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ABSTRACT

Echolocation is a powerful active sensory system, but it is

susceptibility to jamming. Jamming occurs when calls of similar

frequency, time, and amplitude coincide resulting in mispercep-

tions of the surroundings. One strategy for avoiding jamming

found in bats is to lower the emission rate of echolocation calls

and follow a neighbor. However, bats are known to move in large

groups that do not have any consistent formation. It has been

suggested that a higher emission rate strategy would be used in

these large groups. This study aims to use numerical simula-

tions of a two-dimensional agent-based model to compare the

lower and higher emission rate strategies for efficacy of avoid-

ing jamming to see if there is a need for changing strategies. A

multi-vehicular model with collision avoidance that reaches an

equilibrium state was generated to make this comparison. Jam-

ming strategies were simulated by varying probabilities of using

or not using a larger sensory area to avoid collisions. The model

was run for groups of various sizes. The efficacy of each simula-

tion was measured as the time of convergence at the equilibrium

state, which is mandated to be a 2D circular trajectory. The re-

sults of the mean convergence times were compared within each

group for variance with changes of probability and the mean con-

vergence time at each probability and standard deviations were

plotted to see if the variance was directional. Significant vari-

ance was found at groups of 4,8,16, and 32 agents, however

none of these groups have significant directional trends. The

model captures the salient features of the bat swarm motion, but

within each simulation only a limited amount of jamming occurs,

resulting in low influence of the avoidance strategies on the con-

vergence time. The model will need to be readdressed in future

work to increase the occurrence of jamming through increasing

density instead of number of agents to better understand the re-

lationship between the avoidance strategies and group size.

1 INTRODUCTION

Echolocation is the use of ultrasonic waves to detect one’s

surroundings [1–4]. The waves are emitted at specific frequen-

cies and the time and amplitude at which the waves return to

the sender can provide the sender with information on the dis-

tance and size of objects around it. When these waves are emit-

ted constantly at regular intervals, it allows the sender greater

information as it can now track changes in its environment and

detect movement, distance, and size [1]. There are a number

of organisms that have made use of this active sensory system,

but bats are particularly effective users of echolocation and use

it to navigate and hunt in the dark [1–4]. However, echolocation

has its limits. One limitation occurs when multiple bats of the

same species (conspecifics) are using echolocation in the same

area [2–5]. In this situation, the sound waves of each individ-

ual’s calls become difficult to distinguish, making it hard for the

bat to tell which returning echo is theirs. This can lead to misin-

terpretation of their environment based on their neighbors’ calls.

This misconception of their environment based on interpreting

the wrong echo is called jamming.

To avoid jamming, bats employ a few different strategies.

One is to change the frequency of their calls [3, 4]. By changing

the frequency of their calls, they can avoid some of the distortion

from calls of similar frequencies. Bats tend to show a preference

to shift frequency calls up in the presence of conspecifics, but

they can also shift their frequency down. Another documented

strategies for jamming avoidance is to manipulate the emission

rate of an individual’s echolocation calls [2,5]. It has been shown

that, in the presence of a few conspecifics, there is an average



decrease in the emission rate of the group. A study by Chiu et

al. looked specifically at jamming avoidance in flying pairs and

found that one member is greatly reducing their emission rate

while the other calls regularly, resulting in the decrease in emis-

sion rate of the group [2]. This study also found that the member

that lowers its emission rate closely follows the other bat. This

would suggest that the bat with a lower emission rate is using

fewer emissions to avoid jamming the other while following its

partner to avoid collisions with its environment. This strategy

works in small groups and could also work in larger ones if bats

form smaller functioning groups of leaders and followers. Yet,

when we look at the flight behavior of large groups, they fly in

a non-uniform structure [6]. Therefore, we hypothesize that bats

may use a completely different jamming avoidance strategy for

the large group flight behaviors [7, 8].

Jarvis et al. recently demonstrated what this alternative may

be [5]. They tested non-flying bats in the presence of simu-

lated conspecific bat calls. When in the presence of several con-

specifics, they found the same decrease in emission frequency

previously documented. However, when they simulated calls

from a large group, they found that the emission rate increased.

This suggests that bats may have two different strategies to avoid

jamming that they employ based on the number of conspecifics

near them. In this work, we aim to use a two-dimensional agent-

based model [9] and generate collective circular motion to com-

pare the lower and higher emission rate strategies for efficacy of

jamming avoidance strategies as observed in bats to understand

each strategy’s effectiveness at avoiding jamming in the presence

of various numbers of conspecifics.

The paper is organized as follows. In Section 2, we describe

the basic setup of the model to be used to replicate the bats’ circu-

lar motion with a two-dimensional agent-based model and jam-

ming avoidance through the use and disuse of a sensory region

when jamming occurs. In Section 3, we provide the simulation

results using the model in varying groups of agents and at a range

of probabilities of disuse of the sensory region. In Section 4, we

discuss the main results and its significance. In Section 5, we

reiterate the results and discuss future work.

2 MODELING

This two-dimensional agent-based model creates a simpli-

fied version of a spiral flight behavior as demonstrated by some

species of bats and uses the time it takes for the simulated bats to

reach an equilibrium in this formation as a measure of efficacy

for avoiding jamming [7].

The model is based on a multi-vehicular system, where the

vehicles move at a constant velocity, starting from random ini-

tial positions, and move toward the goal of reaching a circular

equilibrium motion around a beacon [9]. To look specifically at

jamming avoidance, this model has been structured in two di-

mensions to put a limit on jamming avoidance through physical

movement and spacing. Each bat is represented as a moving par-

ticle and has a keyhole shaped sensing area as shown in Figure 3,

which represents the higher sensitivity region of echolocation in

direction of a bat’s velocity and an awareness of one’s immediate

surroundings [9, 10].

Jamming avoidance behaviors are modeled through a turn-

ing on and off of the pie shaped section of the keyhole, represent-

ing the echolocation beam. In the event of one vehicle detecting

another in its echolocation beam, there is a probability p that the

vehicle will not use its echolocation beam in the following time

step. This allows for simulation of a decrease in emission rate

to avoid jamming [2, 5]. Simulations are done with probabilities

0, 0.4, 0.76, and 1. Probability p = 0 represents a high emission

rate jamming avoidance strategy (HER) as echolocation beams

are used regardless of whether a chance for jamming is detected

or not [5]. The other three are varying degrees of lower emission

rate jamming avoidance strategies (LER). These values represent

the probability of whether or not a bat will use its echolocation

or be silent. Therefore, probability, p = 1 will always be silent,

p = 0.76 is the highest frequency of occurrence of silent behav-

ior documented, and p = 0.4 is the average occurrence [2]. Each

probability is then simulated under different population sizes (n)
on a logarithmic scale from 21 to 25 to assess the efficiency of

these two strategies in different environments. The time for the

system to converge to the equilibrium state around the beacon

was used as an approximation of the effectiveness of the differ-

ent strategies.

2.1 MODEL DESCRIPTION

To model multi-vehicular motion, we start with single vehi-

cle case of which a schematic is in Figure 1. This involves the use

of standard motion control laws as in [9], which are as follows:

Figure 1: Schematic of single vehicle model at an instant, where

the triangle is the vehicle and the cross denotes the fixed beacon

[9].



ẋ(t) = vcosθ(t) (1a)

ẏ(t) = vsinθ(t) (1b)

θ̇(t) = u(t), (1c)

where v is the velocity magnitude and is assumed to be constant

and t ∈ R
+ and is assumed to be discrete with an increment of

∆t ∈ R
+ in simulation. The vehicle state [x,y,θ]′ ∈ R

2 × [−π,π)
represents position of the vehicle at any time instant and u(t) is

the angular velocity, which acts as control input of the vehicle

with respect to a fixed beacon [9], and is defined as follows

u(t) =

{

k g(ρ(t)) αd(γ(t)), if ρ(t)> 0

0, if ρ(t) = 0
(2)

where

g(ρ) = ln

(

(c− 1)ρ+ρ0

cρ0

)

(3)

and

αd(γ) =

{

γ, if 0 ≥ γ ≤ ψ

γ− 2π, if ψ < γ < 2π
(4)

In (3) and (4), ρ is the position of the vehicle from the

beacon. Here, c, k and ρ0 are constants and provided as input pa-

rameters. The parameter c influences the motivation or how fast

the vehicle wants to reach at this equilibrium distance, and ρ0 in-

fluences steady state distance from the equilibrium (ρe) [9]. The

parameter αd controls and influences the bat to move clockwise

if it is too close to the beacon or counter-clockwise when it is too

far away based on γ, the angle made by the heading of the vehi-

cle and the direction of the beacon. The threshold of ψ, which

must be equal to or greater than (3π)/2 is to ensure a constant

rotational direction [9], counter-clockwise in the current model.

We set ψ to be equal to (11π)/6. The parameter k influences the

motivation of the vehicle, but in this case it is not a measure of its

incentive to be at the equilibrium distance, but a measure of its

willingness to change direction [9]. Both of these equations, (3)

and (4), can be multiplied to generate the angular velocity, which

in turn defines the control laws for the position of the bat [9].

In expanding this single model to a multi-vehicular model,

as shown in Figure 2, the same equations are used to control

the equilibrium distance and rotational movement. Terms are

introduced to control the relationship of neighboring vehicles in

addition to the pre-existing terms with respect to the beacon for

single vehicle model. In other words, one addition is needed to

Figure 2: Schematic of multi vehicle model at an instant [9].

the single vehicle motion equations for an adjustment to u so that

it is now a sum of the interactions between the vehicles and the

beacon [9].

Consider a group of n agents whose motion is described by

the kinematic equations

ẋi(t) = vcosθi(t) (5a)

ẏi(t) = vsinθi(t) (5b)

θ̇i(t) = ui(t), (5c)

where i = 1 · · ·n. The control input ui(t) is modified with an ad-

ditional term to incorporate the interaction between the i−th ve-

hicle and any other perceived vehicle j as follows

ui(t) = fib(ρi,γi)+ ∑
j 6=i, j∈Ni(t)

fi j(ρi j,γi j) (6)

In (6), fib is same as that given in (2) for the single vehicle,

where c is now replaced with cb to specify the constant with re-

spect to beacon and is given as follows

fib(ρi,γi) =

{

kb.g(ρi,cb,ρ0).αd(γi), if ρi > 0

0, if ρi = 0
(7)

The additional term fi j is given by

fi j(ρi j,γi j) = kv.g(ρi j,cv,d0).βd(γi j), (8)

where, the input parameters kv > 0, cv > 1, d0 > 0 and

βd(γi j) =

{

γi j, if 0 ≥ γi j ≤ π

γi j − 2π, if π < γi j < 2π
(9)



Equation (8) is modeled similarly to that of (7), because it

carries out a similar function of setting an optimal equilibrium

point and a turning algorithm for controlling a vehicle, which is

not at that equilibrium point. In this equation, g controls the dis-

tance not to the beacon, but to other vehicles and the equilibrium

distance is d0 [9].

The set Ni(t) is the set containing the index of the neighbor-

ing vehicles at time t residing inside the visibility region, which

is the defined as the region the i-th vehicle can perceive other ve-

hicles. It is noteworthy to mention that Ni(t) is time dependent.

2.2 SENSING SPACE AND COLLISION AVOIDANCE

With the addition of multiple vehicles, now collision avoid-

ance is included [9]. The control laws for the multi-vehicle sys-

tem is such that each agent i is driven by the term fib(.) towards

the counterclockwise circular motion about the fixed beacon and

fi j(.) with two main aims: i) to achieve collision free trajectories

between the vehicles and ii) to enforce the distance between any

two vehicles, ρi j, to be equal to d0. If ρi j > d0, the i−th vehicle

is attracted by any neighboring vehicle and if ρi j < d0, the i−th

vehicle is repulsed. Moreover, if ρi j < ds, then the j−th agent is

pushed outside the circular safety region around the i−th vehicle

and thus avoiding collisions among the vehicles.

Figure 3: Sensing space for the vehicles [9].

Note that (8) is heavily dependent upon the sensing area.

The keyhole formation is shown in Figure 3. In this sensory area,

dl is the full extent of the sensory region and jamming responses

do not occur until the distance between reaches below dl [9]. For

this simulation dl is always twice that of d0 to represent the full

extent a bat’s echolocation beam of 10 m compared to the area

of higher resolution used for small target detection of 5m [10].

2.3 JAMMING BEHAVIOR

The sensing area is split into two different sections relevant

to jamming. First is a circle centered at the vehicle of radius ds

and it is always used to avoid collisions. Second, is the echoloca-

tion beam, which is represented by a sector of radius dl (dl > ds)
with an angle of 2αv. To simulate a low emission rate or silent

behavior, probability values control the likelihood of the echolo-

cation beam to not be used in the time step following jamming.

Two probability values, p = 0.4 and p = 0.76, are chosen based

on biological evidence for the average occurrence and highest

occurrence of silence behavior in paired flight behavioral experi-

ments [2]. The other, p= 1, is the extreme of every time jamming

may occur the sensing space will be turned off for the next time

step. Probability p = 0 signifies a high emission rate strategy

as, no matter what happens with respect to jamming, the sensing

area will always be used.

If another vehicle was detected within the area of d0, there

is a probability that in the following time step the bat will not use

a sensing area and continue along its previous position trajectory

of trying to reach ρe. If it does not perform a silence behavior,

the bat will instead perform the previously programmed collision

avoidance response of moving away from that neighbor. In this

way, the model simulates a bat deciding to either continue a stan-

dard or relatively high emission rate and participate in physical

avoidance responses or participate in a temporary low emission

rate and follow a near neighbor to compensate for its own lack

of sensory information [2]. If a bat continually participates in si-

lence behavior and draws very near to a neighbor, collision will

still be avoided due to the constant presence of the circular sen-

sory region of ds, regardless of jamming behavior.

3 SIMULATION RESULTS

For every simulation, starting from random initial position,

there is a point at which the system reaches equilibrium state.

This state is when all the vehicles are in a constant circular mo-

tion around the fixed beacon at the constant equilibrium distance

ρe. This point is used as a measure of the efficacy of the jamming

strategy in a particular group size, n. This rule functions within a

low tolerance of 0.0001 to ensure we are finding the steady-state

equilibrium point instead of a transient behavior.

First, we generate a circular motion model of a single ve-

hicle. Figure 4 shows the resulting model and how one vehicle

starts at the random position and then reaches to an equilibrium

and remains executing circular motion about the fixed beacon

which is origin in our model.

Next, this model was expanded to a multi-vehicular system

and the vehicles are given random starting positions. Figure 5

shows two snapshots of the simulation of an 8 vehicle scenario.

The first shows the vehicles moving towards the beacon from

random positions at t = 0. The second shows the vehicles hav-

ing reached the equilibrium state. In Figure 6, the mean angular

distance γ̄ and mean distance from the beacon, ρ̄, are plotted to

show when the equilibrium or convergence occurs in the simula-
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Figure 4: Trajectory of a single vehicle reaching to equilibrium
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Figure 5: Eight vehicles reaching to equilibrium from random

starting position. (a) t = 0. (b) t = 2000
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Figure 6: (a) Average angular distance reaches to equilibrium (b)

Average distance from the beacon reaches to equilibrium

tion. At the equilibrium, the average of γ, the mean of the head-

ing angles of the vehicles with respect to the beacon, reaches

π/2, showing that the vehicles are moving perpendicular to the

beacon. When the average of ρ is equal to ρe, the equilibrium

state is reached. The analytical solution of ρe is provided in [9]

as

v

ρe

− kb g(ρe)
π

2
= 0.

To ensure that jamming is occurring within the model the

initial positions of the vehicles are fixed, n is held at 4, and the

model is run for 100 simulations at various p′s from 0.1 to 1. By

limiting the only changing variable to p the probabilistic aspect

of not using the echolocation beam after jamming will increase

the variability in the time of convergence as p decreases. This
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Figure 7: Convergence time for n = 4 with the change in proba-

bility values with fixed initial condition
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Figure 8: Mean and standard deviation of the convergence time

for n = 2 with 10,000 runs for p = 0.1, 0.4, 0.76, 1
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Figure 9: Mean and standard deviation of the convergence time

for n = 4 with 10,000 runs for p = 0.1, 0.4, 0.76, 1

leads to less consistency in the behavior of different runs of the

simulation. Figure 7 plots the convergence times of those simu-
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Figure 10: Mean and standard deviation of the convergence time

for n = 8 with 10,000 runs for p = 0.1, 0.4, 0.76, 1
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Figure 11: Mean and standard deviation of the convergence time

for n = 16 with 10,000 runs for p = 0.1, 0.4, 0.76, 1
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Figure 12: Mean and standard deviation of the convergence time

for n = 32 with 10,000 runs for p = 0.1, 0.4, 0.76, 1

lations at each p and clearly shows a strong increase in the vari-

ability of convergence time as the probability decreases from 1



(where no variation is apparent) to 0.1.

Finally, we ran 10,000 simulations of the model for each

n (2, 4, 8, 16, 32) at each probability (0.0, 0.4, 0.76, 1.0). The

results, in Figures 8, 9, 10, 11, and 12, show the mean time

of convergence for each n at the different probabilities. One-

way ANOVAs were used to see if the convergence time is de-

pendent upon p within each n. As a result all of the ANOVAs

have the same degrees of freedom between groups of 3 and

within groups of 39,996. With an n of 2 the difference in con-

vergence time did not vary based on the probability of jamming

avoidance, ( F(3,39996) = 0.63, 0.59 ). At n = 4, 8, 16, and

32, there was a significant effect of the probability of jamming

avoidance on the convergence time, ( F(3,39996) = 4.19,<
0.01; F(3,39996) = 14.02, < 0.001; F(3,39996) = 3.69, =
0.01; F(3,39996) = 4.4, < 0.01, respectively).

4 DISCUSSION

As shown in the results, we successfully generated a multi-

vehicular model which started at random points and consistently

reached the desired equilibrium state. We also managed to cre-

ate a jamming effect within the system based on low emission

rate behavior and it resulted in a change in the outcomes of the

simulations. However, it is not clear that the different jamming

avoidance strategies have any effect on the speed at which the

model reaches equilibrium. The mean plots in Figures 8, 9, 10,

11, and 12 show very little change in time of convergence as the

probability of silent behavior is increased at any n. Yet, statisti-

cally it is found that, at n = 4, 8, 16, and 32, there is significant

variation in the mean convergence at different probabilities of

silent behavior, < 0.05. At an n = 2 there is little to no signifi-

cant difference in the mean convergence time when the jamming

strategy changed, > 0.05. Even though statistically p has not in-

fluenced on the convergence time at n = 4, 8, 16, and 32, this

does not mean that there is any specific trend. It only shows that

changing the probability of silent behavior has a significant effect

on the convergence time of the simulations.

These ambiguous results may be due to a lack of substantial

jamming occurring within the model. We know that jamming is

occurring, but we do not know how often. It may be that the

lower emission rate jamming avoidance strategy does have an

effect on the convergence time of the model, but due to the low

frequency of occurrence of the behavior in comparison to nor-

mal movement the effect is diluted. This dilution would there-

fore increase as the amount of free space between the vehicles

increases. You can see this in the p-values of the ANOVAs. An

n of 2 may have an high p-value simply because the silent be-

havior hardly ever occurs within those simulations and therefore

the probability has no effect on the convergence time. As n in-

creases there is an increased significance in the p-values which

reaches a minimum at an n of 8. This is most likely an artifact of

the model. In the model ρe is not a constant, but varies based on

d0, φ, and n as

(n− 1)arcsin

(

d0

2ρe

)

+φ < π,

where

φ = min{αv,arcsin(
dl

2ρe

)}.

Therefore, an n of 8 may be a situation where the ρe is rela-

tively small compared to other n′s creating a smaller circle for

the equilibrium state, thereby increasing jamming within those

simulations.

Interestingly, there are some suggestive trends as to the effi-

cacy of the jamming avoidance strategies within the plots for n′s

of 4, 8, 16, and 32. All of which also had significant p-values for

variance. The mean plots of both 4 and 8 have a slight downward

trend from a p of 0, high emission rate, to a p of 1, extreme low

emission rate. While the mean plots for 16 and 32 have a simi-

lar downward trend in convergence time from p of 0 to 0.76, but

that reverses and the mean time increases at a p of 1. This would

suggest that the low emission rate jamming avoidance strategy at

frequencies found by Chui et al. [2] has greater efficacy than the

high emission rate strategy through group sizes of 4 to 32. Yet, at

the larger group sizes of 16 and 32, if silent behavior is practiced

every time jamming is detected (p = 1) the low emission rate

strategy does not have an advantage over the high emission rate

strategy. This may be due to a decrease in the efficacy of the low

emission rate strategy as the n increases. These aforementioned

trends are not statistically significant, but they are intriguing and

suggestive due to their consistency and because they exist with

each n. Therefore, ρe remains the same as p is the only variable

changing and it does not have an effect on ρe. This suggests these

trends are not an artifact of the model itself, but may be trends

generated by the changes in the probability of jamming avoid-

ance behavior.

5 CONCLUSIONS

This model as it stands is inconclusive on the efficacy of the

different jamming avoidance strategies. There is some sugges-

tion that it is having some effect, due to the p-values and trends

in some of the mean plots which show that the probability is hav-

ing a strong effect on the variability between the groups and a

possible downward trend in convergence time as the probability

of silence behavior is increased. However, none of this is strong

enough to be conclusive.

For future work, this model will have to be adjusted to de-

crease the space available between the vehicles and to measure

how frequently jamming occurs. Then, it can be examined if the

decrease in space, leads to an increase of jamming. A strong un-

derstanding of how to increase jamming within the model will al-

low for a re-examination of the efficacy of the different jamming



avoidance strategies in a system where jamming occurs with high

frequency. This stronger presence of jamming in the simulations

will allow for a clearer understanding of how changes in prob-

ability of silent behavior can influence convergence time of the

system. Giving a better understanding of which jamming avoid-

ance strategies are most effective for bats in different situations.
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