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Graph theoretic methods of optimal control in the presence of uncertainty are

applied to a celestial mechanics problem. We find a fuel-efficient spacecraft
trajectory which starts at infinity and is captured by the smaller member of a

binary system, e.g., a moon of Jupiter, using multiple gravity assists.
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1. Introduction

For low energy spacecraft trajectories such as multi-moon orbiters for the
Jupiter system, multiple gravity assists by moons could be used in conjunc-
tion with ballistic capture to drastically decrease fuel usage. In this paper,
we consider a spacecraft initially in a large orbit around Jupiter. Our goal is
to use small impulsive controls to direct the spacecraft into a capture orbit
about Callisto, the outermost icy moon of Jupiter. We consider the role of
uncertainty, which is critical for space trajectories which are designed using
chaotic dynamics. Our model is a family of symplectic twist maps which
approximate the spacecraft’s motion in the planar circular restricted three-
body problem.1 The maps capture well the dynamics of the full equations
of motion; the phase space contains a connected chaotic zone where inter-
sections between unstable resonant orbit manifolds provide the template
for lanes of fast migration between orbits of different semimajor axes.
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2. The Keplerian map

The example system we consider is the Keplerian map,1(
ωn+1

Kn+1

)
=
(
ωn − 2π(−2Kn+1)−3/2 (mod 2π)
Kn + µf(ωn;CJ , K̄)

)
(1)

of the cylinder A = S1 × R onto itself. This two-dimensional symplectic
twist map is an approximation of a Poincaré map of the planar restricted
three-body problem, where the surface of section is at periapsis in the space
of orbital elements. The map models a spacecraft on a near-Keplerian orbit
about a central body of unit mass, where the spacecraft is perturbed by a
smaller body of mass µ. The interaction of the spacecraft with the perturber
is modeled as an impulsive kick at periapsis passage, encapsulated in the
kick function f .

(a) (b)

Fig. 1. (a) Upper panel: a phase space trajectory where the initial point is marked
with a triangle and the final point with a square. Lower panel: the configuration space

projections in an inertial frame for this trajectory. Jupiter and Callisto are shown at their

initial positions, and Callisto’s orbit is dashed. The uncontrolled spacecraft migration is
from larger to smaller semimajor axes, keeping the periapsis direction roughly constant

in inertial space. Both the spacecraft and Callisto orbit Jupiter in a counter-clockwise

sense. The parameters used are µ = 5.667 × 10−5, CJ = 2.995, ā = −1/(2K̄) = 1.35,
appropriate for a spacecraft in the Jupiter-Callisto system. (b) A spacecraft P inside

a tube of gravitational capture orbits will find itself going from an orbit about Jupiter
to an orbit about a moon. The spacecraft is initially inside a tube whose boundary is

the stable invariant manifold of a periodic orbit about L2. The three-dimensional tube,
made up of individual trajectories, is shown as projected onto configuration space. The
final intersection of the tube with Σe, a Poincaré map at periapsis in the exterior realm.

This map can be used for preliminary design of low energy trajecto-
ries which involve multiple gravity assists. A trajectory sent from Earth to
the Jovian system, just grazing the orbit of the outermost icy moon Cal-
listo, can migrate using little or no fuel from orbits with large apoapses to
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smaller ones. This is shown in Figure 1(a) in both the phase space and the
inertial configuration space. From orbits slightly larger than Callisto’s, the
spacecraft can be captured into an orbit around the moon. The set of all
capture orbits is a solid cylindrical tube in the phase space,2,3 as shown in
Figure 1(b). Followed backward in time this solid tube intersects transver-
sally our Keplerian map, interpreted as a Poincaré surface-of-section. The
resulting region is an exit from jovicentric orbits exterior to Callisto.

We can consider the location of an exit in the (ω,K)-plane as a target
region for computing optimal capture trajectories. The details of the cap-
ture orbit around the moon are not considered here, but can be handled by
other means at a finer scale.4

3. Control problem formulation

We are interested in studying the dynamics of the Keplerian map (1)
subjected to control. We define a family of controlled Keplerian maps
F : A× U → A

F

((
ωn
Kn

)
, un

)
=
(
ωn+1

Kn+1

)
=
(
ωn − 2π(−2Kn+1)−3/2 (mod 2π)
Kn + µf(ωn) + αun

)
(2)

where un ∈ U = [−umax, umax], umax � 1, and the parametric dependence
of f is understood. The term α = α(CJ , K̄) is approximated as constant,
where

α =

√
1
ā

(
1 + ē

1− ē

)
, with ē =

√
1−

(
CJ − ā
2ā3/2

)2

and ā = − 1
2K̄

. (3)

Note that F (·, un) is area-preserving for any un. Physically, our control is
modeled as a small impulsive thrust maneuver performed at periapsis n
changing the speed by un. This increases Kn by an energy αun in addition
to the natural dynamics term µf(ωn).

Our goal is to control trajectories from a subset S ⊂ A to a target
region O ⊂ A. Additionally, we would like to minimize the total ∆V , while
maintaining a reasonable transfer time. We model these requirements by
considering the cost function g : A× U → [0,∞),

g(an, un) =
1
2
|un|/umax +

1
2

(
− 1

2Kn

) 3
2

,

where an = (ωn,Kn) and our goal is to minimize the cost given by g that
we accumulate along a controlled trajectory.
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3.1. Optimal feedback

Standard methods for solving this (time discrete) optimal control problem
include algorithms like value or policy iteration5 which compute (approxi-
mations to) the optimal value function of the problem and a corresponding
(approximate) optimal stabilizing feedback u : A → U . For a general short-
est path problem on a continuous state space, as in our case, a more efficient
technique has been proposed:6–8

For given a ∈ A and u ∈ UN there is a unique associated trajectory
(an(a,u))n∈N of (2). Let U(a) = {u ∈ UN : an(a,u) → O as n → ∞} and
S = {a ∈ A : U(a) 6= ∅} the stabilizable subset S ⊂ A. The total cost along
a controlled trajectory is given by J(a,u) =

∑∞
n=0 g(an(a,u), un) ∈ [0,∞].

The construction of the feedback is based on (an approximation to) the
optimal value function V : S → [0,∞], V (x) = infu∈U(a) J(a,u), which
satisfies the optimality principle

V (a) = inf
u∈U
{g(a, u) + V (F (a, u))} . (4)

The right hand side of this equation can be interpreted as an operator,
acting on the function V , the dynamic programming operator L. If Ṽ is an
approximation to V , then one defines the feedback by

u(a) = argminu∈U
{
g(a, u) + Ṽ (F (a, u))

}
, (5)

whenever this minimum exists.

3.2. Discretization

We are going to approximate V by functions which are piecewise constant.
Let P be a partition of A, i.e. a collection of pairwise disjoint subsets which
covers the state space A. For a state a ∈ A we let ρ(a) denote the element in
the partition which contains a. Let RP be the subspace of the space RA of
all real valued functions on A which are piecewise constant on the elements
of the partition P. The map ϕ : RA → RP , ϕ[v](a) = infa′∈ρ(a) v(a′),
is a projection onto RP . We define the discretized dynamic programming
operator LP : RP → RP by LP = ϕ ◦ L. This operator has a unique fixed
point VP which satisfies VP(O) = 0 – the approximate (optimal) value
function. One can show8 that the fixed point equation VP = LP [VP ] is
equivalent to the discrete optimality principle

VP(P ) = min
P ′∈F(P )

{G(P, P ′) + VP(P ′)},
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where VP(P ) = VP(a) for any a ∈ P ∈ P, the map F is given by

F(P ) = {P ′ ∈ P : P ′ ∩ f(P,U) 6= ∅} (6)

and the cost function G by

G(P, P ′) = inf{g(a, u) | a ∈ P, F (a, u) ∈ P ′, u ∈ U}. (7)

Note that the approximate value function VP(P ) is the length of the shortest
path from P to ρ(O) in the weighted directed graph (P, E), where the set
of edges is defined by E = {(P, P ′) : P ′ ∈ F(P )} and the edge (P, P ′)
is weighted by G(P, P ′). As such, it can be computed by, e.g., Dijkstra’s
algorithm.

In general, parameter uncertainties, modelling errors and small distur-
bances of the current state an may lead to a perturbed state ãn+1. Grüne
and Junge8 propose a generalization of the graph construction outlined
above in order to cope with general disturbances. The following example
computation is based on this general approach.

4. Low energy multiple gravity assists

We consider the Jupiter-Callisto system with state space A = [−π, π] ×
[−0.4630,−0.03] which includes a start region corresponding to spacecraft
initially in a large orbit around Jupiter. The target region O is the exit
region leading to capture orbits around the moon. We use umax = 5 m/s
(in normalized units). The computation of the value function is based on
a partition of A into 220 boxes of equal size (210 boxes in each direction).
We use 25 test points on an equidistant grid in each box in state space
as well as 65 equally spaced points in the control range [−umax, umax] in
order to compute the graph 6, 7. Figure 2 shows the resulting approximate
value function Ṽ and a feedback trajectory starting from the initial point
a0 = [ω,K] = [0.036,−0.048] in the start region. The corresponding orbit
in configuration space is also shown in Figure 2.

5. Conclusion

We applied a new feedback construction for discrete time optimal control
problems with continuous state space which is based on graph theoretic
methods to a celestial mechanics problem. We found a fuel-efficient space-
craft trajectory which starts in a large orbit around Jupiter and is captured
by the smaller member of a binary system, e.g., a moon of Jupiter, using
multiple gravity assists.
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Fig. 2. (Top) The optimal value function and a feedback trajectory for the Keplerian
map with (µ,CJ , ā) = (5.667 × 10−5, 2.995, 1.35). The initial point contained in the

start region (gray) is marked by a triangle and the final point, which is contained in the

exit region (magenta), by a square. (Bottom) projection onto configuration space of the
controlled trajectory in an inertial frame (normalized units). The spacecraft migration is

from larger to smaller semimajor axes, keeping the periapsis direction roughly constant

in inertial space.
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