
Dynamical Systems
and Space Mission Design

Jerrold Marsden, Wang Koon and Martin Lo

Wang Sang Koon
Control and Dynamical Systems, Caltech

koon@cds.caltech.edu



� Halo Orbit and Its Computation: Outline

I In Lecture 5A, we have covered

• Importance of halo orbits.
• Finding periodic solutions of the linearized equations.
• Highlights on 3rd order approximation of a halo orbit.
• Using a textbook example to illustrate Lindstedt-Poincaré method.

I In Lecture 5B, we will cover

• Use L.P. method to find a 3rd order approximation
of a halo orbit.

• Finding a halo orbit numerically via differential correction.
• Orbit structure near L1 and L2.



� Review of Lindstedt-Poincaré Method

I To avoid secure terms, Lindstedt-Poincaré method

• Notices non-linearity alters frequency λ to λω(ε).
• Introduce new independent variable τ = ω(ε)t:

t = τω−1 = τ (1 + εω1 + ε2ω2 + · · · ).
• Rewrite equation using τ as independent variable:

q′′ + (1 + εω1 + ε2ω2 + · · · )2(q + εq3) = 0.

• Expand periodic solution in a power series of ε:

q =
∞∑
n=0

εnqn(τ ) = q0(τ ) + εq1(τ ) + ε2q2(τ ) + · · ·

I By substituing q into equation and equating terms in εn:

q′′0 + q0 = 0,
q′′1 + q1 = −q30 − 2ω1q0,

q′′2 + q2 = −3q20q1 − 2ω1(q1 + q30) + (ω2
1 + 2ω2)q0,



� Review of Lindstedt-Poincaré Method

I Remove secular terms by choosing suitable ωn.

• Solution of 1st equation: q0 = acos(τ + τ0).
• Substitute q0 = acos(τ + τ0) into 2nd equation

q′′1 + q1 = −a3 cos3(τ + τ0) − 2ω1a cos(τ + τ0)

= −1
4
a3 cos 3(τ + τ0) − (

3
4
a2 + 2ω1)acos(τ + τ0).

• Set ω1 = −3a2/8 to remove cos(τ + τ0) and secular term.

I Therefore, to 1st order of ε, we have periodic solution

q = acos(ωt + τ0) +
1
32
ε cos 3(ωt + τ0) + o(ε2).

with

ω = (1 − 3
8
εa2 − 15

256
ε2a4 + o(ε3).

I Lindstedt-Poincaré method consists in
successive adjustments of frequencies.



� Lindstedt Poincaré Method: Nonlinear Expansion

I CR3BP equations can be developed using Legendre polynomial Pn

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cnρ
nPn(

x

ρ
)

ÿ + 2ẋ + (c2 − 1)y =
∂

∂y

∑
n≥3

cnρ
nPn(

x

ρ
)

z̈ + c2z =
∂

∂z

∑
n≥3

cnρ
nPn(

x

ρ
)

where ρ2 = x2+y2+z2, and cn = γ−3(µ+(−1)n(1−µ)( γ
1−γ)n+1).

• Useful if successive approximation solution procedure is carried
to high order via algebraic manipulation software programs.

Pn(
x

ρ
) =

x

ρ
(
2n− 1
n

)Pn−1(
x

ρ
) − (

n− 1
n

)Pn−2(
x

ρ
).

• Recall that ρ < 1.



� Lindstedt Poincaré Method: 3rd Order Expansion

I 3rd order approximation used in Richardson [1980]:

ẍ− 2ẏ − (1 + 2c2)x =
3
2
c3(2x2 − y2 − z2)

+2c4x(2x2 − 3y2 − 3z2) + o(4),

ÿ + 2ẋ + (c2 − 1)y = −3c3xy − 3
2
c4y(4x2 − y2 − z2) + o(4),

z̈ + c2z = −3c3xz − 3
2
c4z(4x2 − y2 − z2) + o(4).



� Construction of Periodic Solutions

I Recall that solution to the linearized equations

ẍ− 2ẏ − (1 + 2c2)x = 0
ÿ + 2ẋ + (c2 − 1)y = 0

z̈ + c2z = 0

has the following form

x = −Ax cos(λt + φ)
y = kAx sin(λt + φ)
z = Az sin(νt + ψ)

I Halo orbits are obtained if amplitudes Ax and Az
of linearized solution are large enoug so that
nonlinear contributions makes eigen-frequencies equal (λ = ν).

I This linearized solution (λ = ν)
is the seed for constructing successve approximations.



� Construction of Periodic Solutions

I We would like to rewrite linearized equations in following form:

ẍ− 2ẏ − (1 + 2c2)x = 0
ÿ + 2ẋ + (c2 − 1)y = 0

z̈ + λ2z = 0

which has a periodic solution with frequency λ.

I Need to have a correction term ∆ = λ2 − c2
for high order approximations.

z̈ + λ2z = −3c3xz − 3
2
c4z(4x2 − y2 − z2) + ∆z + o(4).



� Lindstedt-Poincaré Method

I Richardson [1980] developed a 3rd order periodic solution
using a L.P. type successive approximations.

• To remove secular terms, a new independent variable τ and
a frequency connection ω are introduced via

τ = ωt.

• Here,

ω = 1 +
∑
n≥1

ωn, ωn < 1.

• The ωn are assumed to be o(Anz )
and are chosen to remove secure terms.

• Notice that Az << 1 in normalized unit
and it plays the role of ε.



� Lindstedt-Poincaré Method

I Equations are then written in terms of new independent variable τ

ω2x′′ − 2ωy′ − (1 + 2c2)x =
3
2
c3(2x2 − y2 − z2)

+2c4x(2x2 − 3y2 − 3z2) + o(4),
ω2y′′ + 2ωx′ + (c2 − 1)y = −3c3xy

−3
2
c4y(4x2 − y2 − z2) + o(4),

ω2z′′ + λ2z = −3c3xz

−3
2
c4z(4x2 − y2 − z2) + ∆z + o(4).

I 3rd order successive approximation solution is a lengthy process.
Here are some highlights:

• Generating solution is linearized solution with t replaced by τ

x = −Ax cos(λτ + φ)
y = kAx sin(λτ + φ)
z = Az sin(λτ + ψ)



� Lindstedt-Poincaré Method

I Some highlights:

• Look for general solutions of the following type:

x =
∑
n≥0

an cosnτ1, y =
∑
n≥0

bn sinnτ1, z =
∑
n≥0

cn cosnτ1,

where τ1 = λτ + φ = λωt + φ.
• It is found that

ω1 = 0, ω2 = s1A
2
x + s2A

2
z,

which give the frequence λω (ω = 1 + ω1 + ω2 + · · · ) and the
period T (T = 2π/λω) of a halo orbit.

• To remove all secular terms, it is also necessary to specify
amplitude and phase-angle constraint relationships:

l1A
2
x + l2A

2
z + ∆ = 0,
ψ − φ = mπ/2, m = 1, 3.



� Halo Orbits in 3rd Order Approximation

I 3rd order solution in Richardson [1980]:

x = a21A
2
x + a22A

2
z−Ax cos τ1

+(a23A
2
x − a24A

2
z) cos 2τ1 + (a31A

3
x − a32AxA

2
z) cos 3τ1,

y = kAx sin τ1
+(b21A

2
x − b22A

2
z) sin 2τ1 + (b31A

3
x − b32AxA

2
z) sin 3τ1,

z = δmAz cos τ1
+δmd21AxAz(cos 2τ1 − 3) + δm(d32AzA

2
x − d31A

3
z) cos 3τ1.

where τ1 = λτ + φ and δm = 2 −m,m = 1, 3.

• 2 solution branches are obtained according to
whether m = 1 or m = 3.



� Halo Orbit Phase-angle Relationship

I Bifurcation manifests through phase-angle relationship:

• For m = 1, Az > 0. Northern halo.
• For m = 3, Az < 0. Southern halo.
• Northern & southern halos are mirror images across xy-plane.



� Halo Orbit Amplitude Constraint Relationship

I For halo orbits, we have amplitude constraint relationship

l1A
2
x + l2A

2
z + ∆ = 0.

• Minimim value for Ax to have a halo orbit (Az > 0) is
√|∆/l1|,

which is about 200, 000 km.
• Halo orbit can be characterized completely by Az.



� Halo Orbit Period Amplitude Relationship

I The halo orbit period T (T = 2π/λω)
can be computed as a function of Az.

• Amplitude constraint relationship: l1A2
x + l2A

2
z + ∆ = 0.

• Frequence connection ω (ω = 1 + ω1 + ω2 + · · · ) with

ω1 = 0, ω2 = s1A
2
x + s2A

2
z,

• ISEE3 halo had a period of 177.73 days.



� Differential Corrections

I While 3rd order approximations provide much insight,
they are insufficient for serious study of motion near L1.

I Analytic approximations must be combined with
numerical techniques to generate an accurate halo orbit.

I This problem is well suited to a differential corrections process,

• which incorporates the analytic approximations
as the first guess

• in an iterative process
• aimed at producing initial conditions that lead to a halo orbit.



� Differential Corrections: Variational Equations

I Recall 3D CR3BP equations:

ẍ− 2ẏ = Ux ÿ + 2ẋ = Uy z̈ = Uz

where U = (x2 + y2)/2 + (1 − µ)d−1
1 + µd−1

2 .

I It can be rewritten as 6 1st order ODEs: ˙̄x = f (x̄),
where x̄ = (x y z ẋ ẏ ż)T is the state vector.

I Given a reference solution x̄ to ODE,

• variational equations which are linearized equations for
variations δx̄ (relative to reference solution) can be written as

˙δx̄(t) = Df (x̄)δx̄ = A(t)δx̄(t),

where A(t) is a matrix of the form[
0 I3
U 2Ω

]
.



� Differential Corrections: Variational Equations

I Given a reference solution x̄ to ODE,

• variational equations can be written as
˙δx̄(t) = Df (x̄)δx̄ = A(t)δx̄(t), where

A(t) =
[

0 I3
U 2Ω

]
.

• Matrix Ω can be written

Ω =


 0 1 0

−1 0 0
0 0 0




• Matrix U has the form

U =


 Uxx Uxy UxzUyx Uyy Uyz
Uzx Uzy Uzz


 ,

and is evalutated on reference solution.



� Differential Corrections: State Transition Matrix

I Solution of variational equations is known to be of the form

δx̄(t) = Φ(t, t0)δx̄(t0),

where Φ(t, t0) represents state transition matrix from time t0 to t.

• State transition matrix reflects sensitivity of state at time t to
small perturbations in initial state at time t0.

I To apply differential corrections,
need to compute state transition matrix along a reference orbit.

I Since

Φ̇(t, t0)δx̄(t0) = δ̇x̄(t) = A(t)δx̄(t) = A(t)Φ(t, t0)δx̄(t0),

we obtain ODEs for Φ(t, t0):

Φ̇(t, t0) = A(t)Φ(t, t0),

with

Φ(t0, t0) = I6.



� Differential Corrections: State Transition Matrix

I Therefore, state transition matrix along a reference orbit

δx̄(t) = Φ(t, t0)δx̄(t0),

can be computed numerically
by integrating simultaneously the following 42 ODEs:

˙̄x = f (x̄),
Φ̇(t, t0) = A(t)Φ(t, t0),

with initial conditions:

x̄(t0) = x̄0,

Φ(t0, t0) = I6.



� Numerical Computation of Halo Orbit

I Halo orbits are symmetric about xz-plane (y = 0).

• They intersect this plan perpendicularly(ẋ = ż = 0).
• Thus, initial state vector take the form

x̄0 = (x0 0 z0 0 ẏ0 0)T .

I Obtain 1st guess for x̄0 from 3rd order approximations.

• ODEs are integrated until trajectory cross xz-plane.
• For periodic solution, desired final state vector has the form

x̄f = (xf 0 zf 0 ẏf 0)T .

• While actual values for ẋf , żf may not be zero,
3 non-zero initial conditions (x0, z0, ẏ0) can be used
to drive these final velocities ẋf , żf to zero.



� Numerical Computation of Halo Orbit

I Differential corrections use state transition matrix
to change initial conditions

δx̄f = Φ(tf , t0)δx̄0.

• The change δx̄0 can be determined by the difference between
actual and desired final states (δx̄f = x̄df − x̄f ).

• 3 initial states (δx0, δz0, δẏ0)
are available to target 2 final states (δẋf , δzf ).

• But it is more convenient to set δz0 = 0
and to use resulting 2 × 2 matrix to find δx0, δẏ0.

I Similarly, the revised initial conditions x̄0 + δx̄0
are used to begin a second iteration.

I This process is continued until ẋf = żf = 0
(within some accptable tolerance).

• Usually, convergence to a solution is achieved within 4 iterations.



� Numerical Computation of Lissajous Trajectories

I Howell and Pernicka [1987] used similar techniques
(3rd order approximation and differential corrections)
to compute lissajous trajectories.

I Gómez, Jorba, Masdemont and Simó [1991] used
higher order expansions to compute halo, quasi-halo and lissajous
orbits.



� Veritcal Orbit

I A vertical orbit and its 3 projections.



� Lissajous Orbits

I A lissajous orbit and its 3 projections.



� Halo Orbits

I A halo orbit and its 3 projections.



� Quasi-Halo Orbits

I A quasi-halo orbit and its 3 projections.



� Orbit Structure around L1

I Poincaré sections of center manifold of L1 corresponding to h =
0.2, 0.5, 0.6, 1.0.


