals. Then

we investigate a mathematical framework by proposing a theorem to connect the variations

of characteristics of the collected samples to the concept of local FTLE time-series.

We may suggest some future researches that can be followed from this thesis,

• Development of an automatic system of data pre-processing, FTLE-LCS calculations

and post-processing based on the operational and online data sets, capable of handling

different data formats and different data bases,
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• Development of a framework for obtaining FTLE-LCSs from 3D velocity fields, espe-

cially for geophysical fluids, along with the necessary pre-processing steps (e.g., WRF)

for generating 3D velocity fields from operational data sets,

• Development of a numerical algorithm for a fast and reliable computation of the proba-

bilistic source regions (optimal numerical solver for the backward Kolmogorov problem

in presence of an arbitrary flow field),

• Collecting microbial samples based on the results of the local FTLE theorem (maximal-

diversity observation) and investigating their characteristic changes with respect to the

local FTLE values,

• Studying the association between the LCS features and some meteorological phenom-

ena such as temperature fronts and/or precipitation regions.
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