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Outline for Lecture 3A

• Homoclinic points.

• Horseshoes and chaos (informal introduction).

• Transversal Homoclinic Orbits in the PCR3BP.

• Homoclinic-Heteroclinic Chain in the PCR3BP.
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Pendulum and Forced Pendulum

• We will introduce some of the basic ideas using the forced pendu-
lum.

• Reference :
P. Holmes [1990] Poincaré, Celestial Mechanics, Dynamical Sys-
tems Theory and Chaos, Physics Reports 193, 137–163.

• Forcing, Poincaré maps and transversal homoclinic points

• Discussion of the equation

ẍ + sinx = ε cosωt

• Distinction between the forced pendulum and the pendulum cou-
pled to an oscillator.

• horseshoe map
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• Conley-Moser Conditions: horizontal and vertical rectangles and
uniform contraction, will be explained in the next lecture.

• symbolic dynamics

• chaos; example of an itinerary of the forced pendulum.
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Existence of Transversal Homoclinic Orbits

� The Flow Mappings in the Interior and Exterior Regions
of the Energy Surface.

• Recall some things about the Hill’s regions. We consider the equa-
tions for the PCR3BP on the energy surface given by setting the
energy equal to a constant.

• Let M be that energy surface, i.e.,

M(µ,C) = {(x, y, ẋ, ẏ) | C(x, y, ẋ, ẏ) = constant}
• The projection of this surface onto position space is a Hill’s re-
gion

M(µ,C) = {(x, y) | Ω(x, y) ≥ C/2}.
In other terms, this reads

M(µ,E) = {(x, y) | U eff(x, y) ≤ E}.
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• The boundary of M(µ,C) is the zero velocity curve . The
comet can move only within this region in the (x, y)-plane. For a
given µ recall (Lecture 2A) that there are five basic configurations
for the Hill’s region, the first four of which are shown in Figure 1.
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Figure 1: Four basic configurations of the Hill’s region.



7

• Case 5 is where the comet is free to move in the entire plane.

• The shaded region is where the motion is forbidden .

• The small oval region on the right is the Jupiter region .

• The large near circular region on the left is the interior region
surrounding the Sun.

• The region which lies outside the shaded forbidden region is the
exterior region surrounding the Sun (and Jupiter).

• The values of C which separate these five cases will be denoted
Ci, i = 1, 2, 3, 4 which are the values corresponding to the equilib-
rium points. These values can be easily calculated for small µ and
their graphs are shown in Figure 2.

• For case 3, the Jacobi constant lies between C2 and C3 which are
the Jacobi constants of the libration points L2 and L3 respectively.
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In this case, the Hill’s region contains a neck around both L1 and
L2 and the comet can transit from the interior region to the exterior
region and vice versa.
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Figure 2: The partition of the (µ,C)-plane into five types of Hill’s regions.
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� References We are now going to study some work of Conley,
McGehee and the Barcelona group. The references are:

• Conley, C. [1963] On some new long periodic solutions of the plane
restricted three body problem. Comm. Pure Appl. Math. 16,
449–467.

• Conley, C. [1968] Low energy transit orbits in the restricted three-
body problem. SIAM J. Appl. Math. 16, 732–746.

• McGehee, R. P. [1969] Some homoclinic orbits for the restricted
three-body problem, Ph.D. thesis, University of Wisconsin.

• Libre, J., R. Martinez and C. Simó [1985] Transversality of the
invariant manifolds associated to the Lyapunov family of perodic
orbits near L2 in the restricted three-body problem, Journal of
Differential Equations 58, 104-156.

Code name: LMS [1985].
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� Orbit Segments Winding around a Solid Torus.

• In McGehee [1969], the energy surface is broken up further into
regions bounded by invariant tori.

• These invariant tori project onto the darkly shaded annuli shown
for case 3 in Figure 3.

S J

A
1

T
1

T
2

A
2

L
1

L
2

Figure 3: The projection of invariant tori (darkly shaded) on position space for case 3.
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• These annuli separate the Hill’s region into sections corresponding
to invariant regions in the energy surface.

• For all of these cases the Sun and Jupiter are separated from each
other by an invariant torus (although we show only case 3), thus
making it impossible for the comet to pass from the Sun to Jupiter.

• Similarly, the two masses are separated from infinity by an invariant
torus.

• We consider the regions of the energy surface projecting to the area
between the two darkly shaded annuli, A1 and A2, i.e., the region
containing Jupiter.

• The theorems of McGehee below show that all orbits leaving the
vicinity of one of the unstable periodic orbits proceed around the
annulus T1 or T2 before returning to that vicinity.

• The direction of procession is the same for all orbits, counterclock-
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wise in the interior region and clockwise in the exterior region.

• In Lecture 2B we studied the regions near the unstable periodic or-
bits to obtain a qualitative picture of the orbits. We shall combine
this picture of asymptotic orbits with the fact that orbits in the
tori wind around in one direction to construct homoclinic orbits
in both the interior and exterior regions. See Figure 4.
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Figure 4: Homoclinic orbits in the interior and exterior regions.
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� Theorems of McGehee.

• To state the theorems, we first divide up the Hill’s region and the
energy surface.

• For small µ the two equilibrium points occur at a distance µ̃ on
either side of Jupiter with

µ̃ =
2µ1/3

3
.

• We isolate these points by drawing vertical lines on each side of
them, i.e., lines at (1 − µ ± c1µ̃, 0) and (1 − µ ± b1µ̃, 0), where
b1 < 1 < c1. This divides the Hill’s region into five sets as shown
in Figure 5.
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S J
R1 R2

X

Figure 5: Division of Hill’s region into five sets.

• Let S and J be the regions that contain the Sun and Jupiter;
let region R1 and region R2 be those parts that contain the two
equilibrium points L1 and L2, respectively; and let X be the region
that lies exterior to the orbit of Jupiter.

• We also divide the energy surface M into sets projecting onto the
regions shown in Figure 5. We keep the same name: e.g., region
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R1 for the set in the energy surface whose projection is the region
R1 in the position space. The theorem below asserts that one can
choose the division described above so that we simultaneously
have sufficient control of the flow in both regions S and R1 to
construct a homoclinic orbit. The following theorem makes the
same assertion for regions X and R2.

• The analysis of regions R1 and R2 is of a local nature. In fact,
we limit ourselves to those values of the Jacobi constant for which
the linearized equations about the equilibrium point give us the
qualitative picture of the flow.

• For b1 and c1 close to 1, i.e., for the region R close to the periodic
orbit, the flow in R (which stands for both R1 and R2) can be
described precisely (Lecture 2B). But we also know that we cannot
make c1 arbitrarily large without disturbing this qualitative picture
for R. On the other hand, we would like to make c1 large enough
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to obtain accurate estimates on the behavior of the flow in S and
X .

• The following theorems show that there exists a c1 which allows us
to balance these two factors.

Refer to Figure 6 while reading this theorem.
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Figure 6: (a) Open set O1 in (µ,C)-plane. (b) The invariant torus.
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Theorem 1 (McGehee Interior Theorem) There exist con-
stants b1 and c1 and an open set O1 in the (µ,C)-plane containing
the graph of C = C1(µ) for small µ > 0 such that, for (µ,C) ∈ O1:

1. The energy surface M(µ,C) contains an invariant torus sep-
arating the Sun from Jupiter.

2. For C < C1(µ), the flow in R1(µ,C) is qualitatively the same
as the flow for the linearized equations.

3. If we let T1 be that submanifold of M co-bounded by the in-
variant torus and n1, then there is a function

θ : T1 → R

such that :

(a) θ is a meridional angular coordinate for T1;

(b) θ is strictly increasing along orbits.
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Theorem 2 (McGehee Exterior Theorem) There exist con-
stants b1 and c1 and an open set O2 in the (µ,C)-plane containing
the graph of C = C2(µ) for small µ > 0 such that, for (µ,C) ∈ O2:

1. The energy surface M(µ,C) contains an invariant torus sep-
arating the Sun and Jupiter from infinity.

2. For C < C2(µ), the flow in R2(µ,C) is qualitatively the same
as the flow for the linearized equations.

3. If we let T2 be that submanifold of M co-bounded by the in-
variant torus and n2, then there exists a function

θ : T2 → R

such that :

(a) θ is a meridional angular coordinate for T2;

(b) θ is strictly increasing along orbits.
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Existence of Orbits Homoclinic to the Lyapunov Orbit

• Part 3 of the above theorems gives us the following properties for
the flow in T where T stands for either T1 or T2.

◦ The increase in θ along an orbit segment in T with endpoints
in the bounding sphere n is close to a non-zero integer multiple
of 2π.

◦ The increase in θ along any other orbit segment which can be
deformed to the first, keeping both endpoints in the bounding
sphere n, is close to the same integer multiple of 2π.

◦ Furthermore, the increase of θ along any orbit segment remain-
ing for an arbitrarily long time in T is arbitrary large.

• These are precisely the properties one needs to carry out the proof
of the existence of a homoclinic orbit.
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� A Dichotomy. We assert that either a transverse homoclinic
orbit exists, or “total degeneracy” occurs. Total degeneracy is the
case when every orbit asymptotic to the unstable periodic orbit at
one end is also asymptotic at the other end and hence is a homoclinic
orbit. In other words, the total degeneracy situation occurs when the
stable and unstable manifolds of the Lyapunov orbit coincide with
each other. In either event we conclude the existence of a homoclinic
orbit.

Sketch the proof . For more details, see Conley [1968] and McGehee [1969].

Assume that total degeneracy does not occur. The first step of the proof is to find an orbit

segment in T1 connecting either d−1 to a+
1 or a−1 to d+

1 as follows. See Figure 7. Since T1 is compact

and our flow, which is Hamiltonian, preserves a nondegenerate area element, we can conclude that

some orbit which crosses R1 (and the bounding sphere n1) and so enters T1 must also leave T1 and

recross R1 (and n1) the other way. See Figure 7. Therefore, for some point p ∈ d−1 of n1, there is

an orbit segment connecting p to a point q ∈ d+
1 of n1. Recall that in R1, the spherical caps d−1 and

d+
1 are where the flow crosses n1.

Starting with this orbit segment connecting p to q, we can find an orbit segment connecting either

d−1 to a+
1 or a−1 to d+

1 as follows. Let γ be an arc in d−1 linking p to a−1 (where γ ∩ a−1 is not on a
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Figure 7: The existence of orbits homoclinic to the Liapunov orbit.

homoclinic orbit). If all of γ is carried by the flow to the spherical cap d+
1 , then we shall have an

orbit segment with one endpoint in a−1 and the other in d+
1 . Otherwise, starting from p, there is some

maximal initial half-open subarc γ′ of γ which is carried by the flow to d+
1 . Let r be the first point

of γ not in γ′, then the orbit segment with one endpoint at r must become arbitrarily long. But

the only way this orbit segment can become arbitrarily long is to approach the asymptotic set, since

the number of times it can wind around T1 is finite and therefore must contain an arbitrarily long

subsegment in R1. Because of our knowledge of the flow in R1, we know that long orbit segments in

R1 must lie close to the cylinders of asymptotic orbits and therefore r must be carried to a+
1 . Hence,

in either case we conclude that there is an orbit segment connecting the set d±1 in one hemisphere



22

to the set of asymptotic orbits in the other.

Now, without loss of generality, we can suppose that we have found an orbit segment with one

endpoint, called α, in a−1 and the other in d+. We now choose for γ the whole set a−1 . Using

arguments similar to the above, we can conclude that either all of a−1 is carried by the flow inside d+
1 ,

or there exists a point β ∈ a−1 such that the orbit segment with β as an endpoint becomes asymptotic

at the other end. If the first possibility holds, we would have a map of d− to the interior of d+,

contradicting area preservation of Hamiltonian flow. Thus we have proven that either transversal

homoclinic orbits exist or total degeneracy occurs for the interior region. The same proof also works

for the exterior region.
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� Transversal Homoclinic Orbits in the Interior Region.
Conley [1968] and McGehee [1969] did not settle the issue of when one
has transversality of the homoclinic orbit families for the PCR3BP.
Subsequently, the Barcelona group (LMS [1985]) devoted their ma-
jor effort to show that under appropriate conditions, the invariant
manifolds of the L1 Lyapunov orbits do meet transversally. We first
establish some notation.

• Recall that near L1 and for values of C1 > C > C2 (case 2), there
is a family of unstable Lyapunov orbits.

• When C approaches C1 from below, the periodic orbit tends to L1.

• There are one-dimensional invariant stable, Ws
L1

, and unstable,

Wu
L1

, manifolds associated to L1.

• In a similar way, the L1 Liapunov orbit has two-dimensional invari-
ant manifolds Ws

L1,p.o.
,Wu

L1,p.o.
, locally diffeomorphic to cylinders.
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• We recall that a homoclinic orbit related to an equilibrium point
L or to a periodic orbit L̄ is an orbit which tends to L (or L̄) as
t → ±∞. Therefore, it is on the stable and unstable invariant
manifolds of the related object (L or L̄).

• A homoclinic orbit is called transversal if at some point of the
orbit the tangent spaces to the stable and unstable manifolds at
that point span the full tangent space to M(µ,C) at the same
point.

• The PCR3BP equations have the following symmetry

s : (x, y, ẋ, ẏ, t) → (x,−y,−ẋ, ẏ,−t). (1)

Therefore, if we know the unstable manifold of L1 or of the Li-
apunov orbit (which is a symmetrical periodic orbit) the corre-
sponding stable manifold is obtained through the use of the stated
symmetry. This observation will be used to find the transversal
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homoclinic orbits.

The results below imply that for sufficiently small µ and for an

appropriate range of ∆C = C1 −C, the invariant manifolds W
s,S
L1,p.o.

and W
u,S
L1,p.o.

in the interior region S intersect transversally.

Theorem 3 (First LMS Theorem) For µ sufficiently small, the

branch W
u,S
L1

of Wu
L1

in the interior region S has a projection on

position space (see Figure 8(a)) given by

d = µ1/3
(

2

3
N − 31/6 + M cos t + o(1)

)
,

α = −π + µ1/3(Nt + 2M sin t + o(1)),

where d is the distance to the zero velocity curve, α is the angular
coordinate and N and M are constants.
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In particular, for a sequence of values of µ which have the fol-
lowing asymptotic expression:

µk =
1

N3k3
(1 + o(1)), (2)

the first intersection of this projection with the x-axis is orthogo-
nal to that axis, giving a symmetric (1,1)-homoclinic orbit for L1.
The prefix (1,1) refers to the first intersection (with the Poincaré
section defined by the plane y = 0, x < 0) of both the stable and
unstable manifolds of L1.
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Figure 8: (a) Projection of the interior branch of the manifold Wu
L1

on the position space. (b)

First intersection (Poincaré “cut”) Γu,S
1 of the interior branch of Wu

L1,p.o.
with the plane y = 0 in the

region x < 0.

Theorem 4 (Second LMS Theorem) For µ and ∆C = C1 −
C sufficiently small, the branch W

u,S
L1,p.o.

of Wu
L1,p.o.

contained ini-

tially in the interior region S of the energy surface intersects the
plane y = 0 for x < 0 in a curve diffeomorphic to a circle (see
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Figure 8(b)).
In particular, for points in the (µ,C) plane such that there is a

µk of the preceding Theorem for which

∆C > Lµ
4/3
k (µ− µk)

2 (3)

holds (where L is a constant), there exist symmetric transversal
(1,1)-homoclinic orbits.

For details of the proofs, see LMS [1985], but we need to make a few
relevant comments.

• The main objective of both theorems is to study the transversality
of the invariant manifolds for the L1 Lyapunov orbit on the energy
surface whose Jacobi constant C is slightly less than C1(µ) as one
varies µ and C. The main step is to obtain an expression for the

first intersection Γ
u,S
1 of the unstable manifold W

u,S
L1,p.o.

with the
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plane y = 0 in the region x < 0. While formulas were provided
in LMS [1985] for this closed curve as a function of µ and ∆C
in the variables x, ẋ, they are quite complicated and difficult to
interpret and hence are not included here. But the key point is
the following. According to the first LMS Theorem, the set of
values of µ for which we have a symmetric (1,1)-homoclinic orbit
associated to L1 is discrete and is given by equation (2). Then for

any other value of µ the unstable manifold W
u,S
L1

of L1 reaches the

(x, ẋ)-plane in a point (x1, ẋ1) outside ẋ = 0. Therefore, if ∆C is

too small, Γ
u,S
1 does not cut the x-axis and hence (by symmetry)

Γ
s,S
1 of the stable manifold W

s,S
L1,p.o.

does not cut the x-axis either.

Therefore the first intersections of the invariant manifolds do not
meet and there is no symmetric (1,1)-homoclinic orbit.

However, for a fixed value of µ, if we increase ∆C, we hope that
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Γ
u,S
1 of the unstable manifold will become large. Therefore we

can look for some value of ∆C such that Γ
u,S
1 becomes tangent

to the x-axis or even intersects it at more than one point. Then,

due to the reversibility of the PCR3BP, Γ
s,S
1 of the stable mani-

fold also intersects the x-axis at the same points. Points P on the

x-axis where Γ
u,S
1 and Γ

s,S
1 intersect correspond to (symmetric)

orbits homoclinic to the Lyapunov orbit (see Figure 8(b)). If Γ
u,S
1

is transversal to Γ
s,S
1 at P then the homoclinic orbit is transver-

sal. The results of the second LMS Theorem say that the above

phenomenon occurs if ∆C > Lµ
4/3
k (µ− µk)

2 holds.

• Using the results of the second LMS Theorem one can draw a mesh
of homoclinic tangencies for the (µ,∆C)-plane. The numbers in
Figure 9 show the number of symmetric (1,1)-homoclinic points
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found in the first intersection of W
u,S
L1,p.o.

with the plane y = 0, x <

0 when one varies µ and ∆C. For us, the key point of the theorems
is that for the wide range of µ which exist in the solar system, the
invariant manifolds of the L1 Lyapunov orbit intersect transversally
for sufficiently large ∆C.

∆C

2
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12

14

0
µk−1 µk

µ

µk+1

Figure 9: Partition of the (µ,∆C)-plane according to the number of symmetric (1,1)-homoclinic

points found in the first intersection of Wu,S
L1,p.o.

with the plane y = 0, x < 0.
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• The heart of the proofs of these two theorems is to obtain expres-

sions for W
u,S
L1

as a function of µ and for W
u,S
L1,p.o.

as a function

of µ and ∆C. By using the basic framework of McGehee [1969],
LMS [1985] divided the annulus T1 in the interior region S into
two parts: a small neighborhood H near R1 and the rest of the re-
gion outside this small neighborhood. In the neighborhood H , the
PCR3BP can be considered as a perturbation of the Hill’s problem.
In celestial mechanics, it is well known that Hill’s problem studies
the behavior near the small mass of PCR3BP in the limit when
µ approaches zero. In the rest of the region away from the small
mass, the PCR3BP can be approximated by the two-body prob-
lem in a rotating frame. Through a number of careful estimations,
LMS [1985] were able to obtain these analytical results.
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� Summary.

• Conley [1968] and McGehee [1969] proved the existence of homo-
clinic orbits for both the interior and exterior region.

• LMS [1985] have shown analytically the existence of transversal
symmetric (1,1)-homoclinic orbits in the interior region under ap-
propriate conditions. But this is for Case 2 !

• For our problem, we need to find transversal homoclinic orbits in
both interior and exterior regions and transversal heteroclinic cycles
for the L1 and L2 Lyapunov orbits. To do this, we perform some
numerical explorations using the tools developed by the Barcelona
group. Reference:

• Gómez, G., A. Jorba, J. Masdemont, and C. Simó [1991] Study Refinement of Semi-Analytical

Halo Orbit Theory, Final Report, ESOC Contract No.: 8625/89/D/MD(SC), Barcelona,

April, 1991.
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Existence of the Chain

• Where are we?

• To proceed with the problem of interest to us (Case 3), we need
to get transverse homoclinic orbits in the interior, exterior and the
Jupiter region.

• These results are, unfortunately, not available analytically ,
so we are going to proceed numerically.
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� Transversal Homoclinic Orbits in the Exterior Region.

• We turn our attention now to numerical explorations of the prob-
lem, and in particular, to the existence of transversal homoclinic
orbits for the L2 Lyapunov orbit in the exterior region.

• Though there are no analytical results proving the existence of
transversal homoclinic orbits in the X region, we can construct
them numerically by finding an intersection of the manifoldsWs

L2,p.o.
and Wu

L2,p.o.
on an appropriately chosen Poincaré section.

• Numerical experiments guided by geometrical insight suggest that
we cut the flow by the plane y = 0, the line passing through the two
masses in the rotating frame. The branch of the manifold Wu

L2,p.o.
which enters the X region flows clockwise in the position space.

We refer to this exterior branch of the manifold as W
u,X
L2,p.o.

. See

Figure 10(a).
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Figure 10: (a) The position space projection of the unstable manifold “tube” Wu,X
L2,p.o.

until the

first intersection with the Poincaré section at y = 0, x < 0. (b) The first Poincaré cut Γu,X
1 of the

manifold Wu,X
L2,p.o.

on the plane y = 0, x < 0.

• This two-dimensional manifold “tube” W
u,X
L2,p.o.

first intersects the

plane y = 0 on the part of T2 which is opposite to L2 with respect
to the Sun (i.e., x < 0).

• The intersection, as one would expect geometrically, is a curve
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diffeomorphic to a circle. We call this intersection the first “cut”

of W
u,X
L2,p.o.

with y = 0. See Figure 10(b).

• To define the first cut, we exclude a neighborhood of n2 in the X
region. Some arcs of this curve produce successive intersections
without leaving the X region.

• The q-th of these intersections of W
u,X
L2,p.o.

with y = 0 will be

referred to as Γ
u,X
q . Similarly, we call Γ

s,X
p the corresponding p-th

intersection with y = 0 of the exterior region branch of Ws
L2,p.o.

.

• A point in y = 0 belonging to Γ
u,X
q ∩ Γ

s,X
p (if not empty) will

be called a (q, p)-homoclinic point . The existence of (q, p)-
homoclinic points for certain q and p is shown in McGehee [1969].
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• Next goal: obtain the first such transversal intersection of Γ
u,X
q

with Γ
s,X
p and so obtain a transversal (q, p)-homoclinic point. Other

intersections (for larger q and p) may exist, but we will restrict our-
selves for now to the first.

• Suppose that the unstable manifold intersection Γ
u,X
q is a closed

curve γ in the variables x, ẋ. Let sx be the symmetry with respect
to the x-axis on this plane. Then due to the reversibility of the

PCR3BP, the q-th intersection Γ
s,X
q of the stable manifold W

s,X
L2,p.o.

with y = 0 is sxγ. For some minimum q, the closed curve γ
intersects the ẋ = 0 line of the (x, ẋ)-plane.

• Points P along the curve γ which intersect the ẋ = 0 line are (q, q)-
homoclinic points, corresponding to (symmetric) orbits homoclinic
to the Lyapunov orbit. If the curve γ is transversal to the curve
sxγ at the point P then the homoclinic orbit corresponding to P
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is transversal. If intersections between the curves γ and sxγ exist
off the line ẋ = 0 (i.e., if the set (γ ∩ sxγ)\{ẋ = 0} is nonempty),
then nonsymmetric homoclinic orbits appear.

• Consider Figure 10(b), where we used the values µ = .0009537
and ∆C = C2 − C = .01 to compute the unstable Poincaré cut.

If we also plotted the stable cut Γ
s,X
1 , which is the mirror image of

unstable cut Γ
u,X
1 , we would find several points of intersection.

• In Figure 11(a), we focus on the left-most group of points, centered
at about x = −2.07. We find two ẋ = 0 intersections which are
transversal homoclinic points in the X region. The transversal
symmetric (1, 1)-homoclinic orbit corresponding to the left ẋ = 0
intersection is shown in Figure 11(b).
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Figure 11: (a) A group of four transverse (1, 1)-homoclinic points. (b) The symmetric (1, 1)-

homoclinic orbit corresponding to the left ẋ = 0 (1, 1)-homoclinic point (the large black dot in

(a)).

• Notice two off-axis intersections in Figure 11(a), completing the
local transversal intersection of two closed loops in the (x, ẋ)-plane.

• As these two intersections occur near the line ẋ = 0, they will be
nearly symmetric. A more pronounced case of nonsymmetry occurs
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for the other group of intersection points centered near x = −1.15,
for which we have the nonsymmetric (1, 1)-homoclinic orbit given
in Figure 12.
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Figure 12: A nonsymmetric (1, 1)-homoclinic point.
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• A similar procedure can numerically produce homoclinic orbits in
the interior region as well as in the Jupiter region. We can even
look at cuts beyond the first. See Figure 13(a).
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Figure 13: (a) The first three Poincaré cuts of the unstable (Wu,S
L1,p.o.

) and stable (Ws,S
L1,p.o.

) man-

ifolds with the plane y = 0. (b) A nonsymmetric (1, 3)-homoclinic orbit in the interior region

(corresponding to the large dot in (a)).

• In Figure 13(b) we show an interior region (1, 3)-homoclinic orbit
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(note, also (2, 2) and (3, 1), using q̄ + p̄ = q + p) associated to an
L1 Lyapunov orbit for µ = .1,∆C = C1 − C = .0743.

� Heteroclinic Connections between Lyapunov Orbits.

• We construct a heteroclinic connection between Lyapunov orbits
of L1 and L2 by finding an intersection of their respective invariant
manifolds in the J region.

• To do so, we seek points of intersection on a suitably chosen Poincaré
section. For instance, to generate a heteroclinic orbit which goes
from an L1 Lyapunov orbit (as t → −∞) to an L2 Lyapunov orbit
(as t → +∞), we proceed as follows.

• We restrict ourselves for now to case 3 (C2 > C > C3, see Figure
1), for which the Hill’s region opens enough to permit Lyapunov
orbits about both L1 and L2 to exist.
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• Let the branch of the unstable manifold of the L1 Lyapunov orbit

which enters the J region be denoted W
u,J
L1,p.o.

.

• On the same energy surface (same C value) there is an L2 Lya-
punov orbit, whose stable manifold in the J region we shall simi-

larly denote W
s,J
L2,p.o.

.

• The projection of the two-dimensional manifold tubes onto the
position space is shown in Figure 14(a).
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Figure 14: (a) The projection of invariant manifolds Wu,J
L1,p.o.

and Ws,J
L2,p.o.

in the region J of the

position space. (b) The first two Poincaré cuts of the invariant manifolds with the plane x = 1− µ.

• To find intersections between these two tubes, we cut the flow by
the plane x = 1 − µ. See Figure 14(b).

• This convenient plane maximizes the number of intersections for
values of µ,C which produce manifolds making a limited number
of revolutions around Jupiter before escaping from the J region.
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• The q-th intersection of W
u,J
L1,p.o.

with the plane x = 1 − µ will be

labeled Γ
u,J
L1,q

. Similarly, we will call Γ
s,J
L2,p

the p-th intersection of

W
s,J
L2,p.o.

with x = 1 − µ.

• Numerical experiments show that the L1 Lyapunov orbit unstable

manifold W
u,J
L1,p.o.

does not coincide with the L2 Lyapunov orbit

stable manifold W
s,J
L2,p.o.

.

• For a wide range of µ and C values (where (C2 > C > C3), numer-
ical explorations show that they do intersect transversally .

• While it is true that for certain values of µ and C, there are tan-
gencies between the stable and unstable manifold, we will not deal
with this interesting case in this study. Hence, from now on, we
will concentrate our numerical explorations only on the cases where
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the stable and unstable manifold intersect transversally.

• Now, suppose that Γ
u,J
L1,q

and Γ
s,J
L2,p

are each closed curves in the

variables y, ẏ. A point in the plane x = 1− µ belonging to the in-

tersection of the two closed curves (i.e., Γ
u,J
L1,q

∩Γ
s,J
L2,p

) will be called

a (q, p)-heteroclinic point because such a point corresponds to
a heteroclinic orbit going from the L1 Lyapunov orbit to the L2
Lyapunov orbit.

• Our objective is to obtain the first intersection point (or group

of points) of the curve Γ
u,J
L1,q

with the curve Γ
s,J
L2,p

and so obtain

the minimum values of q and p such that we have a transversal
(q, p)-heteroclinic point. Other intersections may exist, but we will
restrict ourselves for now to the first.

• For some minimum q and p, we have an intersection of the curves,
and some number of (q, p)-heteroclinic points, depending on the
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geometry of the intersection. Note that the sum q + p must be an
even positive integer.

• As we are interested in heteroclinic points for the Sun-Jupiter sys-
tem (µ = .0009537), we took C = 3.037 and proceeded numerically

to obtain the intersections of the invariant manifolds W
u,J
L1,p.o.

and

W
s,J
L2,p.o.

with the plane x = 1 − µ. In Figure 14(b) we show the

curves Γ
u,J
L1,q

for q = 1, 2 and Γ
s,J
L2,p

for p = 1, 2. Notice that Γ
u,J
L1,2

and Γ
s,J
L2,2

intersect in two points (the black dots in Figure 14(b)

near y = .042).

• Thus, the minimum q and p for a heteroclinic point to appear for
this particular value of µ,C is q = 2 and p = 2. The (2, 2)-
heteroclinic points can each be forward and backward integrated
to produce heteroclinic trajectories going from the L1 Lyapunov
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orbit to the L2 Lyapunov orbit. We show one of the heteroclinic
orbits in Figure 15.
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Figure 15: The existence of a transversal (2, 2)-heteroclinic orbit in the J region.
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• The number of revolutions around Jupiter is given by (q+p−1)/2.

• The reverse trajectory, going from the L2 Lyapunov orbit to the
L1 Lyapunov orbit, is easily given by the symmetry s (1).

• It would be the mirror image (about the x-axis) of the trajectory
in Figure 15, with the direction arrows reversed. These two het-
eroclinic connections together form a symmetric heteroclinic
cycle .



51

� Summary.

• We have used a combination of analytical and numerical techniques
to show the existence of homoclinic and heteroclinic orbits associ-
ated to the L1 and L2 Lyapunov orbits for case 3.

• Combining homoclinic and heteroclinic orbits of the same Jacobi
constant value, we generate a homoclinic/heteroclinic chain of or-
bits, which asymptotically connect the L1 and L2 Lyapunov orbits.

• These chains imply a complicated dynamics connecting the interior,
exterior, and Jupiter regions.

• As an example, we again choose the Sun-Jupiter system (µ =
.0009537), but now a Jacobi constant value similar to that of comet
Oterma during its Jupiter encounters (C = 3.03).

• We obtain an interior region orbit homoclinic to the L1 Lyapunov
orbit, an exterior region orbit homoclinic to the L2 Lyapunov orbit,
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and a heteroclinic orbit connecting the L1 and L2 Lyapunov orbits.
The union of these orbits is a homoclinic-heteroclinic chain .
See Figure 16. This has important consequences, such as locating
trajectories with given itineraries, explored in lecture 3B.
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