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Low-Energy Transfer From Near-Earth to Near-Moon Orbit

A report presents a theoretical approach
to designing a low-energy transfer of a
spacecraft from an orbit around the Earth
to ballistic capture into an orbit around the
Moon. The approach is based partly on the
one presented in “Low-Energy Interplane-
tary Transfers Using Lagrangian Points”
(NPO-20377), NASA Tech Briefs, Vol. 23,
No. 11 (November 1999), page 22. The
approach involves consideration of the sta-
ble and unstable manifolds of the periodic
orbits around the Lagrangian points L1 and

L2 of the Sun/Earth and Earth/Moon sys-
tems. (The Lagrangian points are five
points, located in the orbital plane of two
massive bodies, where a much less mas-
sive body can remain in equilibrium relative
to the massive bodies.) To generate a
transfer trajectory, one uses the intersec-
tion of (1) the unstable manifold of a peri-
odic orbit about the Sun-Earth L1 or L2
with (2) the stable manifold of a periodic
orbit about the Earth-Moon L2. This inter-
section is generated by a Poincaré section.

The different regions within the Poincaré
section all have different dynamical proper-
ties. By picking points in the correct region,
one can generate a transfer from orbit
around the Earth to capture into a highly
eliiptical orbit around the Moon.

This work was done by Martin Lo, Jerrold
Marsden, Wang S. Koon, and Shane Ross
of Caltech for NASA’s Jet Propulsion
Laboratory.

NPO-20936



NTR INVENTOR’S REPORT
NTR: 20936

PLEASE BE AS CLEAR AND SPECIFIC AS POSSIBLE, AS THIS REPORT MAY BE
MADE AVAILABLE THROUGH TECH BRIEFS

Section 1 (Novelty), 2A (Problem), and 2B (Solution) must be completely fully. Your published paper
may be attached to satisfy Section 2C (Description and Explanation).

1. Novelty- Describe what is new and different about your work and its improvements over
the prior art. Attach supporting material if necessary.

There are two previous work to consider. The first is the WSB (Weak Stability
Boundary) work of Belbruno and Miller; the second is the work of Lo and Ross "Low
Energy Interplanetary Transfers Using Langrangian Points", NASA Tech Brief NPO
20377. Inspired by the WSB work, we set out to find an alternate method for computing
low energy transfers such as used by Hiten mission. Our methods are completely
different. We do not use Mather sets in any way. Combining the work of Lo and Ross
[1998] and Koon et al [1999], we came up with a low energy lunar transfer and capture
which uses the dynamical channels provided by the invariant manifolds of the periodic
orbits around L1 and L2 of the 3 body systems. This provides a systematic approach
using well known mathematical concepts without the use of new concepts like the WSB.

2. Technical Disclosure
A. Problem-Motivation that led to development or problem that was solved.

Find a systematic approach to the construction and design of a transfer trajectory from the
Earth to the Moon with ballistic capture at the Moon.

B. Solution

To generate the transfer trajectory, use the intersection of the unstable manifold of a
periodic orbit about the Sun-Earth LaGrange Point (L1 or L2) with the stable manifold of
a periodic orbit about the Earth-Moon L2. This intersection is generated by a Poincare
section. The different regions within the Poincare section all have different dynamical
properties. By picking points in the correct region, a transfer from the Earth to the Moon
can be generated which automatically is captured by the Moon into a highly elliptical
orbit.

C. Detailed Description and Explanation

See Exhibit A.
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Exhibit A

Our goal is to construct a trajectory which gets ballistically captured by the Moon and
uses less fuel than the standard Hohmann transfer. Our model will incorporate the Earth,
Moon, Sun, and spacecraft (SC). We will attempt to take full advantage of the dynamics of
this 4-body system by modeling it as two coupled planar circular restricted 3-body systems.
In this approach, we will utilize the libration point dynamics of both the Earth-Moon-x
and Sun-Earth-sc systems.

As discussed in Koon et al. [1999], the phase space in the vicinity of the stable and un-
stable manifolds of libration point orbits is complicated. The stable and unstable manifolds
are 2-dimensional “tubes” in a 3-dimensional energy surface. As separatrices, they form the
boundary between transit and non-transit regimes of motion, where the transit is between
two of the three energetically accessible regions: interior, capture, and exterior. For exam-
ple by targeting the region enclosed by the stable manifold tube (exterior branch) of the
L, point in the Earth-Moon-sc system, we can construct an orbit which will get ballistically
captured by the Moon.

Near the manifolds (the edge of the tubes), orbits exhibit a “twist” after visiting the
equilibrium region. The degree of twisting during an equilibrium region encounter increases
without limit as one approaches the manifold. See Figure 0.1. In position space projections
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Figure 0.1: The “twist” near libration point orbit manifolds. The example shown is in the
Sun-Earth system with a Poincaré surface-of-section at x = 1 pu in the Sun-Earth rotating
frame. The first Poincaré cuts of the L, orbit manifolds are shown (unstable in red, stable in
green). The small strip § new the unstable manifold and just outside of it, with endpoints
gt and q,, has a pre-image P=A($) under the Poincaré map P. The position of the Earth is
indicated by the blue vertical strip in the middle.

of such orbits, the degree of twisting appears to correspond to the amount of time spent
wrapping around the libration point orbit before leaving the equilibrium region. The amount
of twisting a particular orbit will undergo depends very sensitively on its distance from the
manifold and therefore can change dramatically with a very minute thrust (AV). This is
best visualized in terms of Poincaré sections, to be shown later. We will exploit this property
of the manifolds’ vicinity in the Earth-Sun-sc system to generate our final trajectory.

Key to our method is the visualization of orbits within a rotating frame, where patterns
are made plain which are not otherwise discernable in an inertial frame. The circular re-
stricted 3-body problem equations are formulated in a rotating frame, which co-rotates with
the two primary masses in their periodic orbit about their common center of mass. There-
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fore, the structure and geometry of the solution space is most easily seen in a rotating frame.
We have two rotating frames in our coupled 3-body problem, the Sun-Earth (SE) rotating
frame and the Earth-Moon (EM) rotating frame, which we will use when appropriate.

The equations of the planar circular restricted 3-body problem permit a constant of
motion in the rotating frame known as the Jacobi constant (-2xHamiltonian energy). For
certain ranges of values of the Jacobi constant, the position space is partitioned into three
regions (interior, capture, and exterior) which are connected only by two narrow “necks”,
one each around L; and L,. These necks are also known as equilibrium regions and contain
a periodic orbit (p.o.) around each libration point. This energy regime, known as Case 3, is
the one we will be in for both the launch from Earth in the SE-sc¢ system and the capture
at the Moon in the EM -sc system.

We begin our construction by choosing an angle within the SE rotating frame (6sg)
at which to take a Poincaré section of the SE L, p.o.'s unstable manifold (capture region
branch). See Figure 0.2(a). We will restrict our study to the first intersection (first Poincaré
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Figure 0.2: (a) Position space projection of unstable manifold (Earth branch, red) of Sun-
Earth L, periodic orbit. Shown in Sun-Earth rotating frame. Manifold integrated backward
in time until it reached the angle §sg in the Sun-Earth rotating frame. Forbidden region
shown in gray for this energy (Jacobi constant). (b) Poincaré section of unstable manifold
at fsg =constant. Shown in polar coordinates coordinates (r,7) centered on the Earth,
which for 8sg = 90 coincide with (y, 7).

cut) of the manifold with the surface 855 = 90°, which is equivalent to the surface specified
by £ = 1 —p. The plot of the Poincaré cut in the SE rotating frame variables (y, y) is shown
in Figure 0.2(b).

We also choose an angle within the EM rotating frame (fga) at which to take a Poincaré
section of the EM L, p.o.'s stable manifold (exterior region branch). See Figure 0.3(a). We
will restrict our study to the first Poincaré cut of the manifold with the surface fgp = 110°.
We choose this surface to coincide with the #sg = 90° surface in the SE rotating frame. We
can then plot this cut in the SE rotating frame variables (y, 7). See Figure 0.3(b). This fixes
the Moon’s position in the SE rotating frame at y00n = 055 — 8pam. Assuming the Sun is
a small enough perturbation to the EM-sc 3-body dynamics, any sc with initial conditions
within this closed loop (with the appropriate EM Jacobi constant) will be ballistically
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Figure 0.3: (a) Position space projection of stable manifold (exterior branch, green) of
Earth-Moon L, periodic orbit. Shown in Earth-Moon rotating frame. Manifold integrated
backward in time until it reached the angle @gps in the Earth-Moon rotating frame. Forbid-
den region shown in gray for this energy (Jacobi constant). (b) Poincaré section of stable
manifold at g = constant. Shown in polar coordinates coordinates (r,7) centered on the
Earth.

captured by the Moon.

If we choose such an initial condition, this will fix the position (x, y) at this point for
our trajectory, which we will call “time zero” (t = 0). For fixed y on this Poincaré section,
there is a g value close to, but just outside, the loop of the SE L, p.o.’s unstable manifold
which will backward integrate to a 200 km altitude perigee. This is ensured because of the
twisting in the vicinity of the manifolds and the particular choice of Jacobi constant for this
L, p.o. for which the first Poincaré cut of both the stable and unstable manifolds comes
within 200 km of the Earth’s surface.
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