Dynamical Systems and Space Mission Design

Jerrold Marsden, Wang Koon and Martin Lo

Wang Sang Koon
Control and Dynamical Systems, Caltech

koon@cds.caltech.edu

- From now on, we will focus on 3D CR3BP.
- We will put more emphasis on numerical computations, especially issues concerning halo orbit missions, such as Genesis Discovery Mission
- Outline of Lecture 5A and 5B:
- Importance of halo orbits.
- Finding periodic solutions of the linearized equations.
- Highlights on 3rd order approximation of a halo orbit.
- Using a textbook example to illustrate Lindstedt-Poincaré method.
- Use L.P. method to find a 3rd order approximation of a halo orbit.
- Finding a halo orbit numerically via differential correction.
- Orbit structure near L_{1} and L_{2}

Importance of Halo Orbits: Genesis Discovery Mission

- Genesis spacecraft will
- collect solar wind from a L_{1} halo orbit for 2 years,
- return those samples to Earth in 2003 for analysis.
- Will contribute to understanding of origin of Solar system.

\square Important of Halo Orbits: Genesis Discovery Mission
- A L_{1} halo orbit (1.5 million km from Earth) provides uninterrupted access to solar wind beyond Earth's magnetoshphere.

- Since halo orbit is ideal for studying solar effects on Earth, NASA has had and will continue to have great interest in these missions.
- The first halo orbit mission, ISEE-3, was launched in 1978.
- ISEE-3 spacecraft monitored solar wind and other solar-induced phenomena, such as solar radio bursts and solar flares, about a hour prior to disturbance of space enviroment near Earth.

- JPL has begun studies of a TPF misson at L_{2} involving 4 free flying optical elements and a combiner spacecraft.
- Interferometry: achieve high resolution by distributing small optical elements along a lengthy baseline or pattern.
- Look into using a L_{2} halo orbit and its nearby quasi-halo orbits for formation flight.

Figure 1. Terrestrial Planet Finder

- The L_{2} option offer several advantages:
- Additional spacecraft can be launched into formation later.
- The L_{2} offers a larger payload capacity.
- Communications are more efficient at L_{2}.
- Observations and mission operations are simpler at L_{2}.

- In 3D dynamical channels theory, invariant manifolds of a solid torus of quasi-halo orbits could play similar role as invariant manifold tubes of a Lyapunov orbit.
- Halo, quasi-halos and their invariant manifolds could be key in
- understanding material transport throughout Solar system,
- constructing 3D orbits with desired characteristics.

—3D Equations of Motion
- Recall equations of CR3BP:

$$
\ddot{X}-2 \dot{Y}=\Omega_{X} \quad \ddot{Y}+2 \dot{X}=\Omega_{Y} \quad \ddot{Z}=\Omega_{Z}
$$

where $\Omega=\left(X^{2}+Y^{2}\right) / 2+(1-\mu) d_{1}^{-1}+\mu d_{2}^{-1}$.

- 3D Equations of Motion

- Equations for satellite moving in vicinity of L_{1} can be obtained by translating the origin to the location of L_{1} :

$$
x=(X-1+\mu+\gamma) / \gamma, \quad y=Y / \gamma, \quad z=Z / \gamma
$$

where $\gamma=d\left(m_{2}, L_{1}\right)$

- In new coordinate sytem, variables x, y, z are scale so that the distance between L_{1} and small primary is 1 .
- New independent variable is introduced such that $s=\gamma^{3 / 2} t$.

- 3D Equations of Motion

- CR3BP equations can be developed using Legendre polynomial P_{n}

$$
\begin{aligned}
\ddot{x}-2 \dot{y}-\left(1+2 c_{2}\right) x & =\frac{\partial}{\partial x} \sum_{n \geq 3} c_{n} \rho^{n} P_{n}\left(\frac{x}{\rho}\right) \\
\ddot{y}+2 \dot{x}+\left(c_{2}-1\right) y & =\frac{\partial}{\partial y} \sum_{n \geq 3} c_{n} \rho^{n} P_{n}\left(\frac{x}{\rho}\right) \\
\ddot{z}+c_{2} z & =\frac{\partial}{\partial z} \sum_{n \geq 3} c_{n} \rho^{n} P_{n}\left(\frac{x}{\rho}\right)
\end{aligned}
$$

where $\rho=x^{2}+y^{2}+z^{2}$, and $c_{n}=\gamma^{-3}\left(\mu+(-1)^{n}(1-\mu)\left(\frac{\gamma}{1-\gamma}\right)^{n+1}\right)$.

- Useful if successive approximation solution procedure is carried to high order via algebraic manipulation software programs.
- Analytic and Numerical Methods: Overview
- Lack of general solution motivated researchers to develop semi-analytical method.
- ISEE-3 halo was designed in this way. See Farquhar and Kamel [1973], and Richardson [1980].
- Linear analysis suggested existence of periodic (and quasi-periodic) orbits near L_{1}.
- 3rd order approximation, using Lindstedt-Poincaré method, provided further insight about these orbits.
- Differential corrector produced the desired orbit using 3rd order solution as initial guess.

- Periodic Solutions of Linearized Equations

- Periodic nature of solution can be seen in linearized equations:

$$
\begin{aligned}
\ddot{x}-2 \dot{y}-\left(1+2 c_{2}\right) x & =0 \\
\ddot{y}+2 \dot{x}+\left(c_{2}-1\right) y & =0 \\
\ddot{z}+c_{2} z & =0
\end{aligned}
$$

- The z-axis solution is simple harmonic, does not depend on x or y.
- Motion in $x y$-plane is coupled, has $(\pm \alpha, \pm i \lambda)$ as eigenvalues.

General solutions are unbounded, but there is a periodic solution.

x^{-1} (nondimensional units, rotating frame)
(a)

x (nondimensional units, rotating frame)
(b)

- Periodic Solutions of Linearized Equations

- Linearized equations has a bounded solution (Lissajous orbit)

$$
\begin{aligned}
x & =-A_{x} \cos (\lambda t+\phi) \\
y & =k A_{x} \sin (\lambda t+\phi) \\
z & =A_{z} \sin (\nu t+\psi)
\end{aligned}
$$

with $k=\left(\lambda^{2}+1+2 c_{2}\right) / 2 \lambda . \quad(\lambda=2.086, \nu=2.015, k=3.229$.

- Amplitudes, A_{x} and A_{z}, of in-plane and out-of-plane motion characterize the size of orbit.

- Periodic Solutions of Linearized Equations

- If frequencies are equal $(\lambda=\nu)$, halo orbit is produced.
- But $\lambda=\nu$ only when amplitudes A_{x} and A_{z} are large enough that nonlinear contributions become significant.
- For ISEE3 halo, $A_{z}=110,000 \mathrm{~km}$,
$A_{x}=206,000 \mathrm{~km}$ and $A_{y}=k A_{x}=665,000 \mathrm{~km}$.

2-AXIS (X10 ${ }^{5} \mathrm{kM}$)

2-AXIS (X10 ${ }^{5} \mathrm{kM}$)

- Halo orbit is obtained only when amplitudes A_{x} and A_{z} are large enough that nonlinear contributions make $\lambda=\nu$.
- Lindstedt-Poincaré procedure has been used to find periodic solution for a 3rd order approximation of PCR3BP system.

$$
\begin{aligned}
\ddot{x}-2 \dot{y}-\left(1+2 c_{2}\right) x= & \frac{3}{2} c_{3}\left(2 x^{2}-y^{2}-z^{2}\right) \\
& +2 c_{4} x\left(2 x^{2}-3 y^{2}-3 z^{2}\right)+o(4), \\
\ddot{y}+2 \dot{x}+\left(c_{2}-1\right) y= & -3 c_{3} x y-\frac{3}{2} c_{4} y\left(4 x^{2}-y^{2}-z^{2}\right)+o(4), \\
\ddot{z}+c_{2} z= & -3 c_{3} x z-\frac{3}{2} c_{4} z\left(4 x^{2}-y^{2}-z^{2}\right)+o(4) .
\end{aligned}
$$

- Notice that for periodic solution, x, y, z are $o\left(A_{z}\right)$ with $A_{z} \ll 1$ in normalized unit.

Halo Orbits in 3rd Order Approximation

- Lindstedt-Poincaré method:
- It is a successive approximation procedure.
- Periodic solution of linearized equation (with $\lambda=\nu$) will form the first approximation.
- Richardson used this method to find the 3rd order solution.

$$
\begin{aligned}
x= & a_{21} A_{x}^{2}+a_{22} A_{z}^{2}-A_{x} \cos \tau_{1} \\
& +\left(a_{23} A_{x}^{2}-a_{24} A_{z}^{2}\right) \cos 2 \tau_{1}+\left(a_{31} A_{x}^{3}-a_{32} A_{x} A_{z}^{2}\right) \cos 3 \tau_{1} \\
y= & k A_{x} \sin \tau_{1} \\
& +\left(b_{21} A_{x}^{2}-b_{22} A_{z}^{2}\right) \sin 2 \tau_{1}+\left(b_{31} A_{x}^{3}-b_{32} A_{x} A_{z}^{2}\right) \sin 3 \tau_{1} \\
z= & \delta_{m} A_{z} \cos \tau_{1} \\
& +\delta_{m} d_{21} A_{x} A_{z}\left(\cos 2 \tau_{1}-3\right)+\delta_{m}\left(d_{32} A_{z} A_{x}^{2}-d_{31} A_{z}^{3}\right) \cos 3 \tau_{1} .
\end{aligned}
$$

where $\tau_{1}=\lambda \tau+\phi$ and $\delta_{m}=2-m, m=1,3$.

- Details will be given later. Here, we will provide some highlights.
- For halo orbits, we have amplitude constraint relationship

$$
l_{1} A_{x}^{2}+l_{2} A_{z}^{2}+\Delta=0
$$

- For halo orbits about L_{1} in Sun-Earth system, $l_{1}=-1.59650314, l_{2}=1.740900800$ and $\Delta=0.29221444425$.
- Halo orbit can be characterized completely by A_{z}.

ISEE-3 halo orbit had $A_{z}=110,000 \mathrm{~km}$.

- For halo orbits, we have amplitude constraint relationship

$$
l_{1} A_{x}^{2}+l_{2} A_{z}^{2}+\Delta=0
$$

- Minimim value for A_{x} to have a halo orbit $\left(A_{z}>0\right)$ is

$$
\sqrt{\left|\Delta / l_{1}\right|}
$$

which is about $200,000 \mathrm{~km}$ (14% of normalized distance).

- Halo Orbit Phase-angle Relationship
- Bifurcation manifests through phase-angle relationship

$$
\psi-\phi=m \pi / 2, \quad m=1,3 .
$$

- 2 solution branches are obtained according to whether $m=1$ or $m=3$.

- Halo Orbit Phase-angle Relationship
- Bifurcation manifests through phase-angle relationship:
- For $m=1, A_{z}>0$. Northern halo.
- For $m=3, A_{z}<0$. Southern halo.
- Northern \& southern halos are mirror images across $x y$-plane.

- Lindstedt-Poincaré Method: Duffing Equation
- To illustrate L.P. method, let us study Duffing equation:
- First non-linear approximation of pendulum equation (with $\lambda=1$)

$$
\ddot{q}+q+\epsilon q^{3}=0 .
$$

- For $\epsilon=0$, it has a periodic solution

$$
q=a \cos t
$$

if we assume the initial condition $q(0)=a, \dot{q}(0)=0$.

- For $\epsilon \neq 0$, suppose we would like to look for
a periodic solution of the form

$$
q=\sum_{n=0}^{\infty} \epsilon^{n} q_{n}(t)=q_{0}(t)+\epsilon q_{1}(t)+\epsilon^{2} q_{2}(t)+\cdots
$$

- Lindstedt-Poincaré Method: Duffing Equation
- Finding a periodic solution for Duffing equation:
- By substituting and equating terms having same power of ϵ, we have a system of successive differential equations:

$$
\begin{aligned}
& \ddot{q}_{0}+q_{0}=0, \\
& \ddot{q}_{1}+q_{1}=-q_{0}^{3}, \\
& \ddot{q}_{2}+q_{2}=-3 q_{0}^{2} q_{1},
\end{aligned}
$$

and etc.

- Then $q_{0}=a \cos t$, for $q_{0}(0)=a, \dot{q}(0)=0$.
- Since

$$
\ddot{q}_{1}+q_{1}=-q_{0}^{3}=-a^{3} \cos ^{3} t=-\frac{1}{4} a^{3}(\cos 3 t+3 \cos t),
$$

the solution has a secular term

$$
q_{1}=-\frac{3}{8} a^{3} t \sin t+\frac{1}{32} a^{3}(\cos 3 t-\cos t) .
$$

- Due to presence of secure terms, naive method such as expansions of solution in a power series of ϵ would not work.
- To avoid secure terms, Lindstedt-Poincaré method
- Notices that non-linearity alters frequency λ (corr. to linearized system) to $\lambda \omega(\epsilon)(\lambda=1$ in our case).
- Introduce a new independent variable $\tau=\omega(\epsilon) t$:

$$
t=\tau \omega^{-1}=\tau\left(1+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\cdots\right)
$$

- Expand the periodic solution in a power series of ϵ :

$$
q=\sum_{n=0}^{\infty} \epsilon^{n} q_{n}(\tau)=q_{0}(\tau)+\epsilon q_{1}(\tau)+\epsilon^{2} q_{2}(\tau)+\cdots
$$

- Rewrites Duffing equation using τ as independent variable:

$$
q^{\prime \prime}+\left(1+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\cdots\right)^{2}\left(q+\epsilon q^{3}\right)=0
$$

- By substituing q (in power series expansion) into Duffing equation (in new independent variable τ) and equating terms with same power of ϵ, we obtain equations for successive approximations:

$$
\begin{aligned}
q_{0}^{\prime \prime}+q_{0} & =0 \\
q_{1}^{\prime \prime}+q_{1} & =-q_{0}^{3}-2 \omega_{1} q_{0} \\
q_{2}^{\prime \prime}+q_{2} & =-3 q_{0}^{2} q_{1}-2 \omega_{1}\left(q_{1}+q_{0}^{3}\right)+\left(\omega_{1}^{2}+2 \omega_{2}\right) q_{0}
\end{aligned}
$$

and etc.

- Potential secular terms can be gotten rid of by imposing suitable values on ω_{n}.
- The general solution of 1st equation can be written as

$$
q_{0}=a \cos \left(\tau+\tau_{0}\right)
$$

where a and τ_{0} are integration constants.

- Lindstedt-Poincaré Method: Duffing Equation
- Potential secular terms can be gotten rid of by imposing suitable values on ω_{n}.
- By substituting $q_{0}=a \cos \left(\tau+\tau_{0}\right)$ into 2 nd equation, we get

$$
\begin{aligned}
q_{1}^{\prime \prime}+q_{1} & =-a^{3} \cos ^{3}\left(\tau+\tau_{0}\right)-2 \omega_{1} a \cos \left(\tau+\tau_{0}\right) \\
& =-\frac{1}{4} a^{3} \cos 3\left(\tau+\tau_{0}\right)-\left(\frac{3}{4} a^{2}+2 \omega_{1}\right) a \cos \left(\tau+\tau_{0}\right) .
\end{aligned}
$$

- In previous naive method, we had $\omega_{1} \equiv 0$ and a secular term caused by cos t term.
- Now if we set $\omega_{1}=-3 a^{2} / 8$, we can get rid of $\cos \left(\tau+\tau_{0}\right)$ term and the ensuing secular term.
- Then

$$
q_{1}=\frac{1}{32} a^{3} \cos 3\left(\tau+\tau_{0}\right)
$$

■ Lindstedt-Poincaré Method: Duffing Equation

- Potential secular terms can be gotten rid of by imposing suitable values on ω_{n}.
- Similarly, by substituting $q_{1}=\frac{1}{32} a^{3} \cos 3\left(\tau+\tau_{0}\right)$ into 3rd equation, we get

$$
\begin{aligned}
q_{2}^{\prime \prime}+q_{2} & =\left(\frac{51}{128} a^{4}-2 \omega_{2}\right) a \cos \left(\tau+\tau_{0}\right) \\
& +(\text { terms not giving secular terms })
\end{aligned}
$$

- Setting $\omega_{2}=51 a^{4} / 256$, we obtain q_{2} free of secular terms, and so on.
- Lindstedt-Poincaré Method: Duffing Equation
- Therefore, to 1st order of ϵ, we have periodic solution

$$
\begin{aligned}
q & =a \cos \left(\tau+\tau_{0}\right)+\frac{1}{32} \epsilon \cos 3\left(\tau+\tau_{0}\right)+o\left(\epsilon^{2}\right) \\
& =a \cos \left(\omega t+\tau_{0}\right)+\frac{1}{32} \epsilon \cos 3\left(\omega t+\tau_{0}\right)+o\left(\epsilon^{2}\right)
\end{aligned}
$$

- Notice that

$$
\begin{aligned}
\omega & =\left(1+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\cdots\right)^{-1} \\
& =\left\{1-\epsilon \omega_{1}-\frac{1}{2} \epsilon^{2}\left(2 \omega_{2}-\omega_{1}^{2}\right)+\cdots\right\} \\
& =\left(1-\frac{3}{8} \epsilon a^{2}-\frac{15}{256} \epsilon^{2} a^{4}+o\left(\epsilon^{3}\right)\right.
\end{aligned}
$$

- Lindstedt method consists in successive adjustments of frequencies.
- Halo Orbit and Its Computation
- We have covered
- Importance of halo orbits.
- Finding periodic solutions of the linearized equations.
- Highlights on 3rd order approximation of a halo orbit.
- Using a textbook example to illustrate Lindstedt-Poincaré method.
- In Lecture5B, we will cover
- Use L.P. method to find a 3rd order approximation of a halo orbit.
- Finding a halo orbit numerically via differential correction.
- Orbit structure near L_{1} and L_{2}

