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What is Dielectrophoresis?

@ Dielectrophoresis(DEP) is the motion of a particle due to the
interaction between a non-uniform electric field and the
induced dipole moment in the particle.

._’/ Electrode
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@ The particles which are more polarizable than the surrounding

medium is attracted towards the stronger field = positive
DEP
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Why Dielectophoresis?

@ Established technique to discriminate between distinct cellular
identities in heterogeneous populations

e ldentify tumor stem
cells

e Isolate stem cells in
adipose tissue

. < L

o Cell manipulation for drug targeting and lab on chip concept
for safer and confident clinical trials.

@ Common methods like flow cytometry, magnetic bead-coupled
cell separation depend on specific cell-surface antigens.

@ Of theoretical interest due to multiple physics involved like
electrohydrodynamics, electro-osmosis, thermodynamics,
elasticity of cells and as we shall see rotational dynamics.
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@ Present knowledge stands at the what causes electro-rotation
and which properties it depends on.

@ But how does it affect the trajectory and how does the
rotational motion scale with a geometry is still unanswered.

@ A significant contribution in contactless DEP where
electro-osmosis and electro-phoresis are competing.
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Primary forces
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Dielectrophoresis

e Ilranslational force
e Electro-rotation Torque

Drag force

e Drag force
e Rotational friction

Gravitational force
Buoyancy

Magnus force
Inertial force

Thermal noise
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DEP force
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@ Characteristic numbers

Cell dim.: 15-30 um

Domain dim.: 10-1000 pm
Typical velocity: < 500ums™
Knudsen < 0.1

Reynolds << 1
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@ Consider a spinning sphere translating in a viscous fluid, this
generates a force normal to the flow direction.

Oncoming Flow Oncoming Flow
Magnus force

F/\/] = 47Ta3,0f [(Iz’x(ﬁp — ﬁf)]

@ An accidental phenomena of fluid flow around unstreamlined
objects under which it curves away from its principal flight
path.

@ We discuss the effects on the motion of a cell which is
restricted in a horizontal domain.
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Hydrodynamics and brownian

@ Drag force: Stokes' drag equation is valid for such flows.
Fdrag = 6mna(up — ur)
Tf = 87T7783Q

@ Bouyancy:To a first order approximation, the velocity due to
buoyancy can be estimated as

The factor being still smaller in case of biological particles
with density close to the DEP buffer.
@ Brownian motion:

knT
Ax = 2Dt = | B¢
3man

The Brownian effects become negligible in a dielectrophoretic
system especially when the particle size ~ 15-20 um.
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Dielectrophoresis:Force and torque

@ DEP force: Particles are attracted or repelled from region of
high electric fields and is governed by the the absolute
permittivities of the particle and the DEP buffer. For
oscillating electric-fields, time-averaged form for the
translational force:

(Foep) = 2nera®Re | 2T | VIE2, (7
DEP) — «Ti€fa RR€ e + D¢ [ rms(ro)]
p f

e E is inhomogeneous and hence gradient is non-zero.
@ DEP torque: Time-averaged form for the electro-rotational

torque:
€* — €
r — _Areradim | —P—T | E2 (7
(Foer) = —dmerstim | L L ()

where, complex dielectric constant: €¢* = ¢ + J% and

* *
Gp Ef-

Clausius-Mossotti factor: K(w) = 2%
P f
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Inertial effects and inhomogenity

@ Inertia We neglect the inertial effects of the motion which
will also be recovered from the scaling analysis.

@ Multi-shell model:The Clasius-Mossotti factor for biological
particles is calculated using the effective values of the complex
relative permittivity or conductivity. The relative permittivity
of a cancer cell is expressed as:

rP+d 3_|_2 €Cyt_€>rknem
Fp 8Cyt-l—2‘€:‘lem

rP+d 3 . 2 €Cyt_€;knem
Fp €Cyt+2€;§7em

E€p = Emem
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Dominant forces

@ Dielectrophoresis

e Translational forcev
e Electro-rotation Torque?

@ Viscous force

o Drag forcev
e Rotational friction?

DEP force

\V

velocity

rotation ]
ckspin
o -
/I—"
o - :

e Magnus force?

. 7 [ [
@ Inertial force? @ Characteristic numbers

Cell dim.: 15-30 um

Domain dim.: 10-1000 pm
Typical velocity: < 500ums™
Knudsen < 0.1

Reynolds << 1

1
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Equations of motion

@ The equations for the motion of a cell suspended in a
dielectric medium under applied potential:

du, ,
dUt
mPE = Fum Fcl;rag
dw
lpE = [ pep + Tdrag

@ Inertial effects being negligible, we obtain a simplified EOM
for the translational and rotational velocities:

_ Fpep
" 6mna
e 67mna
Y [ DEP
8mna3
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Electrode configuration and field derivation

@ For the present study, two coaxial cylinders are considered
with positive voltages on the inner concentric with a grounded
outer cylinder.

Non-uniform Field

Cell
\\ 1 II'\ I'II / | / i Ipo e
g " W Electric
F JU agnus &\5{@ ‘: H; field
SRY = E 2= 1 Electrodes

@ The analytical solution for the electric field is given by

A

v
Ecyi = Vrln s Eac = Ecyicos(2mvt)
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Results:Effect of frequency

and voltage
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Results:Effect of frequency on angular velocity

L 250 -
0.8 B == == 40V
| . -in . 100V
T 06 200 - ’, ““ - 200V
< R 3
X B 0 I U N
i 3 U Y
o 3 .
- © U \
8 0.4 = - ’ “
w | z2"r ’ 3
=S - g ’ \
@ 02 ° s kY
3 F 2 L ’ .
E | © 100 - i "
1 s - ~ .
g 0 )
‘5 o c
3 i Real part <
E |
O 02 Imaginary part
0.4 I ! IR | ! ! R |
10° 10’ 10° 10
Frequency(KHz) Frequency (KHz)

Figure : Left: A plot of the real and imaginary parts of the
Clausius-Mossotti factor. Right: Angular velocity as a function of
frequency plotted for various voltages. Diameter is kept fixed at 20um.
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Results:Effect of size
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Figure : Effect of diameter on acting forces plotted for different voltages.
Magnitudes of Magnus and DEP forces increase with diameter
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Results: Trajectories
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Results:Deviation compared to geometrical scale
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Figure : Left:Plot of trajectories from numerical solutions. Right:
Experiments in Dr.Davalos’s lab show similar behavior
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Conclusion

@ Magnus force can deviate the trajectory up to 10 % of the
total displacement.

@ Inertia is negligible compared to drag and Magnus forces.

@ Although Magnus force is very small, it can become important
in symmetrical electric fields.

@ It can be useful for manipulating and separating cells with
different rotative response.

@ Can we apply these understandings to contactless DEP
systems with electro-osmosis and electrophoresis are
competing?
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@ Solving more realistic electrode configurations using finite
element analysis

Studying effects of pressure driven flow
Studying the Magnus effect on non-spherical cells

Experimental validation of the theory

Validation of the dimensionless number:

Fv o pwa’

IZINAIK = —
Fdrag Y
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