Dynamical Systems and Space Mission Design

Jerrold Marsden, Wang Koon and Martin Lo

Wang Sang Koon
Control and Dynamical Systems, Caltech

koon@cds.caltech.edu

\square Halo Orbit and Its Computation: Outline

- In Lecture 5A, we have covered
- Importance of halo orbits.
- Finding periodic solutions of the linearized equations.
- Highlights on 3rd order approximation of a halo orbit.
- Using a textbook example to illustrate Lindstedt-Poincaré method.
- In Lecture 5B, we will cover
- Use L.P. method to find a 3rd order approximation of a halo orbit.
- Finding a halo orbit numerically via differential correction.
- Orbit structure near L_{1} and L_{2}.
- To avoid secure terms, Lindstedt-Poincaré method
- Notices non-linearity alters frequency λ to $\lambda \omega(\epsilon)$.
- Introduce new independent variable $\tau=\omega(\epsilon) t$:

$$
t=\tau \omega^{-1}=\tau\left(1+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\cdots\right) .
$$

- Rewrite equation using τ as independent variable:

$$
q^{\prime \prime}+\left(1+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\cdots\right)^{2}\left(q+\epsilon q^{3}\right)=0
$$

- Expand periodic solution in a power series of ϵ :

$$
q=\sum_{n=0}^{\infty} \epsilon^{n} q_{n}(\tau)=q_{0}(\tau)+\epsilon q_{1}(\tau)+\epsilon^{2} q_{2}(\tau)+\cdots
$$

- By substituing q into equation and equating terms in ϵ^{n} :

$$
\begin{aligned}
& q_{0}^{\prime \prime}+q_{0}=0 \\
& q_{1}^{\prime \prime}+q_{1}=-q_{0}^{3}-2 \omega_{1} q_{0} \\
& q_{2}^{\prime \prime}+q_{2}=-3 q_{0}^{2} q_{1}-2 \omega_{1}\left(q_{1}+q_{0}^{3}\right)+\left(\omega_{1}^{2}+2 \omega_{2}\right) q_{0},
\end{aligned}
$$

- Remove secular terms by choosing suitable ω_{n}.
- Solution of 1 st equation: $q_{0}=a \cos \left(\tau+\tau_{0}\right)$.
- Substitute $q_{0}=a \cos \left(\tau+\tau_{0}\right)$ into 2 nd equation

$$
\begin{aligned}
q_{1}^{\prime \prime}+q_{1} & =-a^{3} \cos ^{3}\left(\tau+\tau_{0}\right)-2 \omega_{1} a \cos \left(\tau+\tau_{0}\right) \\
& =-\frac{1}{4} a^{3} \cos 3\left(\tau+\tau_{0}\right)-\left(\frac{3}{4} a^{2}+2 \omega_{1}\right) a \cos \left(\tau+\tau_{0}\right)
\end{aligned}
$$

- Set $\omega_{1}=-3 a^{2} / 8$ to remove $\cos \left(\tau+\tau_{0}\right)$ and secular term.
- Therefore, to 1st order of ϵ, we have periodic solution

$$
q=a \cos \left(\omega t+\tau_{0}\right)+\frac{1}{32} \epsilon \cos 3\left(\omega t+\tau_{0}\right)+o\left(\epsilon^{2}\right)
$$

with

$$
\omega=\left(1-\frac{3}{8} \epsilon a^{2}-\frac{15}{256} \epsilon^{2} a^{4}+o\left(\epsilon^{3}\right) .\right.
$$

- Lindstedt-Poincaré method consists in successive adjustments of frequencies.

Lindstedt Poincaré Method: Nonlinear Expansion

- CR3BP equations can be developed using Legendre polynomial P_{n}

$$
\begin{aligned}
\ddot{x}-2 \dot{y}-\left(1+2 c_{2}\right) x & =\frac{\partial}{\partial x} \sum_{n \geq 3} c_{n} \rho^{n} P_{n}\left(\frac{x}{\rho}\right) \\
\ddot{y}+2 \dot{x}+\left(c_{2}-1\right) y & =\frac{\partial}{\partial y} \sum_{n \geq 3} c_{n} \rho^{n} P_{n}\left(\frac{x}{\rho}\right) \\
\ddot{z}+c_{2} z & =\frac{\partial}{\partial z} \sum_{n \geq 3} c_{n} \rho^{n} P_{n}\left(\frac{x}{\rho}\right)
\end{aligned}
$$

where $\rho^{2}=x^{2}+y^{2}+z^{2}$, and $c_{n}=\gamma^{-3}\left(\mu+(-1)^{n}(1-\mu)\left(\frac{\gamma}{1-\gamma}\right)^{n+1}\right)$.

- Useful if successive approximation solution procedure is carried to high order via algebraic manipulation software programs.

$$
P_{n}\left(\frac{x}{\rho}\right)=\frac{x}{\rho}\left(\frac{2 n-1}{n}\right) P_{n-1}\left(\frac{x}{\rho}\right)-\left(\frac{n-1}{n}\right) P_{n-2}\left(\frac{x}{\rho}\right) .
$$

- Recall that $\rho<1$.

■ Lindstedt Poincaré Method: 3rd Order Expansion

- 3rd order approximation used in Richardson [1980]:

$$
\begin{aligned}
\ddot{x}-2 \dot{y}-\left(1+2 c_{2}\right) x= & \frac{3}{2} c_{3}\left(2 x^{2}-y^{2}-z^{2}\right) \\
& +2 c_{4} x\left(2 x^{2}-3 y^{2}-3 z^{2}\right)+o(4), \\
\ddot{y}+2 \dot{x}+\left(c_{2}-1\right) y= & -3 c_{3} x y-\frac{3}{2} c_{4} y\left(4 x^{2}-y^{2}-z^{2}\right)+o(4), \\
\ddot{z}+c_{2} z= & -3 c_{3} x z-\frac{3}{2} c_{4} z\left(4 x^{2}-y^{2}-z^{2}\right)+o(4) .
\end{aligned}
$$

- Construction of Periodic Solutions

- Recall that solution to the linearized equations

$$
\begin{aligned}
\ddot{x}-2 \dot{y}-\left(1+2 c_{2}\right) x & =0 \\
\ddot{y}+2 \dot{x}+\left(c_{2}-1\right) y & =0 \\
\ddot{z}+c_{2} z & =0
\end{aligned}
$$

has the following form

$$
\begin{aligned}
x & =-A_{x} \cos (\lambda t+\phi) \\
y & =k A_{x} \sin (\lambda t+\phi) \\
z & =A_{z} \sin (\nu t+\psi)
\end{aligned}
$$

- Halo orbits are obtained if amplitudes A_{x} and A_{z} of linearized solution are large enoug so that nonlinear contributions makes eigen-frequencies equal $(\lambda=\nu)$.
- This linearized solution $(\lambda=\nu)$ is the seed for constructing successve approximations.

Construction of Periodic Solutions

- We would like to rewrite linearized equations in following form:

$$
\begin{aligned}
\ddot{x}-2 \dot{y}-\left(1+2 c_{2}\right) x & =0 \\
\ddot{y}+2 \dot{x}+\left(c_{2}-1\right) y & =0 \\
\ddot{z}+\lambda^{2} z & =0
\end{aligned}
$$

which has a periodic solution with frequency λ.

- Need to have a correction term $\Delta=\lambda^{2}-c_{2}$ for high order approximations.

$$
\ddot{z}+\lambda^{2} z=-3 c_{3} x z-\frac{3}{2} c_{4} z\left(4 x^{2}-y^{2}-z^{2}\right)+\Delta z+o(4) .
$$

- Richardson [1980] developed a 3rd order periodic solution using a L.P. type successive approximations.
- To remove secular terms, a new independent variable τ and a frequency connection ω are introduced via

$$
\tau=\omega t
$$

- Here,

$$
\omega=1+\sum_{n \geq 1} \omega_{n}, \quad \omega_{n}<1
$$

- The ω_{n} are assumed to be o $\left(A_{z}^{n}\right)$ and are chosen to remove secure terms.
- Notice that $A_{z} \ll 1$ in normalized unit and it plays the role of ϵ.

Lindstedt-Poincaré Method

- Equations are then written in terms of new independent variable τ

$$
\begin{aligned}
\omega^{2} x^{\prime \prime}-2 \omega y^{\prime}-\left(1+2 c_{2}\right) x= & \frac{3}{2} c_{3}\left(2 x^{2}-y^{2}-z^{2}\right) \\
& +2 c_{4} x\left(2 x^{2}-3 y^{2}-3 z^{2}\right)+o(4) \\
\omega^{2} y^{\prime \prime}+2 \omega x^{\prime}+\left(c_{2}-1\right) y= & -3 c_{3} x y \\
& -\frac{3}{2} c_{4} y\left(4 x^{2}-y^{2}-z^{2}\right)+o(4) \\
\omega^{2} z^{\prime \prime}+\lambda^{2} z= & -3 c_{3} x z \\
& -\frac{3}{2} c_{4} z\left(4 x^{2}-y^{2}-z^{2}\right)+\Delta z+o(4) .
\end{aligned}
$$

- 3rd order successive approximation solution is a lengthy process. Here are some highlights:
- Generating solution is linearized solution with t replaced by τ

$$
\begin{aligned}
x & =-A_{x} \cos (\lambda \tau+\phi) \\
y & =k A_{x} \sin (\lambda \tau+\phi) \\
z & =A_{z} \sin (\lambda \tau+\psi)
\end{aligned}
$$

- Some highlights:
- Look for general solutions of the following type:

$$
x=\sum_{n \geq 0} a_{n} \cos n \tau_{1}, \quad y=\sum_{n \geq 0} b_{n} \sin n \tau_{1}, \quad z=\sum_{n \geq 0} c_{n} \cos n \tau_{1},
$$

where $\tau_{1}=\lambda \tau+\phi=\lambda \omega t+\phi$.

- It is found that

$$
\omega_{1}=0, \quad \omega_{2}=s_{1} A_{x}^{2}+s_{2} A_{z}^{2}
$$

which give the frequence $\lambda \omega\left(\omega=1+\omega_{1}+\omega_{2}+\cdots\right)$ and the period $T(T=2 \pi / \lambda \omega)$ of a halo orbit.

- To remove all secular terms, it is also necessary to specify amplitude and phase-angle constraint relationships:

$$
\begin{aligned}
l_{1} A_{x}^{2}+l_{2} A_{z}^{2}+\Delta & =0 \\
\psi-\phi & =m \pi / 2, \quad m=1,3
\end{aligned}
$$

- 3rd order solution in Richardson [1980]:

$$
\begin{aligned}
x= & a_{21} A_{x}^{2}+a_{22} A_{z}^{2}-A_{x} \cos \tau_{1} \\
& +\left(a_{23} A_{x}^{2}-a_{24} A_{z}^{2}\right) \cos 2 \tau_{1}+\left(a_{31} A_{x}^{3}-a_{32} A_{x} A_{z}^{2}\right) \cos 3 \tau_{1} \\
y= & k A_{x} \sin \tau_{1} \\
& +\left(b_{21} A_{x}^{2}-b_{22} A_{z}^{2}\right) \sin 2 \tau_{1}+\left(b_{31} A_{x}^{3}-b_{32} A_{x} A_{z}^{2}\right) \sin 3 \tau_{1} \\
z= & \delta_{m} A_{z} \cos \tau_{1} \\
& +\delta_{m} d_{21} A_{x} A_{z}\left(\cos 2 \tau_{1}-3\right)+\delta_{m}\left(d_{32} A_{z} A_{x}^{2}-d_{31} A_{z}^{3}\right) \cos 3 \tau_{1} .
\end{aligned}
$$

where $\tau_{1}=\lambda \tau+\phi$ and $\delta_{m}=2-m, m=1,3$.

- 2 solution branches are obtained according to whether $m=1$ or $m=3$.
- Halo Orbit Phase-angle Relationship
- Bifurcation manifests through phase-angle relationship:
- For $m=1, A_{z}>0$. Northern halo.
- For $m=3, A_{z}<0$. Southern halo.
- Northern \& southern halos are mirror images across $x y$-plane.

- For halo orbits, we have amplitude constraint relationship

$$
l_{1} A_{x}^{2}+l_{2} A_{z}^{2}+\Delta=0
$$

- Minimim value for A_{x} to have a halo orbit $\left(A_{z}>0\right)$ is $\sqrt{\left|\Delta / l_{1}\right|}$, which is about $200,000 \mathrm{~km}$.
- Halo orbit can be characterized completely by A_{z}.

Fig. 3 Amplitude-Constraint Relationship

- The halo orbit period $T(T=2 \pi / \lambda \omega)$
can be computed as a function of A_{z}.
- Amplitude constraint relationship: $l_{1} A_{x}^{2}+l_{2} A_{z}^{2}+\Delta=0$.
- Frequence connection $\omega\left(\omega=1+\omega_{1}+\omega_{2}+\cdots\right)$ with

$$
\omega_{1}=0, \quad \omega_{2}=s_{1} A_{x}^{2}+s_{2} A_{z}^{2}
$$

- ISEE3 halo had a period of 177.73 days.

- While 3rd order approximations provide much insight, they are insufficient for serious study of motion near L_{1}.
- Analytic approximations must be combined with numerical techniques to generate an accurate halo orbit.
- This problem is well suited to a differential corrections process,
- which incorporates the analytic approximations as the first guess
- in an iterative process
- aimed at producing initial conditions that lead to a halo orbit.
- Recall 3D CR3BP equations:

$$
\ddot{x}-2 \dot{y}=U_{x} \quad \ddot{y}+2 \dot{x}=U_{y} \quad \ddot{z}=U_{z}
$$

where $U=\left(x^{2}+y^{2}\right) / 2+(1-\mu) d_{1}^{-1}+\mu d_{2}^{-1}$.

- It can be rewritten as 6 1st order ODEs: $\dot{\bar{x}}=f(\bar{x})$, where $\bar{x}=(x y z \dot{x} \dot{y} \dot{z})^{T}$ is the state vector.
- Given a reference solution \bar{x} to ODE,
- variational equations which are linearized equations for variations $\delta \bar{x}$ (relative to reference solution) can be written as

$$
\dot{\delta} \bar{x}(t)=D f(\bar{x}) \delta \bar{x}=A(t) \delta \bar{x}(t),
$$

where $A(t)$ is a matrix of the form

$$
\left[\begin{array}{cc}
0 & I_{3} \\
\mathcal{U} & 2 \Omega
\end{array}\right]
$$

Differential Corrections: Variational Equations

Given a reference solution \bar{x} to ODE,

- variational equations can be written as

$$
\begin{gathered}
\dot{\delta} \bar{x}(t)=D f(\bar{x}) \delta \bar{x}=A(t) \delta \bar{x}(t), \text { where } \\
A(t)=\left[\begin{array}{cc}
0 & I_{3} \\
\mathcal{U} & 2 \Omega
\end{array}\right] .
\end{gathered}
$$

- Matrix Ω can be written

$$
\Omega=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Matrix \mathcal{U} has the form

$$
\mathcal{U}=\left[\begin{array}{ccc}
U_{x x} & U_{x y} & U_{x z} \\
U_{y x} & U_{y y} & U_{y z} \\
U_{z x} & U_{z y} & U_{z z}
\end{array}\right],
$$

and is evalutated on reference solution.

Differential Corrections: State Transition Matrix

- Solution of variational equations is known to be of the form

$$
\delta \bar{x}(t)=\Phi\left(t, t_{0}\right) \delta \bar{x}\left(t_{0}\right),
$$

where $\Phi\left(t, t_{0}\right)$ represents state transition matrix from time t_{0} to t.

- State transition matrix reflects sensitivity of state at time t to small perturbations in initial state at time t_{0}.
- To apply differential corrections, need to compute state transition matrix along a reference orbit.
- Since

$$
\dot{\Phi}\left(t, t_{0}\right) \delta \bar{x}\left(t_{0}\right)=\dot{\delta} \bar{x}(t)=A(t) \delta \bar{x}(t)=A(t) \Phi\left(t, t_{0}\right) \delta \bar{x}\left(t_{0}\right),
$$

we obtain ODEs for $\Phi\left(t, t_{0}\right)$:

$$
\dot{\Phi}\left(t, t_{0}\right)=A(t) \Phi\left(t, t_{0}\right),
$$

with

$$
\Phi\left(t_{0}, t_{0}\right)=I_{6} .
$$

D Differential Corrections: State Transition Matrix

- Therefore, state transition matrix along a reference orbit

$$
\delta \bar{x}(t)=\Phi\left(t, t_{0}\right) \delta \bar{x}\left(t_{0}\right),
$$

can be computed numerically
by integrating simultaneously the following 42 ODEs:

$$
\begin{aligned}
\dot{\bar{x}} & =f(\bar{x}), \\
\dot{\Phi}\left(t, t_{0}\right) & =A(t) \Phi\left(t, t_{0}\right),
\end{aligned}
$$

with initial conditions:

$$
\begin{aligned}
\bar{x}\left(t_{0}\right) & =\bar{x}_{0} \\
\Phi\left(t_{0}, t_{0}\right) & =I_{6} .
\end{aligned}
$$

- Numerical Computation of Halo Orbit

- Halo orbits are symmetric about $x z$-plane $(y=0)$.
- They intersect this plan perpendicularly $(\dot{x}=\dot{z}=0)$.
- Thus, initial state vector take the form

$$
\bar{x}_{0}=\left(\begin{array}{llll}
x_{0} & 0 & z_{0} & 0 \\
\dot{y}_{0} & 0
\end{array}\right)^{T} .
$$

- Obtain 1st guess for \bar{x}_{0} from 3rd order approximations.
- ODEs are integrated until trajectory cross $x z$-plane.
- For periodic solution, desired final state vector has the form

$$
\bar{x}_{f}=\left(x_{f} 0 z_{f} 0 \dot{y}_{f} 0\right)^{T} .
$$

- While actual values for \dot{x}_{f}, \dot{z}_{f} may not be zero, 3 non-zero initial conditions $\left(x_{0}, z_{0}, \dot{y}_{0}\right)$ can be used to drive these final velocities \dot{x}_{f}, \dot{z}_{f} to zero.

- Numerical Computation of Halo Orbit

- Differential corrections use state transition matrix to change initial conditions

$$
\delta \bar{x}_{f}=\Phi\left(t_{f}, t_{0}\right) \delta \bar{x}_{0} .
$$

- The change $\delta \bar{x}_{0}$ can be determined by the difference between actual and desired final states $\left(\delta \bar{x}_{f}=\bar{x}_{f}^{d}-\bar{x}_{f}\right)$.
- 3 initial states $\left(\delta x_{0}, \delta z_{0}, \delta \dot{y}_{0}\right)$ are available to target 2 final states $\left(\delta \dot{x}_{f}, \delta z_{f}\right)$.
- But it is more convenient to set $\delta z_{0}=0$ and to use resulting 2×2 matrix to find $\delta x_{0}, \delta \dot{y}_{0}$.
- Similarly, the revised initial conditions $\bar{x}_{0}+\delta \bar{x}_{0}$ are used to begin a second iteration.
- This process is continued until $\dot{x}_{f}=\dot{z}_{f}=0$ (within some accptable tolerance).
- Usually, convergence to a solution is achieved within 4 iterations.
- Howell and Pernicka [1987] used similar techniques (3rd order approximation and differential corrections)
to compute lissajous trajectories.
- Gómez, Jorba, Masdemont and Simó [1991] used higher order expansions to compute halo, quasi-halo and lissajous orbits.

- Veritcal Orbit

- A vertical orbit and its 3 projections.

7

- A lissajous orbit and its 3 projections.

- Halo Orbits

- A halo orbit and its 3 projections.

- Quasi-Halo Orbits

- A quasi-halo orbit and its 3 projections.

- Poincaré sections of center manifold of L_{1} corresponding to $h=$ $0.2,0.5,0.6,1.0$.

