Dynamical Systems and Space Mission Design

Jerrold Marsden, Wang Koon and Martin Lo

Wang Sang Koon Control and Dynamical Systems, Caltech

koon@cds.caltech.edu

Global Orbit Structure: Outline

- ► Outline of Lecture 3B:
 - Construction of Poincaré map.
 - Review of Horseshoe Dynamics.
 - Symbolic Dynamics for the PCR3BP.
 - Main Theorem on Global Orbit Structure.

Global Orbit Structure: Overview

- ► Found **heteroclinic connection** between pair of periodic orbits.
- ▶ Find a large class of **orbits** near this (homo/heteroclinic) *chain*.
- ▶ Comet can follow these *channels* in rapid transition.

Global Orbit Structure: Overview

- **Symbolic sequence** used to label itinerary of each comet orbit.
- Main Theorem: For any admissible itinerary,
 e.g., (..., X, J, S, J, X, ...), there exists an orbit whose whereabouts matches this itinerary.
- ► Can even specify **number of revolutions** the comet makes around $L_1 \& L_2$ as well as Sun & Jupiter.

Global Orbit Structure: Overview

- ► Using the proof of **Main Theorem** as the guide, we develop procedure to construct orbit with **prescribed itinerary**.
- \blacktriangleright Example: An orbit with itinerary $(\mathbf{X}, \mathbf{J}; \mathbf{S}, \mathbf{J}, \mathbf{X})$.
- **Petit Grand Tour** of Jovian moons & **Shoot the Moon**.

Global Orbit Structure: Energy Manifold

► Schematic view of energy manifold.

Global Orbit Structure: Poincaré Map

▶ Reducing study of global orbit structure to study of discrete map.

Construction of Poincaré Map

- Construct **Poincaré map** P (tranversal to the flow) whose domain U consists of 4 squares U_i .
- Squares U_1 and U_4 contained in y = 0, each centers around a transversal **homoclinic** point.
- Squares U_2 and U_3 contained in $x = 1 \mu$, each centers around a transversal **heteroclinic** point.

Global Orbit Structure near the Chain

Consider **invariant set** Λ of points in U whose images and preimages under all iterations of P remain in U.

$$\Lambda = \bigcap_{n = -\infty}^{\infty} P^n(U).$$

Invariant set Λ contains all recurrent orbits near the chain. It provides insight into the global dynamics around the chain.

Chaos theory told us to first consider only the **first** forward and backward iterations:

$$\Lambda^1 = P^{-1}(U) \cap U \cap P^1(U).$$

Review of Horseshoe Dynamics: Pendulum

Review of Horseshoe Dynamics: Forced Pendulum

Review of Horseshoe Dynamics: First Iteration

Review of Horseshoe Dynamics: First Iteration

0;1

1:1

Review of Horseshoe Dynamics: Second Iteration

Review of Horseshoe Dynamics: Second Iteration

D

Conley-Moser Conditions: Horseshoe-type Map

- For horseshoe-type map h satisfying **Conley-Moser conditions**, the **invariant set** of all iterations, $\Lambda_h = \bigcap_{n=-\infty}^{\infty} h^n(Q)$, can be constructed and visualized in a standard way.
 - Strip condition: h maps "horizontal strips" H_0, H_1 to "vertical strips" V_0, V_1 , (with horizontal boundaries to horizontal boundaries and vertical boundaries to vertical boundaries).
 - Hyperbolicity condition: *h* has uniform contraction in horizontal direction and expansion in vertical direction.

Conley-Moser Conditions: Horseshoe-type Map

► Invariant set of first iterations $\Lambda_h^1 = h^{-1}(D) \cap D \cap h^1(D)$ has 4 squares, with addresses (0; 0), (1; 0), (1; 1), (0; 1).

- Invariant set of second iterations has 16 squares contained in 4 squares of first stage.
- This process can be repeated ad infinitum due to Conley-Moser Conditions.
- ▶ What remains is **invariant set** of points Λ_h which are in 1-to-1 corr. with set of bi-infinite sequences of 2 symbols $(\ldots, 0; 1, \ldots)$.

Horizontal (H_n^{31}) & Vertical (V_n^{21}) Strips

Recall: image of abutting arc of stable manifold cut spiral infinitely many times towards unstable manifold cut.

Horizontal (H_n^{ij}) & Vertical (V_m^{ji}) Strips

► Hence, $U \cap P^{-1}(U)$ has 8 families of horizontal strips H_n^{ij} .

- Each point in **horizontal strip** H_n^{ij} is in U_i and will wind n times around an equilibrium point before reaching U_j .
- We can associate each point in H_n^{ij} both an **address** in U and an **itinerary** $(; u_i, n, u_j)$.

Horizontal (H_n^{ij}) & Vertical (V_m^{ji}) Strips

▶ Similarly, $U \cap P^1(U)$ consists of 8 families of vertical strips V_m^{ji} .

- Each point in **vertical strip** V_m^{ji} came from U_i and has wound m times around an equilibrium point before arriving at U_j .
- We can associate each point in V_m^{ji} both an **address** in U and an **itenerary** $(u_i, m; u_j)$.

Invariant Set Λ^1 under First Interations

► The set $\Lambda^1 = P^{-1}(U) \cap U \cap P^1(U)$

is intersections of all **horizontal** and **vertical** strips.

• Each **point** of $Q_{m;n}^{3;12} = H_n^{12} \cap V_m^{13}$ has an **itenerary** $(u_3, m; u_1, n, u_2)$ which is a concatenation of $(u_1; n, u_2)$ (H_n^{12}) and $(u_3, m; u_1)$ (V_m^{13}) .

Application of Symbolic Dynamics

- Labeling "squares" $Q_{m;n}^{3;12}$ with $(u_3, m; u_1, n, u_2)$ is in line with characterizing orbits via bi-infinite sequences of "symbols".
- ► To keep track of **itenerary** w.r.t. 4 squares U_i , we use **subshift** with 4 symbols u_i , $(\ldots, u_3; u_1, u_2, \ldots)$, and a transition matrix

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Application of Symbolic Dynamics

- ► To keep track of **number of revolutions** around L_1 or L_2 , we use full shift with integer symbols, $(\ldots, m; n, \ldots)$.
- ▶ "Squares" $Q_{m;n}^{i;jk}$ in 1-to-1 corr. with sequences $(u_i, m; u_j, n, u_k)$.
- ► **Symbolic sequence** is used to label **address** of each "square" and identifies **itenerary** of its orbits.
- ▶ To generalize beyond first iteration, need to review chaos theory.

Conley-Moser Conditions: Horseshoe-type Map

- For horseshoe-type map h satisfying **Conley-Moser conditions**, the **invariant set** of all iterations, $\Lambda_h = \bigcap_{n=-\infty}^{\infty} h^n(Q)$, can be constructed and visualized in a standard way.
 - Strip condition: h maps "horizontal strips" H_0, H_1 to "vertical strips" V_0, V_1 , (with horizontal boundaries to horizontal boundaries and vertical boundaries to vertical boundaries).
 - Hyperbolicity condition: *h* has uniform contraction in horizontal direction and expansion in vertical direction.

Conley-Moser Conditions: Horseshoe-type Map

► Invariant set of first iterations $\Lambda_h^1 = h^{-1}(D) \cap D \cap h^1(D)$ has 4 squares, with addresses (0; 0), (1; 0), (1; 1), (0; 1).

- Invariant set of second iterations has 16 squares contained in 4 squares of first stage.
- This process can be repeated ad infinitum due to Conley-Moser Conditions.
- ▶ What remains is **invariant set** of points Λ_h which are in 1-to-1 corr. with set of bi-infinite sequences of 2 symbols $(\ldots, 0; 1, \ldots)$.

Generalized Conley-Moser Conditions

- ▶ Proved *P* satisfies **Generalized** Conley-Moser conditions:
 - Strip condition: it maps "horizontal strips" H_n^{ij} to "vertical strips" V_n^{ji} .
 - **Hyperbolicity** condition: it has uniform contraction in horizontal direction and expansion in vertical direction.

Generalized Conley-Moser Conditions

- Shown are invariant set Λ^1 under **first iteration**.
- Since P satisfies Generalized Conley-Moser Conditions, this process can be repeated ad infinitum.
- ► What remains is **invariant set** of points Λ which are in 1-to-1 corr. with set of bi-infinite **sequences** $(\ldots, u_i, m; u_j, n, u_k, \ldots)$.

Global Orbit Structure: Main Theorem

- Main Theorem: For any admissible itinerary,
 e.g., (..., X, 1, J, 0; S, 1, J, 2, X, ...), there exists an orbit whose whereabouts matches this itinerary.
- ► Can even specify **number of revolutions** the comet makes around Sun & Jupiter.

Global Orbit Structure: Dynamical Channels

Found a large class of orbits near homo/heteroclinic *chain*.
Comet can follow these *channels* in rapid transition.

Construction of Orbits with Prescribed Itinerary

- ► Using the proof of **Main Theorem** as the guide, we develop procedure to construct orbit with **prescribed itinerary**.
- \blacktriangleright Example: An orbit with itinerary $(\mathbf{X}, \mathbf{J}; \mathbf{S}, \mathbf{J}, \mathbf{X})$.
- **Petit Grand Tour** of Jovian moons & **Shoot the Moon**.

Construction of $(\mathbf{J}, \mathbf{X}; \mathbf{J}, \mathbf{S}, \mathbf{J})$ Orbits

